JP6910171B2 - 電気化学素子の製造方法および電気化学素子 - Google Patents
電気化学素子の製造方法および電気化学素子 Download PDFInfo
- Publication number
- JP6910171B2 JP6910171B2 JP2017056732A JP2017056732A JP6910171B2 JP 6910171 B2 JP6910171 B2 JP 6910171B2 JP 2017056732 A JP2017056732 A JP 2017056732A JP 2017056732 A JP2017056732 A JP 2017056732A JP 6910171 B2 JP6910171 B2 JP 6910171B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- electrode layer
- electrochemical element
- metal substrate
- electrolyte layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/8807—Gas diffusion layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
- H01M8/1253—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1286—Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
- H01M2300/0074—Ion conductive at high temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
- H01M2300/0074—Ion conductive at high temperature
- H01M2300/0077—Ion conductive at high temperature based on zirconium oxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Description
上記目的を達成するための電気化学素子の製造方法の特徴構成は、金属支持体と、前記金属支持体の上に形成された電極層とを有する電気化学素子の製造方法であって、前記金属支持体の上に表面粗さ(Ra)が1.0μm以下である領域を有する電極層を形成する電極層形成工程と、前記電極層の上にエアロゾル化した金属酸化物粉末を噴射して電解質層を形成する電解質層形成工程とを含む点にある。
上記目的を達成するための電気化学素子の製造方法の特徴構成は、金属支持体と、前記金属支持体の上に形成された電極層と、前記電極層の上に形成された中間層とを有する電気化学素子の製造方法であって、前記電極層の上に表面粗さ(Ra)が1.0μm以下である領域を有する中間層を形成する中間層形成工程と、前記中間層の上にエアロゾル化した金属酸化物粉末を噴射して電解質層を形成する電解質層形成工程とを含む点にある。
本発明に係る電気化学素子の製造方法の別の特徴構成は、前記電解質層が安定化ジルコニアを含有する点にある。
本発明に係る電気化学素子の特徴構成は、金属支持体の上に形成された表面粗さ(Ra)が1.0μm以下である領域を有する電極層の上にエアロゾル化した金属酸化物粉末を噴射することで緻密な電解質層を形成した点にある。
本発明に係る電気化学素子の特徴構成は、金属支持体上の電極層の上に形成された表面粗さ(Ra)が1.0μm以下である領域を有する中間層の上にエアロゾル化した金属酸化物粉末を噴射することで緻密な電解質層を形成した点にある。
以下、図1を参照しながら、本実施形態に係る電気化学素子Eおよび固体酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)について説明する。電気化学素子Eは、例えば、水素を含む燃料ガスと空気の供給を受けて発電する固体酸化物形燃料電池の構成要素として用いられる。なお以下、層の位置関係などを表す際、例えば電解質層4から見て対極電極層6の側を「上」または「上側」、電極層2の側を「下」または「下側」という場合がある。また、金属基板1における電極層2が形成されている側の面を「表側」、反対側の面を「裏側」という場合がある。
電気化学素子Eは、図1に示される通り、金属基板1(金属支持体)と、金属基板1の上に形成された電極層2と、電極層2の上に形成された中間層3と、中間層3の上に形成された電解質層4とを有する。そして電気化学素子Eは、更に、電解質層4の上に形成された反応防止層5と、反応防止層5の上に形成された対極電極層6とを有する。つまり対極電極層6は電解質層4の上に形成され、反応防止層5は電解質層4と対極電極層6との間に形成されている。電極層2は多孔質であり、電解質層4は緻密である。
金属基板1は、電極層2、中間層3および電解質層4等を支持して電気化学素子Eの強度を保つ、支持体としての役割を担う。金属基板1の材料としては、電子伝導性、耐熱性、耐酸化性および耐腐食性に優れた材料が用いられる。例えば、フェライト系ステンレス、オーステナイト系ステンレス、ニッケル基合金などが用いられる。特に、クロムを含む合金が好適に用いられる。なお本実施形態では、金属支持体として板状の金属基板1が用いられるが、金属支持体としては他の形状、例えば箱状、円筒状などの形状も可能である。
