WO2013157494A1 - 有機エレクトロルミネッセンス素子 - Google Patents
有機エレクトロルミネッセンス素子 Download PDFInfo
- Publication number
- WO2013157494A1 WO2013157494A1 PCT/JP2013/061053 JP2013061053W WO2013157494A1 WO 2013157494 A1 WO2013157494 A1 WO 2013157494A1 JP 2013061053 W JP2013061053 W JP 2013061053W WO 2013157494 A1 WO2013157494 A1 WO 2013157494A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- ring
- organic
- layer
- general formula
- Prior art date
Links
- 0 CC(CC(S1)=C(C#N)S*11SC(C#N)=C(CC(C(F)(F)F)=C)S1)=C Chemical compound CC(CC(S1)=C(C#N)S*11SC(C#N)=C(CC(C(F)(F)F)=C)S1)=C 0.000 description 10
- VFUDMQLBKNMONU-UHFFFAOYSA-N c(cc1)cc(c2ccccc22)c1[n]2-c(cc1)ccc1-c(cc1)ccc1-[n]1c2ccccc2c2c1cccc2 Chemical compound c(cc1)cc(c2ccccc22)c1[n]2-c(cc1)ccc1-c(cc1)ccc1-[n]1c2ccccc2c2c1cccc2 VFUDMQLBKNMONU-UHFFFAOYSA-N 0.000 description 2
- JUOPLIWLGISFCN-UHFFFAOYSA-N c1ccc(C(c(ccc(-[n]2c(cccc3)c3c3c2cccc3)c2)c2-c2c3)(c2ccc3-[n]2c3ccccc3c3c2cccc3)c2ccccc2)cc1 Chemical compound c1ccc(C(c(ccc(-[n]2c(cccc3)c3c3c2cccc3)c2)c2-c2c3)(c2ccc3-[n]2c3ccccc3c3c2cccc3)c2ccccc2)cc1 JUOPLIWLGISFCN-UHFFFAOYSA-N 0.000 description 2
- HMLCWZDZCCJTMD-UHFFFAOYSA-N C(C1)C=Cc(c2c3cccc2)c1[n]3-c1cc(-[n]2c3ccccc3c3ccccc23)ccc1 Chemical compound C(C1)C=Cc(c2c3cccc2)c1[n]3-c1cc(-[n]2c3ccccc3c3ccccc23)ccc1 HMLCWZDZCCJTMD-UHFFFAOYSA-N 0.000 description 1
- DZASDCBEZSVFEI-UHFFFAOYSA-N C(C1)C=Cc2c1c1ccccc1[n]2-c(cc1)ccc1N(c(cc1)ccc1-[n]1c2ccccc2c2c1cccc2)c(cc1)ccc1-[n]1c2ccccc2c2c1cccc2 Chemical compound C(C1)C=Cc2c1c1ccccc1[n]2-c(cc1)ccc1N(c(cc1)ccc1-[n]1c2ccccc2c2c1cccc2)c(cc1)ccc1-[n]1c2ccccc2c2c1cccc2 DZASDCBEZSVFEI-UHFFFAOYSA-N 0.000 description 1
- YJVYUQFDGLWYLG-UHFFFAOYSA-N C1C=CC(c2cccc(-[n]3c(cccc4)c4c4c3cccc4)c2)=CC1[n]1c2ccccc2c2c1cccc2 Chemical compound C1C=CC(c2cccc(-[n]3c(cccc4)c4c4c3cccc4)c2)=CC1[n]1c2ccccc2c2c1cccc2 YJVYUQFDGLWYLG-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N C1CCCCC1 Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- SCRBMZDODPLUNT-UHFFFAOYSA-N CC(C(OC(O1)=C(OC(C(C)=C)=O)O[N+]11OC(OC(C(C)=C)=O)=C(OC(C(C)=C)=O)O1)=O)=C Chemical compound CC(C(OC(O1)=C(OC(C(C)=C)=O)O[N+]11OC(OC(C(C)=C)=O)=C(OC(C(C)=C)=O)O1)=O)=C SCRBMZDODPLUNT-UHFFFAOYSA-N 0.000 description 1
- VQRNSDLXYNCNRW-UHFFFAOYSA-N CC(C)(c1ccc(C(C)(C)c(cc2)ccc2-[n]2c(cccc3)c3c3ccccc23)cc1)c(cc1)ccc1-[n]1c(cccc2)c2c2c1CCC=C2 Chemical compound CC(C)(c1ccc(C(C)(C)c(cc2)ccc2-[n]2c(cccc3)c3c3ccccc23)cc1)c(cc1)ccc1-[n]1c(cccc2)c2c2c1CCC=C2 VQRNSDLXYNCNRW-UHFFFAOYSA-N 0.000 description 1
- SCMGNJYUGZCYJD-UHFFFAOYSA-N CC(C)c(cc(cc1C(C)C)-c2ccccc2)c1-[n]1c(-c2ccc(CCc3cc(CCC4C=CC(c5ncc[n]5-c(c(C(C)C)c5)c(C(C)C)cc5-c5ccccc5)=CC4C)cc(CCc(cc4)ccc4-c4ncc[n]4-c(c(C(C)C)c4)c(C(C)C)cc4-c4ccccc4)c3C)cc2)ncc1 Chemical compound CC(C)c(cc(cc1C(C)C)-c2ccccc2)c1-[n]1c(-c2ccc(CCc3cc(CCC4C=CC(c5ncc[n]5-c(c(C(C)C)c5)c(C(C)C)cc5-c5ccccc5)=CC4C)cc(CCc(cc4)ccc4-c4ncc[n]4-c(c(C(C)C)c4)c(C(C)C)cc4-c4ccccc4)c3C)cc2)ncc1 SCMGNJYUGZCYJD-UHFFFAOYSA-N 0.000 description 1
- SDHNJSIZTIODFW-UHFFFAOYSA-N c(cc1)cc(c2c3cccc2)c1[n]3-c(cc1)cc2c1[s]c(cc1)c2cc1-[n]1c2ccccc2c2c1cccc2 Chemical compound c(cc1)cc(c2c3cccc2)c1[n]3-c(cc1)cc2c1[s]c(cc1)c2cc1-[n]1c2ccccc2c2c1cccc2 SDHNJSIZTIODFW-UHFFFAOYSA-N 0.000 description 1
- BTWMVHCHCIKCFN-UHFFFAOYSA-N c(cc1)cc(c2c3cccc2)c1[n]3-c(cc1c2c3)ccc1[o]c2ccc3-c(cc1)cc(c2c3)c1[o]c2ccc3-c1ccc2[o]c(ccc(-[n]3c4ccccc4c4c3cccc4)c3)c3c2c1 Chemical compound c(cc1)cc(c2c3cccc2)c1[n]3-c(cc1c2c3)ccc1[o]c2ccc3-c(cc1)cc(c2c3)c1[o]c2ccc3-c1ccc2[o]c(ccc(-[n]3c4ccccc4c4c3cccc4)c3)c3c2c1 BTWMVHCHCIKCFN-UHFFFAOYSA-N 0.000 description 1
- MZYDBGLUVPLRKR-UHFFFAOYSA-N c(cc1)cc(c2c3cccc2)c1[n]3-c1cc(-[n]2c3ccccc3c3c2cccc3)ccc1 Chemical compound c(cc1)cc(c2c3cccc2)c1[n]3-c1cc(-[n]2c3ccccc3c3c2cccc3)ccc1 MZYDBGLUVPLRKR-UHFFFAOYSA-N 0.000 description 1
- FCYHLWUKNVLXJV-UHFFFAOYSA-N c(cc1)cc(c2c3cccc2)c1[n]3-c1ccc2[o]c(ccc(-[n]3c4ccccc4c4c3cccc4)c3)c3c2c1 Chemical compound c(cc1)cc(c2c3cccc2)c1[n]3-c1ccc2[o]c(ccc(-[n]3c4ccccc4c4c3cccc4)c3)c3c2c1 FCYHLWUKNVLXJV-UHFFFAOYSA-N 0.000 description 1
- AWXGSYPUMWKTBR-UHFFFAOYSA-N c(cc1)cc(c2ccccc22)c1[n]2-c(cc1)ccc1N(c(cc1)ccc1-[n]1c2ccccc2c2c1cccc2)c(cc1)ccc1-[n]1c2ccccc2c2c1cccc2 Chemical compound c(cc1)cc(c2ccccc22)c1[n]2-c(cc1)ccc1N(c(cc1)ccc1-[n]1c2ccccc2c2c1cccc2)c(cc1)ccc1-[n]1c2ccccc2c2c1cccc2 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 description 1
- ZNKRBSDYOPMQLF-UHFFFAOYSA-N c(cc1)cc(c2ccccc22)c1[n]2-c1ccc2[o]c(ccc(-c(cc3)cc(c4c5)c3[o]c4ccc5-[n]3c(cccc4)c4c4c3cccc4)c3)c3c2c1 Chemical compound c(cc1)cc(c2ccccc22)c1[n]2-c1ccc2[o]c(ccc(-c(cc3)cc(c4c5)c3[o]c4ccc5-[n]3c(cccc4)c4c4c3cccc4)c3)c3c2c1 ZNKRBSDYOPMQLF-UHFFFAOYSA-N 0.000 description 1
- NSXJEEMTGWMJPY-UHFFFAOYSA-N c(cc1)cc(c2ccccc22)c1[n]2-c1cccc(-c2cccc(-[n]3c4ccccc4c4ccccc34)c2)c1 Chemical compound c(cc1)cc(c2ccccc22)c1[n]2-c1cccc(-c2cccc(-[n]3c4ccccc4c4ccccc34)c2)c1 NSXJEEMTGWMJPY-UHFFFAOYSA-N 0.000 description 1
- SAAQRUMAXVBWDL-UHFFFAOYSA-N c(cc1)cc2c1c(-c1ccncc1)c(cccc1)c1c2-c1ccncc1 Chemical compound c(cc1)cc2c1c(-c1ccncc1)c(cccc1)c1c2-c1ccncc1 SAAQRUMAXVBWDL-UHFFFAOYSA-N 0.000 description 1
- ZYXQUIQJNOGTGL-UHFFFAOYSA-N c(cc1)ccc1-[n](c(cccc1)c1c1c2)c1ccc2-c1cc(-c(cc2)cc(c3ccccc33)c2[n]3-c2ccccc2)cc(-[n]2c(cccc3)c3c3ccccc23)c1 Chemical compound c(cc1)ccc1-[n](c(cccc1)c1c1c2)c1ccc2-c1cc(-c(cc2)cc(c3ccccc33)c2[n]3-c2ccccc2)cc(-[n]2c(cccc3)c3c3ccccc23)c1 ZYXQUIQJNOGTGL-UHFFFAOYSA-N 0.000 description 1
- WWFRJQCFBCQJCU-UHFFFAOYSA-N c(cc1)ccc1-[n](c(cccc1)c1c1c2)c1ccc2-c1cc(-c(cc2)cc3c2[o]c2ccccc32)ccc1 Chemical compound c(cc1)ccc1-[n](c(cccc1)c1c1c2)c1ccc2-c1cc(-c(cc2)cc3c2[o]c2ccccc32)ccc1 WWFRJQCFBCQJCU-UHFFFAOYSA-N 0.000 description 1
- HPOMQESOFNPPMK-UHFFFAOYSA-N c(cc1)ccc1-[n](c(cccc1)c1c1c2)c1ccc2-c1ccc2[o]c(ccc(-[n]3c4ccccc4c4c3cccc4)c3)c3c2c1 Chemical compound c(cc1)ccc1-[n](c(cccc1)c1c1c2)c1ccc2-c1ccc2[o]c(ccc(-[n]3c4ccccc4c4c3cccc4)c3)c3c2c1 HPOMQESOFNPPMK-UHFFFAOYSA-N 0.000 description 1
- ILDUFPWBKKKNIW-UHFFFAOYSA-N c(cc1)ccc1-[n](c1ccccc1c1c2)c1ccc2-c1cc(-[n](c(cccc2)c2c2c3)c2ccc3-c(cc2)cc3c2[o]c2c3cccc2)ccc1 Chemical compound c(cc1)ccc1-[n](c1ccccc1c1c2)c1ccc2-c1cc(-[n](c(cccc2)c2c2c3)c2ccc3-c(cc2)cc3c2[o]c2c3cccc2)ccc1 ILDUFPWBKKKNIW-UHFFFAOYSA-N 0.000 description 1
- ZMJOWHNGBSQMJG-UHFFFAOYSA-N c(cc1)ccc1-[n]1c(ccc(-c(cc2)cc(c3ccccc33)c2[n]3-c2cc(-[n]3c(ccc(-c(cc4c5c6cccc5)ccc4[n]6-c4ccccc4)c4)c4c4c3cccc4)ccc2)c2)c2c2ccccc12 Chemical compound c(cc1)ccc1-[n]1c(ccc(-c(cc2)cc(c3ccccc33)c2[n]3-c2cc(-[n]3c(ccc(-c(cc4c5c6cccc5)ccc4[n]6-c4ccccc4)c4)c4c4c3cccc4)ccc2)c2)c2c2ccccc12 ZMJOWHNGBSQMJG-UHFFFAOYSA-N 0.000 description 1
- JFAWNJJKSUPXNX-UHFFFAOYSA-N c(cc1)ccc1-c(cc1)cc(c2ccccc22)c1[n]2-c1cccc(-[n]2c(ccc(-c3ccccc3)c3)c3c3c2cccc3)c1 Chemical compound c(cc1)ccc1-c(cc1)cc(c2ccccc22)c1[n]2-c1cccc(-[n]2c(ccc(-c3ccccc3)c3)c3c3c2cccc3)c1 JFAWNJJKSUPXNX-UHFFFAOYSA-N 0.000 description 1
- TYACDNYYXBXTMX-UHFFFAOYSA-N c(cc1)ccc1-c(cc1c2c3)ccc1[o]c2ccc3-c1cc(-[n]2c(cccc3)c3c3c2cccc3)cc(-[n]2c3ccccc3c3c2cccc3)c1 Chemical compound c(cc1)ccc1-c(cc1c2c3)ccc1[o]c2ccc3-c1cc(-[n]2c(cccc3)c3c3c2cccc3)cc(-[n]2c3ccccc3c3c2cccc3)c1 TYACDNYYXBXTMX-UHFFFAOYSA-N 0.000 description 1
- JSMUFABKXVYUBF-UHFFFAOYSA-N c(cc1)ccc1[SH-](c(c(-c1c2)c3)ccc3-[n]3c(cccc4)c4c4c3cccc4)(c1ccc2-[n]1c2ccccc2c2c1cccc2)c1ccccc1 Chemical compound c(cc1)ccc1[SH-](c(c(-c1c2)c3)ccc3-[n]3c(cccc4)c4c4c3cccc4)(c1ccc2-[n]1c2ccccc2c2c1cccc2)c1ccccc1 JSMUFABKXVYUBF-UHFFFAOYSA-N 0.000 description 1
- GRIICOXBRLWKBM-UHFFFAOYSA-N c(cc1)ccc1[SiH-](c(ccc(-[n]1c(cccc2)c2c2c1cccc2)c1)c1-c1c2)(c1ccc2-[n]1c(cccc2)c2c2c1cccc2)c1ccccc1 Chemical compound c(cc1)ccc1[SiH-](c(ccc(-[n]1c(cccc2)c2c2c1cccc2)c1)c1-c1c2)(c1ccc2-[n]1c(cccc2)c2c2c1cccc2)c1ccccc1 GRIICOXBRLWKBM-UHFFFAOYSA-N 0.000 description 1
- ZQMPPXVJLCFDFB-UHFFFAOYSA-N c1cc(-c2c(-c3ccccn3)c(-c3ccccn3)c(-c3ccccn3)c(-c3ccccn3)c2-c2ccccn2)ncc1 Chemical compound c1cc(-c2c(-c3ccccn3)c(-c3ccccn3)c(-c3ccccn3)c(-c3ccccn3)c2-c2ccccn2)ncc1 ZQMPPXVJLCFDFB-UHFFFAOYSA-N 0.000 description 1
- LRDHDNAFIVTEHX-UHFFFAOYSA-N c1cc(-c2cccc(-c3cc(-c4cc(-c5ncccc5)ccc4)cc(-c4cc(-c5ncccc5)ccc4)c3)c2)ncc1 Chemical compound c1cc(-c2cccc(-c3cc(-c4cc(-c5ncccc5)ccc4)cc(-c4cc(-c5ncccc5)ccc4)c3)c2)ncc1 LRDHDNAFIVTEHX-UHFFFAOYSA-N 0.000 description 1
- YELLWJRTEWULJH-UHFFFAOYSA-N c1cc(-c2cccc3c2cccn3)c(cccn2)c2c1 Chemical compound c1cc(-c2cccc3c2cccn3)c(cccn2)c2c1 YELLWJRTEWULJH-UHFFFAOYSA-N 0.000 description 1
- CBNWNTUTZGAZTF-UHFFFAOYSA-N c1ccc2[o]c(ccc(-c(cc3)cc(c4cc(-c(cc5)cc6c5[o]c5ccccc65)ccc44)c3[n]4-c3cc(-[n]4c(ccc(-c(cc5)cc6c5[o]c5c6cccc5)c5)c5c5cc(-c(cc6)cc7c6[o]c6c7cccc6)ccc45)ccc3)c3)c3c2c1 Chemical compound c1ccc2[o]c(ccc(-c(cc3)cc(c4cc(-c(cc5)cc6c5[o]c5ccccc65)ccc44)c3[n]4-c3cc(-[n]4c(ccc(-c(cc5)cc6c5[o]c5c6cccc5)c5)c5c5cc(-c(cc6)cc7c6[o]c6c7cccc6)ccc45)ccc3)c3)c3c2c1 CBNWNTUTZGAZTF-UHFFFAOYSA-N 0.000 description 1
- CWCADTHNGDVMRD-UHFFFAOYSA-N c1ccnc(-c(cc2)cnc2-c2cc(-c(cc3)cnc3-c3ncccc3)cc(-c(cc3)cnc3-c3ncccc3)c2)c1 Chemical compound c1ccnc(-c(cc2)cnc2-c2cc(-c(cc3)cnc3-c3ncccc3)cc(-c(cc3)cnc3-c3ncccc3)c2)c1 CWCADTHNGDVMRD-UHFFFAOYSA-N 0.000 description 1
- WXDXMXYEAGYOKI-UHFFFAOYSA-N c1ccnc(-c2nc(-c3nnc(-c4cccc(-c5nnc(-c6cccc(-c7ncccc7)n6)[o]5)c4)[o]3)ccc2)c1 Chemical compound c1ccnc(-c2nc(-c3nnc(-c4cccc(-c5nnc(-c6cccc(-c7ncccc7)n6)[o]5)c4)[o]3)ccc2)c1 WXDXMXYEAGYOKI-UHFFFAOYSA-N 0.000 description 1
- YPQNDYVSKYUJNF-UHFFFAOYSA-N c1cnccc1-c1c(-c2ccncc2)c(-c2ccncc2)c(-c2ccncc2)c(-c2ccncc2)c1 Chemical compound c1cnccc1-c1c(-c2ccncc2)c(-c2ccncc2)c(-c2ccncc2)c(-c2ccncc2)c1 YPQNDYVSKYUJNF-UHFFFAOYSA-N 0.000 description 1
- BWFJBBWGMZNHCW-UHFFFAOYSA-N c1cnccc1-c1c(-c2ccncc2)c(-c2ccncc2)c(-c2ccncc2)c(-c2ccncc2)c1-c1ccncc1 Chemical compound c1cnccc1-c1c(-c2ccncc2)c(-c2ccncc2)c(-c2ccncc2)c(-c2ccncc2)c1-c1ccncc1 BWFJBBWGMZNHCW-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/54—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/59—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/62—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/66—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/115—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6574—Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/40—Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Definitions
- the present invention relates to an organic electroluminescence device, and more particularly to an organic electroluminescence device excellent in luminous efficiency, luminous lifetime and color rendering.
- organic electroluminescence elements using organic materials are promising for use as solid light-emitting, inexpensive large-area full-color display elements and writing light source arrays. Is being actively promoted.
- An organic EL device has an organic functional layer containing an organic light-emitting substance having a thickness of only about 0.1 ⁇ m in a single layer configuration or a multilayer configuration between an anode and a cathode, which are a pair of electrodes formed on a film. It is a thin film type all solid-state device.
- a relatively low voltage of about 2 to 20 V is applied to such an organic EL element, electrons are injected into the organic functional layer from the cathode and holes are injected from the anode. It is known that light emission can be obtained by releasing energy as light when these electrons and holes recombine in the light emitting layer and the formed excitons return to the ground state. It is a technology expected as a lighting device.
- the recently discovered organic EL element using phosphorescence emission can in principle achieve light emission efficiency about 4 times that of the conventional method using fluorescence emission.
- a white light emitting panel for lighting is required to have high efficiency and long life, but from the viewpoint of extending the life, the current performance is insufficient for fluorescent lamps and white LEDs.
- quantum dots are inorganic, so they have excellent durability and can be dispersed in various solvents, making them suitable for wet coating processes. Yes.
- white light emission is achieved by forming a quantum dot-containing layer on the emission side surface of a light-emitting element and supplementing the emission color of the light-emitting layer by light emission that is photoexcited in a down-conversion manner.
- the light emission lifetime depends on the characteristics of the material constituting the light emitting layer, and a sufficiently long lifetime has not yet been achieved.
- Patent Document 2 discloses a method of achieving white light emission by using two types of quantum dots or a polymer material exhibiting fluorescent light emission in combination with the hole transport layer.
- the amount of the quantum dot material that easily causes concentration quenching is limited, the luminance efficiency is not sufficient.
- Patent Document 3 1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile (hereinafter, referred to as “4,4,5,8,9,12”) is used in place of a conventionally known structure in which a molybdenum layer is used as a part of a load generation layer. , Abbreviated as HATCN or HAT). Further, Patent Document 4 discloses a charge generation layer based on an organic substance or a metal complex thereof. However, in both cases of Patent Document 3 and Patent Document 4, an increase in voltage due to multilayering is unavoidable, and there is a problem in improving power efficiency. Furthermore, further improvement is demanded in the half-life of the organic EL element.
- the present invention has been made in view of the above problems, and the problem to be solved is an organic electroluminescence device having high luminous efficiency and long life, and particularly excellent in color rendering and stable in chromaticity even at a low driving voltage.
- An organic electroluminescence device that emits white light is provided.
- the present inventor has a pair of electrodes and at least two organic functional layers including a light emitting layer on a substrate, and the host compound and phosphorescent light emission as the light emitting layer.
- An organic electroluminescence device that contains a dopant and has a structure in which quantum dots are present in the light emitting layer or its adjacent layer, and has a high luminous efficiency, long life, excellent color rendering, and stable chromaticity even at low driving voltage It has been found that a light-emitting organic electroluminescence element can be realized, and the present invention has been achieved.
- An organic electroluminescent device having a pair of electrodes and at least two organic functional layers including a light emitting layer on a substrate, wherein the light emitting layer contains a host compound and a phosphorescent light emitting dopant, and the light emitting layer or The organic electroluminescent element characterized by the adjacent layer containing the quantum dot.
- the light emitting layer contains, as a phosphorescent dopant, at least one blue phosphorescent compound, and a phosphorescent compound having a band gap smaller than the blue phosphorescent compound by 0.1 eV or more, And the organic electroluminescent element as described in any one of 1st term
- the quantum dot is composed of at least Si, Ge, GaN, GaP, CdS, CdSe, CdTe, InP, InN, ZnS, In 2 S 3 , ZnO, CdO, or a mixture thereof.
- Item 9 The organic electroluminescence device according to any one of Items 1 to 6.
- the band gap of the said quantum dot is 0.1 eV or more smaller than the band gap of the host compound which the said light emitting layer contains,
- the band gap of at least one kind of the quantum dot is larger by 0.1 eV or more than the band gap of the blue phosphorescent compound contained in the light emitting layer.
- R 1 represents a substituent.
- Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
- n1 represents an integer of 0 to 5.
- B 1 to B 5 each represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and at least one represents a nitrogen atom.
- M 1 represents a group 8 to group 10 metal in the periodic table.
- X 1 and X 2 each represent a carbon atom, a nitrogen atom or an oxygen atom.
- L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
- m1 represents 1, 2 or 3, and m2 represents 0, 1 or 2. However, m1 + m2 is 2 or 3. ] 15.
- the organic electroluminescent element according to any one of items 5 to 14, wherein the blue phosphorescent compound is a compound represented by the following general formula (2).
- R 1 , R 2 and R 3 each represent a substituent.
- Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
- n1 represents an integer of 0 to 5.
- M 1 represents a group 8 to group 10 metal in the periodic table.
- X 1 and X 2 each represent a carbon atom, a nitrogen atom or an oxygen atom.
- L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
- m1 represents 1, 2 or 3, and m2 represents 0, 1 or 2. However, m1 + m2 is 2 or 3.
- 16. 15 The organic electroluminescence device according to any one of items 5 to 14, wherein the blue phosphorescent compound is a compound represented by the following general formula (3).
- ring Am, ring An, ring Bm and ring Bn each represent a 5-membered or 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocyclic ring
- Ar represents an aromatic hydrocarbon
- R1m, R2m, R1n and R2n each independently represents an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group. Further, it may have a substituent.
- Ra, Rb and Rc are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-aromatic Represents a hydrocarbon ring group or a non-aromatic heterocyclic group, may further have a substituent, and Ra may form a ring with Ar.
- na and nc each represent 1 or 2
- nb represents an integer of 1 to 4.
- m represents 1 or 2
- n represents 1 or 2
- m + n is 3. Note that the structures of the three ligands coordinated to Ir are not all the same. ] 17. 15.
- V represents a trivalent linking group and is covalently linked to L 1 to L 3 .
- V has a trivalent linking group represented by the following general formula (5) or general formula (6) as its partial structure, and L 1 to L 3 are each represented by the following general formula (7).
- A represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and R represents a halogen atom or a substituent.
- R 1 and R 2 each represent a hydrogen atom, a halogen atom or a substituent, and Y represents a carbon atom or a silicon atom.
- R 3 and R 4 each represent a substituent.
- X 1 to X 5 are each an atomic group forming a nitrogen-containing heterocyclic ring, selected from a carbon atom or a nitrogen atom, and at least one of X 4 and X 5 represents a nitrogen atom.
- X 6 to X 11 are an atomic group forming an aromatic 5-membered ring or an aromatic 6-membered ring, and are selected from a carbon atom or a nitrogen atom. However, when X 6 to X 11 form an aromatic 5-membered ring, X 11 represents a simple bond.
- R 7 represents a substituted aryl group having 7 or more carbon atoms, wherein X 5 and Ir are coordinated and X 7 and Ir form a covalent bond.
- the 5-membered ring formed by at least one of X 1 to X 5 out of L 1 to L 3 constituting the compound represented by the general formula (4) is an imidazole ring
- the organic electroluminescent element of description is an imidazole ring.
- Item 20 The organic electroluminescent device according to Item 19, wherein the host compound having a molecular weight of 2000 or less is a compound represented by the following general formula (8).
- X represents NR ′, an oxygen atom, a sulfur atom, CR′R ′′, or SiR′R ′′.
- R ′ and R ′′ each represent a hydrogen atom or a substituent.
- Ar represents an aromatic ring.
- N represents an integer of 0 to 8.
- an organic electroluminescence device having a high luminous efficiency and a long lifetime can be provided by selecting a host compound, a phosphorescent light-emitting dopant, and quantum dots in the light-emitting layer. It is possible to provide a white light-emitting organic electroluminescent element having high color rendering properties and stable chromaticity at a low driving voltage.
- an increase in driving voltage can be suppressed as compared with the conventional configuration, and an organic electroluminescence element having a longer lifetime can be provided.
- the energy transfer from the blue phosphorescent compound proceeds smoothly. Since both light emission can be obtained efficiently, the light emission efficiency and the color rendering properties can be improved. Smooth energy transfer is also effective in suppressing deterioration of the blue phosphorescent compound. Further, the blue phosphorescent compound according to the present invention can greatly improve the emission lifetime due to the effect of improving the fastness of the dopant itself by the heteroleptic structure and the cage structure. Furthermore, it has been found that by making the quantum dot and the charge generation layer adjacent to each other, the charge transfer at the interface becomes smooth, and the voltage increase which has been a conventional problem can be suppressed.
- the organic electroluminescent device of the present invention is an organic electroluminescent device having a pair of electrodes and at least two organic functional layers including a light emitting layer on a substrate, the light emitting layer comprising a host compound and phosphorescent light emission.
- a dopant is contained, and the light emitting layer or an adjacent layer thereof contains a quantum dot, and is an organic electroluminescence device having a high light emission efficiency and a long life, and particularly excellent in color rendering and low driving.
- a white light-emitting organic electroluminescence element having stable chromaticity even with voltage can be realized.
- the light emitting layer contains quantum dots from the viewpoint that the effects of the present invention can be more manifested.
- the adjacent layer adjacent to the light emitting layer contains a quantum dot.
- a charge generation layer be further provided between the adjacent layer adjacent to the light emitting layer and the light emitting layer.
- the light emitting layer contains at least one blue phosphorescent compound as a phosphorescent dopant. Further, the light emitting layer contains at least one blue phosphorescent compound as a phosphorescent dopant and a phosphorescent compound having a band gap smaller than the blue phosphorescent compound by 0.1 eV or more. In addition, it is preferable that white light emission is exhibited.
- the applied quantum dots are composed of at least Si, Ge, GaN, GaP, CdS, CdSe, CdTe, InP, InN, ZnS, In 2 S 3 , ZnO, CdO, or a mixture thereof.
- the average particle size of the quantum dots to be used is in the range of 1.0 to 20 nm.
- a quantum dot has a core / shell structure or a gradient structure (gradient structure) formed of at least two kinds of compounds.
- the quantum dot is surface-modified with a surface modifier.
- the band gap of the quantum dots is preferably 0.1 eV or more smaller than the band gap of the material constituting the adjacent layer adjacent to the light emitting layer. Moreover, it is preferable that the band gap of a quantum dot is 0.1 eV or more small as for the host compound which a light emitting layer contains. Moreover, it is preferable that the band gap of at least one kind of quantum dot is 0.1 eV or more larger than the band gap of the blue phosphorescent compound contained in the light emitting layer.
- a phosphorescence emission dopant is a compound represented by the said General formula (1), or a compound represented by the said General formula (2).
- a blue phosphorescence-emitting compound is a compound represented by the said General formula (3).
- a blue phosphorescence-emitting compound is a compound represented by the said General formula (4).
- at least one 5-membered ring formed by X 1 to X 5 is an imidazole ring.
- the light emitting layer preferably contains a host compound having a molecular weight of 2000 or less, and the host compound having a molecular weight of 2000 or less is a compound represented by the general formula (8). Is preferred.
- At least one of the at least two organic functional layers including the light emitting layer is formed by a wet coating method.
- a “quantum dot” is a semiconductor microcrystal having a diameter of several to several tens of nm formed to confine electrons (and holes) in a minute space, and exhibits a quantum size effect. It refers to microcrystals.
- band gap of quantum dots refers to the energy difference (energy gap) between the valence band and the conduction band of the quantum dots.
- Bin gaps of host compounds, phosphorescent dopants, etc. mean the energy difference (energy gap) between the energy level of the highest occupied molecular orbital (HOMO) and the energy level of the lowest unoccupied molecular orbital (LUMO).
- ⁇ is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
- FIG. 1 the schematic sectional drawing which shows an example of a structure of the organic electroluminescent element of this invention is shown.
- an organic EL device 100 has a flexible support substrate 1.
- An anode 2 is formed on the flexible support substrate 1
- an organic functional layer 20 is formed on the anode 2
- a cathode 8 is formed on the organic functional layer 20.
- the organic functional layer 20 refers to each layer constituting the organic EL element 100 provided between the anode 2 and the cathode 8.
- Examples of the organic functional layer 20 include a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, and an electron injection layer 7 as shown in FIG.
- a hole block layer, an electron block layer, etc. may be included.
- the anode 2, the organic functional layer 20, and the cathode 8 on the flexible support substrate 1 are sealed with a flexible sealing member 10 through a sealing adhesive 9 to constitute an organic EL element 100.
- these layer structures (refer FIG. 1) of the organic electroluminescent element 100 show only the preferable specific example, and this invention is not limited to the structure illustrated in FIG.
- layer structures as exemplified in the following (i) to (viii) can be mentioned.
- injection layer hole injection layer, electron injection layer
- the injection layer can be provided as necessary.
- the injection layer there are an electron injection layer and a hole injection layer.
- the injection layer exists between the anode and the light emitting layer or between the anode and the hole transport layer, and between the cathode and the light emitting layer or between the cathode and the electron transport layer. Also good.
- the injection layer referred to in the present invention is a layer provided between the electrode and the organic functional layer in order to lower the driving voltage and improve the light emission luminance.
- JP-A-9-45479, JP-A-9-260062, and JP-A-8-288069 examples of materials include triazole derivatives, oxadiazole derivatives, imidazole derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives.
- Derivatives polymers containing silazane derivatives and the like, aniline copolymers, polyarylalkane derivatives, or conductive polymers may be mentioned, preferably polythiophene derivatives, polyaniline derivatives, polypyrrole derivatives, and more preferably It is a polythiophene derivative.
- a metal buffer layer an alkali metal compound buffer layer typified by lithium fluoride, an alkaline earth metal compound buffer layer typified by magnesium fluoride, and an oxide buffer layer typified by aluminum oxide.
- the buffer layer is desirably a very thin film, and potassium fluoride and sodium fluoride are preferable.
- the film thickness is about 0.1 nm to 5 ⁇ m, preferably 0.1 to 100 nm, more preferably 0.5 to 10 nm, and most preferably 0.5 to 4 nm.
- hole transport layer As the hole transport material constituting the hole transport layer, the same compounds as those applied in the hole injection layer can be used, but further, porphyrin compounds, aromatics It is preferable to use a tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
- aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (hereinafter abbreviated as TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4 -Di-p-tolylaminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p
- polymer materials in which these materials are introduced into polymer chains or these materials are used as polymer main chains can also be used.
- inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
- JP-A-4-297076 JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004), JP-A-11-251067, J. MoI. Huang et. al. It is also possible to use a hole transport material that has so-called p-type semiconducting properties, as described in the literature (Applied Physics Letters 80 (2002), p. 139), JP 2003-519432 A. it can.
- the hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can do.
- the thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
- This hole transport layer may have a single layer structure composed of one or more of the above materials.
- n described in the above exemplary compounds represents the degree of polymerization, and represents an integer value having a weight average molecular weight in the range of 50,000 to 200,000. If the weight average molecular weight is 50,000 or more, the solubility in a solvent can be controlled, and it is not mixed with other layers during film formation. Moreover, desired luminous efficiency can be obtained. Moreover, if a weight average molecular weight is 200,000 or less, appropriate synthesis conditions and purification conditions can be selected. Further, the expansion of the molecular weight distribution can be suppressed, the remaining amount of impurities can be reduced, and it can contribute to the improvement of the light emission efficiency, voltage and life of the organic EL element.
- Electron transport layer constituting the organic functional layer of the organic EL device of the present invention is made of a material having a function of transporting electrons. In a broad sense, the electron injection layer and the hole blocking layer are also transported by electrons. Included in the layer.
- the electron transport layer can be provided as a single layer or a plurality of layers.
- an electron transport material also serving as a hole blocking material used for an electron transport layer adjacent to the cathode side with respect to the light emitting layer is a cathode.
- Any material can be used as long as it has a function of transmitting more injected electrons to the light-emitting layer, and any of the conventionally known compounds can be selected and used as the material.
- fluorene derivatives for example, fluorene derivatives, carbazole derivatives And metal complexes such as an azacarbazole derivative, an oxadiazole derivative, a triazole derivative, a silole derivative, a pyridine derivative, a pyrimidine derivative, and an 8-quinolinol derivative.
- carbazole derivatives And metal complexes such as an azacarbazole derivative, an oxadiazole derivative, a triazole derivative, a silole derivative, a pyridine derivative, a pyrimidine derivative, and an 8-quinolinol derivative.
- metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
- carbazole derivatives azacarbazole derivatives, pyridine derivatives and the like are preferable in the present invention, and more preferably an azacarbazole derivative.
- the electron transport layer can be formed by thinning the electron transport material by a known method such as a spin coating method, a casting method, a printing method including an ink jet method, an LB method, and the like, preferably It can be formed by a wet process using a coating solution containing an electron transport material and a fluorinated alcohol solvent.
- the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
- the electron transport layer may have a single layer structure composed of one or more of the above materials.
- n-type electron transport layer doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
- the electron transport layer according to the present invention preferably contains an organic alkali metal salt.
- the type of organic substance is not particularly limited, but for example, formate, acetate, propionic acid, butyrate, valerate, caprate, enanthate, caprylate, oxalate, malonate, Succinate, benzoate, phthalate, isophthalate, terephthalate, salicylate, pyruvate, lactate, malate, adipate, mesylate, tosylate, benzenesulfonate
- it is an alkali metal salt of an aliphatic carboxylic acid such as formate, acetate, propionate, butyrate, etc.
- the aliphatic carboxylic acid preferably has 4 or less carbon atoms, most preferably acetate. It is.
- the kind of alkali metal of the organic alkali metal salt is not particularly limited, and examples thereof include Na, K, and Cs, preferably K, Cs, and more preferably Cs.
- the alkali metal salt of the organic substance include a combination of the organic substance and the alkali metal, preferably, formic acid Li, formic acid K, formic acid Na, formic acid Cs, acetic acid Li, acetic acid K, Na acetate, acetic acid Cs, propionic acid Li, Propionic acid Na, propionic acid K, propionic acid Cs, oxalic acid Li, oxalic acid Na, oxalic acid K, oxalic acid Cs, malonic acid Li, malonic acid Na, malonic acid K, malonic acid Cs, succinic acid Li, succinic acid Na, succinic acid K, succinic acid Cs, benzoic acid Li, benzoic acid Na, benzoic acid K, benzoic acid Cs, more preferably Li
- the content of the alkali metal salt of these organic substances is preferably in the range of 1.5 to 35% by mass, more preferably in the range of 3 to 25% by mass with respect to 100% by mass of the electron transport layer to be added. Most preferably, it is in the range of 5 to 15% by mass.
- the light-emitting layer constituting the organic EL device of the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and emits light.
- the portion may be in the light emitting layer or at the interface between the light emitting layer and the adjacent layer.
- the structure of the light emitting layer according to the present invention is not particularly limited as long as the light emitting material included satisfies the above requirements.
- the total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably 50 nm or less from the viewpoint of obtaining a lower driving voltage.
- the sum total of the film thickness of the light emitting layer as used in this invention is a film thickness also including the said intermediate
- each light emitting layer It is preferable to adjust the film thickness of each light emitting layer to a range of 1 to 50 nm.
- the individual light emitting layers may emit blue, green, and red colors, and there is no particular limitation on the film thickness relationship of each light emitting layer.
- a light-emitting material or a host compound which will be described later, is formed into a known thin film such as, for example, a vacuum evaporation method, a spin coating method, a casting method, an LB method (Langmuir Brodgett method), an inkjet method, or the like.
- the film can be formed by the method.
- a plurality of light emitting materials may be mixed in each light emitting layer, or a phosphorescent light emitting material and a fluorescent light emitting material may be mixed and used in the same light emitting layer.
- the light emitting layer preferably contains a host compound and a light emitting material (also referred to as a light emitting dopant compound) and emits light from the light emitting material.
- a light emitting material also referred to as a light emitting dopant compound
- (4.1) Host compound As the host compound contained in the light emitting layer of the organic EL device of the present invention, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C) of less than 0.1 is preferable. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
- known host compounds may be used alone or in combination of two or more.
- the organic EL element can be made highly efficient.
- the light emitting host used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (polymerizable light emission).
- a high molecular weight material when used, a phenomenon in which the compound is likely to be difficult to escape, such as swelling or gelation, due to the compound taking in the solvent is likely to occur.
- the known host compound a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
- the glass transition point (Tg) is a value obtained by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
- the host compound used in the present invention is preferably a carbazole derivative.
- a compound represented by the general formula (8) is preferably used as the host compound.
- X represents NR ′, oxygen atom, sulfur atom, CR′R ′′, or SiR′R ′′.
- R ′ and R ′′ each represent a hydrogen atom or a substituent.
- Ar represents an aromatic ring.
- N represents an integer of 0 to 8.
- examples of the substituent represented by R ′ and R ′′ include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, t-butyl group, pentyl group).
- X is preferably NR ′ or an oxygen atom
- R ′ is an aromatic hydrocarbon group (also called an aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, etc.
- aromatic hydrocarbon group and aromatic heterocyclic group each may have a substituent represented by R ′ or R ′′ in X of the general formula (8).
- examples of the aromatic ring represented by Ar include an aromatic hydrocarbon ring and an aromatic heterocyclic ring. Further, the aromatic ring may be a single ring or a condensed ring, and may be unsubstituted or may have a substituent represented by R ′ and R ′′ in X of the general formula (8).
- examples of the aromatic hydrocarbon ring represented by Ar include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, and triphenylene.
- examples of the aromatic heterocycle represented by Ar include a furan ring, a dibenzofuran ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, and a pyrimidine ring.
- These rings may further have substituents represented by R ′ and R ′′ in the general formula (8).
- the aromatic ring represented by Ar is preferably a carbazole ring, a carboline ring, a dibenzofuran ring, or a benzene ring, and more preferably a carbazole ring, A carboline ring and a benzene ring, more preferably a benzene ring having a substituent, and particularly preferably a benzene ring having a carbazolyl group.
- the aromatic ring represented by Ar is preferably a condensed ring having 3 or more rings, and the aromatic hydrocarbon condensed ring in which 3 or more rings are condensed is a specific example.
- aromatic heterocycle condensed with three or more rings include an acridine ring, a benzoquinoline ring, a carbazole ring, a carboline ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, a carboline ring, a cyclazine ring, Kindin ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring (any one of the carbon atoms constituting the carboline ring is a nitrogen atom Phenanthroline ring, dibenzofuran ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene ring, benzodifuran ring, benzod
- n represents an integer of 0 to 8, preferably 0 to 2, particularly preferably 1 to 2 when X is O or S.
- a host compound having both a dibenzofuran ring and a carbazole ring is particularly preferable.
- Luminescent material generally, a fluorescent compound or a phosphorescent material (also referred to as a phosphorescent compound, a phosphorescent compound, or a phosphorescent dopant) can be used.
- the light emitting material is a phosphorescent light emitting material (phosphorescent dopant).
- the phosphorescent material is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield of 25 ° C.
- the phosphorescence quantum yield is preferably 0.1 or more.
- the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7.
- the phosphorescence quantum yield in a solution can be measured using various solvents, but when using a phosphorescent material in the present invention, the above phosphorescence quantum yield (0.01 or more) is achieved in any solvent. It only has to be done.
- the excited state energy of the phosphorescent material is lower than the excited state energy of the host compound.
- the phosphorescent light-emitting material can be appropriately selected from known materials used for the light-emitting layer of the organic EL element, but is preferably a complex compound containing a group 8-10 metal in the periodic table of elements. More preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds), and rare earth complexes, and most preferred are iridium compounds.
- the light emitting layer according to the present invention is characterized by containing a phosphorescent light emitting dopant together with a host compound.
- the phosphorescent dopant contained in the light emitting layer is preferably a compound represented by the following general formula (1).
- R 1 represents a substituent.
- Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
- n1 represents an integer of 0 to 5.
- B 1 to B 5 each represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and at least one represents a nitrogen atom.
- M 1 represents a group 8 to group 10 metal in the periodic table.
- X 1 and X 2 each represent a carbon atom, a nitrogen atom or an oxygen atom, and L 1 represents an atomic group which forms a bidentate ligand together with X 1 and X 2 .
- m1 represents 1, 2 or 3
- m2 represents 0, 1 or 2
- m1 + m2 is 2 or 3.
- the phosphorescent compound represented by the general formula (1) according to the present invention has a HOMO energy level of ⁇ 5.15 to ⁇ 3.50 eV and a LUMO energy level of ⁇ 1.25 to +1.00 eV.
- the energy level of HOMO is ⁇ 4.80 to ⁇ 3.50 eV
- the energy level of LUMO is ⁇ 0.80 to +1.00 eV.
- examples of the substituent represented by R 1 include an alkyl group (eg, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, Pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (for example, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (for example, vinyl group, allyl group, etc.), Alkynyl group (for example, ethynyl group, propargyl group, etc.), aromatic hydrocarbon ring group (also called aromatic carbocyclic group, aryl group, etc.), for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group,
- alkyl group eg, methyl group
- Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
- the 5- to 7-membered ring formed by Z include a benzene ring, naphthalene ring, pyridine ring, pyrimidine ring, pyrrole ring, thiophene ring, pyrazole ring, imidazole ring, oxazole ring and thiazole ring. Of these, a benzene ring is preferred.
- B 1 to B 5 represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and at least one represents a nitrogen atom.
- the aromatic nitrogen-containing heterocycle formed by these five atoms is preferably a monocycle. Examples include pyrrole ring, pyrazole ring, imidazole ring, triazole ring, tetrazole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, oxadiazole ring, and thiadiazole ring.
- a pyrazole ring and an imidazole ring are preferable, and an imidazole ring in which B2 and B5 are nitrogen atoms is particularly preferable.
- These rings may be further substituted with the above substituents.
- Preferred as the substituent are an alkyl group and an aryl group, and more preferably an aryl group.
- L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
- Specific examples of the bidentate ligand represented by X 1 -L 1 -X 2 include, for example, substituted or unsubstituted phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabol, picolinic acid And acetylacetone. These groups may be further substituted with the above substituents.
- n1 represents an integer of 1, 2 or 3
- m2 represents an integer of 0, 1 or 2
- m1 + m2 is 2 or 3.
- the case where m2 is 0 is preferable.
- the metal represented by M 1 a transition metal element belonging to Group 8 to 10 of the periodic table (also simply referred to as a transition metal) is used, among which iridium and platinum are preferable, and iridium is more preferable.
- the phosphorescent material represented by the general formula (1) is preferably a blue phosphorescent compound, and among them, it is a compound represented by the following general formula (2). preferable.
- R 1 , R 2 and R 3 each represent a substituent.
- Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
- n1 represents an integer of 0 to 5.
- M 1 represents a group 8 to group 10 metal in the periodic table.
- X 1 and X 2 each represent a carbon atom, a nitrogen atom or an oxygen atom.
- L 1 represents an atomic group that forms a bidentate ligand together with X 1 and X 2 .
- m1 represents 1, 2 or 3, and m2 represents 0, 1 or 2. However, m1 + m2 is 2 or 3.
- R 1 , R 2 and R 3 examples include the groups listed as the substituent represented by R 1 in the general formula (1).
- ring Am, ring An, ring Bm and ring Bn each represent a 5-membered or 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle
- Ar represents an aromatic Represents an aromatic hydrocarbon ring, an aromatic heterocyclic ring, a non-aromatic hydrocarbon ring or a non-aromatic heterocyclic ring
- R1m, R2m, R1n and R2n each independently represents an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group. Further, it may have a substituent.
- Ra, Rb and Rc are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl group, heteroaryl group, non-aromatic It represents an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, may further have a substituent, and Ra may form a ring with Ar.
- na and nc each represent 1 or 2
- nb represents an integer of 1 to 4.
- m represents 1 or 2
- n represents 1 or 2
- m + n is 3. Note that the structures of the three ligands coordinated to Ir are not all the same.
- examples of the 5-membered or 6-membered aromatic hydrocarbon ring represented by the ring An, the ring Am, the ring Bn, and the ring Bm include a benzene ring.
- examples of the 5-membered or 6-membered aromatic heterocycle represented by ring An, ring Am, ring Bn, and ring Bm include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, and pyridine.
- at least one of the rings Bn and Bm is a benzene ring, more preferably at least one of the rings An and Am is a benzene ring.
- Ar represents an aromatic hydrocarbon ring, an aromatic heterocyclic ring, a non-aromatic hydrocarbon ring or a non-aromatic heterocyclic ring.
- examples of the aromatic hydrocarbon ring represented by Ar include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, and triphenylene.
- examples of the aromatic heterocycle represented by Ar include a silole ring, a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, and a triazine ring.
- Oxadiazole ring triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzthiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, thienothiophene ring, carbazole ring, aza A carbazole ring (representing any one or more of the carbon atoms constituting the carbazole ring replaced by a nitrogen atom), a dibenzosilole ring, a dibenzofuran ring, a dibenzothiophene ring, a benzothiophene ring or a dibenzofuran ring.
- examples of the non-aromatic hydrocarbon ring represented by Ar include cycloalkane (eg, cyclopentane ring, cyclohexane ring, etc.), cycloalkoxy group (eg, cyclopentyloxy group, cyclohexyloxy group).
- a cycloalkylthio group for example, a cyclopentylthio group, a cyclohexylthio group, etc.
- a cyclohexylaminosulfonyl group for example, a tetrahydronaphthalene ring, a 9,10-dihydroanthracene ring, a biphenylene ring and the like.
- examples of the non-aromatic heterocycle represented by Ar include an epoxy ring, an aziridine ring, a thiirane ring, an oxetane ring, an azetidine ring, a thietane ring, a tetrahydrofuran ring, a dioxolane ring, a pyrrolidine ring, and a pyrazolidine.
- these rings represented by Ar may have a substituent, and the substituents may be bonded to each other to form a ring.
- Ar is preferably an aromatic hydrocarbon ring or an aromatic heterocyclic ring, more preferably an aromatic hydrocarbon ring, and still more preferably a benzene ring.
- R1m and R2m are each independently an alkyl group having 2 or more carbon atoms, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group, or a non-aromatic heterocyclic ring. Represents a group, and may further have a substituent.
- examples of the alkyl group represented by R1m and R2m include a methyl group, an ethyl group, a trifluoromethyl group, an isopropyl group, an n-butyl group, a t-butyl group, an n-hexyl group, Examples include 2-methylhexyl group, pentyl group, adamantyl group, n-decyl group, n-dodecyl group and the like.
- the aromatic hydrocarbon ring group, aromatic heterocyclic group, non-aromatic hydrocarbon ring group or non-aromatic heterocyclic group represented by R1m and R2m is the above-described general formula (3 ), A monovalent group derived from an aromatic hydrocarbon ring, an aromatic heterocyclic ring, a non-aromatic hydrocarbon ring or a non-aromatic heterocyclic ring represented by Ar.
- substituents include a halogen atom, a cyano group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an amino group, a silyl group, an arylalkyl group, an aryl group, a heteroaryl group, a non-aryl group, An aromatic hydrocarbon ring group or a non-aromatic heterocyclic group is exemplified.
- R1m and R2m are both an alkyl group or a cycloalkyl group having 2 or more carbon atoms, and one of R1m and R2m is a branched alkyl group having 3 or more carbon atoms. It is also preferable. More preferably, both R1m and R2m are branched alkyl groups having 3 or more carbon atoms.
- R1n and R2n have the same meanings as R1m and R2m in General Formula (3), respectively.
- Ra, Rb and Rc are each independently a hydrogen atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, amino group, silyl group, arylalkyl group, aryl Represents a group, a heteroaryl group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, may further have a substituent, and Ra may form a ring with Ar.
- the aryl group and heteroaryl group represented by Ra, Rb and Rc are derived from the aromatic hydrocarbon ring and aromatic heterocycle represented by Ar in the above general formula (3). And a monovalent group.
- the non-aromatic hydrocarbon ring group and non-aromatic heterocyclic group represented by Ra, Rb and Rc the non-aromatic carbon represented by Ar in the above general formula (3) And monovalent groups derived from a hydrogen ring and a non-aromatic heterocyclic ring.
- na and nc represent 1 or 2
- nb represents an integer of 1 to 4.
- n 1 or 2
- m + n 3
- the iridium complex compound represented by the general formula (3) is preferably an iridium complex compound represented by the following general formula (3A).
- Ar, R1m, R2m, R1n, R2n, Ra, Rc, na, nc, m, and n are Ar, R1m, R2m, R1n, R2n, Ra, Rc in General Formula (3), respectively.
- Na, nc, m and n have the same meanings.
- iridium complex compounds represented by the general formulas (3) and (3A) according to the present invention can be synthesized by referring to known methods described in International Publication No. 2006/121811, etc.
- the iridium complex compound represented by the above general formula (3) or (3A) is preferably an iridium complex compound represented by the following general formula (3B).
- R1m, R2m, R1n, R2n, Ra, Rc, na, nc, m, and n are R1m, R2m, R1n, R2n, Ra, Rc, na, nc, n in the general formula (3). It is synonymous with m and n, respectively.
- Ra 3 has the same meaning as Ra, Rb and Rc in the general formula (3).
- nR3 represents an integer of 1 to 5.
- the iridium complex compound represented by the above general formula (3) is preferably an iridium complex compound represented by the following general formula (3C).
- R1m, R2m, R1n, R2n, Ra, Rc, na, nc, m, and n are R1m, R2m, R1n, R2n, Ra, Rc, na, nc, n in the general formula (3). It is synonymous with m and n, respectively.
- Ra 3 has the same meaning as Ra, Rb and Rc in the general formula (3).
- nR3 represents an integer of 1 to 4.
- X represents O, S, SiRz 1 Rz 2 , NRz 1, or CRz 1 Rz 2
- Rz 1 and Rz 2 are each an alkyl group, an aromatic hydrocarbon ring group, and an aromatic heterocyclic ring. Represents a group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group.
- the aromatic hydrocarbon ring group, aromatic heterocyclic group, non-aromatic hydrocarbon ring group or non-aromatic heterocyclic group represented by Rz 1 and Rz 2 is represented by Ar in the above general formula (3).
- the iridium complex compound represented by the above general formula (3) is preferably an iridium complex compound represented by the following general formula (3D).
- R1m, R2m, R1n, R2n, Ra, Rc, na, nc, m, and n are R1m, R2m, R1n, R2n, Ra, Rc, na, nc in the general formula (3).
- M and n have the same meanings.
- Ra 3 has the same meaning as Ra, Rb and Rc in the general formula (3).
- nR3 and X are synonymous with nRa and X in general formula (3B), respectively.
- V represents a trivalent linking group and is linked to L 1 to L 3 by a covalent bond.
- V has a trivalent linking group represented by the following general formula (5) or (6) as its partial structure.
- A represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring
- R represents a halogen atom or a substituent
- R 1 and R 2 each represent a hydrogen atom, a halogen atom or a substituent
- Y represents a carbon atom or a silicon atom
- R 3 and R 4 each represent a substituent.
- A represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring
- examples of the aromatic hydrocarbon ring represented by A include a benzene ring, a naphthalene ring, and an anthracene ring.
- examples of the aromatic heterocycle represented by A include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, an oxadiazole ring, a triazole ring, an imidazole ring, and a pyrazole.
- Examples thereof include a ring and a thiazole ring, and A is preferably a benzene ring.
- R represents a halogen atom or a substituent.
- the halogen atom represented by R include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- the substituent represented by R include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group).
- cycloalkyl group eg, cyclopentyl group, cyclohexyl group, etc.
- alkenyl group eg, vinyl group, aryl group, 1-propenyl group, 2-butenyl group, 1,3-butadienyl group, 2 -Pentenyl group, isopropenyl group etc.
- alkynyl group eg ethynyl group, propargyl group etc.
- aromatic hydrocarbon group aromatic hydrocarbon ring group, aromatic carbocyclic group, aryl group etc.
- R 1 and R 2 represent a hydrogen atom, a halogen atom, and a substituent.
- the halogen atom and substituent represented by R 1 and R 2 include the general formula (5) ) Of the halogen atom represented by R, and those exemplified as the substituent. Preferably, they are a fluorine atom, an alkyl group, and an aryl group.
- Y represents a carbon atom, a silicon atom, but R 3 ⁇ R 4 represents a substituent, as the substituent represented by R 3 ⁇ R 4, for example, the general formula ( What was mentioned as a substituent represented by R of 5) is mentioned.
- An alkyl group and an aryl group are preferable, and an aryl group is more preferable.
- R 3 and R 4 may be connected to form a ring.
- the present invention by having at least one halogen atom represented by R or a substituent on the aromatic hydrocarbon ring represented by A in the general formula (5) or the aromatic heterocyclic ring, A
- the ⁇ - ⁇ stacking between aromatic hydrocarbon rings or aromatic heterocycles represented by the formula (1) is reduced, so aggregation of metal complexes is eliminated, device lifetime is extended, and light emission efficiency is estimated to be improved.
- the fluorene ring or dibenzosilane ring having high planarity is included as the V partial structure, but at the center of the fluorene ring or dibenzosilane ring.
- the presence of two substituents represented by R 3 to R 4 eliminates aggregation of metal complexes, extends the lifetime of the device, and improves the light emission efficiency.
- V represents a trivalent linking group
- the trivalent linking group represented by the above general formula (5) or (6) is contained in the partial structure.
- L 1 to L 3 are each represented by the following general formula (7).
- all of L 1 to L 3 represented by the general formula (7) may have the same structure, or all of L 1 to L 3 may have different structures. Alternatively, any one of L 1 to L 3 may have a different structure.
- X 1 to X 5 are an atomic group forming a nitrogen-containing heterocyclic ring, selected from a carbon atom or a nitrogen atom, and at least one of X 4 and X 5 represents a nitrogen atom. Any one of the nitrogen atoms forms a coordinate bond with Ir in the general formula (4).
- the nitrogen-containing heterocycle represented by X 1 to X 5 is preferably an imidazole ring, a pyrazole ring, a triazole ring or the like, and more preferably an imidazole ring.
- X 6 to X 11 are an atomic group forming an aromatic 5-membered ring or an aromatic 6-membered ring, selected from a carbon atom or a nitrogen atom, and X 7 represents the general formula (4 To form a covalent bond with Ir.
- the aromatic 5-membered ring represented by X 6 to X 11 is preferably a thiophene ring, an imidazole ring, a pyrazole ring, a triazole ring or the like.
- examples of the aromatic 6-membered ring represented by X 6 to X 11 include a benzene ring and a pyridine ring, and a benzene ring is preferable.
- the aromatic 5-membered ring or aromatic 6-membered ring represented by X 6 to X 11 may further have a substituent, and these substituents may be bonded to form a condensed ring.
- substituents include an alkyl group (for example, a methyl group, an ethyl group, a trifluoromethyl group, and an isopropyl group), an alkoxy group (for example, a methoxy group and an ethoxy group), and a halogen atom (for example, a fluorine atom).
- R 7 represents a substituted or unsubstituted aryl group having 7 or more carbon atoms.
- examples of the aryl group represented by R 7 include a phenyl group, a naphthyl group, a biphenyl group, and a terphenyl group, and a phenyl group is preferable.
- Examples of the substituent substituted on the phenyl group include an alkyl group (for example, a methyl group, an ethyl group, a trifluoromethyl group, and an isopropyl group), an alkoxy group (for example, a methoxy group and an ethoxy group), and a halogen atom (for example, Fluorine atom etc.), cyano group, nitro group, dialkylamino group (eg dimethylamino group etc.), trialkylsilyl group (eg trimethylsilyl etc.), triarylsilyl group (eg triphenylsilyl group etc.), tri Examples include heteroarylsilyl groups (for example, tripyridylsilyl group), benzyl groups, aryl groups (for example, phenyl group), heteroaryl groups (for example, pyridyl group, carbazolyl group, etc.), alkyl groups and aryl groups. preferable.
- an alkyl group
- R 7 and X 6 to X 11 are respectively synonymous with the atomic groups represented by R 7 and X 6 to X 11 in the general formula (7).
- R 8 and R 9 each represent a hydrogen atom or a substituent.
- At least one of L 1 to L 3 in the general formula (4) is represented by the following general formula (7B).
- Rb, Rc, and Re each represent a substituent.
- substituent represented by Rb, Rc and Re include the same substituents as those which the atomic group represented by X 6 to X 11 in the general formula (7) may have.
- Rb and Rc are an alkyl group (for example, methyl group, ethyl group, isopropyl group and the like), a cycloalkyl group (for example, cyclohexyl group and the like), and an aryl group (for example, phenyl group and the like).
- ne represents an integer of 0 to 2.
- R 2 and R 3 each represent a hydrogen atom or a substituent.
- substituent represented by R 2 and R 3 include the same substituents as those which the atomic group represented by X 6 to X 11 in the general formula (7) may have.
- Ar represents an aryl group (for example, phenyl group, naphthyl group, biphenyl group, terphenyl group, etc.) or a heteroaryl group (for example, pyridyl group, carbazolyl group, etc.).
- aryl group for example, phenyl group, naphthyl group, biphenyl group, terphenyl group, etc.
- heteroaryl group for example, pyridyl group, carbazolyl group, etc.
- Ar is a phenyl group.
- Rf represents a substituent.
- substituent represented by Rf include the same substituents as those which the atomic group represented by X 6 to X 11 in the general formula (7) may have.
- nf represents an integer of 0 to 3.
- the ortho metal iridium complex according to the present invention is configured by connecting any three of the ligands shown below as an example by the trivalent linking group represented by V described above.
- the combinations of each ligand and linking group are as shown in Table 1 below.
- * shows the coupling
- ** shows the coupling
- Exemplified compound DP-1 can be synthesized according to the following scheme.
- the precipitated crystals were separated by filtration, and the filtered crystals were washed with methanol, and then separated and purified by silica gel chromatography to obtain 0.7 g of exemplary compound DP-1.
- exemplary compound DP-1 was confirmed by mass spectrum and 1 H-NMR.
- Compound 2 can be synthesized according to the following scheme.
- ligand 2 was synthesized as the first step, and then compound 2 was synthesized as the second step.
- Step 6 Under a nitrogen atmosphere, 263 mg of tris (acetylacetonato) iridium (III), 35 ml of ethylene glycol and 10 ml of glycerin were added to 500 mg of the ligand 2 obtained in Step 5, and heated at an internal temperature of 160 ° C. for 15 hours. The reaction solution was returned to room temperature, diluted with 50 ml of methanol, and the precipitate was separated by filtration. Further, the obtained precipitate was washed with methanol and dried to obtain 110 mg of Compound 2.
- Quantum dot In this invention, a quantum dot is contained in a light emitting layer or its adjacent layer, It is characterized by the above-mentioned.
- the adjacent layer of the light emitting layer is a layer formed adjacent to the light emitting layer, and for example, a hole transport layer, an electron transport layer, or the like corresponds to the adjacent layer.
- the quantum dots 11 may be contained in the light emitting layer 5 or, as shown in FIGS. 2 and 3, a layer adjacent to the light emitting layer 5 (for example, It may be contained in the hole transport layer 4 or the electron transport layer 6). Further, the quantum dots 11 according to the present invention may be present at the boundary surface between the light emitting layer 5 and a layer adjacent to the light emitting layer 5. In the present invention, in particular, as shown in FIG. 1, a mode in which the quantum dots 11 are present at least in the light emitting layer 5 is preferable.
- the quantum dot according to the present invention refers to a particle having a predetermined size that is composed of a crystal of a semiconductor material and has a quantum confinement effect, and is a fine particle having a particle diameter of several nanometers to several tens of nanometers. The quantum dot effect shown is obtained.
- the particle diameter of the quantum dots (fine particles) according to the present invention is specifically preferably in the range of 1 to 20 nm, more preferably in the range of 1 to 10 nm.
- the energy level E of such a quantum dot is generally expressed by the following formula (I) where the Planck constant is “h”, the effective mass of the electron is “m”, and the radius of the fine particle is “R”. .
- the band gap of the quantum dot increases in proportion to “R ⁇ 2 ”, and a so-called quantum dot effect is obtained.
- the band gap value of a quantum dot can be controlled by controlling and defining the particle diameter of the quantum dot. That is, by controlling and defining the particle diameter of the fine particles, it is possible to provide diversity not found in ordinary atoms. For this reason, it is possible to condense electrons and holes in the quantum dots and recombine them by exciting them with light or applying a voltage to the organic EL elements including the quantum dots. It can be converted and emitted.
- such a luminescent quantum dot material is defined as a quantum dot according to the present invention.
- the average particle diameter of the quantum dots is about several nanometers to several tens of nanometers.
- the average particle diameter is set to the target light emission color.
- the average particle diameter of the quantum dots is preferably set within a range of 3.0 to 20 nm.
- the average particle diameter of the quantum dots is set to It is preferable to set within the range of 1.5 to 10 nm, and when it is desired to obtain blue light emission, it is preferable to set the average particle diameter of the quantum dots within the range of 1.0 to 3.0 nm.
- a known method can be used as a method for measuring the average particle diameter of the quantum dots.
- a quantum dot particle is observed with a transmission electron microscope (TEM), and a number average particle diameter is obtained from the particle diameter distribution therefrom, or a particle size measuring apparatus using a dynamic light scattering method, for example, manufactured by Malvern It can be measured using “ZETASIZER Nano Series Nano-ZS”.
- TEM transmission electron microscope
- ZETASIZER Nano Series Nano-ZS a particle size measuring apparatus using a dynamic light scattering method, for example, manufactured by Malvern It can be measured using “ZETASIZER Nano Series Nano-ZS”.
- the dynamic light scattering method is used.
- a measuring method using a particle size measuring apparatus (Malvern, “ZETASIZER
- the addition amount of the quantum dots is preferably in the range of 0.01 to 50% by mass, and in the range of 0.05 to 25% by mass, when the total constituent materials of the layer to be added are 100% by mass. More preferably, it is most preferably in the range of 0.1 to 20% by mass. If the addition amount is 0.01% by mass or more, white light emission with sufficient luminance efficiency and good color rendering can be obtained, and if it is 50% by mass or less, an appropriate distance between quantum dot particles can be maintained. The size effect can be exhibited sufficiently.
- the phosphorescent compound described above has a relatively long excitation lifetime of the order of milliseconds or microseconds, so if the concentration in the layer is too high, the energy of excitons relaxes and disappears. The so-called concentration quenching problem arises.
- concentration quenching problem arises.
- by adding the quantum dot according to the present invention to the light emitting layer or its adjacent layer not only the light emission of the quantum dot and the phosphorescent compound itself is obtained, but the details are unknown, but the layer by the quantum dot
- the effect of improving the luminous efficiency of the phosphorescent compound which is presumed to be due to the change in the overall shape and the improved dispersibility of the phosphorescent compound by the surface energy of the quantum dots, can be obtained.
- Examples of the constituent material of the quantum dot include a simple substance of a periodic table group 14 element such as carbon, silicon, germanium, and tin, a simple substance of a periodic table group 15 element such as phosphorus (black phosphorus), and a periodicity of selenium, tellurium, and the like.
- Table 16 group element simple substance, compound consisting of a plurality of periodic table group 14 elements such as silicon carbide (SiC), tin (IV) (SnO 2 ), tin sulfide (II, IV) (Sn (II), Sn (IV) S 3 ), tin sulfide (IV) (SnS 2 ), tin sulfide (II) (SnS), tin selenide (II) (SnSe), tin telluride (II) (SnTe), lead sulfide ( II) (PbS), lead selenide (II) (PbSe), lead telluride (II) (PbTe) periodic table group 14 element and periodic table group 16 element compound, boron nitride (BN), Boron phosphide (BP), boron arsenide (BAs), aluminum nitride (AlN), phosphide Minium (AlP), aluminum ars
- III-V group compound semiconductors aluminum sulfide ( Al 2 S 3 ), aluminum selenide (Al 2 Se 3 ), gallium sulfide (Ga 2 S 3 ), gallium selenide (Ga 2 Se 3 ), gallium telluride (Ga 2 Te 3 ), indium oxide (In 2) O 3), indium sulfide (In 2 S 3), indium selenide ( n 2 Se 3), compounds of tellurium indium (In 2 Te 3) periodic table group 13 elements and the periodic table group 16 element such as, thallium chloride (I) (TlCl), thallium bromide (I) ( Compounds of group 13 elements of the periodic table and elements of group 17 of the periodic table such as TlBr), thallium iodide (I) (TlI), zinc oxide (ZnO), zinc sulfide (ZnS), zinc selenide (ZnSe), Zinc telluride (ZnTe), cadmium oxide (Cd
- Periodic Table Group 5 elements such as vanadium (II) oxide (VO), vanadium oxide (IV) (VO 2 ), tantalum oxide (V) (Ta 2 O 5 ) and the period Table compound of group 16 element, titanium oxide (TiO 2, Ti 2 O 5 , Ti 2 3, Ti 5 O 9, etc.) compounds of the periodic table Group 4 element and Periodic Table Group 16 element such as, second group elements and the periodic table periodic table such as magnesium sulfide (MgS), magnesium selenide (MgSe) Compounds with Group 16 elements, cadmium oxide (II) chromium (III) (CdCr 2 O 4 ), cadmium selenide (II) chromium (III) (CdCr 2 Se 4 ), copper sulfide (II) chromium (III) Examples thereof include chalcogen spinels such as (CuCr 2 S 4 ), mercury (II) selenide (III) (Hg
- Si, G e, GaN, GaP, InN, InP, Ga 2 O 3 , Ga 2 S 3 , In 2 O 3 , In 2 S 3 , ZnO, ZnS, CdO, and CdS are more preferable. Since these substances do not contain highly toxic negative elements, they have excellent resistance to environmental pollution and safety to living organisms. In addition, a pure spectrum can be stably obtained in the visible light region, so that luminescence is achieved. This is advantageous for forming the device. Of these materials, CdSe, ZnSe, and CdS are preferable in terms of light emission stability. From the viewpoints of luminous efficiency, high refractive index, and safety, ZnO and ZnS quantum dots are preferable. Moreover, said material may be used by 1 type and may be used in combination of 2 or more type.
- quantum dots can be doped with a small amount of various elements as impurities as necessary. By adding such a doping substance, the light emission characteristics can be greatly improved.
- the band gap of the quantum dots according to the present invention is preferably 0.1 eV or more smaller than the HOMO-LUMO gap energy of the material constituting the adjacent layer of the light emitting layer, and the band gap of the host compound contained in the light emitting layer Therefore, it is preferably 0.1 eV or less.
- the band gap of at least one kind of quantum dot is 0.1 eV or more larger than the band gap of the blue phosphorescent compound contained in the light emitting layer. Specifically, it is preferably in the range of 1.8 to 3.2 eV, more preferably in the range of 2.2 to 3 eV, and most preferably in the range of 2.6 to 3.0 eV.
- the band gap as used in the present invention refers to the energy difference between the valence band and the conduction band as the band gap in the quantum dot, and the band gap as used in the phosphorescent light-emitting dopant and host compound which are organic substances.
- EV refers to the energy difference between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO).
- the band gap (eV) of a quantum dot can be measured using a Tauc plot.
- band gap (eV) referred to as the organic phosphorescent dopant and the host compound can be determined according to the following method.
- the energy level of HOMO was measured with a photoelectron spectrometer AC-2 (manufactured by Riken Keiki Co., Ltd.), and the energy level of LUMO was calculated from the end of absorption wavelength ( ⁇ th (nm)) using the following equation.
- a band energy gap (HOMO-LUMO energy gap) was determined.
- the numerical value was displayed as an absolute value (ev).
- the energy levels required by scanning tunneling spectroscopy, ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, Auger electron spectroscopy are used. And a method of optically estimating the band gap.
- quantum dots are not only emitted by direct recombination of holes and electrons within the quantum dots, but also excited in the organic electron block hole transport layer, organic light emitting layer, or hole block electron transport layer.
- the energy of the child may be absorbed by the quantum dot to obtain light emission from the core of the quantum dot. Since these quantum dots are lightly doped, other phosphorescent compounds can also absorb the exciton energy to obtain light emission.
- the surface of the quantum dot is preferably coated with an inert inorganic coating layer or a coating composed of an organic ligand. That is, the surface of the quantum dot has a core / shell structure having a core region made of a quantum dot material and a shell region made of an inert inorganic coating layer or an organic ligand. Is preferred.
- This core / shell structure is preferably formed of at least two kinds of compounds, and a gradient structure (gradient structure) may be formed of two or more kinds of compounds.
- a gradient structure gradient structure
- a surface modifier as described later can be reliably supported in the vicinity of the surface of the quantum dot.
- the thickness of the coating (shell part) is not particularly limited, but is preferably in the range of 0.1 to 10 nm, and more preferably in the range of 0.1 to 5 nm.
- the emission color can be controlled by controlling the average particle diameter of the quantum dots. If the thickness of the coating is a value within the above range, the thickness of the coating corresponds to the number of atoms. Thus, the thickness is less than one quantum dot, the quantum dots can be filled with high density, and a sufficient amount of light emission can be obtained. In addition, the presence of the coating can suppress non-luminous electron energy transfer due to defects existing on the particle surfaces of the core particles and electron traps on the dangling bonds, thereby suppressing a decrease in quantum efficiency.
- the surface modifier having functionality applicable in the present invention may be directly attached to the surface of the quantum dot, or attached via a shell (the surface modifier is directly attached to the shell) And may not be in contact with the core of the quantum dot.
- the surface modifier examples include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, and polyoxyethylene oleyl ether; tripropylphosphine, tributylphosphine, trihexylphosphine, trioctylphosphine, and the like.
- Trialkylphosphines polyoxyethylene alkylphenyl ethers such as polyoxyethylene n-octylphenyl ether and polyoxyethylene n-nonylphenyl ether; tri (n-hexyl) amine, tri (n-octyl) amine, tri ( tertiary amines such as n-decyl) amine; tripropylphosphine oxide, tributylphosphine oxide, trihexylphosphine oxide, trioctylphosphineoxy Organic phosphorus compounds such as tridecylphosphine oxide; polyethylene glycol diesters such as polyethylene glycol dilaurate and polyethylene glycol distearate; organic nitrogen compounds such as nitrogen-containing aromatic compounds such as pyridine, lutidine, collidine and quinolines; hexylamine; Aminoalkanes such as octylamine, decylamine, dodecyl
- the surface modifier may be a fine particle of quantum dots in a high-temperature liquid phase. It is preferable that the substance is coordinated to be stabilized, specifically, trialkylphosphines, organic phosphorus compounds, aminoalkanes, tertiary amines, organic nitrogen compounds, dialkyl sulfides, dialkyl sulfoxides. , Organic sulfur compounds, higher fatty acids and alcohols are preferred.
- the dispersibility of the quantum dots in the coating solution can be made particularly excellent.
- the shape of the quantum dot formed at the time of manufacture of a quantum dot can be made into a higher sphericity, and the particle size distribution of a quantum dot can be made sharper.
- the size (average particle diameter) of the quantum dots is preferably in the range of 1.0 to 20 nm.
- the size of the quantum dots means the total area composed of a core region composed of a quantum dot material, a shell region composed of an inert inorganic coating layer or an organic ligand, and a surface modifier. Represents size. If the surface modifier or shell is not included, the size does not include it.
- an aqueous raw material is used, for example, alkanes such as n-heptane, n-octane, isooctane, or benzene, toluene.
- Inverted micelles which exist as reverse micelles in non-polar organic solvents such as aromatic hydrocarbons such as xylene, and crystal growth in this reverse micelle phase, inject a thermally decomposable raw material into a high-temperature liquid-phase organic medium
- examples thereof include a hot soap method for crystal growth and a solution reaction method involving crystal growth at a relatively low temperature using an acid-base reaction as a driving force, as in the hot soap method. Any method can be used from these production methods, and among these, the liquid phase production method is preferred.
- the organic surface modifier present on the surface is referred to as an initial surface modifier.
- the initial surface modifier in the hot soap method include trialkylphosphines, trialkylphosphine oxides, alkylamines, dialkyl sulfoxides, alkanephosphonic acid and the like. These initial surface modifiers are preferably replaced with the functional surface modifiers described above by an exchange reaction.
- the initial surface modifier such as trioctylphosphine oxide obtained by the hot soap method is the above-described functional surface modifier by an exchange reaction performed in a liquid phase containing the functional surface modifier. It is possible to exchange with.
- the following shows an example of a method for producing quantum dots.
- n-octanethiol added to TOA (210 ⁇ l in 6 ml) is injected into the above solution at a rate of 1 ml / min using a syringe pump and allowed to react for 40 minutes. This is referred to as a Cd-containing reaction medium.
- a 16 ml aliquot of Zn-oleic acid solution (the Zn precursor solution heated at 100 ° C.) is injected into the Cd-containing reaction medium at a rate of 2 ml / min.
- 6.4 mmol of n-octanethiol in TOA (1.12 ml in 6 ml) is injected at a rate of 1 ml / min using a syringe pump.
- TOPO Trigger-Aldrich
- TOP trioctylphosphine
- the solution was added to obtain nanoparticles (hereinafter also referred to as TOPO-fixed quantum dots) having CdSe nanocrystals as a core and ZnS as a shell with TOPO fixed on the surface.
- the quantum dots in this state are soluble in organic solvents such as toluene and tetrahydrofuran (hereinafter also referred to as THF).
- the prepared TOPO fixed quantum dots were dissolved in THF, heated to 85 ° C., and N-[(S) -3-mercapto-2-methylpropionyl] -L-proline (Sigma) dissolved in ethanol there. (Aldrich) 100 mg was added dropwise and refluxed for about 12 hours. After refluxing for 12 hours, an aqueous NaOH solution was added, and the mixture was heated at 90 ° C. for 2 hours to evaporate THF.
- the obtained unpurified quantum dots are purified and concentrated using ultrafiltration (Millipore, “Microcon”) and Sephadex column (Amersham Biosciences, “MicroSpin G-25 Columns”).
- a hydrophilic quantum dot in which N-[(S) -3-mercapto-2-methylpropionyl] -L-proline is immobilized on the surface of the quantum dot can be produced.
- the quantum dot film formation method is preferably a wet process.
- spin coating method casting method, die coating method, blade coating method, roller coating method, ink jet method, printing method, spray coating method, curtain coating method, LB method (Langmuir Brodgett method), etc.
- LB method Liangmuir Brodgett method
- a film forming method using a transfer method in which a quantum dot monomolecular film is formed on another medium and then transferred is also useful.
- anode As the anode constituting the organic EL device of the present invention, it is preferable to use a metal, an alloy, an electrically conductive compound and a mixture thereof having a high work function (4 eV or more) as an electrode material.
- an electrode material include a conductive transparent material such as a metal such as Au, CuI, indium-tin composite oxide (hereinafter abbreviated as ITO), SnO 2 , and ZnO.
- ITO indium-tin composite oxide
- SnO 2 indium-tin composite oxide
- ZnO ZnO
- an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
- these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a desired shape pattern may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 ⁇ m or more)
- a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
- wet film-forming methods such as a printing system and a coating system, can also be used.
- the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
- the film thickness is usually in the range of 10 to 1000 nm, preferably in the range of 10 to 200 nm.
- cathode On the other hand, as a cathode constituting the organic EL device of the present invention, a metal having a small work function (4 eV or less) (hereinafter referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof are used as electrode materials. Used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
- a mixture of an electron injectable metal that is the first metal and a second metal that is a stable metal having a larger work function value than this for example, A magnesium / silver mixture, a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like are suitable.
- the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
- the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually in the range of 10 nm to 5 ⁇ m, preferably in the range of 50 to 200 nm.
- the light emission luminance is improved, which is convenient.
- a transparent or translucent cathode can be produced by forming the metal on the cathode in a film thickness range of 1 to 20 nm and then forming the conductive transparent material mentioned in the description of the anode on the cathode. By applying this, it is possible to produce an organic EL element in which both the anode and the cathode are transparent.
- the support substrate (hereinafter also referred to as a substrate, substrate, base material, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited, such as glass, plastic, etc., and is transparent. It may be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A substrate that is more flexible than a rigid substrate is preferable from the viewpoint of greatly exhibiting the effect of suppressing high-temperature storage stability and chromaticity fluctuation, and in particular, the support substrate is flexible enough to provide flexibility to the organic EL element. It is preferable that it is the resin film provided with property.
- polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (
- the surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992.
- Relative humidity (90 ⁇ 2)% RH) is preferably 0.01 g / (m 2 ⁇ 24 h ⁇ atm) or less, and more preferably measured by a method according to JIS K 7126-1987.
- a high barrier film having an oxygen permeability of 1 ⁇ 10 ⁇ 3 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less and a water vapor permeability of 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h ⁇ atm) or less. It is preferable that the water vapor permeability is 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 h ⁇ atm) or less.
- the material for forming the gas barrier layer may be any material that has a function of suppressing the intrusion of factors that cause deterioration of the organic EL element such as moisture and oxygen.
- silicon oxide, silicon dioxide, silicon nitride, or the like is used. be able to.
- the method for forming the gas barrier layer is not particularly limited.
- a plasma polymerization method, a plasma CVD method (CVD: Chemical Vapor Deposition), a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma as described in JP-A-2004-68143.
- a polymerization method is particularly preferred.
- the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
- the external extraction efficiency of light emission at room temperature is preferably 1% or more, more preferably 5% or more.
- the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element ⁇ 100.
- a sealing means applicable to the organic EL element of the present invention for example, a method of adhering a sealing member, an electrode, and a support substrate with a sealing adhesive can be mentioned.
- the sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
- Specific examples include a glass plate, a polymer plate / film composite material, and a metal plate / film composite material.
- the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
- the material constituting the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
- Examples of the material constituting the metal plate include one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicone, germanium, and tantalum.
- the sealing member a polymer film and a metal film can be preferably used because the organic EL element can be thinned.
- the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less, according to JIS K 7129-1992.
- the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by the above method is preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
- sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
- sealing adhesive examples include photocuring and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture curing such as 2-cyanoacrylates.
- examples include mold adhesives.
- hot-melt type polyamide, polyester, and polyolefin can be mentioned.
- a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
- an organic EL element may deteriorate by heat processing, what can be adhesive-hardened within the temperature range from room temperature to 80 degreeC is preferable. Further, a desiccant may be dispersed in the adhesive. Application
- coating of the adhesive agent to a sealing part may use a commercially available dispenser, and may give it by printing like screen printing.
- the electrode and the organic functional layer are coated on the outer side of the electrode facing the support substrate with the organic functional layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate, and this is used as a sealing film.
- the material for forming the sealing film may be any material that has a function of suppressing the intrusion of factors that cause deterioration of the organic EL element such as moisture and oxygen.
- silicon oxide, silicon dioxide, nitride Silicon or the like can be used.
- the method for forming these sealing films is not particularly limited.
- a vacuum deposition method for example, a vacuum deposition method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, An atmospheric pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
- an inert gas such as nitrogen or argon, an inert gas such as fluorinated hydrocarbon or silicon oil is used. It is preferable to inject a liquid.
- a vacuum can also be used.
- a hygroscopic compound can also be enclosed inside.
- Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
- metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
- sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
- Etc. metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, etc.), and sulfates, metal halides, and anhydrous salts of perchloric acids
- Sealing includes casing type sealing (can sealing method) and close contact type sealing (solid sealing method). From the viewpoint of thinning, the solid sealing method is preferable. Moreover, when producing a flexible organic EL element, since a sealing member is also required to have flexibility, a solid sealing method is preferable.
- thermosetting adhesive an ultraviolet curable resin, or the like
- a thermosetting adhesive such as an epoxy resin, an acrylic resin, or a silicone resin, more preferably moisture resistant. It is an epoxy thermosetting adhesive resin that is excellent in water resistance and water resistance and has little shrinkage during curing.
- the water content of the sealing adhesive according to the present invention is preferably 300 ppm or less, more preferably 0.01 to 200 ppm, and most preferably 0.01 to 100 ppm.
- the moisture content in the present invention may be measured by any method.
- a volumetric moisture meter Karl Fischer
- an infrared moisture meter a microwave transmission moisture meter
- a heat-dry weight method a GC / MS
- IR a GC / MS
- IR a GC / MS
- IR a GC / MS
- IR a GC / MS
- IR a GC / MS
- IR IR
- DSC Densonic Scanning Calorimeter
- TDS Temporal Scanning Calorimeter
- the moisture content of the sealing adhesive can be adjusted by, for example, placing it in a nitrogen atmosphere with a dew point temperature of ⁇ 80 ° C. or lower and an oxygen concentration of 0.8 ppm, and changing the time. Further, it can be dried in a vacuum state of 100 Pa or less while changing the time. Further, the sealing adhesive can be dried only with an adhesive, but can also be placed in advance on the sealing member and dried.
- the sealing member for example, a 50 ⁇ m thick PET (polyethylene terephthalate) film laminated with an aluminum foil (30 ⁇ m thick) can be used.
- a sealing adhesive was placed in advance, the resin substrate and the sealing member were aligned, and both were pressure-bonded (0 0.1-3 MPa) and at a temperature of 80-180 ° C., it can be tightly bonded (bonded) to achieve close sealing (solid sealing).
- the heating or pressure bonding time varies depending on the type, amount, and area of the adhesive, but it is temporarily bonded at a pressure within the range of 0.1 to 3 MPa, and the thermosetting time is within the temperature range of 80 to 180 ° C. You can select from 5 seconds to 10 minutes.
- a coating method such as roller coating, spin coating, screen printing method, spray coating, or the like can be used using a dispenser depending on the material.
- solid sealing is a form in which there is no space between the sealing member and the organic EL element substrate and the resin is covered with a cured resin.
- sealing member examples include metals such as stainless steel, aluminum, and magnesium alloys, polyethylene terephthalate, polycarbonate, polystyrene, nylon, plastics such as polyvinyl chloride, and composites thereof, glass, and the like.
- metals such as stainless steel, aluminum, and magnesium alloys
- polyethylene terephthalate polycarbonate
- polystyrene polystyrene
- nylon plastics
- plastics such as polyvinyl chloride, and composites thereof, glass, and the like.
- gas barrier layers such as aluminum, aluminum oxide, silicon oxide, and silicon nitride can be used in the same manner as the resin substrate.
- the gas barrier layer can be formed by sputtering, vapor deposition or the like on both surfaces or one surface of the sealing member before molding the sealing member, or can be formed on both surfaces or one surface of the sealing member by the same method after sealing. Good.
- the oxygen permeability is 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less
- the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) is 1 ⁇ It is preferably 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
- the sealing member may be a film laminated with a metal foil such as aluminum.
- a method for laminating the polymer film on one side of the metal foil a generally used laminating machine can be used.
- the adhesive polyurethane-based, polyester-based, epoxy-based, acrylic-based adhesives and the like can be used. You may use a hardening
- a hot melt lamination method, an extrusion lamination method and a coextrusion lamination method can also be used, but a dry lamination method is preferred.
- the metal foil when the metal foil is formed by sputtering or vapor deposition and is formed from a fluid electrode material such as a conductive paste, it may be created by a method of forming a metal foil on a polymer film as a base. Good.
- a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic functional layer interposed therebetween.
- the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
- a glass plate, a polymer plate / film composite, a metal plate / film composite, etc. similar to those used for the sealing can be used. It is preferable to use a polymer film from the viewpoint of conversion.
- a light extraction member between the flexible support substrate and the anode or at any location on the light emission side from the flexible support substrate.
- Examples of the light extraction member include a prism sheet, a lens sheet, and a diffusion sheet. Further, a diffraction grating or a diffusion structure introduced into an interface or any medium that causes total reflection can be used.
- an organic electroluminescence element that emits light from a substrate
- a part of the light emitted from the light emitting layer causes total reflection at the interface between the substrate and air, causing a problem of loss of light.
- prismatic or lens-like processing is applied to the surface of the substrate, or prism sheets, lens sheets, and diffusion sheets are attached to the surface of the substrate, thereby suppressing total reflection and light extraction efficiency. To improve.
- the layer structure of the charge generation layer (CGL) applicable to the organic EL device of the present invention will be described.
- the following layers can be used as a charge generation layer according to the present invention alone or by arbitrarily combining a plurality of layers.
- the charge generation layer is preferably formed of at least one layer.
- the charge generation layer desirably has conductivity higher than that of a semiconductor, but is not limited thereto.
- the charge generation layer according to the present invention is a layer that generates holes and electrons when an electric field is formed, but the generation interface may be in the charge generation layer, or between the charge generation layer and other layers. It may be at or near the interface. For example, when the charge generation layer is a single layer, the charge generation of electrons and holes may be within the charge generation layer, or may be at the interface between the adjacent layer and the charge generation layer.
- the charge generation layer is composed of two or more layers and includes one or both of a p-type semiconductor layer and an n-type semiconductor layer.
- the charge generation layer may function as a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer, and can be used as the same layer. It is defined as a layer in which holes and electrons are generated or a layer having an interface.
- the structure of the charge generation layer in the present invention is as follows.
- the bipolar layer is a layer capable of generating and transporting holes and electrons inside the layer by an external electric field.
- the n-type semiconductor layer is a charge transport layer in which majority carriers are electrons, and preferably has conductivity higher than that of a semiconductor.
- the p-type semiconductor layer is a charge transport layer in which majority carriers are holes, and preferably has conductivity higher than that of a semiconductor.
- the intermediate layer may be provided if necessary for improving the charge generation ability and long-term stability.
- the n-type semiconductor layer, the diffusion prevention layer of the p-type semiconductor layer, and the pn reaction suppression And a level adjusting layer for adjusting charge levels of the p-type semiconductor layer and the n-type semiconductor layer.
- a bipolar layer, a p-type semiconductor layer, and an n-type semiconductor layer may be further provided between the light emitting unit and the charge generation layer.
- these layers are included in the light emitting unit and are not regarded as charge generating layers, although they may be provided if necessary when the generated charge is quickly injected into the light emitting unit.
- the charge generation layer is preferably formed of at least two layers, and is a layer having a function of injecting holes in the cathode direction and electrons in the anode direction when a voltage is applied. preferable.
- the layer interface between two or more charge generation layers may have a clear interface (heterointerface, homointerface), or a multidimensional interface such as a bulk heterostructure, islands, or phase separation. It may be formed.
- each of the two layers is preferably in the range of 1 to 100 nm, more preferably in the range of 10 to 50 nm.
- the light transmittance of the charge generation layer according to the present invention preferably has a high transmittance for the light emitted from the light emitting layer.
- the transmittance at a wavelength of 550 nm is preferably 50% or more, and more preferably 80% or more.
- one layer is an inorganic compound or an organic compound having a work function of 3.0 eV or less, and the other layer has a work function of 4.
- An inorganic compound or organic compound of 0 eV or more can be preferably used. More preferably, one layer of the charge generation layer is a metal having a work function of 3.0 eV or less, or an inorganic oxide, an inorganic salt, an organometallic complex, or an organic salt, and the other layer is a work layer.
- EL-unit represents a light emitting unit
- the layer structure of the light emitting unit itself is not particularly limited, but includes at least one light emitting layer.
- a layer structure including a transport layer and an electron transport layer can be used, and a known layer structure including a hole injection layer, a hole transport light emitting layer, an electron injection layer, an electron transport light emitting layer, and the like can also be used.
- one light emitting unit can have a layer configuration such as a hole injection transport layer / light emission layer / electron injection transport layer.
- a nanocarbon material represented by the following general formulas (A), (D), (F), (G), (H) and (J)
- the compounds represented, imidazole radicals, metallocene derivatives, polycyano derivatives, polynitro derivatives and the like can also be used. Specific examples of the material constituting the charge generation layer of the present invention are shown below, but the present invention is not limited thereto.
- the nanocarbon material refers to a carbon material having an average particle diameter in the range of 1 to 500 nm, and representative examples thereof include carbon nanotubes, carbon nanofibers, fullerenes and derivatives thereof, carbon nanocoils, carbon onion fullerenes, and the like. Examples include derivatives, diamond, diamond-like carbon, and graphite.
- fullerenes and fullerene derivatives can be preferably used.
- the fullerene in the present invention is a closed polyhedral cage type having 12 pentagonal planes of 20 or more carbon atoms and (n / 2-10) hexagonal planes. A molecule is shown and its derivative is called a fullerene derivative. Although it will not specifically limit if carbon number of a fullerene skeleton is 20 or more, Preferably it is C60, 70, and 84. Examples of fullerene and fullerene derivatives are shown below, but the present invention is not limited thereto.
- R represents a hydrogen atom or a substituent
- n represents an integer of 1 to 12.
- Preferred substituents represented by R include alkyl groups (for example, methyl group, ethyl group, i-propyl group, hydroxyethyl group, methoxymethyl group, trifluoromethyl group, t-butyl group, cyclopentyl group, cyclohexyl group).
- Benzyl group, etc. aryl group (eg phenyl group, naphthyl group, p-tolyl group, p-chlorophenyl group etc.), heteroaryl group (eg pyrrole group, imidazolyl group, pyrazolyl group, pyridyl group, benzimidazolyl group) , Benzothiazolyl group, benzoxazolyl group, triazolyl group, oxadiazolyl group, thiadiazolyl group, thienyl group, carbazolyl group, etc.), alkenyl group (eg vinyl group, propenyl group, styryl group etc.), alkynyl group (eg ethynyl group) Etc.), an alkyloxy group (for example, methoxy) Group, ethoxy group, i-propoxy group, butoxy group etc.), aryloxy group (eg phenoxy group etc.), alkylthio
- R 1 , R 2 and R 3 each independently represents a hydrogen atom or a substituent as in the case of R, and X represents — (CR 1 R 2 ) m— or —CH 2 —NR 3.
- X represents — (CR 1 R 2 ) m— or —CH 2 —NR 3.
- R 1 , R 2 and R 3 each represent a hydrogen atom or a substituent.
- n represents an integer of 1 to 12
- m represents an integer of 1 to 4.
- a substituent it is synonymous with the substituent represented by said R.
- R 1 to R 13 each represent a hydrogen atom or a substituent, and the substituent represented by R 1 to R 13 has the same meaning as R.
- N represents an integer of 1 to 4.
- M represents a transition metal atom, and L represents a ligand coordinated to the metal atom.
- the ligand is not limited as long as it is a molecule or ion constituting the ligand in a normal metal complex.
- m represents an integer of 1 to 5.
- Examples of the material constituting the charge generation layer according to the present invention include compounds represented by the following general formula (A).
- X 1 , X 2 , X 3 and X 4 are each independently a nitrogen atom or —CR, and R represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or a heteroaryl group.
- M represents a metal atom, H 2 , TiO or VO. Moreover, you may have a substituent on a porphyrin ring.
- X 1 , X 2 , X 3 and X 4 are preferably a nitrogen atom or —CAr
- Ar represents an aromatic hydrocarbon or an aromatic heterocycle, and more preferably —CPh (phenyl group).
- M is preferably Co, Li 2 , Zn, Cu, Ni, Na 2 , or Cs 2 , and more preferably Co.
- porphyrin derivatives are shown below, but the present invention is not limited to these.
- Examples of imidazole radicals that are materials constituting the charge generation layer according to the present invention include compounds that generate imidazole radicals by light or heat.
- Examples of the material constituting the charge generation layer according to the present invention include compounds represented by the following general formula (D).
- X 1 , X 2 , X 3 and X 4 are each independently S, Se, Te or NR.
- R represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or a heteroaryl group.
- R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a substituent, and R 1 and R 2 , or R 3 and R 4 may be bonded to each other to form a ring.
- M is H 2, Co, Fe, Mg , Li 2, Ru, Zn, Cu, Ni, Na 2, Cs 2 or Sb.
- X 1 , X 2 , X 3 and X 4 are preferably sulfur atoms.
- R 1 , R 2 , R 3 and R 4 are preferably aromatic hydrocarbons or aromatic heterocycles, more preferably aromatic hydrocarbons.
- M is preferably Co, Fe, Zn, Cu or Ni, and more preferably Ni.
- Examples of the material constituting the charge generation layer according to the present invention include compounds represented by the following general formula (G).
- X 1 , X 2 , X 3 and X 4 are each independently S, Se, Te or NR.
- X 5 , X 6 , X 7 and X 8 are each independently O, S, Se or Te, and M is H 2 , Co, Fe, Mg, Li 2 , Ru, Zn, Cu, Ni, Na 2 , Cs 2 or Sb.
- M is preferably Co, Fe, Mg, Zn, Cu or Ni, and more preferably Ni.
- Examples of the material constituting the charge generation layer according to the present invention include compounds represented by the following general formula (F).
- R 1 , R 2 , R 3 and R 4 are a hydrogen atom or a substituent, and R 1 and R 2 , R 3 and R 4 may be bonded to each other to form a ring. Good.
- Examples of the material constituting the charge generation layer according to the present invention include compounds represented by the following general formula (H).
- X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 and X 8 are each independently a nitrogen atom or CR.
- R represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or a heteroaryl group.
- R 1 is a hydrogen atom or a substituent.
- Examples of the material constituting the charge generation layer according to the present invention include compounds represented by the following general formula (J).
- a, b, c, d and e are each NR n1 or CR c1 R c2 , wherein R n1 , R c1 and R c2 are each independently a hydrogen atom or a substituent.
- E is a nitrogen atom or CR c3 , and R c3 is a hydrogen atom or a substituent.
- M is Mo or W, and n and m each represents an integer of 0 to 5.
- a metallocene derivative can be used as a material constituting the charge generation layer according to the present invention.
- the metallocene derivative applicable to the present invention include ferrocene, cobaltcene, and nickelocene, and these may have a substituent. The following are mentioned as an example of a metallocene derivative, Preferably it is ferrocene.
- a polycyano derivative can be used as the material constituting the charge generation layer according to the present invention, and examples of the polycyano derivative include the following.
- a polynitro derivative can be used as a material constituting the charge generation layer according to the present invention.
- the polynitro derivative include trinitrobenzene, picric acid, dinitrophenol, dinitrobiphenyl, 2,4,7-trinitro. -9-fluorenone, 2,4,5,7-tetranitro-9-fluorenone, 9-dicyanomethylene 2,4,7-trinitrofluorenone, 9-dicyanomethylene 2,4,5,7-tetranitrofluorenone Can be mentioned.
- a nanocarbon derivative can be used, and examples of the nanocarbon derivative can include the above-mentioned nanocarbon material, preferably a fullerene derivative. .
- the above materials can be used alone or in combination of two or more.
- organic donor examples include the above general formula (A), general formula (D), general formula (J), imidazole radicals, metallocene derivatives, and nanocarbon derivatives.
- organic acceptor examples include the general formula (F), the general formula (G), the general formula (H), a polycyano derivative, and a polynitro derivative.
- An example is a phthalocyanine derivative, and an example of the phthalocyanine derivative is a compound represented by the following general formula (11).
- X 1 , X 2 , X 3 and X 4 are each independently a nitrogen atom or CR, and R represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group or a heteroaryl group.
- M represents H 2 or a metal atom. Moreover, you may have a substituent on a phthalocyanine ring. M is preferably, H 2, Co, Fe, Mg, Li 2, Ru, Zn, Cu, Ni, Na 2, Cs 2 or Sb.
- phthalocyanine derivatives are shown below.
- X 1 , X 2 , X 3 and X 4 are each independently S, Se or Te, and R 1 , R 2 , R 3 and R 4 are each a hydrogen atom or a substituent. R 1 and R 2 , R 3 and R 4 may be bonded to each other to form a ring.
- X 1 , X 2 , X 3 and X 4 are preferably S or Se.
- TTT derivative Specific examples of the compound represented by the general formula (12) (TTT derivative) are shown below.
- TTF tetrathiafulvalene
- X 1 , X 2 , X 3 and X 4 are each independently S, Se or Te, and R 1 , R 2 , R 3 and R 4 are each a hydrogen atom or a substituent. R 1 and R 2 , R 3 and R 4 may be bonded to each other to form a ring.
- TTF derivative represented by the general formula (13) are shown below.
- condensed polycyclic aromatic hydrocarbons examples include condensed polycyclic aromatic hydrocarbons.
- the condensed polycyclic aromatic hydrocarbon include naphthalene, anthracene, phenanthrene, pyrene, triphenylene, chrysene, tetracene, pentacene, perylene, obalene, circumcamanthracene, anthanthrene, pyracenelene, and rubrene.
- arylamine derivatives include diethylaminobenzene, aniline, toluidine, anisidine, chloroaniline, diphenylamine, indole, skatole, p-phenylenediamine, durenediamine, N, N, N, N-tetramethyl-p-phenylenediamine, Benzidine, N, N, N, N-tetramethylbenzidine, tetrakisdimethylaminopyrene, tetrakisdimethylaminoethylene, biimidazole, 4,4 ', 4 "-tris [N- (3-methylphenyl) -N-phenylamino ] Triphenylamine (abbreviation: m-MTDATA), N, N-diphenyl-N, N'-bis (1-naphthyl) -1,1'-biphenyl-4,4
- azine derivatives include cyanine dyes, carbazole, acridine, phenazine, N, N-dihydrodimethylphenazine, phenoxazine, phenothiazine and the like.
- quinone derivatives include quinone derivatives.
- An example of a quinone derivative is a compound represented by the following general formula (14).
- R 1 , R 2 , R 3 and R 4 are each a hydrogen atom or a substituent, and R 1 and R 2 , R 3 and R 4 are bonded to each other to form a ring. May be.
- R 1 , R 2 , R 3 and R 4 are each preferably a halogen atom or a cyano group.
- R 1 , R 2 , R 3 and R 4 are each a hydrogen atom or a substituent, and R 1 and R 2 , R 3 and R 4 are bonded to each other to form a ring. Also good.
- R 1 to R 8 are each a hydrogen atom or a substituent.
- the quinolinol metal complex derivative is a compound having a partial structure represented by the general formula (17), and M is preferably Al, Co, Fe, Mg, Ru, Zn, Cu, or Ni.
- heteroaromatic hydrocarbon compounds are carbon atoms in the aromatic hydrocarbon compounds.
- heteroatoms such as oxygen, sulfur, nitrogen, phosphorus, boron, etc.
- pyridine derivatives substituted with nitrogen atoms can be used, and specific examples thereof It is shown below.
- a vapor deposition method for example, spin coating method, casting method, die coating method, blade coating method, roller coating method, ink jet method, printing method
- Spray coating method for example, curtain coating method, LB method (Langmuir Brodgett method) and the like.
- a desired electrode material for example, a thin film made of an anode material is formed on a suitable substrate by a thin film forming method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm.
- a thin film forming method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm.
- an organic functional layer such as a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer is formed thereon using an organic EL element material.
- the process of forming the organic functional layer mainly includes (I) a coating step in which the coating liquid prepared by preparing each material constituting the organic functional layer is coated and laminated on the anode of the support substrate; (Ii) a drying step of drying the coating film formed by applying and laminating; Consists of.
- a wet process for example, spin coating method, casting method, die coating method, blade coating method, roller coating method, ink jet method, printing method, spray coating method,
- the curtain coating method and the LB method can be used, and at least the layer containing quantum dots is preferably formed by a wet process.
- a wet process is preferable in the present invention because it is easy to obtain a homogeneous film and it is difficult to generate pinholes.
- Film formation by a wet coating method such as a method, a die coating method, a blade coating method, a roller coating method, or an ink jet method is preferred.
- Examples of the organic solvent used for dissolving or dispersing the organic EL material according to the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, Aromatic hydrocarbons such as xylene, mesitylene, and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as dimethylformamide (DMF) and dimethylsulfoxide (DMSO) can be used.
- a dispersion method a dispersion method such as ultrasonic wave, high shear force dispersion, media dispersion or the like can be appropriately selected and applied.
- Drying refers to reduction to 0.2% by mass or less when the solvent content of the coating film immediately after coating is 100% by mass.
- drying means those commonly used as general drying means can be used, and examples thereof include reduced pressure or pressure drying, heat drying, air drying, IR drying, and electromagnetic wave drying.
- heat drying is preferable, and among the solvents used in the preparation of the organic functional layer coating solution, the temperature is equal to or higher than the boiling point of the lowest boiling solvent, and the lowest Tg among the glass transition temperatures Tg of the organic functional layer material. It is most preferable to hold at a temperature lower than (Tg + 20) ° C. of the material.
- drying is preferably carried out while maintaining a temperature range of 80 to 150 ° C., more preferably drying while maintaining a temperature range of 100 to 130 ° C.
- the atmosphere when drying the coating film after application and lamination is preferably an atmosphere in which the volume concentration of gas other than the inert gas is 200 ppm or less, but it is not necessarily inert as in the preparation step and the application step. There is a case where it is not necessary to carry out in a gas atmosphere. In this case, the manufacturing cost can be suppressed, which is more preferable.
- the inert gas is preferably a rare gas such as nitrogen gas or argon gas, and nitrogen gas is most preferable from the viewpoint of manufacturing cost.
- the coating, laminating and drying steps of these organic functional layers may be a single wafer manufacturing method or a continuous online manufacturing method. Furthermore, the drying step may be performed during conveyance on the conveyance line, but from the viewpoint of productivity, it may be wound up and dried in a non-contact manner in the form of a deposit or a roll.
- a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm, By providing the cathode, a desired organic EL element can be obtained.
- an organic EL element can be produced by adhering the sealing or sealing member to the electrode and the support substrate with an adhesive.
- the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
- Examples of light sources include home lighting, interior lighting, backlights for watches and liquid crystals, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors. Furthermore, it can be used in a wide range of applications such as general household appliances that require a display device, but it can be used effectively as a backlight of a liquid crystal display device combined with a color filter, and as a light source for illumination. it can.
- patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
- patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned.
- a conventionally known method is used. Can do.
- Example 1 Production of organic EL element >> According to the following method, organic EL elements 11 to 16 emitting blue light were produced.
- a gas barrier film is formed to a thickness of 500 nm, the oxygen permeability is 0.001 ml / (m 2 ⁇ day ⁇ atm) or less, and the water vapor permeability is 0.001 g / (m 2 ⁇ day ⁇ atm).
- the following gas-barrier flexible films were prepared.
- ITO indium-tin composite oxide
- An ITO (indium-tin composite oxide) film having a thickness of 120 nm is formed by sputtering on the gas barrier flexible film produced above, and photolithography is performed. Patterning was performed by the method to form a first electrode layer (anode). The pattern was such that the light emission area was 50 mm square.
- a light emitting layer composition 1 having the following composition was formed by spin coating at 1500 rpm for 30 seconds, dried at 120 ° C. for 30 minutes, and dried to a thickness of 40 nm. A light emitting layer was formed.
- TOPO 15 g was added to the obtained CdSe fine particles and heated, and subsequently a solution of 1.1 g of zinc diethyldithiocarbamate (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 10 ml of trioctylphosphine (manufactured by Sigma Aldrich) at 270 ° C.
- TOPO was fixed on the surface, and quantum dots 1 (average particle size: 12 nm) having CdSe nanocrystals (average particle size of 2 nm) as a core and ZnS as a shell were prepared.
- the average particle size of the quantum dots 1 was measured using a particle size measuring apparatus (Malvern Co., Ltd., “ZETASIZER NanoSSeries Nano-ZS”) by a dynamic light scattering method.
- a flexible aluminum foil manufactured by Toyo Aluminum Co., Ltd.
- a polyethylene terephthalate (PET) film (12 ⁇ m thick)
- an adhesive for dry lamination two-component reactive type
- a laminate (a thickness of the adhesive layer of 1.5 ⁇ m) using a urethane adhesive) was used.
- thermosetting adhesive as a sealing adhesive was uniformly applied at a thickness of 20 ⁇ m along the adhesive surface (glossy surface) of the aluminum foil using a dispenser. This was dried under a vacuum of 100 Pa or less for 12 hours. Furthermore, it moved to a nitrogen atmosphere with a dew point temperature of ⁇ 80 ° C. or lower and an oxygen concentration of 0.8 ppm, dried for 12 hours or longer, and adjusted the water content of the sealing adhesive to 100 ppm or lower.
- thermosetting adhesive an epoxy adhesive mixed with the following (A) to (C) was used.
- the sealing substrate is taken out so as to cover the bonding portion between the electrode and the electrode lead, and crimped so as to be in the form shown in FIG.
- the organic EL device 11 of the present invention containing quantum dots in the light-emitting layer was produced by tightly sealing with a roller using a pressure roller temperature of 120 ° C., a pressure of 0.5 MPa, and an apparatus speed of 0.3 m / min. .
- Organic EL Element 12 Present Invention
- the organic EL element 12 was produced in the same manner except that the light emitting layer was formed using the following light emitting layer composition 2.
- ⁇ Light emitting layer composition 3> Exemplified compound a-31 (described in Chemical formula 21) 13.95 parts by mass Exemplified compound 2 (compound 2 described in Table 1) 2.45 parts by mass Quantum dot 2 Core part: CdSe (average particle diameter 2 nm) / shell part: ZnS (octadecylamine), average particle size: 12 nm 0.30 parts by mass Toluene 2000 parts by mass [Production of organic EL element 14: present invention] In the production of the organic EL element 11, the organic EL element 14 was produced in the same manner except that the light emitting layer was formed using the following light emitting layer composition 4.
- ⁇ Light emitting layer composition 4> Exemplified Compound a-31 (described in Chemical Formula 21) 13.95 parts by mass Exemplary Compound D-114 (described in Chemical Formula 78) 2.45 parts by mass Quantum dot 3 Core part: CdSe (average particle diameter 2 nm) / Shell part: ZnS Average particle size: 6 nm, no surface modifier 0.30 parts by mass Toluene 2000 parts by mass [Production of organic EL element 15: the present invention] In the production of the organic EL element 11, the organic EL element 15 was produced in the same manner except that the light emitting layer was formed using the following light emitting layer composition 5.
- the measurement method of the band gap (eV) of the phosphorescent dopant, the host compound, and the quantum dot described in Table 4 is as follows.
- the energy difference between the valence band and the conduction band is defined as the band gap of the quantum dot
- the band gap (eV) of the organic phosphorescent dopant and host compound is the highest occupied molecular orbital.
- the band gap (eV) of the quantum dots was measured using a Tauc plot.
- the energy level of HOMO was measured with a photoelectron spectrometer AC-2 (manufactured by Riken Keiki Co., Ltd.), and the energy level of LUMO was calculated from the end of absorption wavelength ( ⁇ th (nm)) using the following equation.
- a band energy gap (HOMO-LUMO energy gap) was determined.
- the numerical values are displayed as absolute values (ev).
- the average particle size of the quantum dots was measured using a particle size measuring apparatus (Malvern, “ZETASIZER Nano Series Nano-ZS”) by a dynamic light scattering method.
- the surface modifier is included from the core, the total particle size is represented, and when the core / shell structure is reached, the particle size including the shell is represented, and in the case of the core alone, the particle size of only the core is represented.
- a relative light emission luminance was determined with the light emission luminance of the organic EL element 16 as a comparative example being 1.0, and this was used as a measure of the light emission efficiency (external extraction quantum efficiency). It represents that it is excellent in luminous efficiency, so that a numerical value is large.
- a relative driving voltage was determined by setting the driving voltage of the organic EL element 16 as a comparative example to 1.0. The smaller the value, the better the low voltage drivability.
- the LT 50 of the organic EL element 16 is a comparative example obtains the relative value of 1.0, which was used as a measure of device lifetime (continuous driving stability). Larger values indicate better continuous drive stability and longer device life.
- Table 5 shows the results obtained as described above.
- the organic EL elements 11 to 15 which are the blue light emitting elements of the present invention transfer energy from the blue phosphorescent dopant to the quantum dots compared to the organic EL element 16 which is the comparative example.
- the effect can be enhanced by selecting a phosphorescent dopant.
- Example 2 Production of organic EL element >> According to the following method, organic EL elements 21 to 26 emitting blue light were produced.
- a gas barrier flexible film having an oxygen permeability of 0.001 ml / (m 2 ⁇ day ⁇ atm) or less and a water vapor permeability of 0.001 g / (m 2 ⁇ day ⁇ atm) or less. was made.
- ITO indium-tin composite oxide
- An ITO (indium-tin composite oxide) film having a thickness of 120 nm is formed by sputtering on the gas barrier flexible film produced above, and photolithography is performed. Patterning was performed by the method to form a first electrode layer (anode). The pattern was such that the light emission area was 50 mm square.
- a light-emitting layer composition 21 having the following composition was formed by spin coating at 1500 rpm for 30 seconds, dried at 120 ° C. for 30 minutes, and dried to a thickness of 40 nm. A light emitting layer was formed.
- a sealing member As a sealing member, a flexible aluminum foil (made by Toyo Aluminum Co., Ltd.) having a thickness of 30 ⁇ m, a polyethylene terephthalate (PET) film (12 ⁇ m thickness) and an adhesive for dry lamination (two-component reaction type urethane) (Adhesive layer thickness of 1.5 ⁇ m) was used.
- PET polyethylene terephthalate
- Adhesive layer thickness 1.5 ⁇ m
- thermosetting adhesive As the sealing adhesive, a thermosetting adhesive was uniformly applied at a thickness of 20 ⁇ m along the adhesive surface (glossy surface) of the aluminum foil using a dispenser. This was dried under a vacuum of 100 Pa or less for 12 hours. Furthermore, it moved to a nitrogen atmosphere with a dew point temperature of ⁇ 80 ° C. or lower and an oxygen concentration of 0.8 ppm, dried for 12 hours or longer, and adjusted the water content of the sealing adhesive to 100 ppm or lower.
- thermosetting adhesive an epoxy adhesive mixed with the following (A) to (C) was used.
- A Bisphenol A diglycidyl ether (DGEBA)
- B Dicyandiamide (DICY)
- C Epoxy adduct-based curing accelerator
- Evaluation 1 Evaluation of element lifetime In the same manner as in the method described in Example 1, the relative element lifetime with respect to the organic EL element 26 as a comparative example was determined.
- Evaluation 2 Evaluation of resistance to color misregistration before and after element lifetime evaluation Each organic EL element is wound around a metal cylinder having a radius of 5 cm, and then continuously driven in a state where each organic EL element is bent, and the spectral radiance described above. The luminance was measured using a total CS-2000, and the time (LT 50 ) required until the measured luminance was halved was determined.
- the chromaticity (CIE color system x, y) before and after the winding process is measured by the spectral radiance meter, and the chromaticity before the winding process with respect to the chromaticity (x, y) before the winding process (
- Each color difference ( ⁇ x and ⁇ y) of x, y) was obtained and used as a measure of resistance to color misregistration. The smaller the numerical value, the smaller the color shift and the better the chromaticity stability.
- the organic EL elements 21 to 25, which are white light emitting elements of the present invention, are compared to the organic EL element 26 of the comparative example by energy transfer from the phosphorescent dopant to the quantum dots. It can be seen that sufficient light emission from the quantum dots can be obtained, the light emission efficiency is improved, the drive voltage, the color rendering properties and the light emission lifetime are improved, and the chromaticity is stable. Furthermore, it has been confirmed that the effect can be enhanced by selecting a phosphorescent dopant.
- Example 3 Production of organic EL element >> According to the following method, organic EL elements 31 to 39 emitting blue light were produced.
- a transparent support substrate on which this hole injection layer is formed is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while a molybdenum resistance heating boat has N, N-diphenyl-N, N′-bis (1-naphthyl) -1,1′-biphenyl-4,4′-diamine (hereinafter abbreviated as ⁇ -NPD, the specific structure is described in Chemical Formula 129). 200 mg was placed and attached to a vacuum deposition apparatus.
- the vacuum chamber was then depressurized to 4 ⁇ 10 ⁇ 4 Pa, heated by energizing a heating boat containing ⁇ -NPD, and deposited on a transparent support substrate at a deposition rate of 0.1 nm / second.
- a hole transport layer was provided.
- Exemplified Compound a-3 (described in Structure 16) is added as a host compound to another molybdenum resistance heating boat, and Exemplified Compound D-134 (Indicated in Chemical Formula 82) is added as a dopant compound.
- 100 mg of Exemplified Compound D-67 (describes structure in Chemical Formula 71)
- 100 mg of Exemplified Compound D-80 (describes structure in Chemical Formula 72)
- 100 mg each put in a separate molybdenum resistance heating boat, and vacuum Attached to the vapor deposition apparatus.
- each heated boat containing Exemplified Compound a-3 as a host compound and Exemplified Compounds D-134, D-67, and D-80 as dopant compounds After depressurizing the vacuum chamber to 4 ⁇ 10 ⁇ 5 Pa, energize each heated boat containing Exemplified Compound a-3 as a host compound and Exemplified Compounds D-134, D-67, and D-80 as dopant compounds. It heated and co-evaporated on the said positive hole transport layer with the vapor deposition rate of 0.1 nm / sec, 0.016 nm, 0.0002 nm, and 0.0002 nm / sec, respectively, and the 40-nm-thick luminescent layer was provided.
- each heated boat containing Exemplified Compound a-39 as a host compound and Exemplified Compounds D-135, D-67, and D-80 as dopant compounds. It heated and co-evaporated on the said positive hole transport layer with the vapor deposition rate of 0.1 nm / sec, 0.016 nm, 0.0002 nm, and 0.0002 nm / sec, respectively, and the 40-nm-thick luminescent layer was provided.
- a charge generation layer (2) was formed on the formed light emitting layer.
- the degree of vacuum is 4 ⁇ 10 ⁇ 4 Pa
- the vapor generation rate from lithium fluoride to HATCN is 0.02 nm / second
- ⁇ -NPD is vacuum-deposited at the deposition rate of 0.1 nm / second. Formed.
- the light emitting layer (2) having a thickness of 40 nm was formed by co-evaporation on the charge generation layer (2) formed in the same manner as the method for forming the light emitting layer in the production of the organic EL element 31.
- Formation of the first electrode layer A substrate (NH techno) formed by depositing ITO (indium-tin composite oxide) with a thickness of 100 nm on a glass substrate having a length of 100 mm, a width of 100 mm, and a thickness of 1.1 mm as an anode. After patterning on Glass NA45), the transparent support substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
- ITO indium-tin composite oxide
- the vacuum chamber was then depressurized to 4 ⁇ 10 ⁇ 4 Pa, heated by energizing a heating boat containing ⁇ -NPD, and deposited on a transparent support substrate at a deposition rate of 0.1 nm / second.
- a hole transport layer was provided.
- a monolayer film of quantum dots was formed on the hole transport layer.
- the forming method is as shown below. Sylgard® 184 silicon elastomer (Dow Corning, USA) Part A and B were mixed in a 10: 1 mass ratio in a plastic beaker. After that, it was poured into a master formed by forming a desired shape pattern in the lithography process, left at room temperature for about 2 hours, and then completely aged in a 60 ° C. oven for 2 hours to produce a stamp.
- Quantum dot ink (quantum dot core: CdSe (2 nm) / shell: ZnS (octadecylamine) 3% toluene solution) was spin-coated on this stamp, and the ink was completely dried.
- a quantum dot layer which is a monolayer of quantum dots, was formed on the hole transport layer surface by pressing against the hole transport layer surface. This quantum dot layer forming method is referred to as a stamp method.
- Lithium fluoride, aluminum, HAT-CN, and ⁇ -NPD were vacuum-deposited in this order on the quantum dot layer with the following configuration and film thickness to form a charge generation layer. .
- degree of vacuum is 4 ⁇ 10 ⁇ 4 Pa
- vacuum deposition is performed at a deposition rate of 0.02 nm / second from lithium fluoride to HAT-CN, and ⁇ -NPD is performed at a deposition rate of 0.1 nm / second. 1) was formed.
- Exemplified Compound a-3 (the structure is described in Chemical Formula 16) is added as a host compound to another molybdenum resistance heating boat, and Exemplified Compound D-134 (Chemical Formula 82) is further added as a dopant compound.
- Exemplified Compound a-17 (the structure is described in Chemical Formula 18) was used, and instead of Exemplified Compound D-135, Exemplified Compound 30 (Table 1 As the compound 30, the structure is described.
- a quantum dot layer (2) which is a monomolecular film layer of quantum dots, was formed according to the following method.
- Part A and B of Sylgard (registered trademark) 184 silicon elastomer (Dow Corning, USA) were mixed in a plastic beaker at a mass ratio of 10: 1. After that, it was poured into a master formed by forming a desired shape pattern in the lithography process, left at room temperature for about 2 hours, and then completely aged in a 60 ° C. oven for 2 hours to produce a stamp.
- Quantum dot ink (quantum dot core: CdSe (2 nm) / shell: ZnS (octadecylamine) 3% toluene solution) was spin-coated on this stamp, and the ink was completely dried.
- a quantum dot layer (2) which is a monomolecular film layer of quantum dots, was formed on the hole transport layer surface by pressing against the hole transport layer surface. This quantum dot layer forming method is referred to as a stamp method.
- Quantum dot ink Quantum dot core part: CdSe (2 nm) / shell part: ZnS (octadecylamine) 3% toluene solution
- the quantum dot layer (1) which is a monomolecular film was formed.
- the charge generation layer (1) was formed by the same operation as the production of the organic EL element 33.
- the light emitting layer, the charge generation layer (2), and the quantum dot layer (2) (however, as the quantum dots, the average particle diameter of the core part: CdCe is 4 nm / shell by the same method as the production of the organic EL element 35. : ZnS (octadecylamine), using a total particle size of 12 nm) was formed, and then an electron transport layer, an electron injection layer, and a cathode were prepared in the same manner as in the preparation of the organic EL element 21 described in Example 2.
- the exemplified compound a-22 (the structure is described in Chemical formula 19) is used, and the exemplified compound 30 is used. Then, Exemplified Compound 51 (the structure is described as Compound 51 in Table 2) was used.
- n-type layer a chlorobenzene solution (1: 1) of DFp-1 (structure is described in chemical formula 146) and AG-6 (structure is described in chemical formula 133) is formed by a slit coating method.
- UV irradiation of a low-pressure mercury lamp (15 mW / cm 2 ) is performed at 130 ° C. for 30 seconds to photopolymerize a polymerizable group of the compound, and an insolubilized p-type layer (CGL) having a thickness of 20 nm.
- a charge generation layer (1) is described in chemical formula 146)
- Exemplified Compound a-29 (Structure is described in Chemical Formula 20) was used instead of Exemplified Compound a-2, and Exemplified Compound DP-4 (Chemical Formula 83) was used instead of Exemplified Compound D-134.
- the structure of is described in FIG.
- the charge generation layer (2) was formed by a coating method in the same manner as the formation of the charge generation layer (1).
- the quantum dot layer (2) On the charge generation layer (2) thus formed, the quantum dot layer (2) was formed with the same contents as the formation of the quantum dot layer (2) of the organic EL element 35 (stamp method).
- the average particle diameter of core part: CdCe was 4 nm / shell: ZnS (octadecylamine), and the total particle diameter of 12 nm was used.
- Exemplified Compound D-135 used for forming the light emitting layer of the organic EL element 32 was changed to Exemplified Compound 101 (the structure is described as Compound 101 in Table 3). The same compound was used.
- Exemplified Compound a-41 (Structure is described in Chemical Formula 23) was used instead of Exemplified Compound a-3, and Exemplified Compound DP-14 (Chemical Formula 85) was used instead of Exemplified Compound D-134.
- the structure of is described in FIG.
- the charge generation layer (1) was formed in the same manner as in the method for forming the charge generation layer (1) of the organic EL element.
- Table 8 shows the host compound, phosphorescent dopant, and layer structure of the element used for the production of each organic EL element.
- the evaluation was performed using relative values based on the characteristic values of the organic EL element 31.
- the organic EL elements 33 to 39 which are white light emitting elements of the present invention, have energy from phosphorescent dopants to quantum dots compared to the organic EL elements 31 and 32 that are comparative examples. It can be seen that sufficient light emission from the quantum dots can be obtained by the movement, the light emission efficiency is improved, the drive voltage, the color rendering properties and the light emission lifetime are improved, and the chromaticity is stable. Furthermore, it has been confirmed that the effect can be enhanced by selecting a phosphorescent dopant.
- the light emitting layer has a phosphorescent dopant as exemplified compound 101 (in Table 3, as compound 101, the structure thereof).
- a monochromatic layer (blue light emission) of Exemplified Compound a-39 (structure is described in Chemical Formula 23) as a host compound, and Exemplified Compound D-80 (Structure is described in Chemical Formula 72) as a phosphorescent dopant in the light emitting layer 2
- a monochromatic layer (red light emission) of Exemplified Compound a-39 (above) as a host compound was co-deposited at a deposition rate of 0.1 nm / second for the host compound and 0.016 nm / second for the phosphorescent dopant, respectively, and 40 nm
- the light emitting layers 1 and 2 were formed.
- the organic EL elements 33 to 39 of the present invention sufficient light emission from the quantum dots can be obtained by arranging the charge generation layer between the quantum dot layer and the light emitting layer, and the color rendering properties and the light emission lifetime are obtained. Both improved and the chromaticity is stable. Furthermore, the effect can be enhanced by selecting a phosphorescent dopant.
- the organic electroluminescence element of the present invention is excellent in color rendering, has white light emission characteristics with stable chromaticity even at a low driving voltage, and can be suitably used as a display device, a display, and various light emission sources.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Nanotechnology (AREA)
- Electroluminescent Light Sources (AREA)
- Luminescent Compositions (AREA)
Abstract
Description
15.前記青色リン光発光性化合物が、下記一般式(2)で表される化合物であることを特徴とする第5項から第14項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
16.前記青色リン光発光性化合物が、下記一般式(3)で表される化合物であることを特徴とする第5項から第14項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
17.前記青色リン光発光性化合物が、下記一般式(4)で表される化合物であることを特徴とする第5項から第14項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
18.前記一般式(4)で表される化合物を構成するL1~L3のうち、少なくとも一つのX1~X5が形成する5員環が、イミダゾール環であることを特徴とする第17項に記載の有機エレクトロルミネッセンス素子。
図1に、本発明の有機エレクトロルミネッセンス素子の構成の一例を示す概略断面図を示す。
(ii)可撓性支持基板/陽極/正孔輸送層/発光層/電子輸送層/陰極/熱伝導層/封止用接着剤/封止部材
(iii)可撓性支持基板/陽極/正孔輸送層/発光層/正孔ブロック層/電子輸送層/陰極/熱伝導層/封止用接着剤/封止部材
(iv)可撓性支持基板/陽極/正孔輸送層/発光層/正孔ブロック層/電子輸送層/陰極バッファー層/陰極/熱伝導層/封止用接着剤/封止部材
(v)可撓性支持基板/陽極/陽極バッファー層/正孔輸送層/発光層/正孔ブロック層/電子輸送層/陰極バッファー層/陰極/熱伝導層/封止用接着剤/封止部材
(vi)ガラス支持体/陽極/正孔注入層/発光層/電子注入層/陰極/封止部材
(vii)ガラス支持体/陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極/封止部材
(viii)ガラス支持体/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極/封止部材
さらに、発光層を2層以上有する場合は、第1の発光層と第2の発光層の間に電荷発生層を設けてもよい。
[1]有機機能層
次いで、本発明の有機EL素子を構成する有機機能層の詳細について説明する。
本発明の有機EL素子においては、注入層は必要に応じて設けることができる。注入層としては電子注入層と正孔注入層があり、上記の如く陽極と発光層又は陽極と正孔輸送層の間、及び陰極と発光層又は陰極と電子輸送層との間に存在させてもよい。
正孔輸送層を構成する正孔輸送材料としては、上記正孔注入層で適用するのと同様の化合物を使用することができるが、さらには、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
本発明の有機EL素子の有機機能層を構成する電子輸送層とは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔ブロック層も電子輸送層に含まれる。電子輸送層は単層又は複数層設けることができる。
本発明の有機EL素子を構成する発光層は、電極又は電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
本発明の有機EL素子の発光層に含有されるホスト化合物としては、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物が好ましい。さらに好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
発光材料としては、一般には、蛍光性化合物、リン光発光材料(リン光性化合物、リン光発光性化合物、リン光発光ドーパント等ともいう)を用いることができるが、本発明においては、発光材料が、リン光発光材料(リン光発光ドーパント)であることを特徴とする。
以下に、本発明に係る一般式(1)で表されるリン光発光ドーパントについて説明する。
本発明においては、一般式(1)で表されるリン光発光材料が青色リン光発光性化合物であることが好ましくは、その中でも、下記一般式(2)で表される化合物であることが好ましい。
更に、本発明においては、発光層が含有する青色リン光発光性化合物として、下記一般式(3)で表される化合物が好ましい。
前記一般式(3)で表されるイリジウム錯体化合物は、下記一般式(3A)で表されるイリジウム錯体化合物であることが好ましい。
上述一般式(3)又は(3A)で表されるイリジウム錯体化合物は、下記一般式(3B)で表されるイリジウム錯体化合物であることが好ましい。
上述の一般式(3)で表されるイリジウム錯体化合物は、下記一般式(3C)で表されるイリジウム錯体化合物であることが好ましい。
上述の一般式(3)で表されるイリジウム錯体化合物は、下記一般式(3D)で表されるイリジウム錯体化合物であることが好ましい。
更に、本発明においては、発光層が含有する青色リン光発光性化合物として、下記一般式(4)で表される化合物が好ましい。
一般式(3)で表されるリン光発光性化合物の代表例として、例示化合物DP-1の合成方法について以下に説明する。
3頭フラスコに、中間体Aを5g、塩化イリジウムを1.9g、エトキシエタノールを100ml、水を30ml入れ、窒素雰囲気下にて100℃で4時間加熱撹拌した。
3頭フラスコに、工程1で得られた中間体Bを4.0g、アセチルアセトンを2.5g、炭酸カリウムを7g、エトキシエタノールを100ml入れ、窒素雰囲気下にて80℃で5時間加熱撹拌した。
3頭フラスコに、工程2で得られた中間体Cを2.8g、中間体Dを1.6g、エチレングリコールを50ml入れ、窒素雰囲気下にて150℃で7時間加熱撹拌した。
1H-NMR(CD2Cl2,400MHz)δ:7.71(2H,d,J=28.3Hz),7.42(1H,t,J=28.3Hz),7.33-7.57(6H,m),7.34(4H,t,J=33.2Hz),6.96(2H,S),6.81-6.86(6H,m),6.69(2H,d,J=33.2Hz),6.56-6.60(2H,m),6.44(1H,t,J=23.4Hz),6.38(2H,d,J=17.6Hz),6.32(1H,d,J=23.4Hz),6.16(2H,d,J=44.9Hz),2.65-2.80(3H,m,CHof iso-Pr),2.29-2.41
(3H,m,CHof iso-Pr),1.26(3H,d,J=26.3Hz,CH3of iso-Pr),1.21(6H,d,J=20.5Hz,CH3of iso-Pr),0.92-1.08(m,27H,CH3of iso-Pr)
〈一般式(4)で表されるリン光発光性化合物の合成例〉
一般式(4)で表されるリン光発光性化合物の代表例として、表1に記載の化合物2の合成方法について以下に説明する。
2,6-ジイソプロピル-4-フェニルアニリン20gを、トルエン320mlに溶解し、トリエチルアミン41mlを加え、o-ブロモ安息香酸クロライド34gをトルエン20mlに溶かした溶液を、水冷下で滴下した。滴下終了後、室温で1.5時間撹拌し、不溶物を濾別した。その後、濾別した白色結晶を水1Lに入れて1時間懸濁し、水を濾別し、4-ブロモ-N-3,5-ジイソプロピル-1、1′-ビフェニル-4-イル-ベンズアミドの白色結晶を45g(ほぼ理論量)得た。
工程1で得られた4-ブロモ-N-3,5-ジイソプロピル-1、1′-ビフェニル-4-イル-ベンズアミドの35gをトルエン200mlに溶解し、塩化ホスホリル12.5mlを加えた後、内温90℃で2時間撹拌した後、放冷した。次に、アミノアセトアルデヒドジエチルアセタールの50.2gを200mlのアセトニトリルに溶解し、これにトリエチルアミンを67ml加えた溶液を調製し、先程放冷した溶液に、内温50℃以下の条件で滴下した。その後、酢酸エチル200mlと飽和食塩水50mlを加え、分液後、有機層を硫酸マグネシウムで乾燥し、除去後、溶媒を濃縮することで中間体のアミジンを粗結晶で得た。
工程2で得られたアミジンの粗結晶全量を、トルエン150mlに溶解し、リン酸33gと水60mlを加え、エステル管をつけて2時間還流した。次に、氷冷下で水酸化カリウム36gを水57mlに溶解した溶液を30分かけて滴下した後、酢酸エチル200mlと飽和食塩水50mlを加え、珪藻土濾過を行った後、分液し、有機層を硫酸マグネシウムで乾燥し、除去後溶媒を濃縮したものをヘプタン-酢酸エチルで再結晶することで、白色固体として、2-(4-ブロモフェニル)-1-(3,5-ジイソプロピル-(1、1′-ビフェニル)-4-イル)-1H-イミダゾールを26g得た。
窒素雰囲気下で、工程3で得られたブロモ体6.8gを、脱水トルエン35mlに溶解し、脱水ジイソプロピルアミン35mlと、1,3,5-トリエチニル-2-メチルベンゼン(1.0g)を加え、撹拌下、テトラキストリフェニルホスフィンパラジウム(0)0.7gとヨウ化銅(I)0.08gを加え、内温60度で2日間撹拌した。その後、酢酸エチル50mlと飽和食塩水50mlを加え、分液し、有機層を硫酸マグネシウムで乾燥し、除去後溶媒を濃縮したものをシリカゲルカラムクロマトグラフィーで精製し、3.0gの配位子2の前駆体を得た。
工程4で得た前駆体500mgをテトラヒドロフラン50mlとエタノール20mlに溶解し、パラジウム-炭素(5%)0.25gを加え、水素添加を行い、配位子2を500mg(ほぼ量論的)得た。
窒素雰囲気下、工程5で得た配位子2の500mgに、トリス(アセチルアセトナト)イリジウム(III)を263mg、エチレングリコールを35ml及びグリセリンを10ml加え、内温160℃で15時間加熱し、この反応液を室温に戻した後、メタノール50mlで薄めて沈殿物を濾別した。更に得られた沈殿物をメタノールで洗浄し、乾燥後、化合物2を110mg得た。
本発明においては、発光層又はその隣接層に量子ドットを含有することを特徴とする。
E∝h2/mR2
式(I)で示されるように、量子ドットのバンドギャップは、「R-2」に比例して大きくなり、いわゆる、量子ドット効果が得られる。このように、量子ドットの粒子径を制御及び規定することによって、量子ドットのバンドギャップ値を制御することができる。すなわち、微粒子の粒子径を制御及び規定することにより、通常の原子には無い多様性を持たせることができる。そのため、光によって励起させたり、量子ドットを含む有機EL素子に対して電圧をかけることで、量子ドットに電子とホールを閉じ込めて再結合させたりすることで、電気エネルギーを所望の波長の光に変換して出射させることができる。本発明では、このような発光性の量子ドット材料を、本発明に係る量子ドットと定義する。
αhν=B(hν-E0)2
従って、吸収スペクトルを測定し、そこから(αhν)の0.5乗に対して、hνをプロット(いわゆる、Taucプロット)し、直線区間を外挿したα=0におけるhνの値が、求めようとする量子ドットのバンドギャップエネルギーE0となる。
上記の方法により測定した最高被占分子軌道(HOMO)と最低空分子軌道(LUMO)とのエネルギー差を求め、これを有機物であるリン光発光ドーパント及びホスト化合物でいうバンドギャップ(eV)とする。
量子ドットを含有している有機機能層を湿式塗布方式で形成する際、それに用いる塗布液中においては、量子ドットの表面近傍に、表面修飾剤が付着している状態であることが好ましい。これにより、塗布液中における量子ドットの分散安定性を特に優れた状態とすることができる。また、量子ドットの製造時において、量子ドット表面に表面修飾剤を付着させることにより、形成される量子ドットの形状が真球度の高いものとなり、また、量子ドットの粒子径分布を狭く抑えられるため、特に優れたものとすることができる。
量子ドットの製造方法としては、従来行われている下記のような量子ドットの製造方法等を適用することができるが、これらに限定されるものではなく、従来公知の任意の方法を用いることができる。また、Aldrich社、CrystalPlex社、NNLab社等から市販品として購入することもできる。
まず、CdOパウダー(1.6mmol、0.206g;Aldrich、+99.99%)とオレイン酸(6.4mmol、1.8g;Aldrich、95%)とを40mLのトリオクチルアミン(略称;TOA、Aldrich、95%)中で混合する。混合された溶液(Cd-含有混合物)を高速で撹拌しながら150℃で熱処理し、N2を流しながら300℃まで温度を上昇させた。次いで、300℃で、トリオクチルホスフィン(略称;TOP、Strem、97%)に添加された2.0モル/LのSe(Alfa Aesar)0.2mlを、上記Cd-含有混合物に高速で注入する。
CdSe/ZnSのコア/シェル構造を有する量子ドットを得ようとする場合、界面活性剤として、TOPO(TriOctyl Phosphine Oxide)を使用した有機溶媒に、(CH3)2Cd(dimethyl cadmium)、TOPSe(TriOctyl Phosphine Selenide)などのコア(CdSe)に該当する前駆体物質を注入して結晶が生成されるようにし、結晶が一定の大きさで成長するように高温で一定時間維持した後、シェル(ZnS)に該当する前駆体物質を注入して既に生成されたコアの表面にシェルが形成されるようにすることで、TOPOでキャッピング(capping)されたCdSe/ZnSの量子ドットを得ることができる。
アルゴン気流下、TriOctyl Phosphine Oxide(TOPO)(関東化学社製)の7.5gに、ステアリン酸(関東化学社製)を2.9g、n-テトラデシルホスホン酸(AVOCADO社製)を620mg、及び、酸化カドミニウム(和光純薬工業社製)を250mg加え、370℃で加熱及び混合した。これを270℃まで自然冷却した後、あらかじめトリブチルホスフィン(関東化学社製)の2.5mLにセレン(STREM CHEMICAL社製)200mgを溶解させた溶液を加え、減圧乾燥し、TOPOで被覆されたCdSe微粒子を得る。
量子ドットの製膜方法は、ウェットプロセスによるものが好ましい。例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ローラーコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法)等を挙げることができる。
《陽極》
本発明の有機EL素子を構成する陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質として用いることが好ましい。このような電極物質の具体例としては、Au等の金属、CuI、インジウム-スズの複合酸化物(以下、ITOと略記。)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In2O3-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状パターンを形成してもよく、あるいはパターン精度をあまり必要としない場合(100μm以上程度)は、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常は、10~1000nmの範囲内であり、好ましくは10~200nmの範囲内で選ばれる。
一方、本発明の有機EL素子を構成する陰極としては、仕事関数の小さい(4eV以下)金属(以下、電子注入性金属と称す。)、合金、電気伝導性化合物及びこれらの混合物が電極物質として用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の観点から、第一金属である電子注入性金属と、これより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物や、アルミニウム等が好適である。陰極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成することにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μmの範囲内であり、好ましくは50~200nmの範囲内で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極及び陰極のいずれか一方が透明又は半透明であれば、発光輝度が向上し好都合である。
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等、その材質には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、例えば、ガラス、石英、透明樹脂フィルムを挙げることができる。リジットな基板よりもフレキシブルな基板が、高温保存安定性や色度変動を抑制する効果が大きく発現する観点から好ましく、特に、支持基板が、有機EL素子にフレキシブル性を与えることが可能な可撓性を備えた樹脂フィルムであることが好ましい。
本発明の有機EL素子に適用可能な封止手段としては、例えば、封止部材と電極、支持基板とを封止用接着剤で接着する方法を挙げることができる。
有機機能層を挟み、支持基板と対向する側の封止膜、あるいは封止用フィルムの外側に、有機EL素子の機械的強度を高めるため、保護膜あるいは保護板を設けてもよい。特に、封止が封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板/フィルムの複合体、金属板/フィルムの複合体等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
〔電荷発生層の層構成〕
本発明の有機EL素子に適用可能な電荷発生層(CGL)の層構成について説明する。下記に示した層を単独、もしくは任意に複数層組み合わせることで、本発明に係る電荷発生層として使用できる。本発明において、電荷発生層は少なくとも1層から形成されることが好ましい。また、電荷発生層は、半導体以上の導電性を有することが望ましいが、それに限定するものではない。
2.発光ユニット/n型半導体層/p型半導体層/発光ユニット
3.発光ユニット/n型半導体層/中間層/p型半導体層/発光ユニット
上記バイポーラ層とは、外部電界により、層内部で正孔、電子を発生及び輸送することができる層である。また、n型半導体層とは、多数キャリアが電子である電荷輸送層であり、半導体以上の導電性を有していることが好ましい。また、p型半導体層とは、多数キャリアが正孔である電荷輸送層であり、半導体以上の導電性を有していることが好ましい。中間層とは、電荷発生能及び、長期安定性を向上する上で、必要であれば設けてよく、例えば、n型半導体層及びp型半導体層の拡散防止層やp-n間の反応抑制層、p型半導体層とn型半導体層の電荷準位を調整する準位調整層などが挙げられる。
本発明の電荷発生層を構成する材料として、以下に具体例を示すが、本発明はこれらに限定されない。
ナノカーボン材料とは、平均粒子径が1~500nmの範囲内にあるカーボン材料を指し、その代表例としては、カーボンナノチューブ、カーボンナノファイバー、フラーレン及びその誘導体、カーボンナノコイル、カーボンオニオンフラーレン及びその誘導体、ダイヤモンド、ダイヤモンド状カーボン、グラファイトが挙げられる。
本発明の有機EL素子の製造方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の製造方法を説明する。
(i)その有機機能層を構成する各材料を調合して調製した塗布液を、支持基板の陽極上に塗布及び積層する塗布工程と、
(ii)塗布及び積層して形成した塗膜を、乾燥させる乾燥工程と、
で構成される。
本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。
《有機EL素子の作製》
下記の方法に従って、青色発光の有機EL素子11~16を作製した。
(1.1)ガスバリアー性の可撓性フィルムの作製
可撓性フィルムとして、ポリエチレンナフタレートフィルム(帝人デュポン社製フィルム、以下、PENフィルムと略記する。)を用い、可撓性フィルムの第1電極を形成する面側の全面に、特開2004-68143号公報に記載の構成からなる大気圧プラズマ放電処理装置を用いて、連続して可撓性フィルム上に、SiOxからなる無機物のガスバリアー膜を厚さ500nmとなるように成膜し、酸素透過度が0.001ml/(m2・day・atm)以下で、水蒸気透過度が0.001g/(m2・day・atm)以下のガスバリアー性の可撓性フィルムを作製した。
上記作製したガスバリアー性の可撓性フィルム上に、厚さ120nmのITO(インジウム-スズの複合酸化物)膜をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第1電極層(陽極)を形成した。なお、パターンは発光面積が50mm平方になるようなパターンとした。
第1電極層をパターニングした後のITO基板を、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥した後、UVオゾン洗浄を5分間行った。このITO基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(以下、PEDOT/PSSと略記、Bayer製、Baytron P Al 4083)を純水で70%に希釈した溶液を、3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、厚さ30nmの正孔注入層を形成した。
この正孔注入層を形成した基板を、窒素ガス(グレードG1)を用いた窒素雰囲気下に移し、正孔輸送材料である例示化合物(60)(Mw=80,000、化14に記載)をクロロベンゼンに0.5%の濃度で溶解した溶液を、1500rpm、30秒でスピンコート法により製膜した後、160℃で30分間保持して乾燥し、厚さ30nmの正孔輸送層を形成した。
次いで、下記組成の発光層組成物1を、1500rpm、30秒でスピンコート法により製膜した後、120℃で30分間保持して乾燥し、厚さ40nmの発光層を形成した。
例示化合物a-1(化16に記載) 13.95質量部
例示化合物D-134(化82に記載) 2.45質量部
量子ドット1;コア部:CdSe(平均粒子径2nm)/シェル部:ZnS(オクタデシルアミン)、平均粒子径:12nm 0.30質量部
トルエン 2000質量部
なお、上記の量子ドット1は、下記の方法に従って調製した。
アルゴン気流下で、トリ-n-オクチルホスフィンオキシド(TOPO)(関東化学社製)の7.5gに、ステアリン酸(関東化学社製)を2.9g、n-テトラデシルホスホン酸(AVOCADO社製)を620mg、及び、酸化カドミニウム(和光純薬工業社製)を250mg加え、370℃に加熱混合した。次いで、270℃まで自然冷却させた後、あらかじめトリブチルホスフィン(関東化学社製)の2.5mlに、セレン(STREMCHEMICAL社製)を200mg溶解させた溶液を加え、減圧乾燥し、TOPOで被覆されたCdSe微粒子を得た。
続いて、電子輸送材料である20mgの下記化合物Aを、4mlのテトラフルオロプロパノール(TFPO)に溶解した溶液を、1500rpm、30秒でスピンコート法により製膜した後、120℃で30分間保持して乾燥し、厚さ30nmの電子輸送層を形成した。
続いて、基板を大気雰囲気に曝露することなく、真空蒸着装置へ取り付けた。また、モリブデン製抵抗加熱ボートにフッ化ナトリウム及びフッ化カリウムを入れたものを真空蒸着装置に取り付け、真空槽を4×10-5Paまで減圧した後、前記ボートに通電して加熱して、はじめにフッ化ナトリウムを0.02nm/秒で前記電子輸送層上に蒸着し、厚さ1nmの薄膜として形成し、続けて、フッ化カリウムを0.02nm/秒でフッ化ナトリウム上に蒸着し、厚さ1.5nmの電子注入層を形成した。引き続き、アルミニウム薄膜を厚さ100nmで蒸着して陰極を形成した。
引き続き、市販のローラーラミネート装置を用いて封止部材を接着し、本発明の有機EL素子11を製作した。
(B)ジシアンジアミド(DICY)
(C)エポキシアダクト系硬化促進剤
以上のようにして、図1に記載の形態になるように、封止基板を取り出し電極及び電極リードの接合部を覆うようにして密着及び配置して、圧着ローラーを用いて厚着条件として圧着ローラー温度120℃、圧力0.5MPa、装置速度0.3m/minで密着封止して、発光層に量子ドットを含有する本発明の有機EL素子11を作製した。
上記有機EL素子11の作製において、発光層の形成を、下記発光層組成物2を用いて行った以外は同様にして、有機EL素子12を作製した。
例示化合物a-6(化16に記載) 13.95質量部
例示化合物DP-1(化83に記載) 2.45質量部
量子ドット2 コア部:CdSe(平均粒子径2nm)/シェル部:ZnS(オクタデシルアミン)、平均粒子径:12nm 0.30質量部
トルエン 2000質量部
〔有機EL素子13の作製:本発明〕
上記有機EL素子11の作製において、発光層の形成を、下記発光層組成物3を用いて行った以外は同様にして、有機EL素子13を作製した。
例示化合物a-31(化21に記載) 13.95質量部
例示化合物2(表1に記載の化合物2) 2.45質量部
量子ドット2 コア部:CdSe(平均粒子径2nm)/シェル部:ZnS(オクタデシルアミン)、平均粒子径:12nm 0.30質量部
トルエン 2000質量部
〔有機EL素子14の作製:本発明〕
上記有機EL素子11の作製において、発光層の形成を、下記発光層組成物4を用いて行った以外は同様にして、有機EL素子14を作製した。
例示化合物a-31(化21に記載) 13.95質量部
例示化合物D-114(化78に記載) 2.45質量部
量子ドット3 コア部:CdSe(平均粒子径2nm)/シェル部:ZnS、平均粒子径:6nm、表面修飾剤無し 0.30質量部
トルエン 2000質量部
〔有機EL素子15の作製:本発明〕
上記有機EL素子11の作製において、発光層の形成を、下記発光層組成物5を用いて行った以外は同様にして、有機EL素子15を作製した。
例示化合物a-6(化16に記載) 13.95質量部
例示化合物D-135(化82に記載) 2.45質量部
量子ドット4 コア部(CdSe)のみの構成、平均粒子径:2nm
0.30質量部
トルエン 2000質量部
〔有機EL素子16の作製:比較例〕
上記有機EL素子11の作製において、発光層の形成を、下記発光層組成物6を用いて行った以外は同様にして、有機EL素子16を作製した。
例示化合物a-1(化16に記載) 14.25質量部
例示化合物D-134(化82に記載) 2.45質量部
トルエン 2000質量部
上記作製した有機EL素子11~16の発光層の主要構成と、バンドギャップの測定値(絶対値)及び量子ドットの平均粒子径を、表4に示す。
また、量子ドットの平均粒子径は、動的光散乱法による粒径測定装置(Malvern社製、「ZETASIZER Nano Series Nano-ZS」)を用いて測定した。なお、コアから表面修飾剤を含む場合はそのトータルの粒子径を表し、コア/シェル構造までならシェルを含む粒子径、コア単独の場合はコアのみの粒子径を表している。
上記作製した有機EL素子11~16について、下記の各評価を行った。
上記作製した各有機EL素子を、室温(約23℃)で、2.5mA/cm2の定電流条件下で発光させ、発光開始直後の発光輝度Lを、分光放射輝度計CS-2000(コニカミノルタオプティクス社製)を用いて測定した。
各有機EL素子を、室温(約23℃)で、2.5mA/cm2の定電流条件下で発光させた時の駆動電圧を測定した。
各有機EL素子を、半径が5cmの金属製円柱に巻きつけ、次いで各有機EL素子を折り曲げた状態で連続駆動させ、上記分光放射輝度計CS-2000を用いて輝度を測定し、測定した輝度が半減するまでに要する時間(LT50)を求めた。駆動条件は、連続駆動開始時に発光輝度が4000cd/m2となる条件となる電流値とした。
《有機EL素子の作製》
下記の方法に従って、青色発光の有機EL素子21~26を作製した。
(1.1)ガスバリアー性の可撓性フィルムの作製
可撓性フィルムとして、ポリエチレンナフタレートフィルム(帝人デュポン社製フィルム)を用い、可撓性フィルムの第1電極を形成する面側の全面に、特開2004-68143号公報に記載の構成からなる大気圧プラズマ放電処理装置を用いて、連続して可撓性フィルム上に、SiOxからなる無機物のガスバリアー膜を厚さ500nmとなるように形成し、酸素透過度が0.001ml/(m2・day・atm)以下で、水蒸気透過度が0.001g/(m2・day・atm)以下のガスバリアー性の可撓性フィルムを作製した。
上記作製したガスバリアー性の可撓性フィルム上に、厚さ120nmのITO(インジウム-スズの複合酸化物)膜をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第1電極層(陽極)を形成した。なお、パターンは発光面積が50mm平方になるようなパターンとした。
第1電極層をパターニングした後のITO基板を、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥した後、UVオゾン洗浄を5分間行った。このITO基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSSと略記、Bayer製、Baytron P Al 4083)を純水で70%の濃度に希釈した溶液を、3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥して乾燥し、厚さ30nmの正孔注入層を形成した。
この正孔注入層を形成した基板を、窒素ガス(グレードG1)を用いた窒素雰囲気下に移し、正孔輸送材料である例示化合物(60)(Mw=80,000、化14に記載)をクロロベンゼンに0.5%の濃度で溶解した溶液を、1500rpm、30秒でスピンコート法により製膜した後、160℃で30分間保持して乾燥し、厚さ30nmの正孔輸送層を形成した。
次いで、下記組成の発光層組成物21を、1500rpm、30秒でスピンコート法により製膜した後、120℃で30分間保持して乾燥し、厚さ40nmの発光層を形成した。
例示化合物a-2(化16に記載) 13.95質量部
例示化合物D-134(化82に記載) 2.45質量部
例示化合物D-67(化71に記載) 0.025質量部
例示化合物D-80(化72に記載) 0.025質量部
量子ドット1 コア部:CdSe(平均粒子径2nm)/シェル部:ZnS(オクタデシルアミン)、平均粒子径:12nm 0.30質量部
トルエン 2000質量部
(1.6)電子輸送層の形成
続いて、電子輸送材料である20mgの前記化合物A(実施例1にて構造を記載)を、4mlのテトラフルオロプロパノール(TFPO)に溶解した溶液を、1500rpm、30秒でスピンコート法により製膜した後、120℃で30分間保持して乾燥し、厚さ30nmの電子輸送層を形成した。
続いて、基板を大気雰囲気に曝露することなく真空蒸着装置へ取り付けた。また、モリブデン製抵抗加熱ボートにフッ化ナトリウム及びフッ化カリウムを入れたものを真空蒸着装置に取り付け、真空槽を4×10-5Paまで減圧した後、前記ボートに通電して加熱してフッ化ナトリウムを0.02nm/秒で前記電子輸送層上に蒸着し、厚さ1nmの薄膜を形成し、次いで、同様にフッ化カリウムを0.02nm/秒でフッ化ナトリウム上に蒸着し、厚さ1.5nmの電子注入層を形成した。引き続き、アルミニウム薄膜を厚さ100nmで蒸着して陰極を形成した。
引き続き、市販のローラーラミネート装置を用いて封止部材を接着し、本発明の有機EL素子21を製作した。
(B)ジシアンジアミド(DICY)
(C)エポキシアダクト系硬化促進剤
以上のようにして、図1に記載の形態になるよう、封止基板を取り出し電極及び電極リードの接合部を覆うようにして密着及び配置して、圧着ローラーを用いて厚着条件として、圧着ローラー温度120℃、圧力0.5MPa、装置速度0.3m/minで密着封止して、本発明の有機EL素子21を作製した。
上記有機EL素子21の作製において、発光層の形成を、下記発光層組成物22を用いて行った以外は同様にして、有機EL素子22を作製した。
例示化合物a-7(化17に記載) 13.95質量部
例示化合物DP-9(化84に記載) 2.45質量部
例示化合物D-67(化71に記載) 0.025質量部
例示化合物D-80(化72に記載) 0.025質量部
量子ドット5 コア部:CdSe(平均粒子径2.8nm)/シェル部:ZnS(オクタデシルアミン)、平均粒子径:12nm 0.30質量部
トルエン 2000質量部
〔有機EL素子23の作製:本発明〕
上記有機EL素子21の作製において、発光層の形成を、下記発光層組成物23を用いて行った以外は同様にして、有機EL素子23を作製した。
例示化合物a-10(化17に記載) 13.95質量部
例示化合物20(表1に記載の化合物20) 2.45質量部
例示化合物D-67(化71に記載) 0.025質量部
例示化合物D-80(化72に記載) 0.025質量部
量子ドット6 コア部:CdSe(平均粒子径4.0nm)/シェル部:ZnS(オクタデシルアミン)、平均粒子径:12nm 0.30質量部
トルエン 2000質量部
〔有機EL素子24の作製:本発明〕
上記有機EL素子21の作製において、発光層の形成を、下記発光層組成物24を用いて行った以外は同様にして、有機EL素子24を作製した。
例示化合物a-10(化17に記載) 13.95質量部
例示化合物40(表1に記載の化合物40) 2.45質量部
例示化合物D-67(化71に記載) 0.025質量部
例示化合物D-80(化72に記載) 0.025質量部
量子ドット1 コア部:CdSe(平均粒子径2nm)/シェル部:ZnS(オクタデシルアミン)、平均粒子径:12nm 0.30質量部
トルエン 2000質量部
〔有機EL素子25の作製:本発明〕
上記有機EL素子21の作製において、発光層の形成を、下記発光層組成物25を用いて行った以外は同様にして、有機EL素子25を作製した。
例示化合物a-7(化17に記載) 13.95質量部
例示化合物DP-16(化86に記載) 2.45質量部
例示化合物D-67(化71に記載) 0.025質量部
例示化合物D-80(化72に記載) 0.025質量部 量子ドット1 コア部:CdSe(平均粒子径2nm)/シェル部:ZnS(オクタデシルアミン)、平均粒子径:12nm 0.30質量部
トルエン 2000質量部
〔有機EL素子26の作製:比較例〕
上記有機EL素子21の作製において、発光層の形成を、下記発光層組成物26を用いて行った以外は同様にして、有機EL素子26を作製した。
例示化合物a-2(化16に記載) 14.25質量部
例示化合物D-134(化82に記載) 2.45質量部
例示化合物D-67(化71に記載) 0.025質量部
例示化合物D-80(化72に記載) 0.025質量部
トルエン 2000質量部
上記作製した有機EL素子21~26について、実施例1に記載の方法と同様にして、発光効率及び駆動電圧の測定の評価を行った。なお、各評価においては、比較例である有機EL素子26を基準とした相対値で評価を行った。
各有機EL素子を、室温(約23~25℃)で印加し、発光輝度として1000cd/m2で発光させた状態で、分光放射輝度計CS-2000(コニカミノルタオプティクス社製)を用いて分光分布特性を測定し、その測定結果より演色評価数を求め、平均演色評価数を導出した。
(1)評価1:素子寿命の評価
実施例1に記載の方法と同様にして、比較例である有機EL素子26に対する相対素子寿命を求めた。
各有機EL素子を半径が5cmの金属製円柱に巻きつけ、次いで各有機EL素子を折り曲げた状態で連続駆動させ、上記分光放射輝度計CS-2000を用いて輝度を測定し、測定した輝度が半減するまでに要する時間(LT50)を求めた。
《有機EL素子の作製》
下記の方法に従って、青色発光の有機EL素子31~39を作製した。
(1)第1電極層の形成
100mm×100mm×1.1mmのガラス基板上に、陽極としてITO(インジウム-スズの複合酸化物)を100nmの厚さで製膜して、ガラス基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
このITO透明電極を設けた透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、H.C. スタルク社製、CLEVIO P VP AI 4083)を純水で70%の濃度に希釈した溶液を用い、3000rpm、30秒の条件でスピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、膜さ20nmの正孔注入層を形成した。
この正孔注入層を形成した透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに正孔輸送材料として、N,N-ジフェニル-N,N′-ビス(1-ナフチル)-1,1′-ビフェニル-4,4′-ジアミン(以下、α-NPDと略記する、具体的構造は化129に記載。)を200mg入れ、真空蒸着装置に取り付けた。
更に、別のモリブデン製抵抗加熱ボートにホスト化合物として例示化合物a-3(化16に構造を記載)を200mg入れ、更にドーパント化合物として例示化合物D-134(化82に構造を記載)を100mg、例示化合物D-67(化71に構造を記載)を100mg、例示化合物D-80(化72に構造を記載)を100mg、それぞれ別のモリブデン製抵抗加熱ボートに入れ真空蒸着装置に取り付けた。
別のモリブデン製抵抗加熱ボートに、化合物A(前出:実施例1に具体的構造を記載)を200mg入れ真空蒸着装置に取り付けた。真空槽を4×10-5Paまで減圧した後、前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記発光層上に蒸着して、厚さ30nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温であった。
続いて、基板を大気に曝露することなく真空蒸着装置へ取り付けた。また、モリブデン製抵抗加熱ボートに、フッ化ナトリウム及びフッ化カリウムを入れたものを真空蒸着装置に取り付け、真空槽を4×10-5Paまで減圧した後、前記ボートに通電して加熱してフッ化ナトリウムを0.02nm/秒で、上記電子輸送層上に蒸着し、厚さ1nmの薄膜を形成し、続けて同様にフッ化カリウムを0.02nm/秒でフッ化ナトリウム上に蒸着し、厚さ1.5nmの電子注入層を形成した。引き続き、アルミニウム100nmを蒸着して陰極を形成した。
上記作製した有機EL素子31について、実施例2に記載の方法と同様の封止操作を行い、有機EL素子31を具備した照明装置を作製した。
上記有機EL素子31(比較例)の作製において、正孔輸送層の形成までは同様に行った後、正孔輸送層上に、下記の方法に従って、発光層を形成した。
モリブデン製抵抗加熱ボートにホスト化合物として例示化合物a-39(化23に構造を記載)を200mg入れ、更にドーパント化合物として例示化合物D-135(化82に構造を記載)を100mg、例示化合物D-67(化71に構造を記載)を100mg、例示化合物D-80(化72に構造を記載)を100mg、それぞれ別のモリブデン製抵抗加熱ボートに入れ真空蒸着装置に取り付けた。
フッ化リチウム、アルミニウム、1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル(以下、HATCNと略記する。)、α-NPD(前出)をこの順に下記の構成で発光層上に真空蒸着した。
真空度が4×10-4Paにおいて、フッ化リチウムからHATCNまでは蒸着速度0.02nm/秒で、α-NPDは蒸着速度0.1nm/秒で真空蒸着を行い、電荷発生層(2)を形成した。
上記有機EL素子31の作製における発光層の形成方法と同様にして、上記形成した電荷発生層(2)上に共蒸着して、厚さが40nmの発光層(2)を形成した。
上記有機EL素子31の作製における電子輸送層の形成方法と同様にして、上記形成した発光層(2)上に共蒸着して、厚さが30nmの電子輸送層を形成した。
上記有機EL素子31の作製における電子注入層及び陰極の形成方法と同様にして、上記形成した電子輸送層上に、フッ化ナトリウム、次いでフッ化カリウムを蒸着して電子注入層を形成し、次いでアルミニウム薄膜を厚さ100nmで蒸着して陰極を形成した。
上記作製した有機EL素子32について、実施例2に記載の方法と同様の封止操作を行い、有機EL素子32を具備した照明装置を作製した。
(1)第1電極層の形成
縦100mm、横100mm、厚さ1.1mmのガラス基板上に、陽極としてITO(インジウム-スズの複合酸化物)を厚さ100nmで製膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
このITO透明電極を設けた透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、H.C. スタルク社製、CLEVIO P VP AI 4083)を純水で70%に希釈した溶液を用い、3000rpm、30秒の条件でスピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、厚さ20nmの正孔注入層を形成した。
この正孔注入層を形成した透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに正孔輸送材料として、α-NPDを200mg入れ真空蒸着装置に取り付けた。
次いで、正孔輸送層上に量子ドットの単分子膜層を形成した。
形成方法は、下記に示すとおりである。
Sylgard(登録商標)184シリコンエラストマ(ダウコーニング社、米国)のパートAとBを、10:1の質量比で、プラスチックビーカー中で混合した。その後、リソグラフィ工程で所望の形状パターンを形成して作られたマスターに注ぎ入れ、常温で2時間ほど放置した後、60℃オーブンで2時間完全に熟成させ、スタンプを作製した。
フッ化リチウム、アルミニウム、HAT-CN、α-NPDをこの順に下記の構成及び膜厚で量子ドット層上に真空蒸着して、電荷発生層を形成した。
真空度が4×10-4Paにおいて、フッ化リチウムからHAT-CNまでは蒸着速度0.02nm/秒で、α-NPDは蒸着速度0.1nm/秒で真空蒸着を行い、電荷発生層(1)を形成した。
更に、別のモリブデン製抵抗加熱ボートに、ホスト化合物として例示化合物a-3(化16に構造を記載)を200mg入れ、更にドーパント化合物として例示化合物D-134(化82に構造を記載)を100mg、例示化合物D-67(化71に構造を記載)を100mg、例示化合物D-80(化72に構造を記載)を100mg、それぞれ別のモリブデン製抵抗加熱ボートに入れ真空蒸着装置に取り付けた。真空槽を4×10-5Paまで減圧した後、ホスト化合物として例示化合物a-3と、ドーパント化合物として例示化合物D-134、D-67、D-80の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.016nm、0.0002nm、0.0002nm/秒で、前記電荷発生層上に共蒸着して、厚さ40nmの発光層を設けた。
更に別のモリブデン製抵抗加熱ボートに化合物A(前出:実施例1)を200mg入れ真空蒸着装置に取り付けた。真空槽を4×10-5Paまで減圧した後、前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、上記発光層上に蒸着して厚さ30nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温であった。
続いて、基板を大気に曝露することなく真空蒸着装置へ取り付けた。また、モリブデン製抵抗加熱ボートにフッ化ナトリウム及びフッ化カリウムを入れたものを真空蒸着装置に取り付け、真空槽を4×10-5Paまで減圧した後、前記ボートに通電して加熱してフッ化ナトリウムを0.02nm/秒で前記電子輸送層上に膜厚1nmの薄膜を形成し、続けて同様にフッ化カリウムを0.02nm/秒でフッ化ナトリウム上に、厚さ1.5nmの電子注入層を形成した。引き続き、アルミニウム100nmを蒸着して陰極を形成した。
上記作製した有機EL素子33について、実施例2に記載の方法と同様の封止操作を行い、有機EL素子33を具備した照明装置を作製した。
上記有機EL素子33の作製において、発光層の形成を下記の内容に変更した以外は同様にして、有機EL素子34を作製した。
モリブデン製抵抗加熱ボートに、ホスト化合物として例示化合物a-8(化17に構造を記載)を200mg入れ、更にドーパント化合物として例示化合物DP-3(化83に構造を記載)を100mg、例示化合物D-67(化71に構造を記載)を100mg、例示化合物D-80(化72に構造を記載)を100mg、それぞれ別のモリブデン製抵抗加熱ボートに入れ真空蒸着装置に取り付けた。真空槽を4×10-5Paまで減圧した後、ホスト化合物として例示化合物a-3と、ドーパント化合物として例示化合物D-134、D-67、D-80の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.016nm、0.0002nm、0.0002nm/秒で、電荷発生層上に共蒸着して、厚さ40nmの発光層を形成した。
上記有機EL素子32(比較例)の作製において、電荷発生層(2)上に下記の方法で量子ドット層(2)を形成し、かつ発光層(2)の形成は行わなかった以外は同様にして、有機EL素子35を作製した。
電荷発生層(2)上に、下記の方法に従って量子ドットの単分子膜層である量子ドット層(2)を形成した。
実施例2に記載の有機EL素子21の作製と同様にして、正孔輸送層の形成まで行った後、下記の方法に従って、塗布方式により量子ドット層(1)を形成した。
量子ドットインク(量子ドット コア部:CdSe(2nm)/シェル部:ZnS(オクタデシルアミン) 3%トルエン溶液)を正孔輸送上にスピンコートした後、量子ドットインクを完全に乾燥させ、量子ドットの単分子膜である量子ドット層(1)を形成した。
上記有機EL素子36の作製において、量子ドット層(1)までは同様にして作製した後、下記の方法に従って、塗布方式により電荷発生層(1)を形成した。
DBp-6(化143に構造を記載)及びAQp-2(化153に構造を記載)のクロロベンゼン溶液(1:1)をスリットコート法により成膜した後、低圧水銀灯(15mW/cm2)を30秒、130℃でUV照射することで、化合物が有する重合性基を光重合させ、膜厚20nmの不溶化n型層(CGL)を設けた。
このp型層(CGL)上に、Poly(N,N′-ビス(4-ブチルフェニル)-N,N′-ビス(フェニル))ベンジジン(American Dye Source株式会社製、ADS-254)のクロロベンゼン溶液をスリットコート法により成膜した。150℃で1時間加熱乾燥し、膜厚40nmの正孔輸送層(2)を設けた。
次いで、実施例2に記載の有機EL素子21の作製で用いた発光層の形成と同様にして、発光層を形成した。
発光層上に、上記電荷発生層(1)の形成と同様にして、塗布方式で電荷発生層(2)を形成した。
上記形成した電荷発生層(2)上に、上記有機EL素子35の量子ドット層(2)の形成(スタンプ方式)と同様の内容で、量子ドット層(2)を形成した。
実施例2に記載の有機EL素子21の同様の方法で、電子輸送層、電子注入層及び陰極を形成した。
上記作製した有機EL素子37について、実施例2に記載の方法と同様の封止操作を行い、有機EL素子37を具備した照明装置を作製した。
正孔輸送層、量子ドット層(1)及び電荷発生層(1)までは、有機EL素子36の作製と同様にして形成した後、発光層、電荷発生層(2)、発光層(2)、電子輸送層、電子注入層及び陰極を、有機EL素子32の作製と同様にして形成し、有機EL素子38を作製した。
上記有機EL素子31の作製において、正孔輸送層の形成方法を下記の方法に変更し、かつ正孔輸送層上に、下記の内容で電荷発生層(1)を形成した以外は同様にして、有機EL素子39を作製した。
正孔輸送材料である例示化合物(60)(Mw=80,000、化14に構造を記載)をクロロベンゼンに0.5質量%の濃度で溶解し、次いで量子ドットとして、コア部:CdSe(平均粒子径2nm)/シェル部:ZnS(オクタデシルアミン)の3%トルエン溶液を、量子ドットが例示化合物(60)に対して20質量%になるように混合した溶液を調製し、この溶液を1500rpm、30秒でスピンコート法により製膜した後、160℃で30分間保持し、厚さが30nmの正孔輸送層を形成した。この時、形成した正孔輸送層上には量子ドットの単分子膜が形成されていることを、AFMによる観察で確認した。
上記有機EL素子36の電荷発生層(1)の形成方法と同様にして、電荷発生層(1)を形成した。
上記作製した有機EL素子31~39について、実施例2に記載の方法と同様にして、発光効率、駆動電圧、演色性及び素子寿命の評価を行い、得られた結果を表9に示す。
2 陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 電子輸送層
7 電子注入層
8 陰極
9 封止接着剤
10 可撓性封止部材
11 量子ドット
20 有機機能層
100 有機エレクトロルミネッセンス素子
Claims (21)
- 基板上に、一対の電極と、発光層を含む少なくとも2層の有機機能層を有する有機エレクトロルミネッセンス素子であって、該発光層は、ホスト化合物及びリン光発光ドーパントを含有し、該発光層又はその隣接層が、量子ドットを含有していることを特徴とする有機エレクトロルミネッセンス素子。
- 前記発光層が、前記量子ドットを含有することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
- 前記発光層に隣接している隣接層が、前記量子ドットを含有することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
- 前記発光層に隣接している隣接層と、発光層との間に、更に電荷発生層を有することを特徴とする請求項1から3までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
- 前記発光層が、リン光発光ドーパントとして、少なくとも1種の青色リン光発光性化合物を含有することを特徴とする請求項1から4までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
- 前記発光層が、リン光発光ドーパントとして、少なくとも1種の青色リン光発光性化合物と、該青色リン光発光性化合物よりもバンドギャップが0.1eV以上小さいリン光発光性化合物とを含有し、かつ白色発光を呈することを特徴とする請求項1から5までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
- 前記量子ドットが、少なくともSi、Ge、GaN、GaP、CdS、CdSe、CdTe、InP、InN、ZnS、In2S3、ZnO、CdO又はこれらの混合物で構成されていることを特徴とする請求項1から6までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
- 前記量子ドットの平均粒子径が、1.0~20nmの範囲内であることを特徴とする請求項1から7までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
- 前記量子ドットが、少なくとも2種の化合物により形成されるコア/シェル構造又はグラジエント構造(傾斜構造)を有することを特徴とする請求項1から8までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
- 前記量子ドットが、表面修飾剤により表面修飾されていることを特徴とする請求項1から9までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
- 前記量子ドットのバンドギャップが、前記隣接層を構成する材料のバンドギャップより0.1eV以上小さいことを特徴とする請求項1から10までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
- 前記量子ドットのバンドギャップが、前記発光層が含有するホスト化合物のバンドギャップより0.1eV以上小さいことを特徴とする請求項1から11までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
- 少なくとも1種の前記量子ドットのバンドギャップが、前記発光層が含有する青色リン光発光性化合物のバンドギャップに対し、0.1eV以上大きいことを特徴とする請求項5又は請求項6に記載の有機エレクトロルミネッセンス素子。
- 前記リン光発光ドーパントが、下記一般式(1)で表される化合物であることを特徴とする請求項1から13までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
- 前記青色リン光発光性化合物が、下記一般式(3)で表される化合物であることを特徴とする請求項5から14までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
- 前記青色リン光発光性化合物が、下記一般式(4)で表される化合物であることを特徴とする請求項5から14までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
- 前記一般式(4)で表される化合物を構成するL1~L3のうち、少なくとも一つのX1~X5が形成する5員環が、イミダゾール環であることを特徴とする請求項17に記載の有機エレクトロルミネッセンス素子。
- 前記発光層が、分子量が2000以下のホスト化合物を含有することを特徴とする請求項1から18までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
- 前記発光層を含む少なくとも2層の有機機能層のうち、少なくとも1層が、湿式塗布方式により形成されていることを特徴とする請求項1から20までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014511195A JP6237619B2 (ja) | 2012-04-20 | 2013-04-12 | 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法 |
KR1020147028989A KR101973834B1 (ko) | 2012-04-20 | 2013-04-12 | 유기 일렉트로루미네센스 소자 |
US14/395,319 US9972802B2 (en) | 2012-04-20 | 2013-04-12 | Organic electroluminescent element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012096269 | 2012-04-20 | ||
JP2012-096269 | 2012-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013157494A1 true WO2013157494A1 (ja) | 2013-10-24 |
Family
ID=49383451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/061053 WO2013157494A1 (ja) | 2012-04-20 | 2013-04-12 | 有機エレクトロルミネッセンス素子 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9972802B2 (ja) |
JP (1) | JP6237619B2 (ja) |
KR (1) | KR101973834B1 (ja) |
WO (1) | WO2013157494A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103730584A (zh) * | 2013-12-27 | 2014-04-16 | 北京京东方光电科技有限公司 | 一种显示面板及显示装置 |
CN104377318A (zh) * | 2014-09-25 | 2015-02-25 | 京东方科技集团股份有限公司 | 有机电致发光器件及其制备方法、显示基板、显示装置 |
WO2015107790A1 (ja) * | 2014-01-16 | 2015-07-23 | コニカミノルタ株式会社 | 電界発光素子 |
US20150287927A1 (en) * | 2012-10-10 | 2015-10-08 | Konica Minolta, Inc. | Electroluminescence element |
CN105097879A (zh) * | 2015-07-22 | 2015-11-25 | 深圳市华星光电技术有限公司 | 一种显示面板 |
CN105900529A (zh) * | 2014-01-09 | 2016-08-24 | 株式会社村田制作所 | 发光器件及发光器件的制造方法 |
JP2017038049A (ja) * | 2015-08-07 | 2017-02-16 | 株式会社半導体エネルギー研究所 | 発光素子、発光装置、電子機器、表示装置及び照明装置 |
US10287493B2 (en) | 2013-10-21 | 2019-05-14 | Boe Technology Group Co., Ltd. | Composite film and fabrication method thereof, photoelectric element and photoelectric apparatus |
US10547018B2 (en) | 2017-12-19 | 2020-01-28 | Samsung Electronics Co., Ltd. | Electroluminescent device, and display device comprising the same |
JPWO2019093346A1 (ja) * | 2017-11-08 | 2020-12-17 | Nsマテリアルズ株式会社 | 表示装置 |
JP2021018986A (ja) * | 2019-07-23 | 2021-02-15 | シャープ株式会社 | 相分離された発光層でパターニングすることによって製造されるqled |
WO2021027141A1 (zh) * | 2019-08-15 | 2021-02-18 | 深圳市华星光电半导体显示技术有限公司 | 显示面板 |
WO2021064822A1 (ja) * | 2019-09-30 | 2021-04-08 | シャープ株式会社 | 発光素子、発光デバイス |
CN115347127A (zh) * | 2021-05-14 | 2022-11-15 | Tcl科技集团股份有限公司 | 量子点发光器件及其制备方法 |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008011216A2 (en) * | 2006-05-16 | 2008-01-24 | Pro-Pharmaceuticals, Inc. | Galactose-pronged polysaccharides in a formulation for antifibrotic therapies |
CN108611591B (zh) | 2012-11-06 | 2021-05-04 | Oti领英有限公司 | 用于在表面上沉积导电覆层的方法 |
KR102113581B1 (ko) | 2013-05-22 | 2020-05-22 | 삼성디스플레이 주식회사 | 증착 장치, 그 방법 및 이를 이용한 양자점층 형성 방법 |
CN103346265B (zh) * | 2013-06-21 | 2016-01-06 | 深圳市华星光电技术有限公司 | 一种发光器件、显示面板及其制造方法 |
US9574135B2 (en) * | 2013-08-22 | 2017-02-21 | Nanoco Technologies Ltd. | Gas phase enhancement of emission color quality in solid state LEDs |
US9401491B2 (en) * | 2014-05-30 | 2016-07-26 | Samsung Sdi Co., Ltd. | Direct/laminate hybrid encapsulation and method of hybrid encapsulation |
JP6472883B2 (ja) * | 2014-11-28 | 2019-02-20 | ソウル大学校産学協力団Seoul National University R&Db Foundation | 量子ドット転写印刷方法 |
US10763103B2 (en) * | 2015-03-31 | 2020-09-01 | Versum Materials Us, Llc | Boron-containing compounds, compositions, and methods for the deposition of a boron containing films |
CN106159099B (zh) * | 2015-04-03 | 2018-01-09 | 南京瀚宇彩欣科技有限责任公司 | 量子点电致发光单元及量子点电致发光装置 |
WO2017058326A2 (en) * | 2015-07-02 | 2017-04-06 | The Regents Of The University Of California | Hybrid molecule-nanocrystal photon upconversion across the visible and near-infrared |
DE102015114084A1 (de) * | 2015-08-25 | 2017-03-02 | Osram Oled Gmbh | Organisches lichtemittierendes Bauelement und Leuchte |
CN105261709A (zh) * | 2015-10-08 | 2016-01-20 | 华南理工大学 | 一种掺杂量子点的有机发光器件及其制备方法 |
CN108431981B (zh) * | 2015-12-16 | 2022-05-24 | Oti领英有限公司 | 用于光电子器件的屏障涂层 |
KR102447310B1 (ko) | 2015-12-28 | 2022-09-26 | 삼성디스플레이 주식회사 | 유기 발광 소자 및 이를 포함하는 유기 발광 표시 장치 |
WO2017140159A1 (zh) * | 2016-02-18 | 2017-08-24 | 京东方科技集团股份有限公司 | 量子点发光器件及其制备方法、显示基板和显示装置 |
KR101780893B1 (ko) * | 2016-03-10 | 2017-09-22 | 희성전자 주식회사 | 조명장치에 포함되는 전계 발광소자 및 이를 제조하는 방법 |
US10563122B2 (en) | 2016-03-18 | 2020-02-18 | Osaka University | Semiconductor nanoparticles and method of producing semiconductor nanoparticles |
CN105870346B (zh) * | 2016-04-15 | 2018-07-03 | 深圳市华星光电技术有限公司 | Led显示屏的制造方法和led显示屏 |
KR101900775B1 (ko) * | 2017-03-20 | 2018-09-20 | 주식회사 페타룩스 | 양자점 발광소자 및 이를 포함하는 백라이트 유닛 |
CN108447999B (zh) * | 2018-03-26 | 2021-04-30 | 京东方科技集团股份有限公司 | 量子点层图案化方法及显示装置的制作方法 |
CN108767129B (zh) | 2018-05-31 | 2021-01-26 | 京东方科技集团股份有限公司 | 量子点发光二极管及其制备方法、显示面板 |
US11426818B2 (en) | 2018-08-10 | 2022-08-30 | The Research Foundation for the State University | Additive manufacturing processes and additively manufactured products |
KR20210154190A (ko) * | 2019-04-19 | 2021-12-20 | 나노시스, 인크. | 가요성 전계발광 디바이스 |
CN114450813B (zh) * | 2019-09-19 | 2024-11-01 | 夏普株式会社 | 发光元件和显示器件 |
KR102718895B1 (ko) | 2019-12-16 | 2024-10-16 | 삼성전자주식회사 | 발광소자와 그 제조방법 |
WO2021206647A1 (en) * | 2020-04-07 | 2021-10-14 | İstanbul Sabahatti̇n Zai̇m Üni̇versi̇tesi̇ | Fabrication of the surface controlled quantum dots allowing the size adjustment and thereof |
KR20210149956A (ko) * | 2020-06-02 | 2021-12-10 | 삼성디스플레이 주식회사 | 양자점 조성물, 발광 소자 및 이의 제조 방법 |
CN112103397A (zh) * | 2020-10-16 | 2020-12-18 | 京东方科技集团股份有限公司 | 量子点发光二极管及其制备方法、显示面板和显示装置 |
KR102743698B1 (ko) * | 2020-12-29 | 2024-12-17 | 엘지디스플레이 주식회사 | 유기 발광 다이오드 소자와 이를 이용한 표시장치 |
KR20220099150A (ko) * | 2021-01-04 | 2022-07-13 | 삼성디스플레이 주식회사 | 발광 소자, 이를 포함하는 표시 장치, 및 그 발광 소자의 제조 방법 |
US20240366629A1 (en) * | 2021-09-02 | 2024-11-07 | The Regents Of The University Of California | Porphyrin Complexes as Antidotes for Carbon Monoxide Exposure and Methods of Use for Same |
CN113926497B (zh) * | 2021-10-08 | 2022-12-30 | 浙江工商大学 | 基于核酸适配体修饰的MoS2复合材料的微流控阵列质谱芯片及其制备方法与应用 |
KR102683905B1 (ko) * | 2022-05-03 | 2024-07-12 | 한국과학기술연구원 | 산화아연-아미노파이린 코어쉘 양자점을 이용한 발광다이오드 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006128667A (ja) * | 2004-09-30 | 2006-05-18 | Semiconductor Energy Lab Co Ltd | 発光素子 |
JP2009087744A (ja) * | 2007-09-28 | 2009-04-23 | Dainippon Printing Co Ltd | 発光素子 |
JP2009199738A (ja) * | 2008-02-19 | 2009-09-03 | Idemitsu Kosan Co Ltd | 有機・無機ハイブリッド型電界発光素子 |
US20110057559A1 (en) * | 2007-12-28 | 2011-03-10 | Universal Display Corporation | Phosphorescent emitters and host materials with improved stability |
JP2011061028A (ja) * | 2009-09-10 | 2011-03-24 | Toshiba Corp | 有機電界発光素子 |
JP2012023127A (ja) * | 2010-07-13 | 2012-02-02 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子、その製造方法、及び照明装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060018583A (ko) | 2004-08-25 | 2006-03-02 | 삼성전자주식회사 | 반도체 나노결정을 함유하는 백색 발광 유·무기하이브리드 전기 발광 소자 |
US20060145599A1 (en) | 2005-01-04 | 2006-07-06 | Reza Stegamat | OLEDs with phosphors |
JP2010192719A (ja) | 2009-02-19 | 2010-09-02 | Yamagata Promotional Organization For Industrial Technology | 有機エレクトロルミネッセンス素子 |
JP5568943B2 (ja) | 2009-10-14 | 2014-08-13 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子、及び照明装置 |
JP5944380B2 (ja) * | 2010-05-27 | 2016-07-05 | メルク パテント ゲーエムベーハー | 量子ドットを含む組成物 |
-
2013
- 2013-04-12 KR KR1020147028989A patent/KR101973834B1/ko not_active Expired - Fee Related
- 2013-04-12 JP JP2014511195A patent/JP6237619B2/ja not_active Expired - Fee Related
- 2013-04-12 WO PCT/JP2013/061053 patent/WO2013157494A1/ja active Application Filing
- 2013-04-12 US US14/395,319 patent/US9972802B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006128667A (ja) * | 2004-09-30 | 2006-05-18 | Semiconductor Energy Lab Co Ltd | 発光素子 |
JP2009087744A (ja) * | 2007-09-28 | 2009-04-23 | Dainippon Printing Co Ltd | 発光素子 |
US20110057559A1 (en) * | 2007-12-28 | 2011-03-10 | Universal Display Corporation | Phosphorescent emitters and host materials with improved stability |
JP2009199738A (ja) * | 2008-02-19 | 2009-09-03 | Idemitsu Kosan Co Ltd | 有機・無機ハイブリッド型電界発光素子 |
JP2011061028A (ja) * | 2009-09-10 | 2011-03-24 | Toshiba Corp | 有機電界発光素子 |
JP2012023127A (ja) * | 2010-07-13 | 2012-02-02 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子、その製造方法、及び照明装置 |
Non-Patent Citations (2)
Title |
---|
HONG-WEI LIU ET AL.: "Enhanced phosphorescence and electroluminescence in triplet emitters by doping gold into cadmium selenide/zinc sulfide nanoparticles", THIN SOLID FILMS, vol. 489, no. 1-2, 15 June 2005 (2005-06-15), pages 296 - 302 * |
Y.Q.ZHANG ET AL.: "Electroluminescence of green CdSe/ZnS quantum dots enhanced by harvesting excitons from phosphorescent molecules", APPLIED PHYSICS LETTERS, vol. 97, no. 25, 23 December 2010 (2010-12-23), pages 253115-1 - -3 * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9935269B2 (en) * | 2012-10-10 | 2018-04-03 | Konica Minolta, Inc. | Electroluminescence element |
US20150287927A1 (en) * | 2012-10-10 | 2015-10-08 | Konica Minolta, Inc. | Electroluminescence element |
US10287493B2 (en) | 2013-10-21 | 2019-05-14 | Boe Technology Group Co., Ltd. | Composite film and fabrication method thereof, photoelectric element and photoelectric apparatus |
CN103730584A (zh) * | 2013-12-27 | 2014-04-16 | 北京京东方光电科技有限公司 | 一种显示面板及显示装置 |
EP3091588A4 (en) * | 2013-12-27 | 2017-09-20 | Boe Technology Group Co. Ltd. | Display panel and display device |
US9379344B2 (en) | 2013-12-27 | 2016-06-28 | Boe Technology Group Co., Ltd. | Display panel and display device |
CN105900529A (zh) * | 2014-01-09 | 2016-08-24 | 株式会社村田制作所 | 发光器件及发光器件的制造方法 |
CN105900529B (zh) * | 2014-01-09 | 2018-07-06 | 株式会社村田制作所 | 发光器件及发光器件的制造方法 |
JPWO2015107790A1 (ja) * | 2014-01-16 | 2017-03-23 | コニカミノルタ株式会社 | 電界発光素子 |
US9773993B2 (en) | 2014-01-16 | 2017-09-26 | Konica Minolta, Inc. | Electroluminescence element |
WO2015107790A1 (ja) * | 2014-01-16 | 2015-07-23 | コニカミノルタ株式会社 | 電界発光素子 |
US9941482B2 (en) | 2014-09-25 | 2018-04-10 | Boe Technology Group Co., Ltd. | Organic electroluminescent device, method of preparing same, display substrate, and display apparatus |
CN104377318A (zh) * | 2014-09-25 | 2015-02-25 | 京东方科技集团股份有限公司 | 有机电致发光器件及其制备方法、显示基板、显示装置 |
US10068949B2 (en) | 2015-07-22 | 2018-09-04 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Display panel |
CN105097879A (zh) * | 2015-07-22 | 2015-11-25 | 深圳市华星光电技术有限公司 | 一种显示面板 |
WO2017012133A1 (zh) * | 2015-07-22 | 2017-01-26 | 深圳市华星光电技术有限公司 | 一种显示面板 |
JP2017038049A (ja) * | 2015-08-07 | 2017-02-16 | 株式会社半導体エネルギー研究所 | 発光素子、発光装置、電子機器、表示装置及び照明装置 |
JPWO2019093346A1 (ja) * | 2017-11-08 | 2020-12-17 | Nsマテリアルズ株式会社 | 表示装置 |
US12069878B2 (en) | 2017-11-08 | 2024-08-20 | Toppan Inc. | Display device |
US10547018B2 (en) | 2017-12-19 | 2020-01-28 | Samsung Electronics Co., Ltd. | Electroluminescent device, and display device comprising the same |
JP2021018986A (ja) * | 2019-07-23 | 2021-02-15 | シャープ株式会社 | 相分離された発光層でパターニングすることによって製造されるqled |
WO2021027141A1 (zh) * | 2019-08-15 | 2021-02-18 | 深圳市华星光电半导体显示技术有限公司 | 显示面板 |
WO2021064822A1 (ja) * | 2019-09-30 | 2021-04-08 | シャープ株式会社 | 発光素子、発光デバイス |
CN115347127A (zh) * | 2021-05-14 | 2022-11-15 | Tcl科技集团股份有限公司 | 量子点发光器件及其制备方法 |
WO2022237198A1 (zh) * | 2021-05-14 | 2022-11-17 | Tcl科技集团股份有限公司 | 量子点发光器件及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101973834B1 (ko) | 2019-04-29 |
US9972802B2 (en) | 2018-05-15 |
KR20140143406A (ko) | 2014-12-16 |
JP6237619B2 (ja) | 2017-11-29 |
US20150076469A1 (en) | 2015-03-19 |
JPWO2013157494A1 (ja) | 2015-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6237619B2 (ja) | 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法 | |
JP6237636B2 (ja) | エレクトロルミネッセンス素子 | |
JP6079118B2 (ja) | 発光層形成用インク組成物、発光素子の作製方法及びエレクトロルミネッセンスデバイス | |
JP5664311B2 (ja) | 有機エレクトロルミネッセンス素子 | |
JP6168050B2 (ja) | 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法 | |
US8759826B2 (en) | Organic electroluminescent element | |
JP6127436B2 (ja) | 白色エレクトロルミネッセンスデバイス及び白色エレクトロルミネッセンスデバイスの製造方法 | |
JP6128119B2 (ja) | 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置および照明装置 | |
JP6225912B2 (ja) | エレクトロルミネッセンス素子 | |
JP5994551B2 (ja) | エレクトロルミネッセンスデバイス | |
KR20190109360A (ko) | 유기 일렉트로루미네센스 소자, 유기 일렉트로루미네센스 소자의 제조 방법, 표시 장치 및 조명 장치 | |
US9773993B2 (en) | Electroluminescence element | |
JP6136175B2 (ja) | 白色エレクトロルミネッセンスデバイス | |
US11696500B2 (en) | Organic electroluminescent element, display device, illumination device, and pi-conjugated compound | |
JP2008210941A (ja) | 有機エレクトロルミネッセンス素子、表示装置及び照明装置 | |
CN111937174B (zh) | 发光性膜、有机电致发光元件及其制造方法 | |
WO2013157563A1 (ja) | 有機エレクトロルミネッセンス素子 | |
JP2018006700A (ja) | 有機エレクトロルミネッセンス素子、表示装置、照明装置、π共役系化合物 | |
WO2018173600A1 (ja) | 有機エレクトロルミネッセンス素子 | |
JP2015149230A (ja) | 有機エレクトロルミネッセンスパネル | |
JP2016001548A (ja) | 電界発光素子、及び量子ドット材料 | |
JP2014103290A (ja) | 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法及び金属酸化物粒子含有組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13778321 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014511195 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147028989 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14395319 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13778321 Country of ref document: EP Kind code of ref document: A1 |