JP6872816B2 - ニッケルマンガン系複合酸化物及びその製造方法 - Google Patents
ニッケルマンガン系複合酸化物及びその製造方法 Download PDFInfo
- Publication number
- JP6872816B2 JP6872816B2 JP2019506265A JP2019506265A JP6872816B2 JP 6872816 B2 JP6872816 B2 JP 6872816B2 JP 2019506265 A JP2019506265 A JP 2019506265A JP 2019506265 A JP2019506265 A JP 2019506265A JP 6872816 B2 JP6872816 B2 JP 6872816B2
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- lithium
- composite oxide
- transition metal
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
項1.
一般式(1):
Li1+x(NiyMn1−y)1−xO2 (1)
[式中、x及びyはそれぞれ0.0≦x<1/3、0.3≦y≦0.6を示す。]
で表わされ、層状岩塩型結晶相を含み、
格子定数aが2.870Å以下、格子体積が102.0Å3以下である、
ニッケル含有リチウムマンガン複合酸化物。
項2.
前記層状岩塩型結晶相において、リチウム層内に含まれる遷移金属量が5%以下である、項1に記載のニッケル含有リチウムマンガン複合酸化物。
項3.
前記層状岩塩型結晶相において、遷移金属層内に含まれる遷移金属量が88%以下である、項1又は2に記載のニッケル含有リチウムマンガン複合酸化物。
項4.
ニッケルイオンの平均価数が2.5価以上である、項1〜3の何れかに記載のニッケル含有リチウムマンガン複合酸化物。
項5.
O/(Ni+Mn)原子比が2.3以上である、項1〜4の何れかに記載のニッケル含有リチウムマンガン複合酸化物。
項6.
項1〜5の何れかに記載のニッケル含有リチウムマンガン複合酸化物を正極活物質として含むリチウムイオン二次電池。
項7.
マンガン化合物及びニッケル化合物を含む混合水溶液から、20℃以下のアルカリ性条件下にて沈殿物を形成する工程1、
前記沈殿物に湿式酸化処理を行う工程2、
及びリチウム塩共存下酸化性雰囲気下で熱処理する工程3を有する、
項1〜5の何れかに記載のニッケル含有リチウムマンガン複合酸化物の製造方法。
本発明のニッケル含有リチウムマンガン複合酸化物は、一般式(1):
Li1+x(NiyMn1−y)1−xO2 (1)
[式中、x及びyはそれぞれ0.0≦x<1/3、0.3≦y≦0.6を示す。]
で表わされ、層状岩塩型結晶相を含み、
格子定数aが2.870Å以下、格子体積が102.0Å3以下であることを特徴とする。
上記したニッケル含有リチウムマンガン複合酸化物は、リチウムイオン二次電池用正極材料として用いることができる。かかる正極材料に、公知の導電剤及びバインダーと混合することで作製した正極合剤をAl、Ni、ステンレス、カーボンクロス等の正極集電体に担持させることで、正極を製造することができる。導電剤としては、例えば、黒鉛、コークス類、カーボンブラック、針状カーボン等の炭素材料を用いることができる。負極材料としても特に限定的ではなく、例えば、金属リチウム、黒鉛、Si−SiO系負極、LTO(Li4Ti5O12)系負極などが挙げられる。これらの負極材料についても、必要に応じて、導電剤、バインダー等を用いて、Al、Cu、Ni、ステンレス、カーボン等からなる負極集電体に担持させて、負極を製造すればよい。電解質としては特に限定的ではなく、LiPF6等を電解質塩とし、炭酸エチル(EC)や炭酸ジメチル(DMC)などの各種溶媒に溶解させた有機電解液、Li2S−P2S5、Li2S−GeS2−P2S5、Li2S−SiS2−Li3PO4などの無機硫化物系固体電解質、リチウムイオン導電性を有する高分子ポリマーなどが挙げられる。セパレータとしては特に限定的ではなく、ポリエチレン、ポリプロピレンなどが挙げられる。
また本発明は、さらに上述したニッケル含有リチウムマンガン複合酸化物の製造方法を包含する。本発明のニッケル含有リチウムマンガン複合酸化物の製造方法は、
マンガン化合物及びニッケル化合物を含む混合水溶液から、20℃以下のアルカリ性条件下にて沈殿物を形成する工程1、
前記沈殿物に湿式酸化処理を行う工程2、
及びリチウム塩共存下酸化性雰囲気下で熱処理する工程3を有する。
使用するマンガン化合物としては、特に限定はなく、塩化マンガン(II)、硫酸マンガン(II)、酢酸マンガン(II)、酢酸マンガン(III)、硝酸マンガン(II)、アセチル酢酸マンガン(II)、アセチル酢酸マンガン(III)、過マンガン酸カリウム(VII)等水和物も含め、公知のものを広く使用することが可能である。また酸化マンガンや金属マンガンも適切な酸で溶解させることにより水溶性塩として用いることができる。
工程2において、上記工程1において得られた沈殿物に、湿式酸化処理を施す。工程2は沈殿物を含むアルカリ水溶液に空気や酸素ガスなどの酸化性気体を吹き込む(バブリングする)ことにより沈殿を酸化熟成してリチウムとの反応性の高い前駆体を作るものである。吹き込む気体は、酸素ガスが含まれていれば良く(例えば、空気でもよい。)、特に限定されないが、酸化時間の短縮の観点から、酸素ガスが好ましい。酸素ガスの場合、通常用いるボンベのみならず、工業用の酸素発生機を用いても良い。湿式酸化の温度も特に限定はなく、例えば室温付近で良い。湿式酸化時間は、反応を充分に進行させるという観点から、長いほどよいが1時間以上が好ましく、24時間以上がより好ましく、48時間以上がさらに好ましい。
工程3において、上記工程2において得られた熟成物に、リチウム塩共存下で熱処理を行う。ここで、上記水溶性塩類由来の不純物低減という観点から、リチウム塩共存下での熱処理を行う前に、上記工程2において得られた熟成物を蒸留水等で洗浄し、塩類を除去したうえで濾過し、リチウム塩添加後、熱処理用原料としてリチウム塩共存下酸化性雰囲気下で、熱処理するのが好ましいが、もちろん上記工程2で得られた反応物をそのまま工程3において熱処理用原料として使用し、リチウム塩共存下酸化性雰囲気下で、熱処理してもよい。
硝酸ニッケル(II)6水和物36.35gおよび塩化マンガン(II)4水和物24.74g(0.25mol/バッチ、Ni:Mnモル比1:1)を秤量し、蒸留水500ml中に完全に溶解させた。別のチタン製ビーカーに水酸化ナトリウム50gを入れ、蒸留水500mlを加えて完全に溶解させた。水酸化ナトリウム水溶液を20℃に保持された恒温槽内に固定し、溶液が同じ温度になるまで攪拌保持した。上記金属塩溶液に送液ポンプをセットし、上記アルカリ溶液へ3時間かけて、金属塩溶液を徐々に加え、沈殿を形成させた。沈殿作製終了後もアルカリ溶液のpHが11以上あることを確認した。沈殿作製終了後、ビーカーを恒温槽より取り出し、室温にて攪拌しつつ、酸素ガス発生器を用いて、沈殿に酸素を吹き込みつつ二日間湿式酸化および熟成を行った。熟成後に沈殿を蒸留水で洗浄し、アルカリあるいは塩類を取り除いた後、濾過した。濾過後、沈殿に炭酸リチウム0.25mol(18.47g)を加え、蒸留水200mlとともにミキサー混合し、スラリーを作製した。スラリーをポリテトラフルオロエチレン製シャーレーに移し、50℃で2日間乾燥して焼成用原料を作製した。振動ミルにより原料を粉砕後、アルミナるつぼふた上に薄く広げ、大気中650℃で5時間一次焼成後、炉冷した。焼成後の原料は振動ミルにて再度粉砕し、850℃で5時間大気中二次焼成を行った。炉冷後試料を取り出し、蒸留水にて洗浄後、濾過および乾燥して、目的の複合酸化物を得た。
二次焼成を大気中ではなく窒素中で行うこと以外は、実施例1と同様にして試料の作製を行った。
上記で得られた実施例1の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図1に示した。
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は4.75(6)%、遷移金属層内遷移金属(3b)位置の占有率は81.14(16)%であった。両者の総和が組成式あたり遷移金属量であり、その値は85.9(2)%(0.859(2))であった。
上記で得られた比較例1の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図2に示した。
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は8.79(6)%、遷移金属層内遷移金属(3b)位置の占有率は87.09(15)%であった。両者の総和が組成式あたり遷移金属量であり、その値は95.9(2)%(0.959(2))であった。
Li量をICP発光分析により、実施例1の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は1.30(1)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.48(1)、2.62(5)であった。
組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比−1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は0.130(5)となった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.48(1)であった。
Li量をICP発光分析により、比較例1の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は0.98(1)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.50(1)、2.11(6)であった。
組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比−1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は-0.01(1)となった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.50(1)であった。
図3(a)および(b)に、実施例1及び比較例1それぞれの試料におけるMnおよびNiのK端近傍X線吸収スペクトル(XANES)を示した。尚、4価Mn、2価Niおよび3価Niの標準物質としては、それぞれLi2MnO3、NiOおよびLiNiO2を使用した。
MnK端においては、実施例1と比較例1のスペクトルに差はなく、且つ4価Mnの標準物質であるLi2MnO3のXANESデータとほぼ重なることから、比較例1試料は実施例1試料と同様にMn価数に差はなく4価と判断できる。一方NiK端のXANESデータは実施例1と比較例1で1s→4p遷移に相当するピークトップ位置が大きく異なることがわかる。実施例1試料の方が比較例1試料より高エネルギー側にシフトしており、Niイオン価数が高いことを反映している。そこで以下の計算式を用いてNi平均価数を見積もった。
Ni平均価数=2+{(実施例試料のピークトップエネルギー値)−(NiOのピークトップエネルギー値)}
÷{(LiNiO2試料のピークトップエネルギー値)−(NiOのピークトップエネルギー値)}
(実施例1)
NiOとLiNiO2のエネルギー値はそれぞれ8349.3、8351.3eVであり、実施例試料のエネルギー値が8351eVと見積もられたので、得られたニッケルイオンの平均価数は2.85価と算出された。
(比較例1)
NiOとLiNiO2のエネルギー値はそれぞれ8349.3、8351.3eVであり、比較例試料のエネルギー値が8350eVと見積もられたので、得られたニッケルイオンの平均価数は2.35価と算出された。
得られた実施例1試料の粉末20mgをアセチレンブラック5mgとよく混合後、少量の結着剤(ポリテトラフルオロエチレン粉末)を加えて錠剤正極を作製した。120℃真空乾燥後グローブボックス内で負極を金属リチウム、電解液を1M−LiPF6相当の支持塩をEC(炭酸エチレン)+DMC(炭酸ジメチル)混合溶媒(体積比3:7)に溶解させたものを電解液として、リチウム半電池を組み立て、30℃にて充電開始の充放電試験を行った。なお電位範囲は2.0−4.6Vとした。1−4サイクルまでは予備充放電として充電容量を1サイクル目は80mAh/gに制限し、放電後さらに2サイクル目は40mAh/g高い120mAh/gまでの充電容量規制充放電を行い、以後4サイクル目まで40mAh/gずつ充電容量を増やしながら充放電を行い、5サイクル目に4.8Vまで充電し、その後放電させた。以後は設定した電位範囲で29サイクル充放電を行った。比較例1試料についても、同様の条件で電池を作製し、同様の充放電特性評価試験を実施した。
(実施例1)
図4に、実施例1の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。数字はサイクル数を示す。図4より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ226mAh/g、205mAh/gであり、充放電効率は93%であった。また5サイクル目放電時の平均電圧が3.69V、その放電容量との積に相当するエネルギー密度が757mWh/gと高容量正極として十分な初期特性を有するのみならず、34サイクル後(活性化後30サイクル相当)の放電容量も189mAh/gと高く、5サイクル時に対する30サイクル時放電容量維持率は92%と高かった。また24サイクル目以降からの電位および容量低下がほとんどないことも判明し、リチウムイオン二次電池正極材料として優れた特性を有することが確認できた。
(比較例1)
また、図5に、比較例1の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。図5より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ218mAh/g、205mAh/gであり、充放電効率は93%であった。また5サイクル目放電時の平均電圧が3.78V、その放電容量との積に相当するエネルギー密度が773mWh/gと高容量正極として十分な初期特性を有するものの、34サイクル後(活性化後30サイクル相当)の放電容量が30mAh/gと低く、5サイクル時に対する30サイクル時放電容量維持率は14%と低かった。すなわち比較例試料はリチウムイオン二次電池正極材料として、サイクル特性が十分なものではなかった。
硝酸ニッケル(II)6水和物29.08gおよび塩化マンガン(II)4水和物29.69g(0.25mol/バッチ、Ni:Mnモル比4:6)を秤量し、蒸留水500ml中に完全に溶解させた。水酸化ナトリウム水溶液を+5℃に保持された恒温槽内に固定し、溶液が同じ温度になるまで攪拌保持した。以後は実施例1と同様のプロセスにて試料作製を行い、目的の複合酸化物を得た。
二次焼成を大気中ではなく窒素中で行うこと以外は、実施例2と同様にして試料の作製を行った。
上記で得られた実施例2の試料の実測(+)及び六方晶層状岩塩型単位胞(上記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図6に示した。
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は4.03(8)%、遷移金属層内遷移金属(3b)位置の占有率は76.6(2)%であった。両者の総和が組成式あたり遷移金属量であり、その値は80.6(3)%(0.806(3))であった。
上記で得られた比較例2の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図7に示した。
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は6.41(6)%、遷移金属層内遷移金属(3b)位置の占有率は82.20(17)%であった。両者の総和が組成式あたり遷移金属量であり、その値は88.6(2)%(0.886(2))であった。
Li量をICP発光分析により、実施例2の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は1.361(8)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.398(1)、2.43(3)であった。組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比−1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は0.153(4)であった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.398(1)であった。
Li量をICP発光分析により、比較例2の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は1.20(1)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.398(1)、2.36(5)であった。組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比−1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は0.090(6)となる。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.398(1)であった。
図8(a)および(b)に、実施例2及び比較例2それぞれの試料におけるMnおよびNiのK端近傍X線吸収スペクトル(XANES)を示した。尚、4価Mn、2価Niおよび3価Niの標準物質としては、それぞれLi2MnO3、NiOおよびLiNiO2を使用した。
MnK端においては、実施例2と比較例2のスペクトルに差はなく、且つ4価Mnの標準物質であるLi2MnO3のXANESデータとほぼ重なることから、比較例2試料は実施例2試料と同様にMn価数に差はなく4価と判断できる。一方NiK端のXANESデータは実施例2と比較例2で1s→4p遷移に相当するピークトップ位置が大きく異なることがわかる。実施例2試料の方が比較例2試料より高エネルギー側にシフトしており、Niイオン価数が高いことを反映している。そこで以下の計算式を用いてNi平均価数を見積もった。
Ni平均価数=2+{(実施例試料のピークトップエネルギー値)−(NiOのピークトップエネルギー値)}÷{(LiNiO2試料のピークトップエネルギー値)−(NiOのピークトップエネルギー値)}
(実施例2)
NiOとLiNiO2のエネルギー値はそれぞれ8346.7、8348.8eVであり、実施例試料のピークトップエネルギー値が8348.5eVと見積もられたので、得られたニッケルイオンの平均価数は2.86価と算出された。
(比較例2)
NiOとLiNiO2のエネルギー値はそれぞれ8346.7、8348.8eVであり、比較例試料のエネルギー値が8347.6eVと見積もられたので、得られたニッケルイオンの平均価数は2.43価と算出された。
得られた実施例2試料の粉末を正極活物質として用いて実施例1と同様にリチウム半電池を組み立て、30℃にて充電開始の充放電試験を行った。充放電試験条件も実施例1と同じである。比較例2試料についても、同様の条件で電池を作製し、同様の充放電特性評価試験を実施した。
(実施例2)
図9に、実施例2の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。数字はサイクル数を示す。図9より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ217mAh/g、209mAh/gであり、充放電効率は96%であった。また5サイクル目放電時の平均電圧が3.58V、その放電容量との積に相当するエネルギー密度が749mWh/gと高容量正極として十分な初期特性を有するのみならず、34サイクル後(活性化後30サイクル相当)の放電容量も206mAh/gと高く、5サイクル時に対する30サイクル後の放電容量維持率は99%と高かった。また14サイクル目以降からの電位および容量低下がほとんどないことも判明し、リチウムイオン二次電池正極材料として優れた特性を有することが確認できた。
(比較例2)
また、図10に、比較例2の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。図10より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ218mAh/g、206mAh/gであり、充放電効率は94%であった。また5サイクル目放電時の平均電圧が3.65V、その放電容量との積に相当するエネルギー密度が749mWh/gと高容量正極として十分な初期特性を有するものの、34サイクル後(活性化後30サイクル相当)の放電容量が126mAh/gと低く、5サイクル時に対する30サイクル後の放電容量維持率は61%と低かった。すなわち比較例試料はリチウムイオン二次電池正極材料として、サイクル特性が十分なものではなかった。
硝酸ニッケル(II)6水和物43.62gおよび塩化マンガン(II)4水和物19.79g(0.25mol/バッチ、Ni:Mnモル比6:4)を秤量し、蒸留水500ml中に完全に溶解させた。水酸化ナトリウム水溶液を5℃に保持された恒温槽内に固定し、溶液が同じ温度になるまで攪拌保持した。以後は実施例1と同様のプロセスにて試料作製を行い、目的の複合酸化物を得た。
(比較例3)
二次焼成を大気中ではなく窒素中で行うこと以外は、実施例3と同様にして試料の作製を行った。
上記で得られた実施例3の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図11に示した。
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は4.17(5)%、遷移金属層内遷移金属(3b)位置の占有率は84.72(15)%であった。両者の総和が組成式あたり遷移金属量であり、その値は88.9(2)%(0.889(2))であった。
上記で得られた比較例3の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図12に示した。
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は11.11(5)%、遷移金属層内遷移金属(3b)位置の占有率は90.32(14)%であった。両者の総和が組成式あたり遷移金属量であり、その値は101.43(19)%(1.0143(19))であった。
Li量をICP発光分析により、実施例3の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は1.119(18)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.596(1)、2.40(10)であった。
組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比−1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は0.056(9)であった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.596(1)であった。
Li量をICP発光分析により、比較例3の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は0.906(2)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.595(1)、2.20(2)であった。
組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比−1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は-0.0493(10)となる。本x値は負の値となった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.595(1)であった。
図13(a)および(b)に、実施例3及び比較例3それぞれの試料におけるMnおよびNiのK端近傍X線吸収スペクトル(XANES)を示した。尚、4価Mn、2価Niおよび3価Niの標準物質としては、それぞれLi2MnO3、NiOおよびLiNiO2を使用した。
MnK端においては、実施例3と比較例3のスペクトルに差はなく、且つ4価Mnの標準物質であるLi2MnO3のXANESデータとほぼ重なることから、比較例3試料は実施例3試料と同様にMn価数に差はなく4価と判断できる。一方NiK端のXANESデータは実施例3と比較例3で1s→4p遷移に相当するピークトップ位置が大きく異なることがわかる。実施例3試料の方が比較例3試料より高エネルギー側にシフトしており、Niイオン価数が高いことを反映している。そこで以下の計算式を用いてNi平均価数を見積もった。
Ni平均価数=2+{(実施例試料のピークトップエネルギー値)−(NiOのピークトップエネルギー値)}÷{(LiNiO2試料のピークトップエネルギー値)−(NiOのピークトップエネルギー値)}
(実施例3)
NiOとLiNiO2のエネルギー値はそれぞれ8346.7、8348.8eVであり、実施例試料のピークトップエネルギー値が8348.2Vと見積もられたので、得られたニッケルイオンの平均価数は2.71価と算出された。
(比較例3)
NiOとLiNiO2のエネルギー値はそれぞれ8346.7、8348.8eVであり、比較例試料のエネルギー値が8347.2eVと見積もられたので、得られたニッケルイオンの平均価数は2.24価と算出された。
得られた実施例3試料の粉末を正極活物質として用いて実施例1と同様にリチウム半電池を組み立て、30℃にて充電開始の充放電試験を行った。充放電試験条件も実施例1と同じである。比較例3試料についても、同様の条件で電池を作製し、同様の充放電特性評価試験を実施した。
図14に、実施例3の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。数字はサイクル数を示す。図14より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ164mAh/g、156mAh/gであり、充放電効率は95%であった。また5サイクル目放電時の平均電圧が3.80V、その放電容量との積に相当するエネルギー密度が592mWh/gと高容量正極として十分な初期特性を有するのみならず、34サイクル後(活性化後30サイクル相当)の放電容量も142mAh/gと高く、5サイクル時に対する30サイクル後の放電容量維持率は91%と高かった。また14サイクル目以降からの電位および容量低下が小さいことも判明し、リチウムイオン二次電池正極材料として優れた特性を有することが確認できた。
(比較例3)
また、図15に、比較例3の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。図15より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ175mAh/g、169mAh/gであり、充放電効率は97%であった。また5サイクル目放電時の平均電圧が3.83その放電容量との積に相当するエネルギー密度が647mWh/gと高容量正極として十分な初期特性を有するものの、34サイクル後(活性化後30サイクル相当)の放電容量が105mAh/gと低く、5サイクル時に対する30サイクル後の放電容量維持率は62%と低かった。すなわち比較例試料はリチウムイオン二次電池正極材料として、サイクル特性が十分なものではなかった。
硝酸ニッケル(II)6水和物29.08gおよび塩化マンガン(II)4水和物29.69g(0.25mol/バッチ、Ni:Mnモル比4:6)を秤量し、蒸留水500ml中に完全に溶解させた。別のチタン製ビーカーに水酸化ナトリウム50gを入れ、蒸留水500mlを加えて完全に溶解させた。その後不凍液としてエタノール200mlを加えてよく攪拌した。水酸化ナトリウム溶液を−10℃に保持された恒温槽内に固定し、溶液が同じ温度になるまで攪拌保持した。上記金属塩溶液に送液ポンプをセットし、上記アルカリ溶液へ3時間かけて、金属塩溶液を徐々に加え、沈殿を形成させた。沈殿作製終了後もアルカリ溶液のpHが11以上あることを確認した。沈殿作製終了後、ビーカーを恒温槽より取り出し、室温にて攪拌しつつ、酸素ガス発生器を用いて、沈殿に酸素を吹き込みつつ二日間湿式酸化および熟成を行った。熟成後に沈殿を蒸留水で洗浄し、アルカリあるいは塩類を取り除いた後、濾過した。濾過後、沈殿に水酸化リチウム1水和物0.5mol(20.98g)を加え、蒸留水200mlに溶解後、熟成沈殿とミキサー混合し、スラリーを作製した。スラリーをポリテトラフルオロエチレン製シャーレーに移し、50℃で2日間乾燥して焼成用原料を作製した。振動ミルにより原料を粉砕後、アルミナるつぼふた上に薄く広げ、酸素気流中500℃で20時間一次焼成後、炉冷した。焼成後の原料は振動ミルにて再度粉砕し、850℃で5時間窒素中二次焼成を行った。炉冷後試料を取り出し、蒸留水にて洗浄後、濾過および乾燥して、目的の複合酸化物を得た。
上記で得られた実施例4の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図16に示した。
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は4.85(6)%、遷移金属層内遷移金属(3b)位置の占有率は79.78(17)%であった。両者の総和が組成式あたり遷移金属量であり、その値は84.6(2)%(0.846(2))であった。
Li量をICP発光分析により、実施例4の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は1.32(5)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.395(10)、2.7(2)であった。
組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比−1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は0.14(2)となった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.395(10)であった。
図17(a)および(b)に、実施例4試料におけるMnおよびNiのK端近傍X線吸収スペクトル(XANES)を示した。尚、4価Mn、2価Niおよび3価Niの標準物質としては、それぞれLi2MnO3、NiOおよびLiNiO2を使用した。
MnK端においては、実施例4試料のスペクトルは4価Mnの標準物質であるLi2MnO3のXANESデータとほぼ重なることから、Mn価数は4価と判断できる。一方実施例4試料のNiK端のXANESデータの1s→4p遷移に伴うピークトップ値は、二種の価数既知の標準物質のほぼ中間の位置に存在した。そこで以下の計算式を用いてNi平均価数を見積もった。
Ni平均価数=2+{(実施例試料のピークトップエネルギー値)−(NiOのピークトップエネルギー値)}
÷{(LiNiO2試料のピークトップエネルギー値)−(NiOのピークトップエネルギー値)}
NiOとLiNiO2のエネルギー値はそれぞれ8346.3、8348.4eVであり、実施例4試料のエネルギー値が8347.5eVと見積もられたので、得られたニッケルイオンの平均価数は2.57価と算出された。以上のことから一次焼成として酸化性雰囲気を選択すれば、二次焼成時に窒素気流中などの不活性ガス雰囲気を選択しても目的物質が得られることを示している。
得られた実施例4試料の粉末20mgをアセチレンブラック5mgとよく混合後、少量の結着剤(ポリテトラフルオロエチレン粉末)を加えて錠剤正極を作製した。以後は実施例1と同様の条件で電池を作製し、同様の試験条件で充放電特性評価試験を実施した。
図18に、実施例4の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。数字はサイクル数を示す。図18より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ240mAh/g、228mAh/gであり、充放電効率は95%であった。また5サイクル目放電時の平均電圧が3.67V、その放電容量との積に相当するエネルギー密度が838mWh/gと高容量正極として十分な初期特性を有するのみならず、34サイクル後(活性化後30サイクル相当)の放電容量も218mAh/gと高く、5サイクル時に対する34サイクル時放電容量維持率は96%と高かった。また14サイクル目以降からの容量低下がほとんどなく、14サイクル目以降のサイクル経過に伴い放電時3.5-3.0V付近でわずかに電位低下が起こるものの、リチウムイオン二次電池正極材料として優れた特性を有することが確認できた。
二次焼成雰囲気を窒素中から大気中に変更した他は、実施例4と同様に試料作製を行った。
上記で得られた実施例5の試料の実測(+)及び六方晶層状岩塩型単位胞(下記空間群)を用いた計算(曲線)X線回折(XRD)パターンを、図19に示した。
各格子位置での占有率は、Li層内遷移金属(3a)位置の占有率は3.65(8)%、遷移金属層内遷移金属(3b)位置の占有率は77.7(2)%であった。両者の総和が組成式あたり遷移金属量であり、その値は81.4(3)%(0.814(3))であった。
Li量をICP発光分析により、実施例5の試料のMn量、Ni量およびO量を波長分散型蛍光X線分析にて見積もったところ、得られたLi/(Ni+Mn)モル比は1.37(5)であった。またNi/(Ni+Mn)モル比とO/(Ni+Mn)モル比はそれぞれ0.400(5)、2.64(9)であった。
組成式との対応からx値は以下の計算式で算出される。
x=(Li/(Ni+Mn)モル比−1)÷(Li/(Ni+Mn)モル比+1)
従ってx値は0.16(2)となった。
一方y値はNi/(Ni+Mn)モル比そのものであることから0.400(5)であった。
得られた実施例5試料の粉末20mgをアセチレンブラック5mgとよく混合後、少量の結着剤(ポリテトラフルオロエチレン粉末)を加えて錠剤正極を作製した。以後は実施例1と同様の条件で電池を作製し、同様の試験条件で充放電特性評価試験を実施した。
図20に、実施例5の試料を正極としたリチウム二次電池の30℃における充放電曲線を示した。右上がりの曲線が充電(c)に、右下がりの曲線が放電(d)に対応する。数字はサイクル数を示す。図20より、5サイクル目(活性化後初期に相当)充電容量と放電容量がそれぞれ231mAh/g、222mAh/gであり、充放電効率は96%であった。また5サイクル目放電時の平均電圧が3.50V、その放電容量との積に相当するエネルギー密度が778mWh/gと高容量正極として十分な初期特性を有するのみならず、34サイクル後(活性化後30サイクル相当)の放電容量も218mAh/gと高く、5サイクル時に対する34サイクル時放電容量維持率は98%と高く、リチウムイオン二次電池正極材料として優れた特性を有することが確認できた。
Claims (7)
- 一般式(1):
Li1+x(NiyMn1−y)1−xO2 (1)
[式中、x及びyはそれぞれ0.05≦x<1/3、0.3≦y≦0.6を示す。]
で表わされ、層状岩塩型結晶相を含み、
格子定数aが2.870Å以下、格子体積が102.0Å3以下である、
ニッケル含有リチウムマンガン複合酸化物。 - 層状岩塩型結晶構造において、リチウム層内に含まれる遷移金属量が5%以下である、請求項1に記載のニッケル含有リチウムマンガン複合酸化物。
- 層状岩塩型結晶構造において、遷移金属層内に含まれる遷移金属量が88%以下である、請求項1又は2に記載のニッケル含有リチウムマンガン複合酸化物。
- ニッケルイオンの価数が2.5価以上である、請求項1〜3の何れか1項に記載のニッケル含有リチウムマンガン複合酸化物。
- O/(Ni+Mn)原子比が2.3以上である、請求項1〜4の何れか1項に記載のニッケル含有リチウムマンガン複合酸化物。
- 請求項1〜5の何れか1項に記載のニッケル含有リチウムマンガン複合酸化物を正極活物質として含むリチウムイオン二次電池。
- マンガン化合物及びニッケル化合物を含む混合水溶液から、20℃以下のアルカリ性条件下にて沈殿物を形成する工程1、
前記沈殿物に湿式酸化処理を行う工程2、
及びリチウム塩共存下酸化性雰囲気下で熱処理する工程3を有する、
請求項1〜5の何れか1項に記載のニッケル含有リチウムマンガン複合酸化物の製造方法。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017050947 | 2017-03-16 | ||
JP2017050947 | 2017-03-16 | ||
JP2017217608 | 2017-11-10 | ||
JP2017217608 | 2017-11-10 | ||
PCT/JP2018/010239 WO2018169004A1 (ja) | 2017-03-16 | 2018-03-15 | ニッケルマンガン系複合酸化物及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018169004A1 JPWO2018169004A1 (ja) | 2020-01-16 |
JP6872816B2 true JP6872816B2 (ja) | 2021-05-19 |
Family
ID=63522264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019506265A Active JP6872816B2 (ja) | 2017-03-16 | 2018-03-15 | ニッケルマンガン系複合酸化物及びその製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6872816B2 (ja) |
WO (1) | WO2018169004A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113646929B (zh) * | 2019-04-11 | 2024-10-29 | 杰富意矿物股份有限公司 | 前体、前体的制造方法、正极材料、正极材料的制造方法和锂离子二次电池 |
JP7557191B2 (ja) * | 2019-07-23 | 2024-09-27 | 国立研究開発法人産業技術総合研究所 | 単斜晶系リチウムニッケルマンガン系複合酸化物及びその製造方法 |
CN111063881A (zh) * | 2019-12-23 | 2020-04-24 | 北京理工大学重庆创新中心 | 一种通过调节锂源氧化改性ncm三元正极材料的制备方法 |
JP7261418B2 (ja) * | 2020-10-15 | 2023-04-20 | 国立大学法人京都大学 | アルカリ水電解用アノード及びその製造方法 |
CN112751006B (zh) * | 2021-01-18 | 2022-04-15 | 北京大学深圳研究生院 | 一种无钴锂离子电池层状正极材料及其制备方法和应用 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3064655B2 (ja) * | 1992-02-07 | 2000-07-12 | 松下電器産業株式会社 | 非水電解液二次電池およびその正極活物質の製造法 |
JP2003017049A (ja) * | 2001-06-27 | 2003-01-17 | Toyota Central Res & Dev Lab Inc | リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびその製造方法 |
JP4109847B2 (ja) * | 2001-08-24 | 2008-07-02 | Agcセイミケミカル株式会社 | リチウム含有遷移金属複合酸化物およびその製造方法 |
JP2007184145A (ja) * | 2006-01-06 | 2007-07-19 | Hitachi Vehicle Energy Ltd | リチウム二次電池 |
-
2018
- 2018-03-15 WO PCT/JP2018/010239 patent/WO2018169004A1/ja active Application Filing
- 2018-03-15 JP JP2019506265A patent/JP6872816B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JPWO2018169004A1 (ja) | 2020-01-16 |
WO2018169004A1 (ja) | 2018-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material for Li-ion batteries | |
KR101762980B1 (ko) | 정극 활성 물질 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지 | |
KR101989632B1 (ko) | 정극 활물질 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지 | |
JP6708326B2 (ja) | ナトリウム二次電池用正極材料 | |
JP5656012B2 (ja) | 非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池 | |
JP6112118B2 (ja) | Li−Ni複合酸化物粒子粉末並びに非水電解質二次電池 | |
JP6872816B2 (ja) | ニッケルマンガン系複合酸化物及びその製造方法 | |
JP5987401B2 (ja) | 非水系電解質二次電池用正極活物質とその製造方法および二次電池 | |
JP2009274940A (ja) | 陽イオン規則構造を有する単斜晶系リチウムマンガン系複合酸化物およびその製造方法 | |
JP5958926B2 (ja) | リチウムマンガン系複合酸化物およびその製造方法 | |
JP4997609B2 (ja) | リチウムマンガン系複合酸化物の製造方法 | |
JPWO2012032709A1 (ja) | 複合酸化物の製造方法、二次電池用正極活物質および二次電池 | |
JP6083556B2 (ja) | ナトリウムイオン二次電池用正極活物質 | |
Ye et al. | Al, B, and F doped LiNi 1/3 Co 1/3 Mn 1/3 O 2 as cathode material of lithium-ion batteries | |
US10305103B2 (en) | Stabilized electrodes for lithium batteries | |
JP5880928B2 (ja) | リチウムマンガンチタンニッケル複合酸化物及びその製造方法、並びにそれを部材として使用したリチウム二次電池 | |
US11417881B2 (en) | Lithium-manganese complex oxide and method for producing same | |
CN103413928B (zh) | 高容量高压实金属氧化物正极材料及其制备方法 | |
WO2018043436A1 (ja) | 異種金属含有リチウムニッケル複合酸化物及びその製造方法 | |
JP2009242121A (ja) | リチウムマンガン酸化物粉体粒子及びその製造方法、並びにそれを正極活物質として用いたリチウム二次電池 | |
WO2007007581A1 (ja) | リチウム二次電池用正極材料及びその製造方法、ならびにそれを用いたリチウム二次電池 | |
JP4431785B2 (ja) | リチウム二次電池用正極材料及びその製造方法、ならびにそれを用いたリチウム二次電池 | |
KR20050047291A (ko) | 리튬이차전지용 양극 활물질 및 그 제조방법 | |
WO2018066633A1 (ja) | チタン及び/又はゲルマニウム置換リチウムマンガン系複合酸化物及びその製造方法 | |
JP7302826B2 (ja) | リチウムマンガン系複合酸化物及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210106 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20210106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210406 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210413 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6872816 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |