[go: up one dir, main page]

JP6236975B2 - プロジェクター - Google Patents

プロジェクター Download PDF

Info

Publication number
JP6236975B2
JP6236975B2 JP2013166670A JP2013166670A JP6236975B2 JP 6236975 B2 JP6236975 B2 JP 6236975B2 JP 2013166670 A JP2013166670 A JP 2013166670A JP 2013166670 A JP2013166670 A JP 2013166670A JP 6236975 B2 JP6236975 B2 JP 6236975B2
Authority
JP
Japan
Prior art keywords
light source
light
length
intersection line
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013166670A
Other languages
English (en)
Other versions
JP2015034933A (ja
Inventor
宮前 章
章 宮前
貴之 松原
貴之 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2013166670A priority Critical patent/JP6236975B2/ja
Priority to US14/446,720 priority patent/US9661285B2/en
Priority to CN201410382774.5A priority patent/CN104345534B/zh
Publication of JP2015034933A publication Critical patent/JP2015034933A/ja
Application granted granted Critical
Publication of JP6236975B2 publication Critical patent/JP6236975B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/149Beam splitting or combining systems operating by reflection only using crossed beamsplitting surfaces, e.g. cross-dichroic cubes or X-cubes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • G02B27/285Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining comprising arrays of elements, e.g. microprisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Description

本発明は、プロジェクターに関する。
クロスダイクロイックプリズムを色光合成手段として用いたプロジェクターにおいては、スクリーンにクロスダイクロイックプリズムの中央の交差部の影が映り込み、プロジェクターの表示品質が低下してしまうという問題があった。
この問題に対して、光源とライトバルブとの間に拡散板を配置することで、光源から射出される光を拡散させ、クロスダイクロイックプリズムの交差部の影による影響を低減する構成が提案されている(例えば、特許文献1)。
特開2008−268581号公報
上記のようなプロジェクターにおいて、光源としてレーザー光源を用いた場合には、レーザー光は指向性が高いため、拡散板による光の拡散角度を大きく設定する必要がある。しかしながら、拡散板の拡散角度を大きくすると、拡散角度の大きい光は光路上から外れてしまうため、光の利用効率が悪くなるという問題があった。
本発明の一つの態様は、上記問題点に鑑みて成されたものであって、クロスダイクロイックプリズムの交差部の影による影響を低減でき、かつ、光の利用効率に優れたプロジェクターを提供することを目的の一つとする。
本発明のプロジェクターの一つの態様は、第1の光源装置と、第2の光源装置と、レーザー光源装置と、前記第1の光源装置からの光を変調して第1の画像光を形成する第1の光変調装置と、前記第2の光源装置からの光を変調して第2の画像光を形成する第2の光変調装置と、前記レーザー光源装置からの光を変調して第3の画像光を形成する第3の光変調装置と、前記第1の画像光と前記第2の画像光と前記第3の画像光とを合成し、複数の直角プリズムを貼り合せることで形成される中心交線を有するクロスプリズムと、前記クロスプリズムからの光を投射する投射光学系と、2次光源像を前記レーザー光源装置と前記第3の光変調装置との間の光路中に形成する2次光源像形成光学系と、を備えたプロジェクターであって、前記2次光源像形成光学系は、前記レーザー光源装置からの光が入射するコリメートレンズと、前記コリメートレンズから射出された光を集光し、前記2次光源像を結像する集光レンズと、を有し、前記レーザー光源装置は、前記クロスプリズムの前記中心交線と平行な方向に長手方向を有するスリット状のレーザー射出部を有し、前記レーザー射出部から射出された光は、該光の断面形状の向きが前記中心交線に入射するまで保存されており、前記レーザー射出部は、前記2次光源像の形状が前記レーザー光源装置のファーフィールドパターンの形状となるように、前記コリメートレンズの焦点位置からずれた位置に配置されており、前記2次光源像は、前記中心交線と直交する方向の長さが前記中心交線と平行な方向の長さよりも長ことを特徴とする。
本発明のプロジェクターの一つの態様によれば、クロスプリズムの中心交線と直交する方向の2次光源像の長さを十分長くすることができる。そのため、クロスプリズムの中心交線に入射する光が、クロスプリズムの中心交線と直交する方向に大きく広がって分布することになる。その結果、中心交線によって形成される影がクロスプリズムの中心交線と直交する方向に大きく拡散される。影が拡散されることにより、影が薄くなるため、影が目立たなくなり、プロジェクターの表示品質の劣化を低減できる。
また、本発明のプロジェクターの一つの態様によれば、クロスプリズムの中心交線に対する2次光源像の形状によって、クロスプリズムの中心交線の影による影響を低減する構成であるため、光を過度に広がらせることを抑制できる。これにより、光が光路上から外れることを抑制でき、光の利用効率に優れたプロジェクターが得られる。
前記2次光源像形成光学系は、前記レーザー光源装置からの光が入射されるコリメートレンズと、前記コリメートレンズから射出された光を集光し、前記2次光源像を結像する集光レンズと、を備える構成としてもよい。
この構成によれば、コリメートレンズと集光レンズとを用いて、上述した形状を有する2次光源像を形成できるため、簡便である。
前記レーザー光源装置は、スリット状のレーザー射出部を有し、前記レーザー光源装置におけるスリット状のレーザー射出部の位置は、前記コリメートレンズの焦点位置に対して所定距離ずれて設定され、前記レーザー光源装置の前記レーザー射出部の長手方向は、前記クロスプリズムの中心交線と平行である構成としてもよい。
この構成によれば、レーザー光源装置のレーザー射出部の位置が、コリメートレンズの焦点位置に対して所定距離ずれていることにより、集光レンズによって結像される2次光源像が、レーザー光源装置のファーフィールドパターン(FFP:Far Field Pattern)の形状となる。レーザー光源装置のレーザー射出部はスリット状であるため、レーザー光源装置のFFPは、スリットの幅方向に長い楕円形状となる。これにより、レーザー光源装置のレーザー射出部の長手方向は、クロスプリズムの中心交線と平行であるため、FFPの長手方向は、クロスプリズムの中心交線と直交する。したがって、この構成によれば、2次光源像をクロスプリズムの中心交線と直交する方向の長さが中心交線と平行な方向の長さよりも長い形状とできる。
前記レーザー光源装置は、スリット状のレーザー射出部を有し、前記レーザー光源装置におけるスリット状のレーザー射出部の位置は、前記コリメートレンズの焦点位置に設定され、前記レーザー光源装置の前記レーザー射出部の長手方向は、前記クロスプリズムの中心交線と垂直である構成としてもよい。
この構成によれば、レーザー光源装置のレーザー射出部の位置が、コリメートレンズの焦点位置であることにより、集光レンズによって結像される2次光源像が、レーザー光源装置のNFPの形状、すなわち、レーザー光源装置のスリット状のレーザー射出部の形状となる。したがって、この構成によれば、レーザー光源装置のレーザー射出部の長手方向はクロスプリズムの中心交線と垂直であるため、2次光源像をクロスプリズムの中心交線と直交する方向の長さが中心交線と平行な方向の長さよりも長い形状とできる。
前記2次光源像からの光が入射され、複数の3次光源像を形成する3次光源像形成光学系と、前記3次光源像形成光学系からの光が入射する複数の入射口を有するレンズアレイと、を備え、前記複数の3次光源像各々の前記クロスプリズムの中心交線と直交する方向の長さは、前記複数の入射口各々の前記クロスプリズムの中心交線と直交する方向の長さの50%以上、110%以下である構成としてもよい。
また、前記複数の3次光源像各々の前記クロスプリズムの中心交線と直交する方向の長さは、前記複数の入射口各々の前記クロスプリズムの中心交線と直交する方向の長さの50%以上、100%以下である構成としてもよい。
また、前記複数の3次光源像各々の前記クロスプリズムの中心交線と直交する方向の長さは、前記複数の入射口各々の前記クロスプリズムの中心交線と直交する方向の長さの80%以上、100%以下である構成としてもよい。
これらの構成によれば、クロスプリズムの中心交線の影による影響を効果的に低減できる。
前記複数の3次光源像各々の前記クロスプリズムの中心交線と平行な方向の長さは、前記複数の入射口各々の前記クロスプリズムの中心交線と平行な方向の長さよりも小さい構成としてもよい。
この構成によれば、光がレンズアレイに入射する際に、クロスプリズムの中心交線と平行な方向においては、光が入射口からはみ出すことを抑制できる。そのため、この構成によれば、光の利用効率が低減することを抑制できる。
第1実施形態のプロジェクター示す模式図である。 第1実施形態のレーザー光源装置から射出される光の断面形状を示す模式図である。 第1実施形態の2次光源像形成光学系を示す模式図である。 第1実施形態におけるプロジェクターの一部を示す模式図である。 第1実施形態における第1フライアイインテグレーターを示す平面図である。 第1実施形態における第1偏光ビームスプリッターを示す図である。 第1実施形態における入射口を示す図である。 第1実施形態における3次光源像の一例を示す図である。 比較例におけるプロジェクターの一部を示す模式図である。 第1実施形態における3次光源像の一例を示す図である。 第2実施形態のレーザー光源装置及び2次光源像形成光学系を示す模式図である。 第2実施形態のレーザー光源装置から射出される光の断面形状を示す模式図である。
以下、図面を参照しながら、本発明の実施形態に係るプロジェクターについて説明する。
なお、本発明の範囲は、以下の実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。
(第1実施形態)
図1は、本実施形態のプロジェクター1000を示す模式図である。
本実施形態のプロジェクター1000は、照明装置100と、光変調装置(第1の光変調装置)400Rと、光変調装置(第2の光変調装置)400Gと、光変調装置(第3の光変調装置)400Bと、反射型偏光板210と、反射型偏光板220と、ダイクロイックミラー230と、反射型偏光板240と、クロスダイクロイックプリズム(クロスプリズム)500と、投射光学系600とを備えている。
照明装置100は、レーザー光源装置100aと、2次光源像形成光学系50と、回転拡散板70と、第1ピックアップ光学系80と、第1フライアイインテグレーター90と、第1偏光ビームスプリッター(偏光ビームスプリッター,偏光変換素子)93と、第1平行化レンズ94と、波長変換型光源装置100bと、第2フライアイインテグレーター190と、第2偏光ビームスプリッター193と、第3平行化レンズ194とを備えている。本実施形態において、波長変換型光源装置100bは、第1の光源装置及び第2の光源装置に相当する。
レーザー光源装置100aは、レーザー光を射出する。レーザー光源装置100aは、第1基台51と、第1基台51上に平面的に並べて配置された複数の第1固体発光素子52とを備えた光源アレイである。第1固体発光素子52は、青色(発光強度のピーク:460nm付近)のレーザー光を射出する半導体レーザーである。第1固体発光素子52は、460nm以外のピーク波長を有するレーザー光を射出する半導体レーザーであってもよい。
図2は、レーザー光源装置100aが備える1つの第1固体発光素子52から射出される光の断面形状を示す模式図である。
なお、図2及び後述する図4〜図10、図12においては、Z軸を設定し、これを参照しつつ各構成要素の配置関係を説明する。Z軸方向は、本実施形態においては、例えば、鉛直方向とする。また、以下の説明においては、Z軸方向(鉛直方向)に垂直な方向を水平方向またはX軸方向と称する場合がある。
第1固体発光素子52は、図2に示すように、例えば、スリット状のレーザー射出部52aを有している。第1固体発光素子52は、本実施形態においては、例えば、第1固体発光素子52のレーザー射出部52aの長手方向が水平(鉛直方向(Z軸方向)と垂直)となるようにして設置されている。また、クロスダイクロイックプリズム500は、クロスダイクロイックプリズム500の中心交線Cが水平となるように設置されている。これにより、第1固体発光素子52のレーザー射出部52aの長手方向は、後述するクロスダイクロイックプリズム500の中心交線Cと平行となる。レーザー射出部52aの大きさは、例えば、長さが15μmであり、幅が1μmである。
なお、レーザー射出部52aの長手方向が、クロスダイクロイックプリズム500の中心交線Cと平行であるとは、光の進行方向に垂直で、かつ、レーザー射出部52aを通る光束断面と、光の進行方向に垂直で、かつ、クロスダイクロイックプリズム500の中心交線Cを通る光束断面とを重ねた際に、各断面に対するレーザー射出部52aの長手方向と、クロスダイクロイックプリズム500の中心交線Cとが、平行であることを意味する。
2次光源像形成光学系50は、図1に示すように、第1コリメートレンズアレイ53と、第1集光レンズ60とを備えている。
第1コリメートレンズアレイ53は、各第1固体発光素子52と1対1に対応した複数のコリメートレンズ530を備えている。複数のコリメートレンズ530は、第1基台51上に並べて配置されている。各コリメートレンズ530は、対応する第1固体発光素子52から射出される青色光の光軸上に設置されている。
ここで、第1コリメートレンズアレイ53と、レーザー光源装置100aとの相対位置関係は、第1固体発光素子52のレーザー射出部52aの位置が、それに対応するコリメートレンズ530の焦点位置に対して所定距離ずれるようにして配置されている。言い換えると、第1コリメートレンズアレイ53は、デフォーカスされるように配置されている。本実施形態においては、第1固体発光素子52のレーザー射出部52aが、それに対応するコリメートレンズ530の焦点位置よりもコリメートレンズ530に接近するように、第1コリメートレンズアレイ53とレーザー光源装置100aとが配置されている。焦点位置に対してずれる所定距離(以下、デフォーカス量と称する場合がある)は、例えば、125μm以上、250μm以下である。デフォーカス量を、例えば、125μm以上とすることにより、効果的にクロスダイクロイックプリズム500の中心交線Cの影による影響を低減できる。
なお、第1固体発光素子52のレーザー射出部52aが、それに対応するコリメートレンズ530の焦点位置よりもコリメートレンズ530から遠ざかるように、第1コリメートレンズアレイ53とレーザー光源装置100aとを配置してもよい。
第1コリメートレンズアレイ53に入射された青色光は、第1集光レンズ60に向けて射出される。このとき、第1コリメートレンズアレイ53は、上述したように、レーザー光源装置100aに接近してデフォーカスされているため、各コリメートレンズ530から射出される青色光は、わずかに拡散した光となる。
第1集光レンズ60は、凸レンズである。第1集光レンズ60に入射された光は、回転拡散板70に集光される。第1集光レンズ60から射出された光は、回転拡散板70上に2次光源像120を結像する。すなわち、2次光源像形成光学系50は、2次光源像120をレーザー光源装置100aと光変調装置400Bとの間の光路中に形成する。本実施形態における2次光源像120の形状は、図2に示すように、長軸方向が鉛直方向(Z軸方向)と平行な楕円形状である。言い換えると、2次光源像120は、後述するクロスダイクロイックプリズム500の中心交線Cと直交する方向(Z軸方向)の長さが中心交線Cと平行な方向の長さよりも長い形状を持つ。
なお、2次光源像120に対するクロスダイクロイックプリズム500の中心交線Cの方向は、光の進行方向に垂直で、かつ、2次光源像120を通る光束断面と、光の進行方向に垂直で、かつ、クロスダイクロイックプリズム500の中心交線Cを通る光束断面とを重ねた際の、光束断面における2次光源像120に対する中心交線Cの方向を意味する。
形成される2次光源像120の形状についてより詳細に説明する。
図3は、本実施形態の2次光源像形成光学系50を示す模式図である。
2次光源像120の形状は、図3に示すように、各コリメートレンズ530の焦点Fの位置における等価光源像124の形状と相似形状となる。等価光源像124は、デフォーカスされた各コリメートレンズ530の焦点Fに光源像が形成されたと仮定した場合における光源像である。そして、等価光源像124の形状は、第1固体発光素子52のレーザー射出部52aからコリメートレンズ530の焦点Fまでの距離だけ離れた位置における、レーザー光源装置100aのレーザー光の仮想的な形状となる。
ここで、一般に半導体レーザーから射出される光の形状は、レーザー光の射出位置からの距離によって異なる。図2に示すように、レーザー射出部52aからの距離が比較的近い範囲における光の形状(NFP:Near Field Pattern)は、レーザー射出部52aの形状と同様の形状となる。本実施形態においては、レーザー射出部52aがスリット状であるため、NFPの形状は、水平方向(Z軸と垂直な方向)の長さが、鉛直方向(Z軸方向)の長さよりも長いスリット状である。
一方、レーザー射出部52aから所定距離離れた範囲における光の形状(FFP)は、光の回折効果によって、所定方向に広がった形状となる。本実施形態においては、FFPの形状は、NFPがスリット状であるため、NFPの幅方向に広がった楕円形状となる。すなわち、本実施形態の第1固体発光素子52のFFPの形状は、鉛直方向(Z軸方向)の長さが、水平方向の長さよりも長い形状となる。NFPの長手方向とFFPの長手方向とは、直交している。
本実施形態においては、図3に示すように、等価光源像124の形状は、レーザー射出部52aの位置がコリメートレンズ530の焦点Fの位置と所定距離ずれているため、第1固体発光素子52のFFPの形状と相似形状となる。そのため、本実施形態における2次光源像120の形状は、第1固体発光素子52のFFPと相似形状となる。これにより、2次光源像120の形状は、上述した形状、すなわち、後述するクロスダイクロイックプリズム500の中心交線Cと直交する方向(鉛直方向,Z軸方向)の長さが中心交線Cと平行な方向(水平方向)の長さよりも長い形状となる。
図1に戻り、拡散部材としての回転拡散板70は、入射した青色光を拡散して入射側とは反対側の面から射出する透過型の回転拡散板である。回転拡散板70は、モーター73により回転駆動される拡散部材としての基板71を備えている。基板71としては、公知の拡散板、例えば、磨りガラスや、ホログラフィックディフューザー、透明基板の表面にブラスト処理を施したもの、透明基板の内部にビーズのような散乱材を分散させ、散乱材によって光を散乱させるものなどを用いることができる。本実施形態では基板71として円板を用いているが、基板71の形状は円板に限られない。回転拡散板70では、基板71を回転駆動することによって、青色光が照射された部分が円を描くように、青色光が照射される領域S1に対して相対的に移動する。
回転拡散板70から射出された光は、第1ピックアップ光学系80に入射される。
第1ピックアップ光学系80は、第1フライアイインテグレーター90と回転拡散板70との間の光路上に配置されている。第1ピックアップ光学系80は、回転拡散板70からの光が入射するピックアップレンズとしての第1レンズ81と、第1レンズ81から射出される光を平行化する第2レンズ82とを含んで構成されている。第1レンズ81は、例えば、光入射面が平面状であり、光射出面が凸の曲面状をなす平凸レンズからなり、第2レンズ82は、例えば、凸レンズからなる。第1ピックアップ光学系80は、回転拡散板70からの光を、平行化した状態で第1フライアイインテグレーター90に入射させる。
なお、第1ピックアップ光学系80は、回転拡散板70から射出される青色光の広がりに応じて、使用するレンズの屈折率や形状が決められる。また、レンズの数も2つに限らず、1つまたは3つ以上の複数個とすることもできる。
図4は、クロスダイクロイックプリズム500の中心交線Cに入射する光を模式的に示した側面図である。図5は、図4に示した第1フライアイレンズ91及び第2フライアイレンズ92をクロスダイクロイックプリズム500側から見た平面図(ZX面図)である。
図4においては、適宜部材の図示を省略しており、また、光の進行方向が一方向(図の左右方向)となるように、各部材の配置等を適宜変更している。
なお、図4、図5及び後述する図6〜10においては、クロスダイクロイックプリズム500の中心交線Cと平行な方向をX軸方向とする。
詳細は後述するが、図4に示すように、第1フライアイインテグレーター90に入射された光は、第1偏光ビームスプリッター93及び光変調装置400Bを介してクロスダイクロイックプリズム500に入射される。クロスダイクロイックプリズム500は、中心交線Cが水平方向と平行で、かつ、クロスダイクロイックプリズム500に入射される光の進行方向と垂直な方向となるように配置されている。
第1フライアイインテグレーター90は、図4及び図5に示すように、入射した光の光量分布を均一化する。第1フライアイインテグレーター90は、3次光源像形成光学系としての第1フライアイレンズ91と、レンズアレイとしての第2フライアイレンズ92とを備える。第1フライアイレンズ91及び第2フライアイレンズ92各々は、複数のレンズが平面的に配置されたレンズである。本実施形態においては、図5に示すように、第1フライアイレンズ91が備える複数のレンズ91aは、X軸方向とZ軸方向とにマトリクス状に配置されている。第2フライアイレンズ92が備える複数のレンズ92aも、第1フライアイレンズ91と同様にマトリクス状に配置されている。本実施形態では、第1フライアイレンズ91及び第2フライアイレンズ92はそれぞれ、16個のレンズを有している。
第1フライアイレンズ91を構成する複数のレンズ91a及び第2フライアイレンズ92を構成する複数のレンズ92aは、それぞれ、例えば、一方の面が平面状であり、他方の面が凸の曲面状をなす平凸レンズからなる。第1フライアイレンズ91と第2フライアイレンズ92とは、各レンズの凸曲面が対向するようにして配置されている。
図6(A)は、図4において第1偏光ビームスプリッター93を第2フライアイレンズ92側から見た平面図(ZX面図)であり、図6(B)は、図6(A)における第1偏光ビームスプリッター93のA−A断面図である。第1偏光ビームスプリッター93は、図6(A)に示したように、複数の光入射領域93eを備えている。本実施形態では、第1偏光ビームスプリッター93は、4つの光入射領域93eを備えている。また、各光入射領域93eは、Z軸方向に延在する縁93m及び縁93nを有している。
第1偏光ビームスプリッター93は、図6(B)に示したように、光入射領域93eから入射した光が入射する偏光分離膜93fと、偏光分離膜93fによって反射された光が入射する反射膜93gとを備えている。図示していないが、偏光分離膜93fを透過した光の光路上と反射膜93gによって反射された光の光路上のいずれかに、位相差板が設けられている。これにより、第1偏光ビームスプリッター93は、入射した光を偏光方向が一方向に揃えられた直線偏光として射出する。
図7は、第2フライアイレンズ92と第1偏光ビームスプリッター93とによって画定される入射口92cを示す図である。より詳細には、図7は、図4において、第2フライアイレンズ92と第1偏光ビームスプリッター93とを第1フライアイレンズ91側から見た図である。
図5及び図7に示すように、第2フライアイレンズ92において、各レンズ92aのX軸方向に延在する端部を示す線を境界線92bとする。本明細書では便宜上、光入射領域93eが有する縁93m,93nと、互いに隣り合う2本の境界線92bと、によって画定される領域を第2フライアイレンズ92の入射口92cと呼ぶ。本実施形態の場合、図7に示したように、16個の矩形状の入射口92cが画定される。
複数の入射口92cはそれぞれ、複数のレンズ91aと対応づけられている。第1フライアイレンズ91は、入射した光を複数の光束に分割する。各レンズ91aから射出された各光束は、各レンズ91aに対応した入射口92cに向けて進行する。
図8は、第2フライアイレンズ92と第1偏光ビームスプリッター93と、第1フライアイレンズ91によって第2フライアイレンズ92上に形成された3次光源像121と、を第1フライアイレンズ91側から見た図である。
第1フライアイレンズ91から第2フライアイレンズ92の各入射口92cに入射した光は、図8に示すように、それぞれ3次光源像121である。入射口92cに入射した3次光源像121は、各々が対応する第1偏光ビームスプリッター93の光入射領域93eへと第2フライアイレンズ92から射出される。
3次光源像121の形状は、2次光源像120と相似形状、すなわち、クロスダイクロイックプリズム500の中心交線Cの方向と垂直な方向の長さが、中心交線Cと平行な方向の長さよりも長い形状である。3次光源像121のZ軸方向の長さLが長いほど、中心交線Cを通過する光の発散角が大きくなり、中心交線Cによって形成される影がクロスダイクロイックプリズム500の中心交線Cと直交する方向に大きく拡散される。影が拡散されることにより、影が薄くなるため、画像の観察者は影を認識しにくくなる。
このように、本実施形態によれば、クロスダイクロイックプリズム500の中心交線Cによる影の影響を効果的に低減できる。言い換えれば、3次光源像121の形状は2次光源像120と相似形状であるため、2次光源像120のZ軸方向の長さが十分長ければ、クロスダイクロイックプリズム500の中心交線Cによる影の影響を効果的に低減できる。
3次光源像121の長さLは、例えば、入射口92cの鉛直方向長さ(Z軸方向長さ)Hの50%以上、110%以下である。
光入射領域93eから第1偏光ビームスプリッター93に入射された光は、前述したようにして、偏光方向が一方向に揃えられた直線偏光として射出される。そして、第1偏光ビームスプリッター93から射出された光は、第1平行化レンズ94により平行化され、照明装置100から射出される。
波長変換型光源装置100bは、第2光源10と、第2コリメートレンズアレイ13と、第2集光レンズ20と、第2平行化レンズ21と、ダイクロイックミラー22と、第2ピックアップ光学系40と、蛍光発光素子30と、を備えている。後で説明するように、波長変換型光源装置100bは、非レーザー光を射出する。
第2光源10は、第2基台11と、第2基台11上に並べて配置された複数の第2固体発光素子12とを備えている。第2固体発光素子12は、蛍光発光素子30に備えられた蛍光体32を励起させる励起光を射出する光源である。本実施形態においては、第2固体発光素子12は、励起光として青色(発光強度のピーク:460nm付近)のレーザー光を射出する半導体レーザーとして説明するが、これに限られない。第2固体発光素子12は、蛍光体32を励起させることができる範囲内において、460nm以外のピーク波長を有する光を射出するものであっても、レーザー光以外の光を発するLED、ランプ等であっても構わない。
第2コリメートレンズアレイ13は、各第2固体発光素子12と1対1に対応した複数のコリメートレンズ130を備えている。複数のコリメートレンズ130は、第2基台11上に並べて配置されている。各コリメートレンズ130は、対応する第2固体発光素子12から射出される励起光の光軸上に設置され、当該励起光を平行化する。第2コリメートレンズアレイ13から射出された励起光は、凸レンズからなる第2集光レンズ20で集光される。
第2集光レンズ20とダイクロイックミラー22との間の励起光の光路上には、両凹レンズからなる第2平行化レンズ21が配置されている。第2平行化レンズ21は、第2集光レンズ20と、第2集光レンズ20における焦点位置との間に配置され、第2集光レンズ20から入射する励起光を平行化してダイクロイックミラー22に射出する。
ダイクロイックミラー22は、第2平行化レンズ21から射出された光の光路上に配置され、その表面は、第2平行化レンズ21から射出された光の光路方向に対して約45°の角度をなしている。ダイクロイックミラー22の、第2平行化レンズ21から射出された光が入射する側の面は、第2ピックアップ光学系40の側を向いている。ダイクロイックミラー22は、第2平行化レンズ21から入射する励起光(青色光成分)を90°折り曲げて第2ピックアップ光学系40側に反射するとともに、第2ピックアップ光学系40から入射する蛍光(赤色光成分及び緑色光成分)を透過させる。
第2ピックアップ光学系40は、蛍光発光素子30からの蛍光を略平行化した状態でダイクロイックミラー22に入射させる。また、第2ピックアップ光学系40の第1レンズ41及び第2レンズ42は、ダイクロイックミラー22から入射する励起光を集光する機能を兼ねており、励起光を集光させた状態で蛍光発光素子30に入射させる。すなわち、第2コリメートレンズアレイ13と第2集光レンズ20と第2平行化レンズ21とダイクロイックミラー22と第2ピックアップ光学系40によって、第2光源10から射出された複数の励起光を集光する第2集光光学系15が形成されている。
なお、第2ピックアップ光学系40は、蛍光発光素子30から射出される蛍光の広がりに応じて、使用するレンズの屈折率や形状が決められ、レンズの数も2つに限らず、1つまたは3つ以上の複数個とすることもできる。
蛍光発光素子30は、励起光の入射方向と同じ方向に蛍光を射出させる反射型の蛍光発光素子である。蛍光発光素子30は、モーター33により回転駆動される基板31と、基板31の表面に形成された蛍光体32とを備えている。基板31は、蛍光体32が発する蛍光を反射する材料よりなる。基板31は、Al等の熱伝導率の高い金属材料等からなることが好ましく、これにより基板31を放熱板として機能させることができる。蛍光体32は、励起光が入射する領域に対応して、基板31の回転方向に沿ってリング状に形成されている。本実施形態では基板31として円板を用いているが、基板31の形状は円板に限られない。
蛍光体32は、第2固体発光素子12から射出される励起光を吸収し、蛍光を発する粒子状の蛍光物質(蛍光体粒子)を有する。蛍光体32は、波長が約460nmの励起光(青色光)を吸収し、概ね490〜750nm(発光強度のピーク:570nm)の蛍光に変換する機能を有する。蛍光には、緑色光(波長530nm付近)及び赤色光(波長630nm付近)が含まれる。
蛍光体粒子としては、通常知られたYAG(イットリウム・アルミニウム・ガーネット)系蛍光体を用いることができる。例えば、平均粒径が10μmの(Y,Gd)(Al,Ga)12:Ceで示される組成のYAG系蛍光体を用いることができる。なお、蛍光体粒子の形成材料は、1種であってもよく、2種以上の形成材料を用いて形成されている粒子を混合したものを蛍光体粒子として用いることとしてもよい。
蛍光発光素子30には、第1レンズ41及び第2レンズ42によって集光された励起光(青色光)が、蛍光体32の表面から入射する。蛍光発光素子30は、励起光が入射する側と同じ側に向けて、蛍光体32が発した赤色光及び緑色光(蛍光)を射出する。蛍光発光素子30では、基板31を回転駆動することによって、蛍光体32の励起光が照射された部分が円を描くように、励起光が照射される領域S2に対して相対的に移動する。
蛍光発光素子30から射出された光は、第2ピックアップ光学系40で平行化され、ダイクロイックミラー22に入射する。ダイクロイックミラー22は、第2ピックアップ光学系40から入射する光のうち、励起光(青色光)を反射して除去し、緑色光及び赤色光を透過させる。これにより、波長変換型光源装置100bから、緑色の非レーザー光及び赤色の非レーザー光が射出される。
波長変換型光源装置100bから射出された光は、第2フライアイインテグレーター190に入射される。第2フライアイインテグレーター190は、第3フライアイレンズ191と、第4フライアイレンズ192とを備える。第2フライアイインテグレーター190は、第1フライアイインテグレーター90と同様である。第2フライアイインテグレーター190は、入射した光の光量分布を均一化する。第2フライアイインテグレーター190から射出された赤色光及び緑色光は、第2偏光ビームスプリッター193によって偏光方向が一方向に揃えられた直線偏光に変換され、第3平行化レンズ194により平行化され、照明装置100から射出される。
以上により、照明装置100から非レーザー光である赤色光及び緑色光と、レーザー光である青色光とが射出される。
照明装置100から射出された光のうち、レーザー光源装置100aから射出された青色光は、反射型偏光板210に入射される。反射型偏光板210は、第1平行化レンズ94から射出された光の光路上に配置され、その表面は、第1平行化レンズ94から射出された光の光路方向に対して約45°の角度をなしている。反射型偏光板210は、第1偏光ビームスプリッター93によって揃えられる偏光方向の光を透過させ、その偏光方向と垂直な方向の偏光を反射する性質を有する反射型の偏光板である。これにより、反射型偏光板210に入射された青色光は、反射型偏光板210を透過し、光変調装置400Bに入射する。
一方、照明装置100から射出された光のうち、波長変換型光源装置100bから射出された赤色光及び緑色光は、ダイクロイックミラー230に入射される。ダイクロイックミラー230は、第3平行化レンズ194から射出された光の光路上に配置され、その表面は、第3平行化レンズ194から射出された光の光路方向に対して約45°の角度をなしている。ダイクロイックミラー230は、赤色光を透過させ、緑色光を反射させる性質を有する。これにより、ダイクロイックミラー230に入射された赤色光は、ダイクロイックミラー230を透過し、反射型偏光板220に入射する。また、ダイクロイックミラー230に入射された緑色光は、ダイクロイックミラー230によって約90°折り曲げられて反射され、反射型偏光板240に入射する。
反射型偏光板220及び反射型偏光板240は、その表面が、それぞれダイクロイックミラー230から射出された赤色光及び緑色光の進行方向に対して約45°の角度をなすようにして光路上に配置されている。反射型偏光板220及び反射型偏光板240は、反射型偏光板210と同様にして、第2偏光ビームスプリッター193によって揃えられる偏光方向の光を透過させ、その偏光方向と垂直な方向の偏光を反射する性質を有する反射型の偏光板である。
反射型偏光板220及び反射型偏光板240を透過した赤色光及び緑色光は、光変調装置400R及び光変調装置400Gにそれぞれ入射される。
光変調装置400R、光変調装置400G、光変調装置400Bは、入射された色光を画像情報に応じて変調してカラー画像を形成するものであり、照明装置100の照明対象となる。光変調装置400R、光変調装置400G及び光変調装置400Bによって、入射された各色光の光変調が行われる。
光変調装置400R、光変調装置400G、光変調装置400Bは、通常知られたものを用いることができ、例えば、液晶素子を備えた反射型の液晶ライトバルブ等の光変調装置により構成される。
液晶素子は、例えば、一対の基板に液晶を密閉封入した反射型の光変調装置であり、ポリシリコンTFTをスイッチング素子として、与えられた画像情報に応じて、入射した光の偏光方向を変調する。
光変調装置400Bに入射した青色光は、液晶素子によって光変調され、青色画像光(第3の画像光)となり、進行方向と逆向きに反射され光変調装置400Bから射出される。光変調装置400Bから射出された青色画像光のうち、光変調装置400Bに入射する前の偏光方向と垂直な方向の偏光成分は、反射型偏光板210で約90°折り曲げられて反射され、クロスダイクロイックプリズム500に入射される。
一方、光変調装置400Rに入射した赤色光は、青色光と同様にして、赤色画像光(第1の画像光)となって、クロスダイクロイックプリズム500に入射する。また、光変調装置400Gに入射した緑色光は、青色光と同様にして、緑色画像光(第2の画像光)となって、クロスダイクロイックプリズム500に入射する。
クロスダイクロイックプリズム500は、光変調装置400R,400G,400Bから射出された色光毎に変調された画像光を合成してカラー画像を形成する光学素子である。クロスダイクロイックプリズム500は、4つの直角プリズムを貼り合せた平面視略正方形状をなしている。本実施形態においては、クロスダイクロイックプリズム500は、各直角プリズムが貼り合わせられることで形成される中心交線Cが、図4に示すように、水平方向と平行で、かつ、入射する光の進行方向に対して垂直な方向となるようにして、設置されている。
直角プリズムを貼り合せた略X字状の界面には、誘電体多層膜が形成されている。略X字状の一方の界面に形成された誘電体多層膜は、赤色光を反射するものであり、他方の界面に形成された誘電体多層膜は、青色光を反射するものである。図1に示すように、これらの誘電体多層膜によって赤色光及び青色光は曲折され、赤色光の進行方向及び青色光の進行方向が緑色光の進行方向に揃えられることにより、3つの色光が合成される。
クロスダイクロイックプリズム500から射出されたカラー画像光は、投射光学系600によって拡大投射され、スクリーンSCR上で画像を形成する。
本実施形態のプロジェクター1000によれば、レーザー光源装置100aの2次光源像120が各第1固体発光素子52のFFPの形状とされ、FFPの長手方向とクロスダイクロイックプリズム500の中心交線Cとが直交して配置されている。これにより、2次光源像120の中心交線Cと直交する方向の長さを十分長くすることができるため、クロスダイクロイックプリズム500の中心交線Cによる影の影響を低減することができる。以下、詳細に説明する。
図9(A)は、比較例のプロジェクターの構成の一部を模式的に示す側面図である。図9(B)は、比較例における、入射口92cと3次光源像122とを示す図である。図9(C)は、比較例において、スクリーンSCRに表示される画像を示す図である。
なお、図9(A)においては、図4と同様に、適宜部材の図示を省略しており、また、光の進行方向が一方向(図の左右方向)となるように、各部材の向き等を適宜変更している。
比較例は、本実施形態に対して、レーザー光源装置のスリット状のレーザー射出部の位置が、第1コリメーターレンズアレイの焦点位置となっている点において異なる。
比較例においては、レーザー光源装置のレーザー射出部の位置が、第1コリメーターレンズアレイの焦点の位置となっているため、形成される2次光源像の形状は、レーザー光源装置のNFPと相似形状となる。すなわち、比較例の2次光源像は、クロスダイクロイックプリズム500の中心交線Cと平行な方向の長さが、クロスダイクロイックプリズム500の中心交線Cと垂直な方向の長さよりも長い形状である。
これにより、比較例においては、図9(B)に示すように、2次光源像と相似形状となる3次光源像122の形状が、水平方向(X軸方向)の長さが、鉛直方向(Z軸方向)の長さよりも長い形状、すなわち、クロスダイクロイックプリズム500の中心交線Cと平行な方向の長さが、中心交線Cと垂直な方向の長さよりも長い形状となる。
図9(A)においては、第1偏光ビームスプリッター93から射出される光のうち、クロスダイクロイックプリズム500の中心交線Cを通る光を示している。各光の断面形状は、3次光源像122と相似形状となっている。3次光源像122は、長手方向がクロスダイクロイックプリズム500の中心交線Cと平行であるため、各光は、ほぼ全体がクロスダイクロイックプリズム500の中心交線Cを通過する。そのため、中心交線Cを通過する各光は、図9(C)に示すように、投射光学系600を介して投射されるスクリーンSCR上に中心交線Cの細く濃い影Shを形成する。すなわち、各光の光変調装置400Bにおける入射位置P(図9(A)参照)に対応する、スクリーンSCR上の位置に筋状の細く濃い影Shが形成される。これにより、スクリーンSCR上に、筋状のムラが視認され、プロジェクターの表示品質が低下してしまう場合がある。
これに対して、本実施形態によれば、図8に示すように、3次光源像121は、クロスダイクロイックプリズム500の中心交線C(X軸方向)と垂直な方向(Z軸方向)の長さが、中心交線Cと平行な方向の長さよりも長い形状である。そのため、3次光源像121の長さLを、クロスダイクロイックプリズム500の中心交線Cの影による影響を低減できる程度に十分長くすることができる。これにより、スクリーンSCR上に形成される影の影響が低減される。したがって、本実施形態によれば、クロスダイクロイックプリズム500の中心交線Cの影による影響を低減でき、プロジェクターの表示品質を向上できる。
図10は、3次光源像121の長さLを大きくした場合における、第2フライアイレンズ92と第1偏光ビームスプリッター93と、第2フライアイレンズ92上に形成された3次光源像121と、を第1フライアイレンズ91側から見た図である。
中心交線Cの影による影響の低減効果は、中心交線Cを通る光が中心交線Cと直交する方向に広がるほど高くなる。そのため、図10に示すように、例えば、3次光源像121の長さLが入射口92cの長さHと等しく、かつ、3次光源像121が入射口92cからはみ出さないようにすることにより、クロスダイクロイックプリズム500の中心交線Cの影による影響をより効果的に低減できる。
また、本実施形態によれば、各3次光源像121の幅は、入射口92cの水平方向の幅W(図7参照)よりも小さく設定されている。言い換えると、複数の3次光源像121各々のクロスダイクロイックプリズム500の中心交線Cと平行な方向の長さは、複数の入射口92c各々の中心交線Cと平行な方向の幅Wよりも小さい。そのため、各入射口92cを介して第1偏光ビームスプリッター93の光入射領域93eに入射する光が、幅方向(水平方向)においては、第1偏光ビームスプリッター93の光入射領域93eにおける縁93m,93nでけられることがない。その結果、本実施形態によれば、光の利用効率が低減することを抑制できる。
なお、本実施形態においては、下記の構成を採用することもできる。
上記説明した本実施形態においては、波長変換型光源装置100bから赤色光及び緑色光の2色の光が射出される構成としたが、これに限られない。例えば、本実施形態においては、赤色光を射出する光源装置(第1光源装置)と、緑色光を射出する光源装置(第2光源装置)とがそれぞれ備えられた構成でもよい。言い換えると、本実施形態においては、赤色光を射出する光源装置(第1の光源装置)と、緑色光を射出する光源装置(第2の光源装置)と、青色光を射出するレーザー光源装置(第3の光源装置)との3つの光源装置を備える構成としてもよい。
また、本実施形態においては、レーザー光を発する光源装置を2つ以上備えていてもよい。この場合においては、それぞれのレーザー光が入射するコリメートレンズを所定量デフォーカスして配置する。
なお、中心交線Cに対する方向は、第1固体発光素子52から射出される光の断面形状が保存されていることを前提として、規定している。しかし、断面形状が保存されない場合においては、第1固体発光素子52からクロスダイクロイックプリズム500までの間の光路上において、光束の方向を回転させる等することによって、長手方向が中心交線Cと直交するように光束の形状を調整する。
また、上記説明した本実施形態においては、第1固体発光素子52の2次光源像120をFFPとして、2次光源像120を、長手方向がクロスダイクロイックプリズム500の中心交線Cと直交する形状としたが、これに限られない。
本実施形態においては、第1固体発光素子52から射出された光を、第1固体発光素子52とクロスダイクロイックプリズム500との間で光の進行方向軸回りに90°回転させることによって、クロスダイクロイックプリズム500に入射する光の形状を、長手方向が中心交線Cと直交する形状としてもよい。
また、本実施形態においては、第1固体発光素子52から射出された光の形状を、第1固体発光素子52とクロスダイクロイックプリズム500との間で、中心交線Cと直交する方向に伸ばす等によって整形し、クロスダイクロイックプリズム500に入射する光の形状を、長手方向が中心交線Cと直交する形状としてもよい。
(第2実施形態)
第2実施形態は、第1実施形態に対して、2次光源像がレーザー光源装置のNFPと同一の形状となる点において異なる。
なお、以下の説明において、上記実施形態と同様の構成については、適宜同様の符号を付すことにより説明を省略する場合がある。
図11(A),(B)は、本実施形態のレーザー光源装置110及び2次光源像形成光学系150を示す模式図である。図12は、固体発光素子152から射出される光の形状を示す模式図である。
本実施形態のレーザー光源装置110は、図11(A),(B)に示すように、基台151と、基台151上に設けられた固体発光素子152と、固体発光素子152の周囲を囲むパッケージ154とを備えている。パッケージ154は、第1集光レンズ60側に開口する開口部154aを備えている。パッケージ154の開口部154aには、コリメートレンズ1530が、開口部154aを閉塞するようにして設けられている。コリメートレンズ1530は、焦点位置が、固体発光素子152の光のレーザー射出部152aの位置となるようにして設けられている。本実施形態においては、例えば、コリメートレンズ1530は、短焦点のコリメートレンズである。
固体発光素子152は、図12に示すように、スリット状のレーザー射出部152aの長手方向が、例えば、鉛直方向(Z軸方向)となるようにして、設置されている。すなわち、固体発光素子152のレーザー射出部152aの長手方向は、クロスダイクロイックプリズム500の中心交線Cと垂直である。なお、クロスダイクロイックプリズム500の配置は第1実施形態と同様である。
図11に示すように、固体発光素子152から射出されたレーザー光は、コリメートレンズ1530を介して第1集光レンズ60に入射される。そして、第1集光レンズ60に入射した光は集光され、回転拡散板70上に2次光源像123が形成される。2次光源像123は、図12に示すように、コリメートレンズ1530の焦点位置における光源像と同じ形状となるため、固体発光素子152のNFPの形状、すなわち、レーザー射出部152aと同一の形状となる。これにより、2次光源像123は、クロスダイクロイックプリズム500の中心交線Cと直交する方向(Z軸方向)の長さが、中心交線Cと平行な方向の長さよりも長い形状となる。
2次光源像123の大きさは、コリメートレンズ1530の焦点距離と第1集光レンズ60の焦点距離との比によって決まる光学倍率に応じて決定される。本実施形態においては、コリメートレンズ1530として短焦点のコリメートレンズを用いることで光学倍率を大きく設定している。光学倍率としては、例えば、20倍以上、100倍以下である。
本実施形態によれば、第1実施形態と同様にして、2次光源像123をクロスダイクロイックプリズム500の中心交線Cと直交する方向(Z軸方向)の長さが中心交線Cと平行な方向の長さよりも長い形状とできる。これにより、2次光源像120(3次光源像121)の中心交線Cと直交する方向の長さ(3次光源像121の長さL)を十分長くすることができるため、クロスダイクロイックプリズム500の中心交線Cの影による影響を低減できる。
(実施例1)
本実施例は、第1実施形態に対応する実施例である。
なお、以下の説明において、各部材等の大きさを示す際には、横方向(水平方向)長さ×縦方向(鉛直方向)長さ、のようにして表記する場合がある。
本実施例のレーザー光源装置は、波長460nmの青色レーザー光を出力する。レーザー光源装置は、スリット形状のレーザー射出部を備えている。レーザー射出部の大きさは、15μm×1μmである。これにより、レーザー光源装置のNFPは、スリット形状となる。レーザー光源装置は、レーザー射出部の長手方向が水平方向と平行な方向になるようにして配置した。レーザー光源装置のビーム放射角度は、垂直方向角度が40°であり、水平方向角度が10°である。
コリメートレンズの焦点距離は、14mmとし、第1集光レンズの焦点距離は、115mmとした。コリメートレンズと第1集光レンズとによる光学倍率は、8.2倍である。レーザー光源装置は、コリメートレンズの焦点位置の内側となるようにして配置し、デフォーカス量は200μmとした。
第1ピックアップ光学系の焦点距離は、12.5mmとし、第1フライアイレンズの焦点距離は、21mmとした。第1フライアイレンズ及び第2フライアイレンズは、複数の平凸レンズが平面配置されており、横縦比は、16:9である。
第2フライアイレンズは、複数の入射口92c(図7参照)を備える。各入射口92cの大きさは、2.2mm×2.5mm(幅W×長さH)とした。
クロスダイクロイックプリズムは、中心交線が水平方向と平行になるようにして配置した。
コリメートレンズはデフォーカスして配置されているため、等価光源像は、レーザー光源装置のFFPの形状となる。等価光源像の大きさは、50μm×146μmであった。回転拡散板上に形成される2次光源像は、等価光源像が、コリメートレンズと集光レンズとによる光学倍率により拡大された大きさとなる。そのため、2次光源像の大きさは、0.41mm×1.2mmであった。これにより、本実施例によれば、2次光源像が、クロスダイクロイックプリズムの中心交線Cと直交する方向の長さが中心交線Cと平行な方向の長さよりも長い形状となることが確かめられた。
第2フライアイレンズに形成される3次光源像の大きさは、2次光源像の大きさに第1ピックアップ光学系の焦点距離と第1フライアイレンズの焦点距離との比によって決まる光学倍率を乗じたものとなる。そのため、本実施例における3次光源像の大きさは、0.69mm×2.02mmであった。言い換えると、3次光源像のクロスダイクロイックプリズムの中心交線Cと直交する方向の長さLは、入射口92cの長さHの約81%であった。
上記の構成による本実施例のプロジェクターによって、スクリーン上に投影された映像を観察した結果、クロスダイクロイックプリズムの中心交線の影による影響が十分に低減できていることが確かめられた。
また、本実施例においては、3次光源像の大きさが、入射口92cの大きさに対して、縦方向及び横方向ともに小さいので、第1フライアイレンズから射出された光の略全てを、第2フライアイレンズを介して第1偏光ビームスプリッターの光入射領域93e(図7参照)に入射させることができる。これにより、光の利用効率に優れたプロジェクターが得られた。
本実施例においては、3次光源像の長さLを入射口92cの長さHの約81%となるように設定したが、これに限られない。3次光源像の長さLを入射口92cの長さHの50%以上、100%以下となるように設定することにより、効果的にクロスダイクロイックプリズムの中心交線の影による影響を低減でき、また光の利用効率に優れたプロジェクターが得られる。
3次光源像の長さLが入射口92cの長さHの50%以上の場合、影は大きく拡散され、スクリーンに投射された画像のうち影の領域が全体の50%以上になる。この構成によれば、比較例のように影が細い線として画像に現れる場合よりも、影が認識しにくくなる。
また、3次光源像の長さLが入射口92cの長さHの80%以上の場合、影はさらに大きく拡散され、スクリーンに投射された画像のうちほとんどの領域が影の領域となる。この構成によれば、影はさらに薄くなり、ほとんど認識されない。
(変形例1)
本変形例は、実施例1に対して、コリメートレンズのデフォーカス量を変更した点において異なる。
本変形例のコリメートレンズのデフォーカス量は、250μmとした。
この構成においては、等価光源像の大きさは、59μm×183μmであった。2次光源像の大きさは、0.48mm×1.5mmであった。3次光源像の大きさは、0.81mm×2.52mmであった。すなわち、3次光源像の長さLは、入射口92cの長さHの約101%であった。
上記の構成による本変形例のプロジェクターによって、スクリーン上に投影された映像を観察した結果、クロスダイクロイックプリズムの中心交線の影による影響が、実施例1に比べてより低減できていることが確かめられた。
なお、本変形例においては、3次光源像の縦方向長さが、入射口92cの縦方向長さよりもわずかに大きいため、3次光源像は入射口92cからわずかにはみ出す。入射口92cからはみ出した成分は画像形成に利用できないため、光の利用効率がわずかに低下する。しかし、上述したように、よりクロスダイクロイックプリズムの中心交線の影による影響を低減することが可能となる。
また、本変形例においては、3次光源像の長さLを入射口92cの長さHの約101%となるように設定したが、これに限られない。3次光源像の長さLを入射口92cの長さHの110%以下に設定すれば、光の利用効率を十分に確保しつつ、クロスダイクロイックプリズムの中心交線の影による影響を効果的に低減できる。
(実施例2)
本実施例は、第2実施形態に対応する実施例である。
本実施例において用いたレーザー光源装置は、実施例1と同様である。レーザー光源装置は、実施例1に対して光の射出方向回りに90°回転させた状態で設置した。すなわち、レーザー光源装置のレーザー射出部の長手方向が、鉛直方向と平行になるようにして配置した。クロスダイクロイックプリズムは、実施例1と同様に配置した。これにより、本実施例においては、レーザー光源装置のレーザー射出部の長手方向と、クロスダイクロイックプリズムの中心交線の方向とは、垂直である。
コリメートレンズは、短焦点のレンズを用いた。コリメートレンズの焦点距離は、2.0mmである。コリメートレンズは、焦点位置に、レーザー光源装置のレーザー射出部が位置するようにして配置した。第1集光レンズの焦点距離は、160mmとした。コリメートレンズと第1集光レンズとによる光学倍率は、80倍である。第1ピックアップ光学系、第1フライアイレンズ及び第1偏光ビームスプリッターは、実施例1と同様のものを用いた。
本実施例においては、コリメートレンズがデフォーカスされていないため、2次光源像は、レーザー光源装置のレーザー射出部における光源像の形状、すなわち、レーザー光源装置のNFPの形状となる。回転拡散板上に形成される2次光源像の大きさは、コリメートレンズの焦点位置における光源像の大きさ、すなわち、レーザー光源装置のレーザー射出部の大きさに、コリメートレンズと集光レンズとの光学倍率を乗じた大きさとなるため、2次光源像の大きさは、0.08mm×1.2mmであった。これにより、本実施例によれば、2次光源像が、クロスダイクロイックプリズムの中心交線Cと直交する方向の長さが中心交線Cと平行な方向の長さよりも長い形状となることが確かめられた。
また、本実施例において3次光源像の大きさは、0.13mm×2.02mmであった。言い換えると、3次光源像のクロスダイクロイックプリズムの中心交線Cと直交する方向の長さLは入射口92cの長さHの約81%であった。
上記の構成による本実施例のプロジェクターによって、スクリーン上に投影された映像を観察した結果、クロスダイクロイックプリズムの中心交線の影による影響が十分に低減できていることが確かめられた。
また、本実施例においては、3次光源像の大きさが、入射口92cの大きさに対して、縦方向及び横方向ともに小さいので、第1フライアイレンズから射出された光の略全てを、第2フライアイレンズを介して第1偏光ビームスプリッターの光入射領域93eに入射させることができる。これにより、光の利用効率に優れたプロジェクターが得られた。
C…中心交線、F…焦点、50,150…2次光源像形成光学系、52a,152a…レーザー射出部、90…第1フライアイインテグレーター、93…第1偏光ビームスプリッター(偏光ビームスプリッター)、92c…入射口、100a,110…レーザー光源装置、100b…波長変換型光源装置(第1の光源装置,第2の光源装置)、120,123…2次光源像、121…3次光源像、530,1530…コリメートレンズ、400B…光変調装置(第3の光変調装置)、400G…光変調装置(第2の光変調装置)、400R…光変調装置(第1の光変調装置)、500…クロスダイクロイックプリズム(クロスプリズム)、600…投射光学系、1000…プロジェクター

Claims (5)

  1. 第1の光源装置と、
    第2の光源装置と、
    レーザー光源装置と、
    前記第1の光源装置からの光を変調して第1の画像光を形成する第1の光変調装置と、
    前記第2の光源装置からの光を変調して第2の画像光を形成する第2の光変調装置と、
    前記レーザー光源装置からの光を変調して第3の画像光を形成する第3の光変調装置と、
    前記第1の画像光と前記第2の画像光と前記第3の画像光とを合成し、複数の直角プリズムを貼り合せることで形成される中心交線を有するクロスプリズムと、
    前記クロスプリズムからの光を投射する投射光学系と、
    2次光源像を前記レーザー光源装置と前記第3の光変調装置との間の光路中に形成する2次光源像形成光学系と、
    を備えたプロジェクターであって、
    前記2次光源像形成光学系は、前記レーザー光源装置からの光が入射するコリメートレンズと、前記コリメートレンズから射出された光を集光し、前記2次光源像を結像する集光レンズと、を有し、
    前記レーザー光源装置は、前記クロスプリズムの前記中心交線と平行な方向に長手方向を有するスリット状のレーザー射出部を有し、
    前記レーザー射出部から射出された光は、該光の断面形状の向きが前記中心交線に入射するまで保存されており、
    前記レーザー射出部は、前記2次光源像の形状が前記レーザー光源装置のファーフィールドパターンの形状となるように、前記コリメートレンズの焦点位置からずれた位置に配置されており、
    前記2次光源像は、前記中心交線と直交する方向の長さが前記中心交線と平行な方向の長さよりも長いことを特徴とするプロジェクター。
  2. 前記2次光源像からの光が入射され、複数の3次光源像を形成する3次光源像形成光学系と、
    前記3次光源像形成光学系からの光が入射する複数の入射口を有するレンズアレイと、
    を備え、
    前記複数の3次光源像各々の前記クロスプリズムの中心交線と直交する方向の長さは、前記複数の入射口各々の前記クロスプリズムの中心交線と直交する方向の長さの50%以上、110%以下である、請求項に記載のプロジェクター。
  3. 前記複数の3次光源像各々の前記クロスプリズムの中心交線と直交する方向の長さは、前記複数の入射口各々の前記クロスプリズムの中心交線と直交する方向の長さの50%以上、100%以下である、請求項に記載のプロジェクター。
  4. 前記複数の3次光源像各々の前記クロスプリズムの中心交線と直交する方向の長さは、前記複数の入射口各々の前記クロスプリズムの中心交線と直交する方向の長さの80%以上、100%以下である、請求項に記載のプロジェクター。
  5. 前記複数の3次光源像各々の前記クロスプリズムの中心交線と平行な方向の長さは、前記複数の入射口各々の前記クロスプリズムの中心交線と平行な方向の長さよりも小さい、請求項からのいずれか一項に記載のプロジェクター。
JP2013166670A 2013-08-09 2013-08-09 プロジェクター Active JP6236975B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013166670A JP6236975B2 (ja) 2013-08-09 2013-08-09 プロジェクター
US14/446,720 US9661285B2 (en) 2013-08-09 2014-07-30 Projector with multiple types of light sources
CN201410382774.5A CN104345534B (zh) 2013-08-09 2014-08-06 投影机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013166670A JP6236975B2 (ja) 2013-08-09 2013-08-09 プロジェクター

Publications (2)

Publication Number Publication Date
JP2015034933A JP2015034933A (ja) 2015-02-19
JP6236975B2 true JP6236975B2 (ja) 2017-11-29

Family

ID=52448397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013166670A Active JP6236975B2 (ja) 2013-08-09 2013-08-09 プロジェクター

Country Status (3)

Country Link
US (1) US9661285B2 (ja)
JP (1) JP6236975B2 (ja)
CN (1) CN104345534B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10982954B2 (en) 2018-06-18 2021-04-20 Samsung Electronics Co., Ltd. Structured light projector and electronic apparatus including the same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI530750B (zh) * 2014-08-05 2016-04-21 中強光電股份有限公司 投影裝置
JP6582487B2 (ja) * 2015-03-27 2019-10-02 セイコーエプソン株式会社 光源装置、照明装置、およびプロジェクター
JP6627364B2 (ja) * 2015-09-24 2020-01-08 セイコーエプソン株式会社 光源装置、光源ユニット及びプロジェクター
JP6946651B2 (ja) * 2017-02-01 2021-10-06 セイコーエプソン株式会社 光源装置及びプロジェクター
TWI726073B (zh) * 2017-03-16 2021-05-01 揚明光學股份有限公司 光學系統
JP2019028392A (ja) * 2017-08-03 2019-02-21 セイコーエプソン株式会社 光源装置、照明装置及びプロジェクター
CN110058477B (zh) 2018-01-19 2021-07-23 中强光电股份有限公司 投影机、影像产生装置及其影像产生方法
CN110058479B (zh) 2018-01-19 2024-05-14 中强光电股份有限公司 照明系统与投影装置
CN110058478B (zh) 2018-01-19 2022-01-18 中强光电股份有限公司 照明系统与投影装置
US10571791B2 (en) 2018-04-25 2020-02-25 Delta Electronics, Inc. Projection system and optimizing method thereof
JP7172188B2 (ja) * 2018-06-29 2022-11-16 セイコーエプソン株式会社 頭部装着型表示装置
JP7222310B2 (ja) * 2019-06-03 2023-02-15 横河電機株式会社 共焦点スキャナ及び共焦点顕微鏡
CN112213909B (zh) * 2019-07-12 2023-05-26 深圳光峰科技股份有限公司 光源系统与显示设备
CN210142255U (zh) * 2019-08-16 2020-03-13 中强光电股份有限公司 照明系统以及投影装置
JP7234861B2 (ja) * 2019-08-23 2023-03-08 株式会社Jvcケンウッド 光源装置
CN112526807A (zh) * 2019-08-30 2021-03-19 深圳光峰科技股份有限公司 一种光源及投影设备
CN111174180B (zh) * 2020-01-19 2022-04-26 平行现实(杭州)科技有限公司 一种大动态范围光束转向装置
CN116643412B (zh) * 2023-05-24 2024-12-03 福州百晶光电有限公司 一种超低光损荧光光谱检测合成棱镜及其制作方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101256341B (zh) * 1996-08-19 2012-10-24 精工爱普生株式会社 投影式显示装置
TW434444B (en) * 1996-10-30 2001-05-16 Seiko Epson Corp Projection display and illuminating optical system for it
JPH11338377A (ja) * 1998-05-22 1999-12-10 Sony Corp 投影型映像表示装置
JP4151112B2 (ja) * 1998-06-05 2008-09-17 ソニー株式会社 液晶プロジェクタ
JP2003066369A (ja) * 2001-08-28 2003-03-05 Canon Inc 画像表示装置、画像表示装置の制御方法、画像処理システム
JP2005266765A (ja) * 2004-02-20 2005-09-29 Seiko Epson Corp プロジェクタ
JP4932342B2 (ja) * 2006-06-26 2012-05-16 Necディスプレイソリューションズ株式会社 照明光学系および投写型表示装置
JP2008268581A (ja) 2007-04-20 2008-11-06 Sony Corp 投写型表示装置
JP5429543B2 (ja) 2009-09-15 2014-02-26 カシオ計算機株式会社 光源ユニット及びプロジェクタ
JP5625932B2 (ja) * 2010-02-19 2014-11-19 株式会社Jvcケンウッド 投射型表示装置
JP5617288B2 (ja) * 2010-03-18 2014-11-05 セイコーエプソン株式会社 照明装置及びプロジェクター
JP5527594B2 (ja) * 2010-03-24 2014-06-18 カシオ計算機株式会社 光源ユニット及びプロジェクタ
JP2011221303A (ja) * 2010-04-09 2011-11-04 Sanyo Electric Co Ltd 投写型映像表示装置及び光変調素子
JP5601092B2 (ja) * 2010-08-27 2014-10-08 セイコーエプソン株式会社 照明装置及びプロジェクター
JP2012063488A (ja) * 2010-09-15 2012-03-29 Seiko Epson Corp 光源装置及びプロジェクター
JP2012108486A (ja) 2010-10-21 2012-06-07 Panasonic Corp 光源装置および画像表示装置
JP5874058B2 (ja) * 2010-12-06 2016-03-01 パナソニックIpマネジメント株式会社 光源装置および投写型表示装置
JP5673247B2 (ja) * 2011-03-15 2015-02-18 セイコーエプソン株式会社 光源装置及びプロジェクター
JP5772143B2 (ja) * 2011-03-28 2015-09-02 ソニー株式会社 照明装置、投射型表示装置および直視型表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10982954B2 (en) 2018-06-18 2021-04-20 Samsung Electronics Co., Ltd. Structured light projector and electronic apparatus including the same
US11976918B2 (en) 2018-06-18 2024-05-07 Samsung Electronics Co., Ltd. Structured light projector and electronic apparatus including the same

Also Published As

Publication number Publication date
CN104345534A (zh) 2015-02-11
US20150042961A1 (en) 2015-02-12
CN104345534B (zh) 2016-04-20
US9661285B2 (en) 2017-05-23
JP2015034933A (ja) 2015-02-19

Similar Documents

Publication Publication Date Title
JP6236975B2 (ja) プロジェクター
JP6290523B2 (ja) プロジェクター
CN203232239U (zh) 光源装置及投影机
JP5759198B2 (ja) 発光素子、光源装置及びプロジェクター
KR101486491B1 (ko) 광원 장치 및 프로젝터
JP5679358B2 (ja) 照明装置およびそれを用いた投射型表示装置
JP5659775B2 (ja) 光源装置及びプロジェクター
JP2012118302A (ja) 光源装置及びプロジェクター
JP2012189938A (ja) 光源装置及びプロジェクター
CN108027550A (zh) 光源装置、光源单元和投影仪
CN102681308A (zh) 投影机
JP2016099566A (ja) 波長変換素子、光源装置、およびプロジェクター
JP5825697B2 (ja) 照明装置およびそれを用いた投射型表示装置
JP2012063488A (ja) 光源装置及びプロジェクター
JP5659794B2 (ja) 光源装置及びプロジェクター
JP2012079622A (ja) 光源装置及びプロジェクター
JP6044674B2 (ja) 発光素子、光源装置及びプロジェクター
JP2019078947A (ja) 光源装置およびプロジェクター
JP2021086135A (ja) 光源光学系、光源装置及び画像表示装置
JP5991389B2 (ja) 照明装置及びプロジェクター
JP6332485B2 (ja) プロジェクター
JP2017146552A (ja) 照明装置及びプロジェクター
JP2022049267A (ja) 光源装置およびプロジェクター
JP6197361B2 (ja) プロジェクター
JP2014215319A (ja) プロジェクター

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6236975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150