なお、金属基板1は、支持体として電気化学素子を形成するのに充分な強度を有すれば良く、例えば、0.1mm〜2mm程度、好ましくは0.1mm〜1mm程度、より好ましくは0.1mm〜0.5mm程度の厚みのものを用いることができる。
また、最大厚さが約1.1μm以下であることが好ましい。
金属酸化物層1bは種々の手法により形成されうるが、金属基板1の表面を酸化させて金属酸化物とする手法が好適に利用される。また、金属基板1の表面に、金属酸化物層1bをスパッタリング法やPLD法等のPVD法、CVD法、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)などにより形成しても良いし、メッキと酸化処理によって形成しても良い。更に、金属酸化物層1bは導電性の高いスピネル相などを含んでも良い。
電極層2は、図1に示すように、金属基板1の表側の面であって貫通孔1aが設けられた領域より大きな領域に、薄層の状態で設けることができる。薄層とする場合は、その厚さを、例えば、1μm〜100μm程度、好ましくは、5μm〜50μmとすることができる。このような厚さにすると、高価な電極層材料の使用量を低減してコストダウンを図りつつ、十分な電極性能を確保することが可能となる。貫通孔1aが設けられた領域の全体が、電極層2に覆われている。つまり、貫通孔1aは金属基板1における電極層2が形成された領域の内側に形成されている。換言すれば、全ての貫通孔1aが電極層2に面して設けられている。
すなわち電極層2は、多孔質な層として形成される。電極層2は、例えば、その緻密度が30%以上80%未満となるように形成される。細孔のサイズは、電気化学反応を行う際に円滑な反応が進行するのに適したサイズを適宜選ぶことができる。なお緻密度とは、層を構成する材料の空間に占める割合であって、(1−空孔率)と表すことができ、また、相対密度と同等である。
中間層3は、図1に示すように、電極層2を覆った状態で、電極層2の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm〜100μm程度、好ましくは2μm〜50μm程度、より好ましくは4μm〜25μm程度とすることができる。このような厚さにすると、高価な中間層材料の使用量を低減してコストダウンを図りつつ、十分な性能を確保することが可能となる。中間層3の材料としては、例えば、YSZ(イットリア安定化ジルコニア)、SSZ(スカンジウム安定化ジルコニア)やGDC(ガドリウム・ドープ・セリア)、YDC(イットリウム・ドープ・セリア)、SDC(サマリウム・ドープ・セリア)等を用いることができる。特にセリア系のセラミックスが好適に用いられる。
また、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
本実施形態では中間層3は、表面粗さ(Ra)が1.0μm以下である領域を有する。当該領域は、中間層3の表面全体でもよいし、一部の領域でもよい。中間層3が、表面粗さ(Ra)が1.0μm以下である領域を有することにより、中間層3と電解質層4の密着強度が高く、信頼性・耐久性に優れた電気化学素子Eを構成することができる。なお、中間層3は、表面粗さ(Ra)が0.5μm以下である領域を有するとより好ましく、0.3μm以下である領域を有すると更に好ましい。これは中間層3の表面粗さの平滑性が高くなる程、中間層3と電解質層4の密着強度がより高く、信頼性・耐久性に優れた電気化学素子Eを構成できるためである。
電解質層4は、図1に示すように、電極層2および中間層3を覆った状態で、中間層3の上に薄層の状態で形成される。詳しくは電解質層4は、図1に示すように、中間層3の上と金属基板1の上とにわたって(跨って)設けられる。このように構成し、電解質層4を金属基板1に接合することで、電気化学素子全体として堅牢性に優れたものとすることができる。
反応防止層5は、電解質層4の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm〜100μm程度、好ましくは2μm〜50μm程度、より好ましくは4μm〜25μm程度とすることができる。このような厚さにすると、高価な反応防止層材料の使用量を低減してコストダウンを図りつつ、十分な性能を確保することが可能となる。反応防止層5の材料としては、電解質層4の成分と対極電極層6の成分との間の反応を防止できる材料であれば良い。例えばセリア系材料等が用いられる。反応防止層5を電解質層4と対極電極層6との間に導入することにより、対極電極層6の構成材料と電解質層4の構成材料との反応が効果的に抑制され、電気化学素子Eの性能の長期安定性を向上できる。反応防止層5の形成は、1100℃以下の処理温度で形成できる方法を適宜用いて行うと、金属基板1の損傷を抑制し、また、金属基板1と電極層2との元素相互拡散を抑制でき、性能・耐久性に優れた電気化学素子Eを実現できるので好ましい。例えば、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PDV法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などを適宜用いて行うことができる。特に、低温焼成法やエアロゾルデポジション法などを用いると低コストな素子が実現できるので好ましい。更に、低温焼成法を用いると、原材料のハンドリングが容易になるので更に好ましい。
対極電極層6は、電解質層4もしくは反応防止層5の上に薄層の状態で形成することができる。薄層とする場合は、その厚さを、例えば、1μm〜100μm程度、好ましくは、5μm〜50μmとすることができる。このような厚さにすると、高価な対極電極層材料の使用量を低減してコストダウンを図りつつ、十分な電極性能を確保することが可能となる。対極電極層6の材料としては、例えば、LSCF、LSM等の複合酸化物を用いることができる。以上の材料を用いて構成される対極電極層6は、カソードとして機能する。
以上のように電気化学素子Eを構成することで、電気化学素子Eを固体酸化物形燃料電池の発電セルとして用いることができる。例えば、金属基板1の裏側の面から貫通孔1aを通じて水素を含む燃料ガスを電極層2へ供給し、電極層2の対極となる対極電極層6へ空気を供給し、例えば、600℃以上850℃以下の温度で作動させる。そうすると、対極電極層6において空気に含まれる酸素O2が電子e-と反応して酸素イオンO2-が生成される。その酸素イオンO2-が電解質層4を通って電極層2へ移動する。電極層2においては、供給された燃料ガスに含まれる水素H2が酸素イオンO2-と反応し、水H2Oと電子e-が生成される。以上の反応により、電極層2と対極電極層6との間に起電力が発生する。この場合、電極層2はSOFCの燃料極(アノード)として機能し、対極電極層6は空気極(カソード)として機能する。
次に、本実施形態に係る電気化学素子Eの製造方法について説明する。
電極層形成ステップでは、金属基板1の表側の面の貫通孔1aが設けられた領域より広い領域に電極層2が薄膜の状態で形成される。金属基板1の貫通孔はレーザー加工等によって設けることができる。電極層2の形成は、上述したように、低温焼成法(1100℃以下の低温域での焼成処理を行う湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
まず、電極層2の材料粉末と溶媒(分散媒)とを混合して材料ペーストを作製し、金属基板1の表側の面に塗布する。そして電極層2を圧縮成形し(電極層平滑化工程)、1100℃以下で焼成する(電極層焼成工程)。電極層2の圧縮成形は、例えば、CIP(Cold Isostatic Pressing 、冷間静水圧加圧)成形、ロール加圧成形、RIP(Rubber Isostatic Pressing)成形などにより行うことができる。また、電極層2の焼成は、800℃以上1100℃以下の温度で行うと好適である。また、電極層平滑化工程と電極層焼成工程の順序を入れ替えることもできる。
なお、中間層を有する電気化学素子を形成する場合では、電極層平滑化工程や電極層焼成工程を省いたり、電極層平滑化工程や電極層焼成工程を後述する中間層平滑化工程や中間層焼成工程に含めることもできる。
なお、電極層平滑化工程は、ラップ成形やレベリング処理、表面の切削・研磨処理などを施すことによって行うことでもできる。
上述した電極層形成ステップにおける焼成工程時に、金属基板1の表面に金属酸化物層1b(拡散抑制層)が形成される。なお、上記焼成工程に、焼成雰囲気を酸素分圧が低い雰囲気条件とする焼成工程が含まれていると元素の相互拡散抑制効果が高く、抵抗値の低い良質な金属酸化物層1b(拡散抑制層)が形成されるので好ましい。電極層形成ステップを、焼成を行わないコーティング方法とする場合を含め、別途の拡散抑制層形成ステップを含めても良い。いずれにおいても、金属基板1の損傷を抑制可能な1100℃以下の処理温度で実施することが望ましい。また、後述する中間層形成ステップにおける焼成工程時に、金属基板1の表面に金属酸化物層1b(拡散抑制層)が形成されても良い。
中間層形成ステップでは、電極層2を覆う形態で、電極層2の上に中間層3が薄層の状態で形成される。中間層3の形成は、上述したように、低温焼成法(1100℃以下の低温域での焼成処理を行う湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
まず、中間層3の材料粉末と溶媒(分散媒)とを混合して材料ペーストを作製し、金属基板1の表側の面に塗布する。そして中間層3を圧縮成形し(中間層平滑化工程)、1100℃以下で焼成する(中間層焼成工程)。中間層3の圧縮成形は、例えば、CIP(Cold Isostatic Pressing 、冷間静水圧加圧)成形、ロール加圧成形、RIP(Rubber Isostatic Pressing)成形などにより行うことができる。また、中間層3の焼成は、800℃以上1100℃以下の温度で行うと好適である。このような温度であると、金属基板1の損傷・劣化を抑制しつつ、強度の高い中間層3を形成できるためである。また、中間層3の焼成を1050℃以下で行うとより好ましく、1000℃以下で行うと更に好ましい。これは、中間層3の焼成温度を低下させる程に、金属基板1の損傷・劣化をより抑制しつつ、電気化学素子Eを形成できるからである。なお、中間層平滑化工程と中間層焼成工程の順序を入れ替えることもできる。
なお、中間層平滑化工程は、ラップ成形やレベリング処理、表面の切削・研磨処理などを施すことによって行うことでもできる。
電解質層形成ステップでは、電極層2および中間層3を覆った状態で、電解質層4が中間層3の上に薄層の状態で形成される。
緻密で気密性およびガスバリア性能の高い、良質な電解質層4を1100℃以下の温度域で形成するためには、電解質層形成ステップをエアロゾルデポジション法で行うことが望ましい。その場合、エアロゾル化した電解質層4の材料粉末を金属基板1上の中間層3に向けて噴射し、電解質層4を形成する。
反応防止層形成ステップでは、反応防止層5が電解質層4の上に薄層の状態で形成される。反応防止層5の形成は、上述したように、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
対極電極層形成ステップでは、対極電極層6が反応防止層5の上に薄層の状態で形成される。対極電極層6の形成は、上述したように、低温焼成法(例えば1100℃を越える高温域での焼成処理をしない低温域での焼成処理を用いる湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
中間層3の上にエアロゾル化した金属酸化物粉末を噴射して電解質層4を形成する電解質層形成工程とを含む。
厚さ0.3mm、直径25mmの円形のcrofer22APUの金属板に対して、中心から半径2.5mmの領域にレーザー加工により貫通孔1aを複数設けて、金属基板1を作製した。なお、この時、金属基板1の表面の貫通孔1aはレーザー加工により設けた。
以上の結果から、中間層3の表面粗さ(Ra)を1.0μm以下とすることで、良好な電解質層の形成が可能なことが示された。
本実施形態に係る電気化学素子Eは、中間層3を備えない形態、すなわち電極層2と電解質層4とが接触して形成される形態とされる。したがって電気化学素子Eの製造方法では、中間層形成ステップが省略される。
次に、本実施形態に係る電気化学素子Eの製造方法について説明する。本実施形態に係る電気化学素子Eは中間層3を有さない。したがって本実施形態に係る電気化学素子Eの製造法では、電極層形成ステップ(拡散抑制層形成ステップ)、電解質層形成ステップ、反応防止層形成ステップ、対極電極層形成ステップが、順に行われる。
電極層形成ステップでは、金属基板1の表側の面の貫通孔1aが設けられた領域より広い領域に電極層2が薄膜の状態で形成される。金属基板1の貫通孔はレーザー加工等によって設けることができる。電極層2の形成は、上述したように、低温焼成法(1100℃以下の低温域での焼成処理を行う湿式法)、スプレーコーティング法(溶射法やエアロゾルデポジション法、エアロゾルガスデポジッション法、パウダージェットデポジッション法、パーティクルジェットデポジション法、コールドスプレー法などの方法)、PVD法(スパッタリング法、パルスレーザーデポジション法など)、CVD法などの方法を用いることができる。いずれの方法を用いる場合であっても、金属基板1の劣化を抑制するため、1100℃以下の温度で行うことが望ましい。
まず、電極層2の材料粉末と溶媒(分散媒)とを混合して材料ペーストを作製し、金属基板1の表側の面に塗布する。そして電極層2を圧縮成形し(電極層平滑化工程)、1100℃以下で焼成する(電極層焼成工程)。電極層2の圧縮成形は、例えば、CIP(Cold Isostatic Pressing 、冷間静水圧加圧)成形、ロール加圧成形、RIP(Rubber Isostatic Pressing)成形などにより行うことができる。また、電極層2の焼成は、800℃以上1100℃以下の温度で行うと好適である。このような温度であると、金属基板1の損傷・劣化を抑制しつつ、強度の高い電極層2を形成できるためである。また、電極層2の焼成を1050℃以下で行うとより好ましく、1000℃以下で行うと更に好ましい。これは、電極層2の焼成温度を低下させる程に、金属基板1の損傷・劣化をより抑制しつつ、電気化学素子Eを形成できるからである。
なお、電極層平滑化工程は、ラップ成形やレベリング処理、表面の切削・研磨処理などを施すことによって行うことでもできる。
厚さ0.3mm、直径25mmの円形のcrofer22APUの金属板に対して、中心から半径2.5mmの領域にレーザー加工により貫通孔1aを複数設けて、金属基板1を作製した。なお、この時、金属基板1の表面の貫通孔1aはレーザー加工により設けた。
以上の結果から、電極層2の表面粗さ(Ra)を1.0μm以下とすることで、良好な電解質層の形成が可能なことが示された。
(1)上記の実施形態では、電気化学素子Eを固体酸化物形燃料電池に用いたが、電気化学素子Eは、固体酸化物形電解セルや、固体酸化物を利用した酸素センサ等に利用することもできる。
1a :貫通孔
2 :電極層
3 :中間層
4 :電解質層
5 :反応防止層
6 :対極電極層
E :電気化学素子
Claims (5)
- 金属支持体と、前記金属支持体の上に形成された電極層とを有する電気化学素子の製造方法であって、
前記金属支持体の上に表面粗さ(Ra)が1.0μm以下である領域を有する電極層を形成する電極層形成工程と、
前記電極層の上にエアロゾル化した金属酸化物粉末を噴射して電解質層を形成する電解質層形成工程とを含む、電気化学素子の製造方法。 - 金属支持体と、前記金属支持体の上に形成された電極層と、前記電極層の上に形成された中間層とを有する電気化学素子の製造方法であって、
前記電極層の上に表面粗さ(Ra)が1.0μm以下である領域を有する中間層を形成する中間層形成工程と、
前記中間層の上にエアロゾル化した金属酸化物粉末を噴射して電解質層を形成する電解質層形成工程とを含む、電気化学素子の製造方法。 - 前記電解質層が安定化ジルコニアを含有する請求項1または2に記載の電気化学素子の製造方法。
- 金属支持体の上に形成された表面粗さ(Ra)が1.0μm以下である領域を有する電極層の上にエアロゾル化した金属酸化物粉末を噴射することで緻密な電解質層を形成した電気化学素子。
- 金属支持体上の電極層の上に形成された表面粗さ(Ra)が1.0μm以下である領域を有する中間層の上にエアロゾル化した金属酸化物粉末を噴射することで緻密な電解質層を形成した電気化学素子。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017056732A JP6910171B2 (ja) | 2017-03-22 | 2017-03-22 | 電気化学素子の製造方法および電気化学素子 |
US16/495,231 US20200014051A1 (en) | 2017-03-22 | 2018-03-22 | Manufacturing Method for Electrochemical Element and Electrochemical Element |
KR1020237029666A KR102719579B1 (ko) | 2017-03-22 | 2018-03-22 | 전기 화학 소자의 제조 방법 및 전기 화학 소자 |
PCT/JP2018/011442 WO2018174168A1 (ja) | 2017-03-22 | 2018-03-22 | 電気化学素子の製造方法および電気化学素子 |
EP18771828.3A EP3605693A4 (en) | 2017-03-22 | 2018-03-22 | METHOD FOR MANUFACTURING AN ELECTROCHEMICAL ELEMENT AND ELECTROCHEMICAL ELEMENT |
KR1020197024330A KR20190129841A (ko) | 2017-03-22 | 2018-03-22 | 전기 화학 소자의 제조 방법 및 전기 화학 소자 |
CA3057436A CA3057436A1 (en) | 2017-03-22 | 2018-03-22 | Manufacturing method for electrochemical element and electrochemical element |
CN201880019875.2A CN110431698B (zh) | 2017-03-22 | 2018-03-22 | 电化学元件的制造方法和电化学元件 |
US18/095,636 US20230147978A1 (en) | 2017-03-22 | 2023-01-11 | Manufacturing Method for Electrochemical Element and Electrochemical Element |
US18/588,999 US20240204228A1 (en) | 2017-03-22 | 2024-02-27 | Manufacturing Method for Electrochemical Element and Electrochemical Element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017056732A JP6910171B2 (ja) | 2017-03-22 | 2017-03-22 | 電気化学素子の製造方法および電気化学素子 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018160369A JP2018160369A (ja) | 2018-10-11 |
JP6910171B2 true JP6910171B2 (ja) | 2021-07-28 |
Family
ID=63584465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017056732A Active JP6910171B2 (ja) | 2017-03-22 | 2017-03-22 | 電気化学素子の製造方法および電気化学素子 |
Country Status (7)
Country | Link |
---|---|
US (3) | US20200014051A1 (ja) |
EP (1) | EP3605693A4 (ja) |
JP (1) | JP6910171B2 (ja) |
KR (2) | KR20190129841A (ja) |
CN (1) | CN110431698B (ja) |
CA (1) | CA3057436A1 (ja) |
WO (1) | WO2018174168A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10618217B2 (en) | 2013-10-30 | 2020-04-14 | Branch Technology, Inc. | Cellular fabrication and apparatus for additive manufacturing |
GB202213357D0 (en) | 2022-09-13 | 2022-10-26 | Ceres Ip Co Ltd | Electrochemical cell |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3997874B2 (ja) * | 2002-09-25 | 2007-10-24 | 日産自動車株式会社 | 固体酸化物形燃料電池用単セル及びその製造方法 |
US20070184322A1 (en) * | 2004-06-30 | 2007-08-09 | Hong Huang | Membrane electrode assembly in solid oxide fuel cells |
JP2007012361A (ja) * | 2005-06-29 | 2007-01-18 | Nissan Motor Co Ltd | 固体酸化物形燃料電池 |
JP5041195B2 (ja) * | 2005-09-21 | 2012-10-03 | 大日本印刷株式会社 | 固体酸化物形燃料電池 |
US20070072070A1 (en) * | 2005-09-26 | 2007-03-29 | General Electric Company | Substrates for deposited electrochemical cell structures and methods of making the same |
US20070180689A1 (en) * | 2006-02-08 | 2007-08-09 | Day Michael J | Nonazeotropic terpineol-based spray suspensions for the deposition of electrolytes and electrodes and electrochemical cells including the same |
JP2008086910A (ja) * | 2006-10-02 | 2008-04-17 | Toyota Motor Corp | 水素分離膜−電解質膜接合体の製造方法 |
JP5341321B2 (ja) * | 2007-06-28 | 2013-11-13 | 本田技研工業株式会社 | 固体高分子型燃料電池用電解質膜・電極構造体 |
US8399147B2 (en) * | 2007-12-28 | 2013-03-19 | Honda Motor Co., Ltd. | Electrolyte-electrode assembly comprising an apatite-type oxide electrolyte and method for manufacturing the same |
JP2010218759A (ja) * | 2009-03-13 | 2010-09-30 | Tokyo Electric Power Co Inc:The | 金属支持型固体酸化物形燃料電池及びその製造方法 |
EP2333883A1 (de) * | 2009-11-18 | 2011-06-15 | Forschungszentrum Jülich Gmbh (FJZ) | Anode für eine Hochtemperatur-Brennstoffzelle sowie deren Herstellung |
EP2325931A1 (de) * | 2009-11-18 | 2011-05-25 | Plansee Se | Anordnung für eine Brennstoffzelle sowie Verfahren zu deren Herstellungen |
JP5484155B2 (ja) * | 2010-03-30 | 2014-05-07 | 株式会社日本触媒 | 固体酸化物形燃料電池用電解質シートおよびその製造方法、並びにそれを用いた固体酸化物形燃料電池用セル。 |
JP5772125B2 (ja) * | 2010-03-31 | 2015-09-02 | 大日本印刷株式会社 | 固体酸化物形燃料電池及びその製造方法 |
JP5704990B2 (ja) * | 2011-03-29 | 2015-04-22 | 株式会社日本触媒 | 固体酸化物形燃料電池用電解質シートおよびその製造方法、並びにそれを用いた固体酸化物形燃料電池用セル |
JP2013065518A (ja) * | 2011-09-20 | 2013-04-11 | Honda Motor Co Ltd | 金属支持型電解質・電極接合体及びその製造方法 |
KR102184536B1 (ko) * | 2013-12-23 | 2020-11-30 | 엘지전자 주식회사 | 세그먼트형 고체 산화물 연료 전지 |
KR101657242B1 (ko) * | 2014-04-25 | 2016-09-19 | 한국과학기술연구원 | 반응방지막을 포함하는 고온 고체산화물 셀, 이의 제조방법 |
WO2016043328A1 (ja) * | 2014-09-19 | 2016-03-24 | 大阪瓦斯株式会社 | 電気化学素子、固体酸化物形燃料電池セル、およびこれらの製造方法 |
JP6463203B2 (ja) * | 2015-03-31 | 2019-01-30 | 大阪瓦斯株式会社 | 電気化学素子、それを備えた電気化学モジュール、電気化学装置およびエネルギーシステム |
-
2017
- 2017-03-22 JP JP2017056732A patent/JP6910171B2/ja active Active
-
2018
- 2018-03-22 US US16/495,231 patent/US20200014051A1/en not_active Abandoned
- 2018-03-22 KR KR1020197024330A patent/KR20190129841A/ko active Application Filing
- 2018-03-22 WO PCT/JP2018/011442 patent/WO2018174168A1/ja unknown
- 2018-03-22 KR KR1020237029666A patent/KR102719579B1/ko active Active
- 2018-03-22 CA CA3057436A patent/CA3057436A1/en active Pending
- 2018-03-22 EP EP18771828.3A patent/EP3605693A4/en active Pending
- 2018-03-22 CN CN201880019875.2A patent/CN110431698B/zh active Active
-
2023
- 2023-01-11 US US18/095,636 patent/US20230147978A1/en not_active Abandoned
-
2024
- 2024-02-27 US US18/588,999 patent/US20240204228A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20200014051A1 (en) | 2020-01-09 |
CA3057436A1 (en) | 2018-09-27 |
EP3605693A1 (en) | 2020-02-05 |
KR102719579B1 (ko) | 2024-10-17 |
KR20230129626A (ko) | 2023-09-08 |
KR20190129841A (ko) | 2019-11-20 |
US20230147978A1 (en) | 2023-05-11 |
US20240204228A1 (en) | 2024-06-20 |
JP2018160369A (ja) | 2018-10-11 |
CN110431698A (zh) | 2019-11-08 |
WO2018174168A1 (ja) | 2018-09-27 |
EP3605693A4 (en) | 2021-01-06 |
CN110431698B (zh) | 2023-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6800297B2 (ja) | 電気化学素子、固体酸化物形燃料電池セル、およびこれらの製造方法 | |
US11189839B2 (en) | Metal-supported electrochemical element, solid oxide fuel cell and method of manufacturing such metal-supported electrochemical element | |
JP6671132B2 (ja) | 電気化学素子、固体酸化物形燃料電池セル、およびこれらの製造方法 | |
JP6644363B2 (ja) | 電気化学素子、固体酸化物形燃料電池セル、およびこれらの製造方法 | |
US20240204228A1 (en) | Manufacturing Method for Electrochemical Element and Electrochemical Element | |
JP6910170B2 (ja) | 金属支持型電気化学素子用の電極層付基板、電気化学素子、電気化学モジュール、電気化学装置、エネルギーシステム、固体酸化物形燃料電池、および製造方法 | |
JP6779352B2 (ja) | 金属支持型電気化学素子、固体酸化物形燃料電池および金属支持型電気化学素子の製造方法 | |
JP6779351B2 (ja) | 金属支持型電気化学素子、固体酸化物形燃料電池および金属支持型電気化学素子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210608 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210706 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6910171 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |