JP6657956B2 - 電界発光素子 - Google Patents
電界発光素子 Download PDFInfo
- Publication number
- JP6657956B2 JP6657956B2 JP2015557731A JP2015557731A JP6657956B2 JP 6657956 B2 JP6657956 B2 JP 6657956B2 JP 2015557731 A JP2015557731 A JP 2015557731A JP 2015557731 A JP2015557731 A JP 2015557731A JP 6657956 B2 JP6657956 B2 JP 6657956B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- ring
- quantum dot
- layer
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/115—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Inorganic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
Description
有機EL素子は、フィルム上に形成された1対の陽極と陰極との間に、有機発光物質を含有する厚さ僅か0.1μm程度の機能層(単層部又は多層部)で構成する薄膜型の全固体素子である。このような有機EL素子に2〜20V程度の比較的低い電圧を印加すると、有機化合物層に陰極から電子が注入され、陽極から正孔が注入される。この電子と正孔とが発光層において再結合し、エネルギー準位が伝導帯から価電子帯に戻る際にエネルギーを光として放出することにより発光が得られることが知られており、次世代の平面ディスプレイや照明として期待されている技術である。
量子ドット材料はシャープな発光スペクトルに加え、無機物であるために耐久性が良く、また各種溶媒に可溶である特徴を持つことから塗布プロセスに適用可能である。
また、特許文献2では、発光層にリン光発光ドーパントを含有させ、発光層またはその隣接層に量子ドット材料をドープしている有機エレクトロルミネッセンス素子が開示されている。
また、特許文献2に開示された技術によると、リン光発光材料を用いているため、素子の劣化速度が速く、耐久性に問題がある。厳密には、特許文献2に開示された技術は、白色に発光する素子としての寿命は十分でなく、この点について改善の余地が存在する。
<電界発光素子の構成(概要)>
図1に示すとおり、本発明の好ましい実施形態にかかる電界発光素子100は、可撓性基板(基板)1を有している。可撓性基板1上には陽極(第一電極)2が形成され、陽極2上には機能層20が形成され、機能層20上には陰極(第二電極)8が形成されている。
機能層20とは、陽極2と陰極8との間に設けられている電界発光素子100を構成する各層をいう。
機能層20には、例えば、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7が含まれ、そのほかに正孔ブロック層や電子ブロック層等が含まれてもよい。
可撓性基板1上の陽極2、機能層20、陰極8は封止接着剤9を介して可撓性封止部材10によって封止されている。
(i)可撓性基板/陽極/発光層/電子輸送層/陰極/熱伝導層/封止用接着剤/封止部材
(ii)可撓性基板/陽極/正孔輸送層/発光層/電子輸送層/陰極/熱伝導層/封止用接着剤/封止部材
(iii)可撓性基板/陽極/正孔輸送層/発光層/正孔ブロック層/電子輸送層/陰極/熱伝導層/封止用接着剤/封止部材
(iv)可撓性基板/陽極/正孔輸送層/発光層/正孔ブロック層/電子輸送層/陰極バッファー層/陰極/熱伝導層/封止用接着剤/封止部材
(v)可撓性基板/陽極/陽極バッファー層/正孔輸送層/発光層/正孔ブロック層/電子輸送層/陰極バッファー層/陰極/熱伝導層/封止用接着剤/封止部材
(vi)ガラス支持体/陽極/正孔注入層/発光層/電子注入層/陰極/封止部材
(vii)ガラス支持体/陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極/封止部材
(viii)ガラス支持体/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極/封止部材
次いで、本発明の電界発光素子を構成する機能層の詳細について説明する。
(1)注入層:正孔注入層3、電子注入層7
本発明の電界発光素子においては、注入層は必要に応じて設けることができる。注入層としては電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
本発明でいう注入層とは、駆動電圧低下や発光輝度向上のために電極と機能層間に設けられる層で、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層と電子注入層とがある。
正孔注入層は、例えば、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、正孔注入層に適用可能な正孔注入材料としては、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体等を含むポリマーやアニリン系共重合体、ポリアリールアルカン誘導体、または導電性ポリマーが挙げられ、好ましくはポリチオフェン誘導体、ポリアニリン誘導体、ポリピロール誘導体であり、さらに好ましくはポリチオフェン誘導体である。
電子注入層は、例えば、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的には、ストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。本発明においては、上記バッファー層(注入層)はごく薄い膜であることが望ましく、フッ化カリウム、フッ化ナトリウムが好ましい。その膜厚は0.1nm〜5μm程度、好ましくは0.1〜100nm、さらに好ましくは0.5〜10nm、最も好ましくは0.5〜4nmである。
正孔輸送層を構成する正孔輸送材料としては、上記正孔注入層で適用するのと同様の化合物を使用することができるが、さらには、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、さらには、米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
さらに、これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
また、特開平4−297076号公報、特開2000−196140号公報、特開2001−102175号公報、J.Appl.Phys.,95,5773(2004)、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)、特表2003−519432号公報に記載されているような、いわゆるp型半導体的性質を有するとされる正孔輸送材料を用いることもできる。
正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については、特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
これらの高分子化合物は、Makromol.Chem.,193,909頁(1992)等に記載の公知の方法で合成することができる。
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔ブロック層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔ブロック材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、フルオレン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、シロール誘導体、ピリジン誘導体、ピリミジン誘導体、8−キノリノール誘導体等の金属錯体等が挙げられる。
その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。
これらの中でもカルバゾール誘導体、アザカルバゾール誘導体、ピリジン誘導体等が本発明では好ましく、アザカルバゾール誘導体であることがより好ましい。
電子輸送層は、上記電子輸送材料を、例えば、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができ、好ましくは上記電子輸送材料、フッ化アルコール溶剤を含有する塗布液を用いたウェットプロセスにより形成することができる。
電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
本発明における電子輸送層には、有機物のアルカリ金属塩を含有することが好ましい。有機物の種類としては特に制限はないが、ギ酸塩、酢酸塩、プロピオン酸、酪酸塩、吉草酸塩、カプロン酸塩、エナント酸塩、カプリル酸塩、シュウ酸塩、マロン酸塩、コハク酸塩、安息香酸塩、フタル酸塩、イソフタル酸塩、テレフタル酸塩、サリチル酸塩、ピルビン酸塩、乳酸塩、リンゴ酸塩、アジピン酸塩、メシル酸塩、トシル酸塩、ベンゼンスルホン酸塩が挙げられ、好ましくはギ酸塩、酢酸塩、プロピオン酸塩、酪酸塩、吉草酸塩、カプロン酸塩、エナント酸塩、カプリル酸塩、シュウ酸塩、マロン酸塩、コハク酸塩、安息香酸塩、より好ましくはギ酸塩、酢酸塩、プロピオン酸塩、酪酸塩等の脂肪族カルボン酸のアルカリ金属塩が好ましく、脂肪族カルボン酸の炭素数が4以下であることが好ましい。最も好ましくは酢酸塩である。
有機物のアルカリ金属塩のアルカリ金属の種類としては特に制限はないが、Na、K、Csが挙げられ、好ましくはK、Cs、さらに好ましくはCsである。有機物のアルカリ金属塩としては、前記有機物とアルカリ金属の組み合わせが挙げられ、好ましくは、ギ酸Li、ギ酸K、ギ酸Na、ギ酸Cs、酢酸Li、酢酸K、酢酸Na、酢酸Cs、プロピオン酸Li、プロピオン酸Na、プロピオン酸K、プロピオン酸Cs、シュウ酸Li、シュウ酸Na、シュウ酸K、シュウ酸Cs、マロン酸Li、マロン酸Na、マロン酸K、マロン酸Cs、コハク酸Li、コハク酸Na、コハク酸K、コハク酸Cs、安息香酸Li、安息香酸Na、安息香酸K、安息香酸Cs、より好ましくは酢酸Li、酢酸K、酢酸Na、酢酸Cs、最も好ましくは酢酸Csである。
これらドープ材の含有量は、添加する電子輸送層に対し、好ましくは1.5〜35質量%であり、より好ましくは3〜25質量%であり、最も好ましくは5〜15質量%である。
本発明の電界発光素子を構成する発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
本発明に係る発光層は、含まれる発光材料が本発明の規定する要件を満たしていれば、その構成には特に制限はない。
また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。各発光層間には非発光性の中間層を有していることが好ましい。
本発明における発光層の膜厚の総和は1〜100nmの範囲にあることが好ましく、さらに好ましくは、より低い駆動電圧を得ることができることから50nm以下である。なお、本発明でいう発光層の膜厚の総和とは、発光層間に非発光性の中間層が存在する場合には、当該中間層も含む膜厚である。
個々の発光層の膜厚としては1〜50nmの範囲に調整することが好ましい。
個々の発光層は青、緑、赤の各色発光を示しても良く、各発光層の膜厚の関係については、特に制限はない。
発光層の作製には、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により製膜して形成することができる。
本発明においては、発光層の構成として、ホスト化合物、量子ドット材料を含有し、量子ドット材料より発光させることが好ましい。
本発明の電界発光素子の発光層に含有されるホスト化合物としては、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物が好ましい。さらに好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、電界発光素子を高効率化することができる。また、後述する発光材料を複数種用いることで異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。例えば、特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等が挙げられる。
本発明に用いられるホスト化合物は、カルバゾール誘導体であることが好ましい。
本発明の電界発光素子100の発光層5は、量子ドット材料11を含有している、つまり、発光層5には量子ドット材料11がドープされている。
そして、量子ドット材料とは、半導体材料の結晶で構成され、その粒子径が数nm〜数十nm程度の微粒子であり、下記に示す量子ドット効果が得られるものを言う。
なお、量子ドット材料の粒子径は、後述する「粒度分布」を満たせば特に限定されないが、例えば1〜20nmであり、好ましくは1〜10nmである。
このような微粒子のエネルギー準位Eは、一般に、プランク定数を「h」と、電子の有効質量を「m」と、微粒子の半径を「R」としたとき、式(I)で表わされる。
E∝h2/mR2・・・(I)
コア/シェル構造は少なくとも2種類の化合物で形成さていることが好ましく、2種類以上の化合物でグラジエント構造を形成していても良い。これにより、塗布液中における量子ドットの凝集を効果的に防止することができ、量子ドットの分散性を向上させることができるとともに、輝度効率が向上し、連続駆動させた場合に生じる色ズレを抑制することができる。また、シェル構造の存在により安定的に発光特性が得られる。
シェルの厚さは、特に限定されないが、0.1〜10nmであるのが好ましく、0.1〜5nmであるのがより好ましい。一般に、量子ドットのサイズにより発光色が制御でき、被膜の厚さが前記範囲内の値であると、シェルの厚みが原子数個分に相当する厚さから量子ドット1個に満たない厚さであり、量子ドットを高密度で充填することができ、十分な発光量が得られる。また、シェルの存在によりお互いのコア粒子の粒子表面に存在する欠陥、ダングリングボンドへの電子トラップによる非発光の電子エネルギーの転移を抑制でき、量子効率の低下を抑えることができる。
本発明に用いられる量子ドット材料は、体積基準の累積粒度分布における累積度10%粒子径をd10(nm)、累積度90%の粒子径をd90(nm)としたときに、d90−d10≧3nmを満たすことを特徴とし、d90−d10≧5nmを満たすのが好ましい。
なお、累積度10%の粒子径(d10)とは、詳細には、体積基準の累積粒度分布曲線(横軸:粒子径(μm)、縦軸:累積頻度(%))において、10%の累積頻度を示す粒子径であり、累積度90%の粒子径(d90)とは、累積粒度分布曲線において、90%の累積頻度を示す粒子径である。
また、量子ドット材料がd90−d10≧5nmを満たす状態とは、d90とd10との間隔が、かなり広い状態となっている図2(a)、(b)のような状態である。
このように、様々な発光ピークを有する量子ドット材料を含むことにより、電界発光素子を発光させた際、発光スペクトルがブロードになり、演色性の良い白色(自然光に近い白色)を発することができる。
なお、半値幅(t)とは、山形の関数の広がりの程度を示す指標であり、詳細には、図2に示すような体積基準の粒度分布曲線において、存在比率が最大ピーク値の半分の値を示す粒子径の幅(半値全幅)である。
このように、量子ドット材料の粒度分布曲線が、なだらかな山形(略台形)を呈することにより、電界発光素子を発光させた際、発光スペクトルが更にブロードになり、演色性の非常に優れた白色(自然光に近い白色)を発することができる。
たとえば、透過型電子顕微鏡(TEM)により量子ドットの粒子観察を行い、そこから粒子径分布の数平均粒子径として求める方法や、動的光散乱法により量子ドットの粒子径分布を測定し、その数平均粒子径として求める方法、X線小角散乱法により得られたスペクトルから量子ドットの粒子径分布シミュレーション計算を用いて粒子径分布を導出する方法などが挙げられる。
塗布液中において量子ドットの表面付近には、表面修飾剤が付着しているのが好ましい。これにより、塗布液中における量子ドットの分散性を特に優れたものとすることができる。また、量子ドットの製造時において量子ドットの表面に表面修飾剤を付着させることにより、形成される量子ドットの形状が真球度の高いものとなり、また、量子ドットの粒子径分布を狭く抑えられるため、例えば、特に優れたものとすることができる。
表面修飾剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類;トリプロピルホスフィン、トリブチルホスフィン、トリヘキシルホスフィン、トリオクチルホスフィン等のトリアルキルホスフィン類;ポリオキシエチレンn−オクチルフェニルエーテル、ポリオキシエチレンn−ノニルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル類;トリ(n−ヘキシル)アミン、トリ(n−オクチル)アミン、トリ(n−デシル)アミン等の第3級アミン類;トリプロピルホスフィンオキシド、トリブチルホスフィンオキシド、トリヘキシルホスフィンオキシド、トリオクチルホスフィンオキシド、トリデシルホスフィンオキシド等の有機リン化合物;ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のポリエチレングリコールジエステル類;ピリジン、ルチジン、コリジン、キノリン類の含窒素芳香族化合物等の有機窒素化合物;ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン等のアミノアルカン類;ジブチルスルフィド等のジアルキルスルフィド類;ジメチルスルホキシドやジブチルスルホキシド等のジアルキルスルホキシド類;チオフェン等の含硫黄芳香族化合物等の有機硫黄化合物;パルミチン酸、ステアリン酸、オレイン酸等の高級脂肪酸;アルコール類;ソルビタン脂肪酸エステル類;脂肪酸変性ポリエステル類;3級アミン変性ポリウレタン類;ポリエチレンイミン類等が挙げられるが、量子ドットが後述するような方法で調製されるものである場合、表面修飾剤は、高温液相において微粒子に配位して安定化する物質であるのが好ましく、具体的には、トリアルキルホスフィン類、有機リン化合物、アミノアルカン類、第3級アミン類、有機窒素化合物、ジアルキルスルフィド類、ジアルキルスルホキシド類、有機硫黄化合物、高級脂肪酸、アルコール類が好ましい。このような表面修飾剤を用いることにより、塗布液中における量子ドットの分散性を特に優れたものとすることができる。また、量子ドットの製造時において形成される量子ドットの形状をより真球度の高いものとし、量子ドットの粒度分布をよりシャープなものとすることができる。
量子ドット材料の製造方法としては、従来行われている下記のような量子ドット材料の製造方法等が挙げられるが、これらに限定されるものではなく公知の任意の方法を用いることができる。
例えば、高真空下のプロセスとしては、分子ビームエピタキシー法、CVD法等が挙げられる。また、液相製造方法としては、原料水溶液を、例えば、n−ヘプタン、n−オクタン、イソオクタン等のアルカン類、又はベンゼン、トルエン、キシレン等の芳香族炭化水素等の非極性有機溶媒中の逆ミセルとして存在させ、この逆ミセル相中にて結晶成長させる逆ミセル法、熱分解性原料を高温の液相有機媒体に注入して結晶成長させるホットソープ法、さらに、ホットソープ法と同様に、酸塩基反応を駆動力として比較的低い温度で結晶成長を伴う溶液反応法、高周波スパッタリング法等が挙げられる。
これらの中でも、特に粒子径のサイズを比較的容易に制御することができる、つまり、所望の粒度分布となるように制御することができる高周波スパッタリング法を採用することが好ましい。
具体的には、下記の製造工程を経て製造することができる。
工程(7):上記水酸化した量子ドット材料を熱水により洗浄する。
工程(8):必要に応じて、量子ドット材料の表面を表面修飾剤により表面修飾を行う。
電界発光素子を構成する陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In2O3−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状パターンを形成してもよく、あるいはパターン精度をあまり必要としない場合(100μm以上程度)は、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常は、10〜1000nmの範囲であり、好ましくは10〜200nmの範囲で選ばれる。
一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。なお、発光した光を透過させるため、電界発光素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。
また、陰極に上記金属を1〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に形成することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する電界発光素子を作製することができる。
本発明の電界発光素子に用いることのできる基板(以下、基体、基板、基材、支持体、支持基板等ともいう)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。基板側から光を取り出す場合には、基板は透明であることが好ましい。好ましく用いられる透明な基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。リジットな基板よりもフレキシブルな基板において、高温保存安定性や色度変動を抑制する効果が大きく現れるため、特に好ましい基板は、電界発光素子にフレキシブル性を与えることが可能な可撓性を備えた樹脂フィルムである。
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
バリア膜を形成する材料としては、水分や酸素等の電界発光素子の劣化を招く因子の浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と機能層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
バリア膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ−イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
本発明の電界発光素子において、発光の室温における外部取り出し効率は、1%以上であることが好ましく、より好ましくは5%以上である。ここに、外部取り出し量子効率(%)=電界発光素子外部に発光した光子数/電界発光素子に流した電子数×100である。
本発明の電界発光素子に適用可能な封止手段としては、例えば、封止部材と電極、基板とを接着剤で接着する方法を挙げることができる。
封止部材としては、電界発光素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。
具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコーン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。
封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
なお、電界発光素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサを使ってもよいし、スクリーン印刷のように印刷してもよい。
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
本発明に係る封止用接着剤には、熱硬化接着剤や紫外線硬化樹脂などを用いることができるが、好ましくはエポキシ系樹脂、アクリル系樹脂、シリコーン樹脂など熱硬化接着剤、より好ましくは耐湿性、耐水性に優れ、硬化時の収縮が少ないエポキシ系熱硬化型接着性樹脂である。
本発明に係る封止用接着剤の含水率は、300ppm以下であることが好ましく、0.01〜200ppmであることがより好ましく、0.01〜100ppmであることが最も好ましい。
本発明でいう含水率は、いかなる方法により測定しても構わないが、例えば容量法水分計(カールフィッシャ−)、赤外水分計、マイクロ波透過型水分計、加熱乾燥重量法、GC/MS、IR、DSC(示差走査熱量計)、TDS(昇温脱離分析)が挙げられる。また、精密水分計AVM−3000型(オムニテック社製)等を用い、水分の蒸発によって生じる圧力上昇から水分を測定でき、フィルムまた固形フィルム等の水分率の測定を行うことができる。
本発明おいて、封止用接着剤の含水率は、例えば、露点温度が−80℃以下、酸素濃度0.8ppmの窒素雰囲気下に置き時間を変化させることで調整することが出来る。また、100Pa以下の真空状態で置き時間を変化させて乾燥させることもできる。また、封止用接着材は接着剤のみで乾燥させることも出来るが、封止部材へ予め配置し乾燥させることも出来る。
密着封止(固体封止)を行う場合、封止部材としては、例えば、50μm厚のPET(ポリエチレンテレフタレート)にアルミ箔(30μm厚)をラミネートしたものを用いる。これを封止部材として、アルミニウム面にディスペンサを使用して均一に塗布し封止用接着剤を予め配置しておき、樹脂基板1と封止部材5を位置合わせ後、両者を圧着して(0.1〜3MPa)、温度80〜180℃で密着・接合(接着)して、密着封止(固体封止)する。
接着剤の種類また量、そして面積等によって加熱また圧着時間は変わるが0.1〜3MPaの圧力で仮接着、また80〜180℃の温度で、熱硬化時間は5秒〜10分間の範囲で選べばよい。
加熱した圧着ロールを用いると圧着(仮接着)と加熱が同時にでき、且つ内部の空隙も同時に排除でき好ましい。
また、接着層の形成方法としては、材料に応じて、ディスペンサを用い、ロールコート、スピンコート、スクリーン印刷法、スプレーコートなどのコーティング法、印刷法を用いることができる。
封止部材としては、ステンレス、アルミニウム、マグネシウム合金等の金属、ポリエチレンテレフタレート、ポリカーボネート、ポリスチレン、ナイロン、ポリ塩化ビニル等のプラスチック、およびこれらの複合物、ガラス等が挙げられ、必要に応じて、特に樹脂フィルムの場合には、樹脂基板と同様、アルミニウム、酸化アルミニウム、酸化ケイ素、窒化ケイ素等のガスバリア層を積層したものを用いることができる。
ガスバリア層は、封止部材成形前に封止部材の両面若しくは片面にスパッタリング、蒸着等により形成することもできるし、封止後に封止部材の両面若しくは片面に同様な方法で形成してもよい。これについても、酸素透過度が1×10−3ml/(m2・24h・atm)以下、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10−3g/(m2・24h)以下のものであることが好ましい。
封止部材としては、アルミニウム等の金属箔をラミネートしたフィルム等でも良い。金属箔の片面にポリマーフィルムを積層する方法としては、一般に使用されているラミネート機を使用することができる。接着剤としてはポリウレタン系、ポリエステル系、エポキシ系、アクリル系等の接着剤を用いることができる。必要に応じて硬化剤を併用してもよい。ホットメルトラミネーション法やエクストルージョンラミネート法および共押出しラミネーション法も使用できるがドライラミネート方式が好ましい。
また、金属箔をスパッタや蒸着等で形成し、導電性ペースト等の流動性電極材料から形成する場合は、逆にポリマーフィルムを基材としてこれに金属箔を成膜する方法で作成してもよい。
機能層を挟み基板と対向する側の封止膜、あるいは封止用フィルムの外側に、電界発光素子の機械的強度を高めるため、保護膜あるいは保護板を設けてもよい。特に、封止が封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
本発明において、可撓性基板から陽極との間、あるいは可撓性基板から光出射側の何れかの場所に光取出し部材を有することが好ましい。
光取出し部材としては、プリズムシートやレンズシートおよび拡散シートが挙げられる。また、全反射を起こす界面もしくはいずれかの媒質中に導入される回折格子や拡散構造等が挙げられる。
通常、基板から光を放射するような電界発光素子においては、発光層から放射された光の一部が基板と空気との界面において全反射を起こし、光を損失するという問題が発生する。この問題を解決するために、基板の表面にプリズムやレンズ状の加工を施す、もしくは基板の表面にプリズムシートやレンズシートおよび拡散シートを貼り付けることにより、全反射を抑制して光の取り出し効率を向上させる。
また、光取り出し効率を高めるためには、全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法や拡散構造を導入する方法が知られている。
本発明の電界発光素子の製造方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる電界発光素子の製造方法を説明する。
機能層を形成する工程は、主に、
(i)その機能層を構成する塗布液を、基板の陽極上に塗布・積層する工程と、
(ii)塗布・積層後の塗布液を、乾燥させる工程と、
で構成される。
正孔注入層以外の機能層の形成においても、均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、本発明においてはウェットプロセスが好ましく、中でも、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法等の塗布法による成膜が好ましい。
本発明に係るEL材料を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)等の有機溶媒を用いることができる。また分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
また、本発明に係るEL材料を溶解または分散する調液行程、基材上に塗布されるまでの塗布工程は不活性ガス雰囲気下であることが好ましいが、使用素材により不活性ガス雰囲気下で行わなくとも電界発光素子性能を落とさずに成膜できるため、必ずしも不活性ガス雰囲気下で行わなくても良い場合がある。この場合、製造コストを抑えることができより好ましい。
ここでいう乾燥とは、塗布直後の膜の溶媒含有量を100%とした場合に、0.2%以下まで低減されることを指す。
乾燥の手段としては一般的に汎用されているものを使用でき、減圧あるいは加圧乾燥、加熱乾燥、送風乾燥、IR乾燥および電磁波による乾燥などが挙げられる。中でも加熱乾燥が好ましく、機能層塗布溶媒の中で最も低沸点の溶媒の沸点以上の温度であり、機能層材料のTgの中で最も低Tgである材料の(Tg+20)℃より低い温度で保持することが最も好ましい。本発明において、より具体的には80℃以上150℃以下で保持し乾燥することが好ましく、100℃以上130℃以下で保持し乾燥することがより好ましい。
塗布・積層後の塗布液を乾燥させる際の雰囲気は、不活性ガス以外の気体の体積濃度が200ppm以下の雰囲気とすることが好ましいが、調液塗布工程と同様に必ずしも不活性ガス雰囲気下で行わなくても良い場合がある。この場合、製造コストを抑えることができより好ましい。
不活性ガスは好ましくは窒素ガスおよびアルゴンガス等の希ガスであり、製造コスト上最も好ましくは窒素ガスである。
該加熱処理後に前記密着封止あるいは封止部材と電極、基板とを接着剤で接着することで電界発光素子を製造することができる。
本発明の電界発光素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。
発光光源として、例えば、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源、さらには表示装置を必要とする一般の家庭用電気器具等広い範囲の用途が挙げられるが、特にカラーフィルターと組み合わせた液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
本発明の電界発光素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
さらに、本発明の実施形態に係る電界発光素子によれば、発光中心(発光材料)として量子ドット材料を用いていることから、リン光発光材料を用いる場合と比較して、劣化速度が遅く、素子寿命を長期化することができる。
加えて、本発明の実施形態に係る電界発光素子によれば、1層の発光層内の量子ドット材料がd90−d10≧3nmを満たす場合、1層の発光層で白色発光が実現可能である。よって、1回の成膜作業で発光層を形成することができるため、製造方法の簡略化に資することができる。
つまり、本発明に実施形態に係る電界発光素子と、特許文献2に開示された技術とでは、量子ドット材料に対して想定する役割が異なるため、発光中心(発光材料)が異なっており、発光の原理自体も異なっている。
下記の複数種類の量子ドット材料(Core/Shell)を準備した。そして、各サンプルに用いた量子ドット材料の体積基準の粒度分布は、図2(a)〜(e)に示すような様々な粒度分布のものであった。なお、体積基準の粒度分布およびd10、d90は、レーザ回折・散乱法 粒度分布測定装置(ベックマン・コールター社製)により計測した。
Q1:CdSe/−
Q2:CdSe/ZnO
Q3:CdSSe/ZnS
以下のとおり、サンプル1〜16を作製した。
(1)ガスバリア性の可撓性フィルムの作製
可撓性フィルムとして、ポリエチレンナフタレートフィルム(帝人デュポン社製フィルム、以下、PENと略記する)の第1電極を形成する側の全面に、特開2004−68143号に記載の構成からなる大気圧プラズマ放電処理装置を用いて、連続して可撓性フィルム上に、SiOxからなる無機物のガスバリア膜を厚さ500nmとなるように形成し、酸素透過度0.001ml/m2/day以下、水蒸気透過度0.001g/m2/day以下のガスバリア性の可撓性フィルムを作製した。
準備したガスバリア性の可撓性フィルム上に厚さ120nmのITO(インジウムチンオキシド)をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第1電極層(陽極)を形成した。なお、パターンは発光面積が50mm平方になるようなパターンとした。
パターニング後のITO基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。この基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSSと略記、Bayer製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔注入層を設けた。
この基板を、窒素ガス(グレードG1)を用いた窒素雰囲気下に移し、前記正孔輸送材料である例示化合物(60)(Mw=80,000)をクロロベンゼンに0.5%溶解した溶液を、1500rpm、30秒でスピンコート法により製膜した後、160℃で30分間保持し、膜厚30nmの正孔輸送層とした。
次いで、下記組成の発光層組成物および同溶媒により倍希釈した組成物を1500rpm、30秒でスピンコート法によりそれぞれ製膜した後、120℃で30分間保持し膜厚40nmの発光層をそれぞれ形成した。
サンプル1〜3、5〜12、14の発光層組成物は以下のとおりである。
〈発光層組成物〉
例示化合物a−38 14.00質量部
量子ドット材料(表1に示す材料) 0.74質量部
トルエン 2,000質量部
サンプル4の発光層組成物は以下のとおりである。
〈発光層組成物〉
例示化合物a−38 14.25質量部
量子ドット材料(表1に示す材料:中央値2nm) 0.20質量部
量子ドット材料(表1に示す材料:中央値3.5nm) 0.20質量部
量子ドット材料(表1に示す材料:中央値5nm) 0.20質量部
トルエン 2,000質量部
サンプル13の発光層組成物は以下のとおりである。
〈発光層組成物〉
例示化合物a−38 14.25質量部
例示化合物D−66 2.45質量部
例示化合物D−67 0.025質量部
例示化合物D−80 0.025質量部
量子ドット材料(表1に示す材料) 0.30質量部
トルエン 2,000質量部
サンプル15の発光層組成物は以下のとおりである。
なお、サンプル15は発光層が3層であり、下記の発光層組成物1が第一電極に近い側に設けられ、発光層組成物3が第二電極に近い側に設けられる。
〈発光層組成物1〉
例示化合物a−38 14.00質量部
量子ドット材料(表1に示す材料:中央値2nm) 0.30質量部
トルエン 2,000質量部
〈発光層組成物2〉
例示化合物a−38 14.00質量部
量子ドット材料(表1に示す材料:中央値3.5nm) 0.74質量部
トルエン 2,000質量部
〈発光層組成物3〉
例示化合物a−38 14.00質量部
量子ドット材料(表1に示す材料:中央値5nm) 0.74質量部
トルエン 2,000質量部
サンプル16の発光層組成物は以下のとおりである。
〈発光層組成物〉
例示化合物a−38 14.25質量部
例示化合物D−66 2.45質量部
例示化合物D−67 0.025質量部
例示化合物D−80 0.025質量部
トルエン 2,000質量部
続いて、20mgの一般式(A)で表される化合物である例示化合物(化合物A)を、4mlのテトラフルオロプロパノール(TFPO)に溶解した溶液を、1500rpm、30秒でスピンコート法により製膜した後、120℃で30分間保持し、膜厚30nmの電子輸送層とした。
続いて、基板を大気に曝露することなく真空蒸着装置へ取り付けた。また、モリブデン製抵抗加熱ボートにフッ化ナトリウムおよびフッ化カリウムを入れたものを真空蒸着装置に取り付け、真空槽を4×10−5Paまで減圧した後、前記ボートに通電して加熱してフッ化ナトリウムを0.02nm/秒で前記電子輸送層上に膜厚1nmの薄膜を形成し、続けて同様にフッ化カリウムを0.02nm/秒でフッ化ナトリウム上に膜厚1.5nmの電子注入層を形成した。
引き続き、アルミニウム100nmを蒸着して陰極を形成した。
引き続き、市販のロールラミネート装置を用いて封止部材を接着し、サンプル1〜13(電界発光素子)を製作した。
なお、封止部材として、可撓性の厚み30μmのアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(12μm厚)をドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いラミネートした(接着剤層の厚み1.5μm)ものを用いた。
アルミニウム面に封止用接着剤として、熱硬化性接着剤を、ディスペンサを使用してアルミ箔の接着面(つや面)に沿って厚み20μmで均一に塗布した。これを100Pa以下の真空下で12時間乾燥させた。さらに露点温度が−80℃以下、酸素濃度0.8ppmの窒素雰囲気下へ移動し、12時間以上乾燥させ、封止用接着剤の含水率を100ppm以下となるように調整した。
熱硬化接着剤としては下記の(A)〜(C)を混合したエポキシ系接着剤を用いた。
(A)ビスフェノールAジグリシジルエーテル(DGEBA)
(B)ジシアンジアミド(DICY)
(C)エポキシアダクト系硬化促進剤
作製したサンプル1〜16について、下記のようにして「演色性評価」、「白色に発光する素子としての寿命評価」および「発光効率評価」を行った。
作製した各サンプルに対し、室温(約23〜25℃)で、1,000cd/m2の定輝度条件下による点灯を行い、分光放射輝度計CS−2000(コニカミノルタセンシング社製)を用いて、各サンプルの発光輝度を測定し、演色評価数を求め、平均演色評価数を導出した。
なお、平均演色評価数Raの算出は、JIS Z8726−1990の記載に基づいて行った。
1:Ra<80
2:80≦Ra<84
3:84≦Ra<87
4:87≦Ra<91
5:91≦Ra
なお、上記基準において、「5」が最も良い結果であり、「5」「4」「3」「2」を合格と判断した。
作製した各サンプルを半径5cmの円柱に巻き付け、その後、各サンプルを折り曲げた状態で連続駆動させ、分光放射輝度計CS−2000(コニカミノルタセンシング社製)を用いて輝度を測定し、測定した輝度が半減する時間(LT50)を求めた。駆動条件は、連続駆動開始時に4000cd/m2となる電流値とした。
なお、サンプル16(参考例)のLT50を基準値(LT50基準値)として、当該基準値に対する各サンプルのLT50の比率(=LT50/LT50基準値)を評価に用いた。
1:LT50/LT50基準値<1.0
2:1.0≦LT50/LT50基準値<1.5
3:1.5≦LT50/LT50基準値<2.0
4:2.0≦LT50/LT50基準値<2.5
5:2.5≦LT50/LT50基準値
なお、上記基準において、「5」が最も良い結果であり、「5」「4」「3」を合格と判断した。そして、白色に発光しないサンプルについては、当該寿命評価は不可能であるため、「−」(結果なし)と判断した。
作製した各サンプルに対し、室温(約23〜25℃)で、1,000cd/m2の定輝度条件下による点等を行い、分光放射輝度計CS−2000(コニカミノルタセンシング社製)を用いて、各サンプルの発光輝度を測定し、発光輝度1,000cd/m2における外部量子効率(EQE:External Quantum Efficiency)を測定した。なお、外部量子効率の値が大きいほど、発光効率がよいと判断できる。
1:0%≦EQE<3%
2:3%≦EQE<5%
3:5%≦EQE<8%
4:8%≦EQE<12%
5:12%≦EQE
なお、上記基準において、「5」が最も良い結果であり、「5」「4」「3」を合格と判断した。
表1に示す結果より明らかなように、サンプル1〜12、15については、「演色性評価」、「白色に発光する素子としての寿命評価」、「発光効率評価」のいずれについても、合格という結果となった。
特に、d90−d10≧5nmを満たすサンプル5、6、7、8、11、12については、「演色性評価」、「白色に発光する素子としての寿命評価」の両者が「4」以上という好ましい評価となった。また、表面修飾がされたサンプル5、6、10、12は、「白色に発光する素子としての寿命評価」が「5」となり非常に好ましい結果となった。
なお、粒子分布が3つの凸形状を呈したサンプル4、15についても、合格基準を一応満たしているが、サンプル4はサンプル15と比較して簡便に製造することができた。
また、サンプル14は、d90−d10が2.0nmであったため、演色性評価が不合格という結果となった。さらに、サンプル14は、単色(青色)にしか発光せず、「白色に発光する素子としての寿命評価」は「−」(結果なし)となった。
2 第一電極(陽極)
5 発光層
8 第二電極(陰極)
11 量子ドット材料
20 機能層
100 電界発光素子
Claims (5)
- 基板上に、第一電極と、少なくとも1層の発光層を含む機能層と、第二電極と、を有する電界発光素子であって、
前記少なくとも1層の発光層は、
体積基準の粒度分布において1つのピークを示し、体積基準の累積粒度分布における累積度10%粒子径をd10(nm)、累積度90%の粒子径をd90(nm)としたときに、d90−d10≧3nmを満たし、さらに、粒度分布の中央値が1〜10nmである、少なくとも1種類の量子ドット材料を含むことを特徴とする電界発光素子。 - 前記量子ドット材料は、d90−d10≧5nmを満たすことを特徴とする請求項1に記載の電界発光素子。
- 前記量子ドット材料は、体積基準の粒度分布における最大ピークの半値幅をt(nm)としたときに、t/(d90−d10)>0.5を満たすことを特徴とする請求項1または請求項2に記載の電界発光素子。
- 前記量子ドット材料は、コアと、当該コアを囲むシェルと、から構成されることを特徴とする請求項1乃至請求項3のいずれか1項に記載の電界発光素子。
- 前記量子ドット材料は、表面修飾剤により表面修飾されていることを特徴とする請求項1乃至請求項4のいずれか1項に記載の電界発光素子。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014006177 | 2014-01-16 | ||
JP2014006177 | 2014-01-16 | ||
PCT/JP2014/081886 WO2015107790A1 (ja) | 2014-01-16 | 2014-12-02 | 電界発光素子 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2015107790A1 JPWO2015107790A1 (ja) | 2017-03-23 |
JP6657956B2 true JP6657956B2 (ja) | 2020-03-04 |
Family
ID=53542694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015557731A Active JP6657956B2 (ja) | 2014-01-16 | 2014-12-02 | 電界発光素子 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9773993B2 (ja) |
JP (1) | JP6657956B2 (ja) |
WO (1) | WO2015107790A1 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10159136B2 (en) * | 2016-10-21 | 2018-12-18 | AhuraTech LLC | System and method for producing light in a liquid media |
US9756701B1 (en) * | 2016-10-21 | 2017-09-05 | AhuraTech LLC | System and method for producing light in a liquid media |
US10021761B2 (en) * | 2016-10-21 | 2018-07-10 | AhuraTech LLC | System and method for producing light in a liquid media |
US10241111B2 (en) * | 2016-10-21 | 2019-03-26 | AhuraTech LLC | Electroluminescent binding assays |
KR102581601B1 (ko) * | 2016-12-13 | 2023-09-21 | 엘지디스플레이 주식회사 | 발광 특성이 향상된 양자 발광다이오드 및 이를 포함하는 양자 발광 장치 |
WO2018170531A1 (en) * | 2017-03-21 | 2018-09-27 | Newsouth Innovations Pty Ltd | A light emitting device |
WO2019180877A1 (ja) * | 2018-03-22 | 2019-09-26 | シャープ株式会社 | 発光素子および表示装置 |
US10811626B2 (en) * | 2018-11-13 | 2020-10-20 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Electroluminescent display device and method of fabricating same |
JP7233923B2 (ja) * | 2018-12-28 | 2023-03-07 | 三星電子株式会社 | 量子ドットエレクトロルミネッセンス素子 |
CN111864085A (zh) * | 2019-04-18 | 2020-10-30 | 进化光学有限公司 | 车灯装置及其车灯模块 |
CN111613731A (zh) * | 2020-05-18 | 2020-09-01 | 深圳市华星光电半导体显示技术有限公司 | 显示面板及显示面板的制备方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101449626A (zh) * | 2006-07-28 | 2009-06-03 | Hoya株式会社 | 电致发光元件 |
US7888700B2 (en) * | 2007-03-08 | 2011-02-15 | Eastman Kodak Company | Quantum dot light emitting device |
US7759854B2 (en) * | 2007-05-30 | 2010-07-20 | Global Oled Technology Llc | Lamp with adjustable color |
US8785906B2 (en) * | 2007-05-30 | 2014-07-22 | Eastman Kodak Company | Lamp with controllable spectrum |
JP5407241B2 (ja) | 2007-09-28 | 2014-02-05 | 大日本印刷株式会社 | エレクトロルミネッセンス素子 |
JP5699323B2 (ja) * | 2010-09-30 | 2015-04-08 | 大日本印刷株式会社 | モリブデン化合物ナノ粒子およびその製造方法、モリブデン化合物ナノ粒子分散インク、デバイスおよびその製造方法 |
JP5664311B2 (ja) * | 2011-02-15 | 2015-02-04 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子 |
KR101822500B1 (ko) * | 2011-09-06 | 2018-01-29 | 삼성전자주식회사 | 양자점층 제조 방법 및 양자점층을 포함한 양자점 광전자소자 |
WO2013157494A1 (ja) | 2012-04-20 | 2013-10-24 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子 |
JP6136175B2 (ja) * | 2012-10-10 | 2017-05-31 | コニカミノルタ株式会社 | 白色エレクトロルミネッセンスデバイス |
JP6127436B2 (ja) * | 2012-10-10 | 2017-05-17 | コニカミノルタ株式会社 | 白色エレクトロルミネッセンスデバイス及び白色エレクトロルミネッセンスデバイスの製造方法 |
JP6237636B2 (ja) * | 2012-10-10 | 2017-11-29 | コニカミノルタ株式会社 | エレクトロルミネッセンス素子 |
-
2014
- 2014-12-02 JP JP2015557731A patent/JP6657956B2/ja active Active
- 2014-12-02 US US15/110,857 patent/US9773993B2/en active Active
- 2014-12-02 WO PCT/JP2014/081886 patent/WO2015107790A1/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JPWO2015107790A1 (ja) | 2017-03-23 |
US9773993B2 (en) | 2017-09-26 |
US20160336526A1 (en) | 2016-11-17 |
WO2015107790A1 (ja) | 2015-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6657956B2 (ja) | 電界発光素子 | |
JP6237636B2 (ja) | エレクトロルミネッセンス素子 | |
JP5664311B2 (ja) | 有機エレクトロルミネッセンス素子 | |
JP6079118B2 (ja) | 発光層形成用インク組成物、発光素子の作製方法及びエレクトロルミネッセンスデバイス | |
JP6168050B2 (ja) | 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法 | |
JP6237619B2 (ja) | 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法 | |
JP6127436B2 (ja) | 白色エレクトロルミネッセンスデバイス及び白色エレクトロルミネッセンスデバイスの製造方法 | |
JP6225912B2 (ja) | エレクトロルミネッセンス素子 | |
JP6136175B2 (ja) | 白色エレクトロルミネッセンスデバイス | |
JP5994551B2 (ja) | エレクトロルミネッセンスデバイス | |
WO2013157563A1 (ja) | 有機エレクトロルミネッセンス素子 | |
JP5765271B2 (ja) | 有機エレクトロルミネッセンス素子、表示装置および照明装置 | |
JP5817490B2 (ja) | 有機エレクトロルミネッセンス素子、表示装置及び照明装置 | |
JP2015149230A (ja) | 有機エレクトロルミネッセンスパネル | |
JP2016001547A (ja) | 電界発光素子、及び量子ドット材料 | |
JP2016001548A (ja) | 電界発光素子、及び量子ドット材料 | |
JP6052326B2 (ja) | 有機エレクトロルミネッセンス素子、表示装置及び照明装置 | |
WO2015111365A1 (ja) | 量子ドット材料および電界発光素子 | |
JP5862663B2 (ja) | 有機エレクトロルミネッセンス素子の製造方法 | |
JP5983618B2 (ja) | 有機エレクトロルミネッセンス素子の製造方法 | |
JP2013074085A (ja) | 有機エレクトロルミネッセンス素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190618 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190709 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200120 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6657956 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |