JP6714474B2 - ラミネート型ニッケル亜鉛電池セルパック及びそれを用いた電池 - Google Patents
ラミネート型ニッケル亜鉛電池セルパック及びそれを用いた電池 Download PDFInfo
- Publication number
- JP6714474B2 JP6714474B2 JP2016170661A JP2016170661A JP6714474B2 JP 6714474 B2 JP6714474 B2 JP 6714474B2 JP 2016170661 A JP2016170661 A JP 2016170661A JP 2016170661 A JP2016170661 A JP 2016170661A JP 6714474 B2 JP6714474 B2 JP 6714474B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- positive electrode
- nickel
- current collector
- zinc battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Sealing Battery Cases Or Jackets (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
その上端部以外の外縁が封止接合されて上部開放された空間を与える1対の可撓性フィルムからなる可撓性袋体と、
前記1対の可撓性フィルムの間に、その上端部以外の外縁が互いに封止接合された形で設けられ、それにより上部開放された正極室及び負極室を互いに液体連通を許容しないように交互に区画する、2枚以上の中仕切りシートと、
前記正極室に収容される、水酸化ニッケル及び/又はオキシ水酸化ニッケルを含んでなる、1枚以上の正極板と、
前記正極室に収容されて前記正極が浸漬される、アルカリ金属水酸化物を含んでなる正極電解液と、
前記負極室に収容される、亜鉛及び/又は酸化亜鉛を含んでなる、1枚以上の負極板と、
前記負極室に収容されて前記負極が浸漬される、アルカリ金属水酸化物を含んでなる負極電解液と、
を備えてなり、前記中仕切りシートが、開口部を備えた可撓性フィルムと、該開口部を液密に閉塞する、水酸化物イオン伝導性を有するが透水性を有しないセパレータを含むセパレータ構造体とを備えてなる、ラミネート型ニッケル亜鉛電池セルパックが提供される。
密閉容器と、
該密閉容器内に収容される、1つ又はそれ以上の上記ラミネート型ニッケル亜鉛電池セルパックと、
を備えた、ニッケル亜鉛電池が提供される。
本発明は、密閉型ニッケル亜鉛電池に用いられる、ラミネート型ニッケル亜鉛電池セルパックに関する。本明細書において、ラミネート型ニッケル亜鉛電池セルパックとはニッケル亜鉛電池(好ましくはニッケル亜鉛二次電池)の単電池(セル)の1つ以上(望ましくは2つ以上)を積層形態で備えた、上部開放されたパッケージであり、パッケージを構成する包装材料が可撓性を有する(すなわちフレキシブルな)ものである。ニッケル亜鉛電池セルパックはそれ自体でも電池として機能しうるが、密閉容器に収容されることにより、密閉型ニッケル亜鉛電池に用いられるのに適する。このため、密閉性は最終的に収容されることになる密閉容器において確保すれば足りるので、ニッケル亜鉛電池セルパック自体は上部開放型の簡素な構成であることができる。
可撓性袋体12は1対の可撓性フィルム12a,12bからなる袋状のフレキシブルなパッケージであり、その上端部以外の外縁が封止接合されて上部開放された空間を与える構成となっている。可撓性袋体12を構成する可撓性フィルムは樹脂フィルムを含むのが好ましい。樹脂フィルムは水酸化カリウム等のアルカリ金属水酸化物に対する耐性を有し、かつ、熱融着による接合が可能なものであるのが好ましく、例えば、PP(ポリプロピレン)フィルム、PET(ポリエチレンテレフタレート)フィルム、PVC(ポリ塩化ビニル)フィルム等が挙げられる。樹脂フィルムを含む可撓性フィルムとして、市販のラミネートフィルムが使用可能であり、好ましいラミネートフィルムとしては、ベースフィルム(例えばPETフィルムやPPフィルム)及び熱可塑性樹脂層を備えた2層以上の構成の熱ラミネートフィルムが挙げられる。可撓性フィルム(例えばラミネートフィルム)の好ましい厚さは、20〜500μmであり、より好ましくは30〜300μm、さらに好ましくは50〜150μmである。上端部以外の外縁が封止接合されることで正極電解液及び負極電解液を液漏れ無く確実に可撓性袋体12内に保持することができる。封止接合は熱融着により行われるのが好ましい。熱融着による封止接合は市販のヒートシール機等を用いて行えばよい。可撓性袋体12の上端部は熱融着により封止される必要はなく、それ故、簡素な構成で電池部材を収容できる。
中仕切りシート14は、1対の可撓性フィルム12a,12bの間に、その上端部以外の外縁が互いに封止接合された形で設けられ、それにより上部開放された正極室及び負極室を互いに液体連通を許容しないように交互に区画する略シート状の部材である。図2及び13Bにより具体的に示されるように、中仕切りシート14は、開口部24aを備えた可撓性フィルム24と、開口部24aを液密に閉塞するセパレータ構造体26とを備えてなる。セパレータ構造体26は、水酸化物イオン伝導性を有するが透水性を有しないセパレータ28を含んでおり、それにより正極室15と負極室19の間で水酸化物イオンの伝導を許容するが液体連通を許容しないように構成される。中仕切りシート14を構成する可撓性フィルム24は樹脂フィルムを含んでなるのが好ましい。樹脂フィルムは水酸化カリウム等のアルカリ金属水酸化物に対する耐性を有し、かつ、熱融着による接合が可能なものであるのが好ましく、例えば、PP(ポリプロピレン)フィルム、PET(ポリエチレンテレフタレート)フィルム、PVC(ポリ塩化ビニル)フィルム等が挙げられる。樹脂フィルムを含む可撓性フィルムとして、市販のラミネートフィルムが使用可能であり、好ましいラミネートフィルムとしては、ベースフィルム(例えばPETフィルムやPPフィルム)及び熱可塑性樹脂層を備えた2層以上の構成の熱ラミネートフィルムが挙げられる。可撓性フィルム24(例えばラミネートフィルム)の好ましい厚さは、20〜500μmであり、より好ましくは30〜300μm、さらに好ましくは50〜150μmである。熱融着による接合ないし封止は市販のヒートシール機等を用いて行えばよい。
‐ 正極: Ni(OH)2+OH−→NiOOH+H2O+e−
‐ 負極: ZnO+H2O+2e−→Zn+2OH−
‐ ZnOの溶解反応: ZnO+H2O+2OH−→Zn(OH)4 2−
‐ Znの析出反応: Zn(OH)4 2−+2e−→Zn+4OH−
正極板16は水酸化ニッケル及び/又はオキシ水酸化ニッケルを含んでなる。例えば、ニッケル亜鉛電池を放電末状態で構成する場合には正極板16として水酸化ニッケルを用いればよく、満充電状態で構成する場合には正極板16としてオキシ水酸化ニッケルを用いればよい。水酸化ニッケル及びオキシ水酸化ニッケル(以下、水酸化ニッケル等という)は、ニッケル亜鉛電池に一般的に用いられている正極活物質であり、典型的には粒子形態である。水酸化ニッケル等には、その結晶格子中にニッケル以外の異種元素が固溶されていてもよく、それにより高温下での充電効率の向上が図れる。このような異種元素の例としては、亜鉛及びコバルトが挙げられる。また、水酸化ニッケル等はコバルト系成分と混合されたものであってもよく、そのようなコバルト系成分の例としては、金属コバルトやコバルト酸化物(例えば一酸化コバルト)の粒状物が挙げられる。さらに、水酸化ニッケル等の粒子(異種元素が固溶されていてよい)の表面をコバルト化合物で被覆してもよく、そのようなコバルト化合物の例としては、一酸化コバルト、2価のα型水酸化コバルト、2価のβ型水酸化コバルト、2価を超える高次コバルトの化合物、及びそれらの任意の組合せが挙げられる。
負極板20は亜鉛及び/又は酸化亜鉛を含んでなる。亜鉛は、負極に適した電気化学的活性を有するものであれば、亜鉛金属、亜鉛化合物及び亜鉛合金のいずれの形態で含まれていてもよい。負極材料の好ましい例としては、酸化亜鉛、亜鉛金属、亜鉛酸カルシウム等が挙げられるが、亜鉛金属及び酸化亜鉛の混合物がより好ましい。負極板20はゲル状に構成してもよいし、電解液と混合して負極合材としてもよい。例えば、負極活物質に電解液及び増粘剤を添加することにより容易にゲル化した負極を得ることができる。増粘剤の例としては、ポリビニルアルコール、ポリアクリル酸塩、CMC、アルギン酸等が挙げられるが、ポリアクリル酸が強アルカリに対する耐薬品性に優れているため好ましい。
ニッケル亜鉛電池セルパック10は、正極板16に接触して設けられる正極集電体18と、負極板20に接触して設けられる負極集電体22とをさらに備えてなるのが好ましい。この場合、正極集電体18が上端部から延出する正極集電体延出部18aを有し、かつ、負極集電体22が上端部から延出する負極集電体延出部22aを有し、正極集電体延出部18aと負極集電体延出部22aが互いに異なる位置(例えば左右対称の位置)で延出するのが好ましい。特に好ましくは、図1A〜1Cに示されるように、複数個の正極集電体延出部18aが互いに連結され、且つ/又は複数個の負極集電体延出部22aが互いに連結されている。あるいは、正極板16及び負極板20が、別途設けられた正極端子及び負極端子に可撓性袋体12内又は外でそれぞれ接続される構成としてもよい。正極集電体18の好ましい例としては、発泡ニッケル板等のニッケル製多孔質基板が挙げられる。この場合、例えば、ニッケル製多孔質基板上に水酸化ニッケル等の電極活物質を含むペーストを均一に塗布して乾燥させることにより正極/正極集電体からなる正極板を好ましく作製することができる。その際、乾燥後の正極板(すなわち正極/正極集電体)にプレス処理を施して、電極活物質の脱落防止や電極密度の向上を図ることも好ましい。負極集電体22の好ましい例としては、銅パンチングメタルが挙げられる。この場合、例えば、銅パンチングメタル上に、酸化亜鉛粉末及び/又は亜鉛粉末、並びに所望によりバインダー(例えばポリテトラフルオロエチレン粒子)を含んでなる混合物を塗布して負極/負極集電体からなる負極板を好ましく作製することができる。その際、乾燥後の負極板(すなわち負極/負極集電体)にプレス処理を施して、電極活物質の脱落防止や電極密度の向上を図ることも好ましい。
正極電解液及び負極電解液はアルカリ金属水酸化物を含んでなる。すなわち、アルカリ金属水酸化物を含む水溶液が正極電解液及び負極電解液として用いられる。アルカリ金属水酸化物の例としては、水酸化カリウム、水酸化ナトリウム、水酸化リチウム、水酸化アンモニウム等が挙げられるが、水酸化カリウムがより好ましい。亜鉛及び/又は酸化亜鉛の自己溶解を抑制するために、電解液中に酸化亜鉛、水酸化亜鉛等の亜鉛化合物を添加してもよい。前述のとおり、正極電解液及び負極電解液は正極板16及び/又は負極板20と混合させて正極合材及び/又は負極合材の形態で存在させてもよい。また、電解液の漏洩を防止するために電解液をゲル化してもよい。ゲル化剤としては電解液の溶媒を吸収して膨潤するようなポリマーを用いるのが望ましく、ポリエチレンオキサイド,ポリビニルアルコール,ポリアクリルアミドなどのポリマーやデンプンが用いられる。
前述のとおり、本発明によるラミネート型ニッケル亜鉛電池セルパック10は全体としてフレキシブル性に富んでいるため、図3に示されるように積層電池100用の密閉容器102に複数個のセルパック10を収容する際、寸法公差等の設計上の要件をそれ程気にすることなく、1つ又は複数のセルパック10を電池容器に容易に詰め込むことができる。こうしてセルパック10を用いて積層電池を極めて簡便に組み立てることができる。すなわち、本発明の好ましい態様によれば、密閉容器102と、該密閉容器102内に収容される、1つ又はそれ以上のラミネート型ニッケル亜鉛電池セルパック10とを備えた、ニッケル亜鉛電池が提供される。密閉容器102の材質は水酸化カリウム等のアルカリ金属水酸化物に対する耐性を有するものであれば特に限定されず、ポリオレフィン樹脂、ABS樹脂、変性ポリフェニレンエーテル等の樹脂製であるのが好ましく、より好ましくはABS樹脂又は変性ポリフェニレンエーテルである。密閉容器102内において、複数のニッケル亜鉛電池セルパック10は互いに直列接続されてもよいし、互いに並列接続されてもよいが、直列接続の方がより好ましい。なお、セルパック10は上部開放されているので、密閉容器102内においてセルパック10は縦向きに収容されるべきことはいうまでもない。密閉容器102は典型的には本体と蓋とを備えており、セルパック10が収容され、かつ、必要に応じて端子接続が行われた後、蓋が閉じられ、その蓋と筐体との間が接着剤、熱融着等の封止手法により封止されるのが好ましい。
前述のとおり、本発明のニッケル亜鉛電池セルパックに好ましく用いられる多孔質基材付きセパレータは、水酸化物イオン伝導性を有する無機固体電解質体からなるセパレータと、セパレータの少なくとも一方の面に設けられる多孔質基材とを備えたものである。無機固体電解質体は透水性を有しない程に緻密化された膜状又は層状の形態である。特に好ましい多孔質基材付きセパレータは、多孔質基材と、この多孔質基材上及び/又は多孔質基材中に形成されるセパレータ層とを備えてなり、セパレータ層が前述したような層状複水酸化物(LDH)を含んでなるものである。セパレータ層は透水性及び通気性を有しないのが好ましい。すなわち、多孔質材料は孔の存在により透水性及び通気性を有しうるが、セパレータ層は透水性及び通気性を有しない程にまでLDHで緻密化されているのが好ましい。セパレータ層は多孔質基材上に形成されるのが好ましい。例えば、図4に示されるように、多孔質基材30上にセパレータ層28がLDH緻密膜として形成されるのが好ましい。この場合、多孔質基材30の性質上、図4に示されるように多孔質基材30の表面及びその近傍の孔内にもLDHが形成されてよいのはいうまでもない。あるいは、図5に示されるように、多孔質基材30中(例えば多孔質基材30の表面及びその近傍の孔内)にLDHが緻密に形成され、それにより多孔質基材30の少なくとも一部がセパレータ層28’を構成するものであってもよい。この点、図5に示される態様は図4に示される態様のセパレータ層28における膜相当部分を除去した構成となっているが、これに限定されず、多孔質基材30の表面と平行にセパレータ層が存在していればよい。いずれにしても、セパレータ層は透水性及び通気性を有しない程にまでLDHで緻密化されているため、水酸化物イオン伝導性を有するが透水性及び通気性を有しない(すなわち基本的に水酸化物イオンのみを通す)という特有の機能を有することができる。
多孔質基材は、前述したとおりであり、セラミックス材料、金属材料、及び高分子材料からなる群から選択される少なくとも1種で構成されるのが好ましい。多孔質基材は、セラミックス材料で構成されるのがより好ましい。この場合、セラミックス材料の好ましい例としては、アルミナ、ジルコニア、チタニア、マグネシア、スピネル、カルシア、コージライト、ゼオライト、ムライト、フェライト、酸化亜鉛、炭化ケイ素、及びそれらの任意の組合せが挙げられ、より好ましくは、アルミナ、ジルコニア、チタニア、及びそれらの任意の組合せであり、特に好ましくはアルミナ、ジルコニア(例えばイットリア安定化ジルコニア(YSZ))、及びその組合せである。これらの多孔質セラミックスを用いるとLDH膜の緻密性を向上しやすい傾向がある。セラミックス材料製の多孔質基材を用いる場合、超音波洗浄、イオン交換水での洗浄等を多孔質基材に施すのが好ましい。
所望により、多孔質基材に、LDHの結晶成長の起点を与えうる起点物質を均一に付着させてもよい。このように起点物質を多孔質基材の表面に均一に付着させた後に、後続の工程(c)を行うことで、多孔質基材の表面に、高度に緻密化されたLDH膜をムラなく均一に形成することができる。このような起点の好ましい例としては、LDHの層間に入りうる陰イオンを与える化学種、LDHの構成要素となりうる陽イオンを与える化学種、又はLDHが挙げられる。
LDHの結晶成長の起点は、LDHの層間に入りうる陰イオンを与える化学種であることができる。このような陰イオンの例としては、CO3 2−、OH−、SO3 −、SO3 2−、SO4 2−、NO3 −、Cl−、Br−、及びこれらの任意の組合せが挙げられる。したがって、このような起点を与えうる起点物質を、起点物質の種類に応じた適切な手法で均一に多孔質基材の表面に付着させればよい。表面に陰イオンを与える化学種が付与されることで、Mg2+、Al3+等の金属陽イオンが多孔質基材の表面に吸着してLDHの核が生成しうる。このため、後続の工程(c)を行うことで、多孔質基材の表面に、高度に緻密化されたLDH膜をムラなく均一に形成することができる。
LDHの結晶成長の起点は、層状複水酸化物の構成要素となりうる陽イオンを与える化学種であることができる。このような陽イオンの好ましい例としては、Al3+が挙げられる。この場合、起点物質が、アルミニウムの酸化物、水酸化物、オキシ水酸化物及びヒドロキシ錯体からなる群から選択される少なくとも1種のアルミニウム化合物であるのが好ましい。したがって、このような起点を与えうる起点物質を起点物質の種類に応じた適切な手法で均一に多孔質部材の表面に付着させればよい。表面に陽イオンを与える化学種が付与されることで、LDHの層間に入りうる陰イオンが多孔質基材の表面に吸着してLDHの核が生成しうる。このため、後続の工程(c)を行うことで、多孔質基材の表面に、高度に緻密化されたLDH膜をムラなく均一に形成することができる。
結晶成長の起点は、LDHであることができる。この場合、LDHの核を起点としてLDHの成長を促すことができる。そこで、このLDHの核を多孔質基材の表面に均一に付着させた後に、後続の工程(c)を行うことで、多孔質基材の表面に、高度に緻密化されたLDH膜をムラなく均一に形成することができる。
LDHの構成元素を含む原料水溶液中で、多孔質基材(所望により起点物質が付着されうる)に水熱処理を施して、LDH膜を多孔質基材の表面に形成させる。好ましい原料水溶液は、マグネシウムイオン(Mg2+)及びアルミニウムイオン(Al3+)を所定の合計濃度で含み、かつ、尿素を含んでなる。尿素が存在することで尿素の加水分解を利用してアンモニアが溶液中に発生することによりpH値が上昇し(例えばpH7.0超、好ましくは7.0を超え8.5以下)、共存する金属イオンが水酸化物を形成することによりLDHを得ることができる。また、加水分解に二酸化炭素の発生を伴うため、陰イオンが炭酸イオン型のLDHを得ることができる。原料水溶液に含まれるマグネシウムイオン及びアルミニウムイオンの合計濃度(Mg2++Al3+)は0.20〜0.40mol/Lが好ましく、より好ましくは0.22〜0.38mol/Lであり、さらに好ましくは0.24〜0.36mol/L、特に好ましくは0.26〜0.34mol/Lである。このような範囲内の濃度であると核生成と結晶成長をバランスよく進行させることができ、配向性のみならず緻密性にも優れたLDH膜を得ることが可能となる。すなわち、マグネシウムイオン及びアルミニウムイオンの合計濃度が低いと核生成に比べて結晶成長が支配的となり、粒子数が減少して粒子サイズが増大する一方、この合計濃度が高いと結晶成長に比べて核生成が支配的となり、粒子数が増大して粒子サイズが減少するものと考えられる。
(1)多孔質基材の作製
ベーマイト(サソール社製、DISPAL 18N4−80)、メチルセルロース、及びイオン交換水を、(ベーマイト):(メチルセルロース):(イオン交換水)の質量比が10:1:5となるように秤量した後、混練した。得られた混練物を、ハンドプレスを用いた押出成形に付し、5cm×8cmを十分に超える大きさで且つ厚さ0.5cmの板状に成形した。得られた成形体を80℃で12時間乾燥した後、1150℃で3時間焼成して、アルミナ製多孔質基材を得た。こうして得られた多孔質基材を5cm×8cmの大きさに切断加工した。
得られた多孔質基材をアセトン中で5分間超音波洗浄し、エタノール中で2分間超音波洗浄、その後、イオン交換水中で1分間超音波洗浄した。
原料として、硝酸マグネシウム六水和物(Mg(NO3)2・6H2O、関東化学株式会社製)、硝酸アルミニウム九水和物(Al(NO3)3・9H2O、関東化学株式会社製)、及び尿素((NH2)2CO、シグマアルドリッチ製)を用意した。カチオン比(Mg2+/Al3+)が2となり且つ全金属イオンモル濃度(Mg2++Al3+)が0.320mol/Lとなるように、硝酸マグネシウム六水和物と硝酸アルミニウム九水和物を秤量してビーカーに入れ、そこにイオン交換水を加えて全量を600mlとした。得られた溶液を攪拌した後、溶液中に尿素/NO3 −=4の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
テフロン(登録商標)製密閉容器(内容量800ml、外側がステンレス製ジャケット)に上記(3)で作製した原料水溶液と上記(2)で洗浄した多孔質基材を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように水平に設置した。その後、水熱温度70℃で168時間(7日間)水熱処理を施すことにより基材表面に層状複水酸化物配向膜(セパレータ層)の形成を行った。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、層状複水酸化物(以下、LDHという)の緻密膜(以下、膜試料という)を基材上に得た。得られた膜試料の厚さは約1.5μmであった。こうして、層状複水酸化物含有複合材料試料(以下、複合材料試料という)を得た。なお、LDH膜は多孔質基材の両面に形成されていたが、セパレータとして形態を複合材料に付与するため、多孔質基材の片面のLDH膜を機械的に削り取った。
(5a)膜試料の同定
X線回折装置(リガク社製 RINT TTR III)にて、電圧:50kV、電流値:300mA、測定範囲:10〜70°の測定条件で、膜試料の結晶相を測定したところ、図8に示されるXRDプロファイルが得られた。得られたXRDプロファイルについて、JCPDSカードNO.35−0964に記載される層状複水酸化物(ハイドロタルサイト類化合物)の回折ピークを用いて同定した。その結果、膜試料は層状複水酸化物(LDH、ハイドロタルサイト類化合物)であることが確認された。なお、図8に示されるXRDプロファイルにおいては、膜試料が形成されている多孔質基材を構成するアルミナに起因するピーク(図中で○印が付されたピーク)も併せて観察されている。
膜試料の表面微構造を走査型電子顕微鏡(SEM、JSM−6610LV、JEOL社製)を用いて10〜20kVの加速電圧で観察した。得られた膜試料の表面微構造のSEM画像(二次電子像)を図9に示す。
膜試料について、画像処理を用いた手法により、膜の表面の気孔率を測定した。この気孔率の測定は、1)表面微構造を走査型電子顕微鏡(SEM、JSM−6610LV、JEOL社製)を用いて10〜20kVの加速電圧で観察して膜の表面の電子顕微鏡(SEM)画像(倍率10000倍以上)を取得し、2)Photoshop(Adobe社製)等の画像解析ソフトを用いてグレースケールのSEM画像を読み込み、3)[イメージ]→[色調補正]→[2階調化]の手順で白黒の2値画像を作成し、4)黒い部分が占めるピクセル数を画像の全ピクセル数で割った値を気孔率(%)とすることにより行った。この気孔率の測定は配向膜表面の6μm×6μmの領域について行われた。その結果、膜の表面の気孔率は19.0%であった。また、この膜表面の気孔率を用いて、膜表面から見たときの密度D(以下、表面膜密度という)をD=100%−(膜表面の気孔率)により算出したところ、81.0%であった。
膜試料が透水性を有しない程の緻密性を有することを確認すべく、緻密性判定試験を以下のとおり行った。まず、図11Aに示されるように、上記(1)において得られた複合材料試料220(1cm×1cm平方に切り出されたもの)の膜試料側に、中央に0.5cm×0.5cm平方の開口部222aを備えたシリコンゴム222を接着し、得られた積層物を2つのアクリル製容器224,226で挟んで接着した。シリコンゴム222側に配置されるアクリル製容器224は底が抜けており、それによりシリコンゴム222はその開口部222aが開放された状態でアクリル製容器224と接着される。一方、複合材料試料220の多孔質基材側に配置されるアクリル製容器226は底を有しており、その容器226内にはイオン交換水228が入っている。この時、イオン交換水にAl及び/又はMgを溶解させておいてもよい。すなわち、組み立て後に上下逆さにすることで、複合材料試料220の多孔質基材側にイオン交換水228が接するように各構成部材が配置されてなる。これらの構成部材等を組み立て後、総重量を測定した。これらの構成部材等を組み立て後、総重量を測定した。なお、容器226には閉栓された通気穴(図示せず)が形成されており、上下逆さにした後に開栓されることはいうまでもない。図11Bに示されるように組み立て体を上下逆さに配置して25℃で1週間保持した後、総重量を再度測定した。このとき、アクリル製容器224の内側側面に水滴が付着している場合には、その水滴を拭き取った。そして、試験前後の総重量の差を算出することにより緻密度を判定した。その結果、25℃で1週間保持した後においても、イオン交換水の重量に変化は見られなかった。このことから、膜試料(すなわち機能膜)は透水性を有しない程に高い緻密性を有することが確認された。
膜試料が通気性を有しない程の緻密性を有することを確認すべく、緻密性判定試験を以下のとおり行った。まず、図12A及び12Bに示されるように、蓋の無いアクリル容器230と、このアクリル容器230の蓋として機能しうる形状及びサイズのアルミナ治具232とを用意した。アクリル容器230にはその中にガスを供給するためのガス供給口230aが形成されている。また、アルミナ治具232には直径5mmの開口部232aが形成されており、この開口部232aの外周に沿って膜試料載置用の窪み232bが形成されてなる。アルミナ治具232の窪み232bにエポキシ接着剤234を塗布し、この窪み232bに複合材料試料236の膜試料236b側を載置してアルミナ治具232に気密かつ液密に接着させた。そして、複合材料試料236が接合されたアルミナ治具232を、アクリル容器230の開放部を完全に塞ぐようにシリコーン接着剤238を用いて気密かつ液密にアクリル容器230の上端に接着させて、測定用密閉容器240を得た。この測定用密閉容器240を水槽242に入れ、アクリル容器230のガス供給口230aを圧力計244及び流量計246に接続して、ヘリウムガスをアクリル容器230内に供給可能に構成した。水槽242に水243を入れて測定用密閉容器240を完全に水没させた。このとき、測定用密閉容器240の内部は気密性及び液密性が十分に確保されており、複合材料試料236の膜試料236b側が測定用密閉容器240の内部空間に露出する一方、複合材料試料236の多孔質基材236a側が水槽242内の水に接触している。この状態で、アクリル容器230内にガス供給口230aを介してヘリウムガスを測定用密閉容器240内に導入した。圧力計244及び流量計246を制御して膜試料236b内外の差圧が0.5atmとなる(すなわちヘリウムガスに接する側に加わる圧力が反対側に加わる水圧よりも0.5atm高くなる)ようにして、複合材料試料236から水中にヘリウムガスの泡が発生するか否かを観察した。その結果、ヘリウムガスに起因する泡の発生は観察されなかった。よって、膜試料236bは通気性を有しない程に高い緻密性を有することが確認された。
(1)中仕切りシートの作製
例1と同様の手順により、多孔質基材付きセパレータとして、アルミナ基材上LDH膜を用意した。図13A及び13Bに示されるように、多孔質基材30付きセパレータ28のセパレータ28側(すなわちLDH膜側)の外縁に沿って変性ポリフェニレンエーテル樹脂製の枠32を載置した。このとき、枠32は正方形の枠であり、その内周縁には段差が設けられており、この段差に多孔質基材30及びセパレータ28の外縁を嵌合させた。この枠32上に可撓性フィルム24としてラミネートフィルム(厚さ:50μm、材質:PP樹脂(ベースフィルム)及びPE樹脂(熱可塑性樹脂))を載置した。この可撓性フィルム24は予め中央に開口部24aが形成されており、この開口部24aが枠32内の開放領域に対応するように可撓性フィルム24を配置した。可撓性フィルム24、枠32、及び多孔質基材30付きセパレータ28の接合部分を、市販のヒートシール機を用いて約200℃で熱融着封止した。こうして作製された中仕切りシートの写真が図14に示される。図14において点線で示される領域Hが熱融着封止が行われた領域であり、この領域における液密性が確保される。このような中仕切りシートを5枚作製した。
亜鉛及びコバルトを固溶体となるように添加した水酸化ニッケル粒子を用意する。この水酸化ニッケル粒子を水酸化コバルトで被覆して正極活物質を得た。得られた正極活物質と、カルボキシメチルセルロースの2%水溶液とを混合してペーストを調製する。正極活物質の多孔度が50%となるように、多孔度が約95%のニッケル金属多孔質基板からなる集電体に上記得られたペーストを均一に塗布して乾燥し、活物質部分が所定の領域にわたって塗工された正極板を得る。
銅パンチングメタルからなる集電体上に、酸化亜鉛粉末80重量部、亜鉛粉末20重量部及びポリテトラフルオロエチレン粒子3重量部からなる混合物を塗布して、多孔度約50%で、活物質部分が所定の領域にわたって塗工された負極板を得る。
上記得られた5枚の中仕切りシート14、3枚の正極板16、3枚の負極板20等を用いて図1A〜1Cに示されるようなニッケル亜鉛電池セルパック10を以下の手順で組み立てた。まず、1対の可撓性フィルム12a,12bとしてラミネートフィルム(厚さ:50μm、材質:PP樹脂(ベースフィルム)及びPE樹脂(熱可塑性樹脂))を用意した。図2に示されるように、可撓性フィルム12a上に3枚の負極板20、5枚の中仕切りシート14及び3枚の正極板16を、中仕切りシート14を介在させながら負極板20と正極板16とが交互に位置するように積層し、最後に可撓性フィルム12bを積層した。このとき、中仕切りシート14はセパレータ構造体26を構成する多孔質基材30及び枠32が正極板16側に位置するように配置した。こうして得られた積層物の写真が図15に示される。図15に点線で囲まれる可撓性フィルム12a,24,12bの重なり部分(すなわち外縁3辺とすべき部分)を市販のヒートシール機を用いて約200℃で熱融着接合した。こうして熱融着接合により封止された可撓性袋体12を撮影した写真を図16に示す。図16において熱融着された領域における点線で記される線に沿って切断して、図17に示されるように外縁3辺が熱融着接合により封止された可撓性袋体12を得た。図17から分かるように、可撓性袋体12の上端部は熱融着封止されずに開放されており、正極集電体と負極集電体が互いに異なる位置で可撓性袋体の外縁から互いに異なる位置で延出してなる(図中に視認される2本の金属片に相当)。こうして5枚の中仕切りシート14、正極板16及び負極板20を収容した可撓性袋体12を真空デシケータ中に入れ、真空雰囲気下で、可撓性袋体12内の正極室15及び負極室19の各々に電解液として6mol/LのKOH水溶液を電解液として注液した。この電解液の注入は、可撓性袋体12の上端部の開放部分から行った。こうして得られたラミネート型ニッケル亜鉛電池セルパック10を撮影した写真を図17に示す。
本例では、多孔質基材上に層状複水酸化物(LDH)緻密膜を形成したLDH含有複合材料試料(多孔質基材付きセパレータ試料)として試料1〜10を以下のようにして作製した。
ベーマイト(サソール社製、DISPAL 18N4−80)、メチルセルロース、及びイオン交換水を、(ベーマイト):(メチルセルロース):(イオン交換水)の質量比が10:1:5となるように秤量した後、混練した。得られた混練物を、ハンドプレスを用いた押出成形に付し、2.5cm×10cm×厚さ0.5cmの大きさに成形した。得られた成形体を80℃で12時間乾燥した後、1150℃で3時間焼成して、アルミナ製多孔質基材を得た。
得られた多孔質基材をアセトン中で5分間超音波洗浄し、エタノール中で2分間超音波洗浄、その後、イオン交換水中で1分間超音波洗浄した。
試料1〜6についてのみ、以下の手順により多孔質基材に対してポリスチレンスピンコート及びスルホン化を行った。すなわち、ポリスチレン基板0.6gをキシレン溶液10mlに溶かして、ポリスチレン濃度0.06g/mlのスピンコート液を作製した。得られたスピンコート液0.1mlを多孔質基材上に滴下し、回転数8000rpmでスピンコートにより塗布した。このスピンコートは、滴下と乾燥を含めて200秒間行った。スピンコート液を塗布した多孔質基材を95%硫酸に25℃で4日間浸漬してスルホン化した。
原料として、硝酸マグネシウム六水和物(Mg(NO3)2・6H2O、関東化学株式会社製)、硝酸アルミニウム九水和物(Al(NO3)3・9H2O、関東化学株式会社製)、及び尿素((NH2)2CO、シグマアルドリッチ製)を用意した。カチオン比(Mg2+/Al3+)が2となり且つ全金属イオンモル濃度(Mg2++Al3+)が0.320mol/Lとなるように、硝酸マグネシウム六水和物と硝酸アルミニウム九水和物を秤量してビーカーに入れ、そこにイオン交換水を加えて全量を75mlとした。得られた溶液を攪拌した後、溶液中に尿素/NO3 −=4の割合で秤量した尿素を加え、更に攪拌して原料水溶液を得た。
テフロン(登録商標)製密閉容器(内容量100ml、外側がステンレス製ジャケット)に上記(4)で作製した原料水溶液と上記(3)でスルホン化した多孔質基材(試料1〜6)又は上記(2)で洗浄した多孔質基材(試料7〜10)を共に封入した。このとき、基材はテフロン(登録商標)製密閉容器の底から浮かせて固定し、基材両面に溶液が接するように水平に設置した。その後、水熱温度70〜75℃で168〜504時間水熱処理を施すことにより基材表面に層状複水酸化物配向膜の形成を行った。このとき、水熱処理の条件を適宜変更することにより、様々な緻密性を有する10種類の配向膜を作製した。所定時間の経過後、基材を密閉容器から取り出し、イオン交換水で洗浄し、70℃で10時間乾燥させて、層状複水酸化物(以下、LDHという)の緻密膜(以下、膜試料という)を基材上に得た。得られた膜試料の厚さは約1.0〜2.0μmであった。こうして、LDH含有複合材料試料(以下、複合材料試料という)として試料1〜10を得た。なお、LDH膜は多孔質基材の両面に形成されていたが、セパレータとしての形態を複合材料に付与するため、多孔質基材の片面のLDH膜を機械的に削り取った。
X線回折装置(リガク社製 RINT TTR III)にて、電圧:50kV、電流値:300mA、測定範囲:10〜70°の測定条件で、膜試料の結晶相を測定してXRDプロファイルを得る。得られたXRDプロファイルについて、JCPDSカードNO.35−0964に記載される層状複水酸化物(ハイドロタルサイト類化合物)の回折ピークを用いて同定を行った。その結果、膜試料1〜10のいずれも層状複水酸化物(LDH、ハイドロタルサイト類化合物)であることが確認された。
He透過性の観点から膜試料1〜10の緻密性を評価すべくHe透過試験を以下のとおり行った。まず、図18A及び図18Bに示されるHe透過度測定系310を構築した。He透過度測定系310は、Heガスを充填したガスボンベからのHeガスが圧力計312及び流量計314(デジタルフローメーター)を介して試料ホルダ316に供給され、この試料ホルダ316に保持された緻密膜318の一方の面から他方の面に透過させて排出させるように構成した。
Zn透過性の観点から膜試料1〜10の緻密性を評価すべく、Zn透過試験を以下のとおり行った。まず、図19A及び図19Bに示されるZn透過測定装置340を構築した。Zn透過測定装置340は、L字状の開口管で構成される第一槽344にフランジ362aが一体化されたフランジ付き開口管(PTFE製)と、L字状の管で構成される第二槽346にフランジ362bが一体化されたフランジ付き開口管(PTFE製)とをフランジ362a,362bが対向するように配置し、その間に試料ホルダ342を配置し、試料ホルダ342に保持された緻密膜の一方の面から他方の面にZnが透過可能な構成とした。
12 可撓性袋体
14 中仕切りシート
15 正極室
15a 正極側余剰空間
16 正極板
18 正極集電体
18a 正極集電体延出部
19 負極室
19a 負極側余剰空間
20 負極板
22 負極集電体
22a 負極集電体延出部
24 可撓性フィルム
24a 開口部
26 セパレータ構造体
28 セパレータ
30 多孔質基材
32 枠
100 密閉型ニッケル亜鉛電池
102 密閉容器
104 密閉区画
106 仕切り板
Claims (16)
- 密閉型ニッケル亜鉛電池に用いられる、ラミネート型ニッケル亜鉛電池セルパックであって、
その上端部以外の外縁が封止接合されて上部開放された空間を与える1対の可撓性フィルムからなる可撓性袋体と、
前記1対の可撓性フィルムの間に、その上端部以外の外縁が互いに封止接合された形で設けられ、それにより上部開放された正極室及び負極室を互いに液体連通を許容しないように交互に区画する、2枚以上の中仕切りシートと、
前記正極室に収容される、水酸化ニッケル及び/又はオキシ水酸化ニッケルを含んでなる、1枚以上の正極板と、
前記正極室に収容されて前記正極板が浸漬される、アルカリ金属水酸化物を含んでなる正極電解液と、
前記負極室に収容される、亜鉛及び/又は酸化亜鉛を含んでなる、1枚以上の負極板と、
前記負極室に収容されて前記負極板が浸漬される、アルカリ金属水酸化物を含んでなる負極電解液と、
を備えてなり、前記中仕切りシートが、開口部を備えた可撓性フィルムと、該開口部を液密に閉塞する、水酸化物イオン伝導性を有するが透水性を有しないセパレータを含むセパレータ構造体とを備えてなる、ラミネート型ニッケル亜鉛電池セルパック。 - 前記可撓性袋体を構成する前記可撓性フィルムと前記中仕切りシートを構成する前記可撓性フィルムがそれぞれ樹脂フィルムを含む、請求項1に記載のラミネート型ニッケル亜鉛電池セルパック。
- 前記可撓性袋体を構成する1対の可撓性フィルムの上端部以外の外縁と前記中仕切りシートの上端部以外の外縁が互いに熱融着されている、請求項1又は2に記載のラミネート型ニッケル亜鉛電池セルパック。
- 前記セパレータが無機固体電解質体からなる、請求項1〜3のいずれか一項に記載のラミネート型ニッケル亜鉛電池セルパック。
- 前記無機固体電解質体が、一般式:
M2+ 1−xM3+ x(OH)2An− x/n・mH2O
(式中、M2+は2価の陽イオンであり、M3+は3価の陽イオンであり、An−はn価の陰イオンであり、nは1以上の整数であり、xは0.1〜0.4であり、mは0以上である)の基本組成を有する層状複水酸化物からなる、請求項4に記載のラミネート型ニッケル亜鉛電池セルパック。 - 前記セパレータの片面又は両面に多孔質基材をさらに備え、かつ、前記無機固体電解質体が膜状又は層状の形態であり、該膜状又は層状の無機固体電解質体が前記多孔質基材上又はその中に形成されたものである、請求項4又は5に記載のラミネート型ニッケル亜鉛電池セルパック。
- 前記無機固体電解質体が層状複水酸化物からなる場合、前記層状複水酸化物が複数の板状粒子の集合体で構成され、該複数の板状粒子がそれらの板面が前記多孔質基材の表面と垂直に又は斜めに交差するような向きに配向してなる、請求項6に記載のラミネート型ニッケル亜鉛電池セルパック。
- 前記セパレータは、単位面積あたりのHe透過度が10cm/min・atm以下である、請求項1〜7のいずれか一項に記載のラミネート型ニッケル亜鉛電池セルパック。
- 前記セパレータは、水接触下で評価した場合における単位面積あたりのZn透過割合が10m−2・h−1以下である、請求項1〜8のいずれか一項に記載のラミネート型ニッケル亜鉛電池セルパック。
- 前記ラミネート型ニッケル亜鉛電池セルパックが、前記正極板に接触して設けられる正極集電体と、前記負極板に接触して設けられる負極集電体とをさらに備えてなり、前記正極集電体が前記上端部から延出する正極集電体延出部を有し、かつ、前記負極集電体が前記上端部から延出する負極集電体延出部を有し、前記正極集電体延出部と前記負極集電体延出部が互いに異なる位置で延出する、請求項1〜9のいずれか一項に記載のラミネート型ニッケル亜鉛電池セルパック。
- 複数個の前記正極集電体延出部が互いに連結され、且つ/又は複数個の前記負極集電体延出部が互いに連結されている、請求項10に記載のラミネート型ニッケル亜鉛電池セルパック。
- 密閉容器と、
該密閉容器内に収容される、1つ又はそれ以上の請求項1〜11のいずれか一項に記載のラミネート型ニッケル亜鉛電池セルパックと、
を備えた、ニッケル亜鉛電池。 - 前記密閉容器内に設けられ、互いに液体連通を許容しない少なくとも2つの密閉区画を与える、少なくとも1枚の仕切り板をさらに備え、かつ、2つ以上の前記ラミネート型ニッケル亜鉛電池セルパックを、その各々が前記少なくとも2つの密閉区画の各々に収容される形で備えた、請求項12に記載のニッケル亜鉛電池。
- 前記ラミネート型ニッケル亜鉛電池セルパックが、前記正極板に接触して設けられる正極集電体と、前記負極板に接触して設けられる負極集電体とをさらに備えてなり、前記正極集電体が前記上端部から延出する正極集電体延出部を有し、かつ、前記負極集電体が前記上端部から延出する負極集電体延出部を有し、前記正極集電体延出部と前記負極集電体延出部が互いに異なる位置で延出し、かつ、
隣り合う前記ラミネート型ニッケル亜鉛電池セルパックが互いに正負極に関して反対の向きに配置され、隣り合う前記正極集電体延出部と前記負極集電体延出部が接続端子の形で接続され、それにより該隣り合う前記ラミネート型ニッケル亜鉛電池セルパックが直列に接続される、請求項13に記載のニッケル亜鉛電池。 - 前記ラミネート型ニッケル亜鉛電池セルパックが、前記正極板に接触して設けられる正極集電体と、前記負極板に接触して設けられる負極集電体とをさらに備えてなり、前記正極集電体が前記上端部から延出する正極集電体延出部を有し、かつ、前記負極集電体が前記上端部から延出する負極集電体延出部を有し、前記正極集電体延出部と前記負極集電体延出部が互いに異なる位置で延出し、かつ、
隣り合う前記ラミネート型ニッケル亜鉛電池セルパックが互いに正負極に関して同じ向きに配置され、隣り合う前記正極集電体延出部同士が接続端子の形で接続され、かつ、隣り合う前記負極集電体延出部同士が接続端子の形で互いに接続され、それにより該隣り合う前記ラミネート型ニッケル亜鉛電池セルパックが並列に接続される、請求項13に記載のニッケル亜鉛電池。 - 複数個の前記正極集電体延出部が互いに連結され、且つ/又は複数個の前記負極集電体延出部が互いに連結されている、請求項14又は15に記載のニッケル亜鉛電池。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015181155 | 2015-09-14 | ||
JP2015181155 | 2015-09-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017059529A JP2017059529A (ja) | 2017-03-23 |
JP6714474B2 true JP6714474B2 (ja) | 2020-06-24 |
Family
ID=58390493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016170661A Active JP6714474B2 (ja) | 2015-09-14 | 2016-09-01 | ラミネート型ニッケル亜鉛電池セルパック及びそれを用いた電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6714474B2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102006128B1 (ko) * | 2017-12-13 | 2019-08-01 | 재단법인 포항산업과학연구원 | 니켈아연 전지 단위 셀, 상기 단위 셀들이 직렬연결된 단위 스택 및 상기 단위스택들을 병렬 연결하는 방식으로 구성되는 니켈-아연 이차전지 스택모듈 |
CN111566841A (zh) | 2017-12-18 | 2020-08-21 | 日本碍子株式会社 | Ldh隔离件以及锌二次电池 |
JP7069882B2 (ja) * | 2018-03-15 | 2022-05-18 | トヨタ自動車株式会社 | アルカリ電池 |
JP7408287B2 (ja) | 2019-03-15 | 2024-01-05 | 株式会社東芝 | 電池、電池パック、車両及び定置用電源 |
CN110246909B (zh) * | 2019-07-23 | 2024-01-30 | 绵阳皓华光电科技有限公司 | 一种低成本柔性内联式太阳能电池封装结构和方法 |
CN112701412B (zh) * | 2019-10-23 | 2024-08-02 | 比亚迪股份有限公司 | 一种电池、电池模组、电池包和电动车 |
JP7382488B2 (ja) * | 2020-03-23 | 2023-11-16 | 日本碍子株式会社 | 亜鉛二次電池及びモジュール電池 |
JP7606593B2 (ja) | 2021-03-12 | 2024-12-25 | 日本碍子株式会社 | 亜鉛二次電池 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003045477A (ja) * | 2001-08-01 | 2003-02-14 | Toshiba Corp | アルカリ二次電池、ハイブリッドカー及び電気自動車 |
JP5661550B2 (ja) * | 2011-05-02 | 2015-01-28 | 日本碍子株式会社 | 二次電池ユニットおよび集合二次電池 |
CN104067437B (zh) * | 2012-02-06 | 2015-06-17 | 日本碍子株式会社 | 锌二次电池 |
JP6368097B2 (ja) * | 2013-02-01 | 2018-08-01 | 株式会社日本触媒 | 亜鉛負極及び電池 |
JP6292906B2 (ja) * | 2013-02-01 | 2018-03-14 | 株式会社日本触媒 | アニオン伝導性材料及び電池 |
KR102161290B1 (ko) * | 2013-12-03 | 2020-09-29 | 삼성에스디아이 주식회사 | 가요성 이차 전지 |
KR101626268B1 (ko) * | 2013-12-27 | 2016-05-31 | 엔지케이 인슐레이터 엘티디 | 층형 복수산화물 함유 복합 재료 및 그 제조 방법 |
CN107615559B (zh) * | 2015-06-15 | 2020-09-01 | 日本碍子株式会社 | 镍锌电池单元电池包及使用了该镍锌电池单元电池包的电池组 |
-
2016
- 2016-09-01 JP JP2016170661A patent/JP6714474B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017059529A (ja) | 2017-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6784694B2 (ja) | 電極カートリッジ及びそれを用いた亜鉛二次電池 | |
JP6262815B2 (ja) | 亜鉛二次電池に用いられるセパレータ構造体 | |
JP6714474B2 (ja) | ラミネート型ニッケル亜鉛電池セルパック及びそれを用いた電池 | |
JP6165998B2 (ja) | ニッケル亜鉛電池セルパック及びそれを用いた組電池 | |
JP6677820B2 (ja) | 電極/セパレータ積層体及びそれを備えたニッケル亜鉛電池 | |
US10522868B2 (en) | Battery and assembly method therefor | |
JP5936789B1 (ja) | ニッケル亜鉛電池 | |
JP6664195B2 (ja) | 亜鉛二次電池 | |
JP5936788B1 (ja) | ニッケル亜鉛電池 | |
JP6580379B2 (ja) | ニッケル亜鉛電池 | |
JP6573682B2 (ja) | 電極積層体及びそれを用いたニッケル亜鉛電池 | |
JP5936787B1 (ja) | ニッケル亜鉛電池 | |
JP2018029045A (ja) | 電極、電極集合体及びニッケル亜鉛電池 | |
JP6586221B2 (ja) | アルカリ二次電池の製造に適した接着剤の選定方法、及びアルカリ二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190417 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200323 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200525 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200605 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6714474 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |