JP6244936B2 - 炭素触媒及びその製造方法、及び該炭素触媒を用いた触媒インキ並びに燃料電池 - Google Patents
炭素触媒及びその製造方法、及び該炭素触媒を用いた触媒インキ並びに燃料電池 Download PDFInfo
- Publication number
- JP6244936B2 JP6244936B2 JP2014010187A JP2014010187A JP6244936B2 JP 6244936 B2 JP6244936 B2 JP 6244936B2 JP 2014010187 A JP2014010187 A JP 2014010187A JP 2014010187 A JP2014010187 A JP 2014010187A JP 6244936 B2 JP6244936 B2 JP 6244936B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon catalyst
- catalyst
- carbon
- phthalocyanine
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
- Catalysts (AREA)
- Inert Electrodes (AREA)
Description
比表面積の大きい電子導電体を担持体とした炭素触媒としては、大環状化合物をカーボンブラックなどの電子伝導性炭素担体表面に担持し、炭化させた炭素触媒(特許文献8、9、10)も報告されている。しかし、いずれの方法においても、充分な触媒活性を有する触媒の提案には至っていない。
X線光電子分光法(XPS)によって測定した、材料表面の全元素に対する窒素原子のモル比を(N)とし、材料表面の全窒素量に対する、XPSのN1sスペクトルのピーク分離により求めたN1型窒素原子量の割合とN2型窒素原子量の割合の合計(%)を(N1+N2)としたときの、表面末端窒素量{N×(N1+N2)}が1.0〜13.0であることを特徴とする炭素触媒に関する。
また、本発明によれば、乾燥工程を必要としない、より簡便な乾式プロセスで高い性能を有する炭素触媒を得ることができる。
本発明における炭素触媒は、グラフェンナノプレートレットからなる炭素担体と、炭素担体表面に担持された、金属フタロシアニンとを備えている。また、本発明は、上記材料を乾式混合して混合物を作製する工程と、この混合物を不活性ガス雰囲気中で熱処理し、炭素化する工程とを有するものである。前記炭素化工程は、500〜1000℃で行うことが好ましい。
本発明において、使用される炭素担体であるグラフェンナノプレートレットとは、炭素原子が6角形をなす平面構造を有するグラフェンシートが、ファンデルワールス力により弱く結合した複層構造を有している。グラフェンナノプレートレットは、欠陥の少ない平面構造を有しているため、高い電子伝導性、高い熱伝導性や高い機械的強度を示す。
複層構造のグラフェンナノプレートレットの厚みは特に限定されないが0.335nm(単層)以上、20nm以下であることが好ましい。厚すぎると、電子伝導性や比表面積などが低くなり好ましくない場合がある。
本明細書において、比表面積とは試料単位あたりの表面積のことであり、ガス(N2又はH2O)吸着法によって求めることができる。解析法はBET法を用い、相対圧(P/P0=0.05〜0.3)とガス吸着量のプロットより得られる直線の切片と勾配から、単分子吸着量を求めることで、BET比表面積を算出できる。
本発明において、使用される金属フタロシアニン、大環状金属錯体の一種であり、フタロシアニン構造の中心に金属イオンが配位した分子構造である。中心の金属イオンには、窒素原子が平面上に4配位しており、この構造は一般的に「金属−N4構造」と呼ばれる。同構造は酸素還元触媒の活性点として作用することが知られており、本発明における炭素触媒においても、担体となるグラフェンナノプレートレットの表面上に金属−N4構造が高密度に存在することが、高い触媒活性の発現に有利となる。そのため、炭素触媒の合成における熱処理工程においては、金属−N4構造が分解しない温度以下で行う必要がある。
また、本発明に係る炭素触媒は、以下のような特徴を持っている。
第一に、X線光電子分光法(XPS)によって測定した、材料表面の全元素に対する窒素原子のモル比を(N)とし、材料表面の全窒素量に対する、XPSのN1sスペクトルのピーク分離により求めたN1型窒素原子量の割合とN2型窒素原子量の割合の合計(%)を(N1+N2)としたときの、表面末端窒素量{N×(N1+N2)}が1.0〜13.0であることが好ましい。
上記以外の窒素原子は、N3型窒素原子(主に炭素環の内部に存在する、3つの炭素原子と結合している4級のもの)、N4型窒素原子(酸化された状態で、酸素のような異種元素が結合しているもの)に分類される。
炭素触媒の製造方法としては、グラフェンナノプレートレットと、金属フタロシアニンとを乾式混合する工程と、前記混合物を不活性ガス雰囲気中で熱処理し、炭素化する工程が好ましい。
グラフェンナノプレートレットと、金属フタロシアニンとを乾式混合する混合装置としては、以下のような乾式処理機が使用できる。
2本ロールや3本ロールなどのロールミル、ヘンシェルミキサーやスーパーミキサーなどの高速撹拌機、遊星ボールミル、マイクロナイザーやジェットミルなどの流体エネルギー粉砕機、アトライター、ホソカワミクロン社製粒子複合化装置「ナノキュア」、「ノビルタ」、「メカノフュージョン」、奈良機械製作所社製粉体表面改質装置「ハイブリダイゼーションシステム」、「メカノマイクロス」、「ミラーロ」などが挙げられる。
ペイントコンディショナー(「レッドデビル」や「スキャンデックス」の商品名で市販されているもの)などのメディア型の粉砕・分散機、又、自転に加えて公転による遠心力を利用する遊星ボールミルやシンキー社製のナノ型粉砕機「NP-100」や、ボールミル、アトライター、湿式ジェットミルなどが挙げられる。
ボールミル、ビーズミル、乾式ジェットミル、自転に加えて公転による遠心力を利用する遊星ボールミルなどが挙げられる。
グラフェンナノプレートレットと、金属フタロシアニンとを含有する材料の混合物を熱処理する方法においては、加熱温度はグラフェンナノプレートレットと、金属フタロシアニンの重量比によって異なるものであるが、500〜1000℃が好ましく、700〜1000℃であることがより好ましい。
加熱時間は特に限定されないが、通常は1時間から5時間であることが好ましい。
一方、加熱温度が1000℃を超える場合、金属フタロシアニンの熱分解や昇華が激しくなり、グラフェンナノプレートレット表面に触媒活性サイトとして考えられている金属−N4構造部位が残存しにくくなり、触媒活性が低いことがある。
ちなみに、酸洗浄により表面の金属成分が除去されることで、重量あたりの触媒活性が向上する場合があるが、これは、活性点と考えられる金属−N4構造の絶対数が増加するためではなく本質的に触媒活性が増加しているわけではない。
次に、本発明における炭素触媒を用いた触媒インキについて説明する。
本発明の触媒インキは、炭素触媒、バインダー、溶剤を最低限含むものである。バインダー成分は、プロトン伝導性があり、耐酸化性のある材料が好ましい。炭素触媒、バインダー、溶剤の割合は、特に限定されるものではなく、広い範囲内で適宜選択される。
分散剤の含有量は、触媒インキ中の炭素触媒に対し、0.01〜5重量%、好ましくは0.02〜3重量%である。この範囲の含有量とすることにより、炭素触媒の分散安定性を十分に達成できると同時に、炭素触媒の凝集を効果的に防止でき、かつ触媒層表面への分散剤の析出を防止できる。
バインダーとしては、プロトン伝導性を有する樹脂が好ましく、プロトン伝導性樹脂としては、ポリスチレンスルホン酸、ポリビニルスルホン酸などスルホン酸基を導入したオレフィン系樹脂、スルホン酸基を導入したポリイミド系樹脂、スルホン酸基を導入したフェノール樹脂、スルホン酸基を導入したポリエーテルケトン系樹脂、スルホン酸基が導入されたポリベンズイミダゾール系樹脂、酸とイミダゾール部分で塩形成したポリベンズイミダゾール系樹脂、スチレン・エチレン・ブチレン・スチレン共重合体のスルホン酸ドープ品、パーフルオロスルホン酸系樹脂などが挙げられる。
特に、電気陰性度の高いフッ素原子を導入する事で化学的に安定性が高く、スルホン酸基の解離度が高く、高いイオン電子伝導性が実現可能なパーフルオロスルホン酸系樹脂は、実用性が高く好ましい。このようなプロトン伝導性を有する樹脂の具体例としては、デュポン社製の「Nafion」、旭硝子社製の「Flemion」、旭化成社製の「Aciplex」、ゴア(Gore)社製の「Gore Select」などが挙げられる。通常、プロトン伝導性を有する樹脂は、固形分として5〜30重量%程度含むアルコール水溶液として使用される。アルコールとしては、例えば、メタノール、プロパノール、エタノールジエチルエーテルなどが使用される。
溶剤としては、特に限定されるものではない。主溶剤としては、水または水と親和性が高い溶剤が好ましく、特にアルコールが好適に使用できる。このようなアルコールとしては、例えば、沸点80〜200℃程度の1価のアルコールないし多価アルコールが利用でき、好ましくは炭素数が4以下のアルコール系溶剤が挙げられる。具体的には、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、t−ブタノールなどが挙げられる。アルコールは、1種単独で又は2種以上混合して使用される。これらの1価のアルコールの中でも、2−プロパノール、1−ブタノール及びt−ブタノールが好ましい。多価アルコールとしては具体的には、プロトン伝導性を有する樹脂との相溶性、及び触媒インキとした場合の乾燥効率の問題から、例えば、プロピレングリコール、エチレングリコールなどが好ましく、中でもプロピレングリコールが特に好ましい。
次に、本発明における炭素触媒を、アノード電極及びカソード電極に適用した燃料電池について説明する。
固体高分子電解質4としては、パーフルオロスルホン酸樹脂膜を代表とするフッ素系陽イオン交換樹脂膜が用いられる。
カソード側:O2+4H++4e-→2H2O
アノード側:H2→2H++2e-
の反応が起こり、アノード側で生成されたH+イオンは固体高分子電解質4中をカソード側に向かって移動し、e-(電子)は外部の負荷を通ってカソード側に移動する。
・表面窒素元素量、結合状態の検出;X線分光分析(XPS)(島津/KRATOS社製 AXIS−HS)
・BET比表面積の測定;窒素吸着量測定(日本ベル社製 BELSORP−mini)、水蒸気吸着量測定(日本ベル社製 BELSORP−18)
・平均一次粒子径の観察;透過型電子顕微鏡(TEM:JEOL社製JEM1010)、走査型電子顕微鏡SEM:日立製作所社製S−4300)。
・平均二次粒子径の測定;レーザー回折法による粒度分布計(Malvern Instruments社製 マスターサイザー2000)
・xGnP−C−750(XGscience社製:平均一次粒子径0.3μm、厚み2nm、比表面積670m2/g)
・フタロシアニン銅(関東化学社製)
・フタロシアニンニッケル(関東化学社製)
・P−26(山陽色素社製鉄フタロシアニン:平均一次粒子径80nm、平均二次粒子径20μm)
・フタロシアニンコバルト(II)(東京化成社製:平均一次粒子径300nm、平均二次粒子径5.0μm)
[製造例1]
鉄フタロシアニン20部とエタノール80部を秤量し、分散溶液を作製後、メディアとしてジルコニアビーズを添加した後、自転に加えて公転による遠心力を利用するナノ型粉砕機(シンキー社製「NP-100」)で、湿式粉砕し、得られたスラリーを乾燥させ、鉄フタロシアニン微粒子(1)を得た。鉄フタロシアニン微粒子(1)の平均一次粒子径が50nm、平均二次粒子径が40μmであった。
鉄フタロシアニン微粒子(1)をスパイラルジェットミル(ホソカワミクロン社製「AS50」)で乾式粉砕し、鉄フタロシアニン微粒子(2)を得た。鉄フタロシアニン微粒子(2)の平均一次粒子径が50nm、平均二次粒子径が5μmであった。
コバルトフタロシアニンをスパイラルジェットミル(ホソカワミクロン社製「AS50」)で乾式粉砕し、コバルトフタロシアニン微粒子(1)を得た。コバルトフタロシアニン微粒子(1)の平均一次粒子径が200nm、平均二次粒子径が3μmであった。
グラフェンナノプレートレットと鉄フタロシアニンを、重量比1/0.5で秤量し、粒子複合化装置メカノフュージョン(ホソカワミクロン社製)にて乾式混合を行い、混合物を得た。上記混合物を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、600℃で2時間熱処理を行い、炭素触媒(1)を得た。
グラフェンナノプレートレットと上記鉄フタロシアニン微粒子(1)を、重量比1/0.5で秤量し、粒子複合化装置メカノフュージョン(ホソカワミクロン社製)にて乾式混合を行い、混合物を得た。上記混合物を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、600℃で2時間熱処理を行い、炭素触媒(2)を得た。
グラフェンナノプレートレットと上記鉄フタロシアニン微粒子(2)を、重量比1/0.5で秤量し、粒子複合化装置メカノフュージョン(ホソカワミクロン社製)にて乾式混合を行い、混合物を得た。上記混合物を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、600℃で2時間熱処理を行い、炭素触媒(3)を得た。
グラフェンナノプレートレットと鉄フタロシアニンを、重量比1/0.5で秤量し、粒子複合化装置メカノフュージョン(ホソカワミクロン社製)にて乾式混合を行い、混合物を得た。上記混合物を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、800℃で2時間熱処理を行い、炭素触媒(4)を得た。
グラフェンナノプレートレットと鉄フタロシアニンを、重量比1/0.5で秤量し、粒子複合化装置メカノフュージョン(ホソカワミクロン社製)にて乾式混合を行い、混合物を得た。上記混合物を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、500℃で5時間熱処理を行い、乳鉢で粉砕後、電気炉にてアンモニア雰囲気下、800℃、15分熱処理を行い、炭素触媒(5)を得た。
グラフェンナノプレートレットとコバルトフタロシアニンを、重量比1/1で秤量し、粒子複合化装置メカノフュージョン(ホソカワミクロン社製)にて乾式混合し、混合物を得た。上記混合物を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、800℃で2時間熱処理を行い、炭素触媒(6)を得た。
グラフェンナノプレートレットと上記コバルトフタロシアニン微粒子(1)を、重量比1/1で秤量し、粒子複合化装置メカノフュージョン(ホソカワミクロン社製)にて乾式混合し、混合物を得た。上記混合物を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、800℃で2時間熱処理を行い、炭素触媒(7)を得た。
グラフェンナノプレートレットとコバルトフタロシアニンを、重量比1/1で秤量し、粒子複合化装置メカノフュージョン(ホソカワミクロン社製)にて乾式混合し、混合物を得た。上記混合物を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、1000℃で2時間熱処理を行い、炭素触媒(8)を得た。
グラフェンナノプレートレットとコバルトフタロシアニンを、重量比1/1で秤量し、粒子複合化装置メカノフュージョン(ホソカワミクロン社製)にて乾式混合し、混合物を得た。上記混合物を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、500℃で5時間熱処理を行い、乳鉢で粉砕後、電気炉にてアンモニア雰囲気下、800℃、15分熱処理を行い、炭素触媒(9)を得た。
グラフェンナノプレートレットと銅フタロシアニンを、重量比1/1で秤量し、粒子複合化装置メカノフュージョン(ホソカワミクロン社製)にて乾式混合し、混合物を得た。上記混合物を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、900℃で2時間熱処理を行い、炭素触媒(10)を得た。
グラフェンナノプレートレットとニッケルフタロシアニンを、重量比1/1で秤量し、粒子複合化装置メカノフュージョン(ホソカワミクロン社製)にて乾式混合し、混合物を得た。上記混合物を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、900℃で2時間熱処理を行い、炭素触媒(11)を得た。
グラフェンナノプレートレットと鉄フタロシアニンを、重量比1/1で秤量し、粒子複合化装置メカノフュージョン(ホソカワミクロン社製)にて乾式混合を行い混合物を得た。上記混合物を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、400℃で2時間熱処理を行い、炭素触媒(12)を得た。
[比較例2;炭素触媒(13)]
グラフェンナノプレートレットとコバルトフタロシアニンを、重量比1/1で秤量し、粒子複合化装置メカノフュージョン(ホソカワミクロン社製)にて乾式混合し、混合物を得た。上記混合物を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、400℃で2時間熱処理を行い、炭素触媒(13)を得た。
実施例1〜11及び、比較例1〜2で得た炭素触媒(1)〜(13)をそれぞれグラッシーカーボン上に分散させた電極を用いて、酸素還元活性評価を行なった。評価方法は以下の通りである。
炭素触媒粒子0.01部を秤量し、固体高分子電解質としてナフィオン(デュポン社製)が分散された水、プロパノール、ブタノール混合溶液3.56部(固形分0.19%)に添加したあと、超音波(45Hz)で15分間分散処理を行ない炭素触媒インキとした。
回転電極(グラッシーカーボン電極の半径0.2cm)表面を鏡面に研磨したあと、電極表面に上記炭素触媒インキ3.5μLを滴下し、1500rpmにてスピンコートし、自然乾燥により作用電極を作製した。
上記で作製した作用電極と、対極(白金)、参照電極(Ag/AgCl)が取り付けられた電解槽に電解液(0.5M硫酸水溶液)を入れ、酸素還元活性試験を行なった。
実施例1〜11の炭素触媒(1)〜(11)及び、比較例1〜2の炭素触媒(12)〜(13)12部をそれぞれ秤量し、1−ブタノール48部とナフィオン(Nafion)溶液(デュポン社製;固形分20%水−アルコール混合溶液)40重量部の混合溶液中に添加後、ディスパー(プライミクス社製、T.Kホモディスパー)にて撹拌混合することで触媒インキ(1)〜(13)(固形分濃度20重量%、触媒インキ100重量%としたときの炭素触媒とバインダーを合計した割合)を調製した。
実施例1〜11の触媒インキ(1)〜(11)及び、比較例1〜2の触媒インキ(12)〜(13)を、ドクターブレードにより、乾燥後の炭素触媒の目付け量が2mg/cm2になるようにテフロン(登録商標)フィルム上にそれぞれ塗布し、大気雰囲気下、95℃で15分間乾燥することにより、ムラのない均一なカソード用燃料電池用触媒層(1)〜(13)を作製した。
ここでは、燃料電池用電極膜接合体の作製に使用するアノード用燃料電池用触媒層の作製方法について以下に述べる。
炭素触媒の代わりに、白金触媒担持カーボン4部(田中貴金属社製、白金量46%)、溶剤として1―プロパノール56部、および水20部をディスパー(プライミクス、TKホモディスパー)にて撹拌混合することで触媒ペースト組成物(固形分濃度4%)を調製した。次いで、ナフィオン(Nafion)溶液(デュポン社製;固形分20%水−アルコール混合溶液)20部を添加し、ディスパー(プライミクス製、T.Kホモディスパー)にて撹拌混合することで触媒インキ(固形分濃度8%)を作製した。得られた触媒インキを白金触媒担持カーボンの目付け量が0.46mg/cm2になるようにテフロン(登録商標)フィルム上に塗布し、大気雰囲気中70℃の条件で15分間乾燥することにより、アノード用燃料電池用触媒層を作製した。
実施例1〜11、及び比較例1〜2で作製したカソード用燃料電池用触媒層(1)〜(13)と、アノード用燃料電池用触媒層とを、それぞれ固体高分子電解質膜(Nafion212、デュポン社製、膜厚50μm)の両面に密着して、150℃、5MPaの条件で狭持した後、テフロン(登録商標)フィルムを剥離した。次いで、更に両側から電極基材(ガス拡散層GDL、炭素繊維からなるカーボンペーパー、TGP−H−090、東レ(株)製)を密着させ、本発明の燃料電池用電極膜接合体(GDL/触媒層/固体高分子電解質膜/触媒層/GDL)(1)〜(13)を作製した。
実施例1〜11と比較例1〜2で得られた燃料電池用電極膜接合体(1)〜(13)を2cm角の試料とし、その両側からガスケット2枚、次いでグラファイトプレートであるセパレータ2枚ではさみ、更に両側から集電板を2枚装着して燃料電池(単セル)として作製した。測定はAutoPEMシリーズ「PEFC評価システム」東陽テクニカ社製で実施した。燃料電池運転条件として、温度80℃、相対湿度100%の条件下で、アノード側に水素を300ml/minで流し、カソード側に酸素を300ml/minで流して発電試験を実施した。
実施例1〜11と比較例1〜2で作製した単セルの電流−電圧特性を測定することにより、電池性能を評価した。
その結果、表1より実施例1〜11で作製した単セルでは、開放電圧は0.7V〜0.8V、短絡電流密度950〜1200mA/cm2であった。これに対し、比較例1〜2で作製した単セルは、開放電圧0.6〜0.65V、短絡電流密度630〜650mA/cm2と実施例に比べて低い結果であった。
また表1より、酸素還元開始電位の高い炭素触媒が必ずしも高い電池性能を示すわけではないことがわかる。これは、触媒の活性点構造が十分に安定ではなく、電池性能評価条件においては触媒の性能を十分に引き出せていないためと考えられる。そのため、実用的な電池運転条件に耐え得る触媒表面とするためには、焼成温度は800℃程度の高温であることが好ましいことがわかる。
2 ガス拡散層
3 アノード電極触媒(燃料極)
4 固体高分子電解質
5 カソード電極触媒(空気極)
6 ガス拡散層
7 セパレータ
Claims (7)
- グラフェン骨格中に窒素原子が存在する炭素触媒であって、
X線光電子分光法(XPS)によって測定した、材料表面の全元素に対する窒素原子のモル比を(N)とし、材料表面の全窒素量に対する、XPSのN1sスペクトルのピーク分離により求めたN1型窒素原子量の割合とN2型窒素原子量の割合の合計(%)を(N1+N2)としたときの、表面末端窒素量{N×(N1+N2)}が1.0〜13.0であることを特徴とする炭素触媒。 - 水を吸着種としたBET比表面積(BETH2O)と、窒素を吸着種としたBET比表面積(BETN2)の比(BETH2O /BETN2)で示される親水度が、0.1〜2.5であることを特徴とする請求項1記載の炭素触媒。
- グラフェンナノプレートレットと、金属フタロシアニンとを乾式混合して混合物を得る工程と、前記混合物を不活性ガス雰囲気中、500〜1000℃で熱処理し、炭素化する工程とを含む請求項1または2記載の炭素触媒の製造方法。
- 前記乾式混合は、グラフェンナノプレートレットに対する金属フタロシアニンの重量比(金属フタロシアニン/グラフェンナノプレートレット)が、0.3/1〜2/1であり、前記熱処理は、700〜1000℃で行われることを特徴とする請求項3記載の炭素触媒の製造方法。
- 前記金属フタロシアニンは、鉄フタロシアニンまたはコバルトフタロシアニンであり、前記鉄フタロシアニンは、平均一次粒子径が10〜100nm、且つ平均二次粒子径が0.1〜10μmであり、前記コバルトフタロシアニンは、平均一次粒子径が10〜500nm、且つ平均二次粒子径が0.1〜10μmである請求項3または4記載の炭素触媒の製造方法。
- 請求項1または2記載の炭素触媒と、バインダーと、溶剤とを含有する触媒インキ。
- 請求項1または2記載の炭素触媒を、固体高分子電解質膜の一方、又は双方の面に配置させた電極触媒を有する燃料電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014010187A JP6244936B2 (ja) | 2013-01-30 | 2014-01-23 | 炭素触媒及びその製造方法、及び該炭素触媒を用いた触媒インキ並びに燃料電池 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013015510 | 2013-01-30 | ||
JP2013015510 | 2013-01-30 | ||
JP2013057475 | 2013-03-21 | ||
JP2013057475 | 2013-03-21 | ||
JP2014010187A JP6244936B2 (ja) | 2013-01-30 | 2014-01-23 | 炭素触媒及びその製造方法、及び該炭素触媒を用いた触媒インキ並びに燃料電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014207220A JP2014207220A (ja) | 2014-10-30 |
JP6244936B2 true JP6244936B2 (ja) | 2017-12-13 |
Family
ID=52120607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014010187A Active JP6244936B2 (ja) | 2013-01-30 | 2014-01-23 | 炭素触媒及びその製造方法、及び該炭素触媒を用いた触媒インキ並びに燃料電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6244936B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109781819A (zh) * | 2019-03-12 | 2019-05-21 | 湖北大学 | 一种基于N,S-CDs/CuPc复合材料的分子印迹光电化学传感器的制备方法和应用 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6490667B2 (ja) * | 2014-03-27 | 2019-03-27 | クミアイ化学工業株式会社 | 電極触媒及びその製造方法 |
JP6350092B2 (ja) * | 2014-08-06 | 2018-07-04 | 東洋インキScホールディングス株式会社 | 微生物燃料電池用炭素触媒及びその製造方法、触媒インキ並びに微生物燃料電池 |
JP6736929B2 (ja) * | 2015-03-30 | 2020-08-05 | 東洋インキScホールディングス株式会社 | 燃料電池用ペースト組成物、及び燃料電池 |
KR101930136B1 (ko) * | 2015-10-20 | 2018-12-18 | 한양대학교 산학협력단 | 그래핀-프탈로시아닌 하이브리드 소재, 그 제조 방법, 이를 포함하는 태양 전지, 및 태양전지의 제조 방법 |
JP2017210638A (ja) * | 2016-05-24 | 2017-11-30 | 東洋インキScホールディングス株式会社 | 水電解用炭素触媒及びその製造方法、及び該炭素触媒を用いた水電解用触媒インキ並びに水電解装置 |
JP6928343B2 (ja) * | 2017-04-26 | 2021-09-01 | シャープ株式会社 | 触媒の製造方法 |
JP7205209B2 (ja) * | 2018-12-18 | 2023-01-17 | 東洋インキScホールディングス株式会社 | バイオ燃料電池アノード用触媒インキ材料、バイオ燃料電池アノード用触媒インキ組成物、バイオ燃料電池アノード、バイオ燃料電池デバイス |
JP7175857B2 (ja) * | 2019-08-02 | 2022-11-21 | 日清紡ホールディングス株式会社 | 金属担持触媒、電池電極及び電池 |
CN111589465A (zh) * | 2020-06-03 | 2020-08-28 | 浙江理工大学 | 一种高分散性三维多孔碳基金属催化剂的制备方法及应用 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57208074A (en) * | 1981-06-17 | 1982-12-21 | Toshiba Corp | Porous catalytic layer of air electrode |
JP4461427B2 (ja) * | 2004-07-30 | 2010-05-12 | 株式会社豊田中央研究所 | 電極触媒体及びその製造方法 |
JP4452885B2 (ja) * | 2005-05-23 | 2010-04-21 | 国立大学法人群馬大学 | 炭素系燃料電池用触媒及びその製造方法並びに該触媒を用いた燃料電池 |
JP4452887B2 (ja) * | 2005-07-13 | 2010-04-21 | 国立大学法人群馬大学 | 燃料電池用電極触媒の製造方法及びその方法で製造された電極触媒並びにその電極触媒を用いた燃料電池 |
JP2009208061A (ja) * | 2008-02-06 | 2009-09-17 | Gunma Univ | 炭素触媒及びこの炭素触媒を含むスラリー、炭素触媒の製造方法、ならびに、炭素触媒を用いた燃料電池、蓄電装置及び環境触媒 |
JP5481646B2 (ja) * | 2008-06-04 | 2014-04-23 | 清蔵 宮田 | 炭素触媒、燃料電池、蓄電装置 |
JP6047742B2 (ja) * | 2012-10-31 | 2016-12-21 | 国立大学法人 熊本大学 | 鉄フタロシアニン/グラフェンナノ複合体、鉄フタロシアニン/グラフェンナノ複合体担持電極及びこれらの製造方法 |
-
2014
- 2014-01-23 JP JP2014010187A patent/JP6244936B2/ja active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109781819A (zh) * | 2019-03-12 | 2019-05-21 | 湖北大学 | 一种基于N,S-CDs/CuPc复合材料的分子印迹光电化学传感器的制备方法和应用 |
CN109781819B (zh) * | 2019-03-12 | 2020-11-06 | 湖北大学 | 一种基于N,S-CDs/CuPc复合材料的分子印迹光电化学传感器的制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
JP2014207220A (ja) | 2014-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6244936B2 (ja) | 炭素触媒及びその製造方法、及び該炭素触媒を用いた触媒インキ並びに燃料電池 | |
Vinayan et al. | Synthesis and investigation of mechanism of platinum–graphene electrocatalysts by novel co-reduction techniques for proton exchange membrane fuel cell applications | |
JP6350092B2 (ja) | 微生物燃料電池用炭素触媒及びその製造方法、触媒インキ並びに微生物燃料電池 | |
JP4452889B2 (ja) | 燃料電池用電極触媒及びその製造方法並びに該触媒を用いた燃料電池 | |
JP6225545B2 (ja) | 炭素触媒造粒体、炭素触媒造粒体の製造方法、及び該炭素触媒造粒体を用いた触媒インキ並びに燃料電池 | |
CN100438160C (zh) | 用于燃料电池的Pt/Ru合金催化剂 | |
JP2005527956A (ja) | 燃料電池適用のための導電性ポリマーグラフト炭素材料 | |
JP2005527687A (ja) | 燃料電池適用のためのスルホン化導電性ポリマーグラフト化炭素性材料 | |
KR102054609B1 (ko) | 연료 전지용 탄소 분말, 그리고 당해 연료 전지용 탄소 분말을 사용하는 촉매, 전극 촉매층, 막 전극 접합체 및 연료 전지 | |
JP6736929B2 (ja) | 燃料電池用ペースト組成物、及び燃料電池 | |
CN101596453B (zh) | 一种以碳载体为载体的Pt催化剂的制备方法 | |
JP6040954B2 (ja) | 燃料電池用触媒の製造方法 | |
Vellacheri et al. | Pt–MoOx-carbon nanotube redox couple based electrocatalyst as a potential partner with polybenzimidazole membrane for high temperature Polymer Electrolyte Membrane Fuel Cell applications | |
JP2017210638A (ja) | 水電解用炭素触媒及びその製造方法、及び該炭素触媒を用いた水電解用触媒インキ並びに水電解装置 | |
Gao et al. | Facile synthesis of Pt nanoparticles supported on graphene/Vulcan XC-72 carbon and their application for methanol oxidation | |
JP2007311026A (ja) | 燃料電池用電極触媒及びその製造方法並びに該触媒を用いた燃料電池 | |
WO2006018257A2 (en) | Platinum/ruthenium catalyst for direct methanol fuel cells | |
JP6186959B2 (ja) | 触媒インキの製造方法、触媒インキ、触媒電極、燃料電池、および空気電池 | |
JP6956851B2 (ja) | 燃料電池用電極触媒及びそれを用いた燃料電池 | |
JP6237338B2 (ja) | スルホン化炭素触媒及びその製造方法、及び該スルホン化炭素触媒を用いた触媒インキ並びに燃料電池 | |
KR20060052555A (ko) | 연료전지, 막 전극 접합체 및 그들에 이용되는 촉매와촉매의 제조방법 | |
JP2009158131A (ja) | 電極触媒及び電極触媒の製造方法 | |
JP6263969B2 (ja) | 酸化物系非白金触媒造粒体、酸化物系非白金触媒造粒体の製造方法、及び該酸化物系非白金触媒造粒体を用いた触媒インキ並びに燃料電池 | |
JP5987775B2 (ja) | 燃料電池用触媒ペースト組成物、触媒インキ組成物、触媒層もしくは撥水層、電極膜接合体、燃料電池 | |
Wu et al. | High pressure organic colloid method for the preparation of high performance carbon nanotube-supported Pt and PtRu catalysts for fuel cell applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170606 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171017 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171030 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6244936 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |