JP5855691B2 - 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体 - Google Patents
半導体装置の製造方法、基板処理装置、プログラム及び記録媒体 Download PDFInfo
- Publication number
- JP5855691B2 JP5855691B2 JP2014034332A JP2014034332A JP5855691B2 JP 5855691 B2 JP5855691 B2 JP 5855691B2 JP 2014034332 A JP2014034332 A JP 2014034332A JP 2014034332 A JP2014034332 A JP 2014034332A JP 5855691 B2 JP5855691 B2 JP 5855691B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- film
- processing chamber
- solid layer
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/36—Carbonitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/38—Borides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4412—Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/46—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02167—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Description
処理室内の基板に対して、第1の元素と炭素との化学結合を有する原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する工程と、
前記処理室内の前記原料ガスを排気系より排気する工程と、
前記処理室内の前記基板に対して、第2の元素を含む反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する工程と、
前記処理室内の前記反応ガスを前記排気系より排気する工程と、
を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する工程を有する半導体装置の製造方法が提供される。
基板を収容する処理室と、
前記処理室内の基板に対して第1の元素と炭素との化学結合を有する原料ガスを供給する原料ガス供給系と、
前記処理室内の基板に対して第2の元素を含む反応ガスを供給する反応ガス供給系と、
前記処理室内の基板を加熱するヒータと、
前記処理室内を排気する排気系と、
前記処理室内の基板に対して、前記原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する処理と、前記処理室内の前記原料ガスを前記排気系より排気する処理と、前記処理室内の前記基板に対して、前記反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する処理と、前記処理室内の前記反応ガスを前記排気系より排気する処理と、を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する処理を行うように、前記原料ガス供給系、前記反応ガス供給系、前記ヒータおよび前記排気系を制御するよう構成される制御部と、
を有する基板処理装置が提供される。
処理室内の基板に対して、第1の元素と炭素との化学結合を有する原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する手順と、
前記処理室内の前記原料ガスを排気系より排気する手順と、
前記処理室内の前記基板に対して、第2の元素を含む反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する手順と、
前記処理室内の前記反応ガスを前記排気系より排気する手順と、
を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する手順をコンピュータに実行させるプログラムが提供される。
以下、本発明の一実施形態について、図1〜図3を用いて説明する。
図1に示すように、処理炉202は加熱手段(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。ヒータ207は、後述するようにガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
上述の基板処理装置を用い、半導体装置(デバイス)の製造工程の一工程として、基板上に膜を形成するシーケンス例について、図4を用いて説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
処理室201内の基板としてのウエハ200に対して、Si−C結合を有するBTCSMガスが熱分解すると共に、BTCSMガスに含まれるSi−C結合の少なくとも一部が切断されることなく保持される条件下で、原料ガスとしてBTCSMガスを供給し、BTCSMガスを処理室201内に封じ込めることで、1原子層を超え数原子層以下の厚さのSiおよびCを含む第1の固体層を形成する工程と、
処理室201内のBTCSMガスを排気系より排気する工程と、
処理室201内のウエハ200に対して、Nを含む反応ガスとしてNH3ガスを供給し、第1の固体層を改質して、第2の固体層を形成する工程と、
処理室201内のNH3ガスを排気系より排気する工程と、
を非同時に、すなわち、同期させることなく行うサイクルを所定回数(n回)行うことで、ウエハ200上に、Si、NおよびCを含む膜として、シリコン炭窒化膜(SiCN膜)を形成する。
複数のウエハ200がボート217に装填(ウエハチャージ)される。その後、図1に示すように、複数のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220を介して反応管203の下端をシールした状態となる。
処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。真空ポンプ246は、少なくともウエハ200に対する処理が終了するまでの間は常時作動させた状態を維持する。また、処理室201内のウエハ200が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。また、回転機構267によるボート217およびウエハ200の回転を開始する。回転機構267によるボート217およびウエハ200の回転は、少なくとも、ウエハ200に対する処理が終了するまでの間は継続して行われる。
その後、次の2つのステップ、すなわち、ステップ1,2を順次実行する。
(BTCSMガス供給)
排気系を密閉した状態で、処理室201内のウエハ200に対してBTCSMガスを供給し、処理室201内にBTCSMガスを封じ込める。
第1の固体層が形成された後、バルブ243aを閉じ、BTCSMガスの供給を停止する。また、APCバルブ244を開き、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは第1の固体層の形成に寄与した後のBTCSMガスを処理室201内から排除する。このとき、バルブ243d,243eを開き、処理室201内へN2ガスを供給する。N2ガスはパージガスとして作用し、これにより、処理室201内に残留する未反応もしくは第1の固体層の形成に寄与した後のBTCSMガスを処理室201内から排除する効果を高めることができる。
(NH3ガス供給)
ステップ1が終了した後、排気系を開放した状態で、処理室201内のウエハ200に対してNH3ガスを供給する。
第2の固体層が形成された後、バルブ243bを閉じ、NH3ガスの供給を停止する。そして、ステップ1と同様の処理手順により、処理室201内に残留する未反応もしくは第2の固体層の形成に寄与した後のNH3ガスや反応副生成物を処理室201内から排除する。このとき、処理室201内に残留するガス等を完全に排除しなくてもよい点は、ステップ1と同様である。
上述したステップ1,2を非同時に行うサイクルを1回以上(所定回数)行うことにより、すなわち、ステップ1,2を交互に1回以上行うことにより、ウエハ200上に、所定組成および所定膜厚のSiCN膜を形成することができる。上述のサイクルは、複数回繰り返すのが好ましい。すなわち、1サイクルあたりに形成されるSiCN層の厚さを所望の膜厚よりも小さくし、上述のサイクルを所望の膜厚になるまで複数回繰り返すのが好ましい。
バルブ243d,243eを開き、ガス供給管232d,232eのそれぞれからN2ガスを処理室201内へ供給し、排気管231から排気する。N2ガスはパージガスとして作用する。これにより、処理室201内がパージされ、処理室201内に残留するガスや反応副生成物が処理室201内から除去される(パージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
ボートエレベータ115によりシールキャップ219が下降され、反応管203の下端が開口される。そして、処理済のウエハ200が、ボート217に支持された状態で、反応管203の下端から反応管203の外部に搬出される(ボートアンロード)。処理済のウエハ200は、ボート217より取出される(ウエハディスチャージ)。
本実施形態によれば、以下に示す1つまたは複数の効果を奏する。
本実施形態における成膜シーケンスは、図4に示す態様に限定されず、以下に示す変形例のように変更することができる。
図5に示すように、BTCSMガスを封じ込めるステップでは、排気系を密閉した状態で、BTCSMガスを処理室201内へ供給し続けることで、処理室201内の圧力を上昇させ続けるようにしてもよい。
NH3ガスを供給するステップの代わりに、TEAガス等のNおよびCを含むガスを供給するステップを行うようにしてもよい。すなわち、BTCSMガスを封じ込めるステップ、TEAガス等のNおよびCを含むガスを供給するステップを非同時に行うサイクルを所定回数(n回)行うようにしてもよい。
図6に示すように、さらに、O2ガス等の酸素含有ガスを供給するステップを行うようにしてもよい。すなわち、BTCSMガスを封じ込めるステップ、NH3ガスを供給するステップ、O2ガス等の酸素含有ガスを供給するステップを非同時に行うサイクルを所定回数(n回)行うようにしてもよい。
NH3ガスを供給するステップの代わりにTEAガスを供給するステップを行い、さらにO2ガスを供給するステップを行うようにしてもよい。すなわち、BTCSMガスを封じ込めるステップ、TEAガスを供給するステップ、O2ガスを供給するステップを非同時に行うサイクルを所定回数(n回)行うようにしてもよい。本変形例の各ステップにおける処理手順、処理条件は、図4に示す成膜シーケンスや変形例2,3と同様とする。
NH3ガスを供給するステップの代わりにO2ガスを供給するステップを行うようにしてもよい。すなわち、BTCSMガスを封じ込めるステップ、O2ガスを供給するステップを非同時に行うサイクルを所定回数(n回)行うようにしてもよい。本変形例の各ステップにおける処理手順、処理条件は、図4に示す成膜シーケンスや変形例3と同様とする。
BTCSMガスを封じ込めるステップと、NH3ガスを供給するステップとの間に、BCl3ガス等のボラン系ガスを供給するステップを行うようにしてもよい。すなわち、BTCSMガスを封じ込めるステップ、BCl3ガス等のボラン系ガスを供給するステップ、NH3ガスを供給するステップを非同時に行うサイクルを所定回数(n回)行うようにしてもよい。本変形例のBTCSMガスを供給するステップ、NH3ガスを供給するステップにおける処理手順、処理条件は、図4に示す成膜シーケンスと同様とする。
NH3ガスを供給するステップの代わりにTEAガスを供給するステップを行い、BTCSMガスを封じ込めるステップとTEAガスを供給するステップとの間に、BCl3ガスを供給するステップを行うようにしてもよい。すなわち、BTCSMガスを封じ込めるステップ、BCl3ガスを供給するステップ、TEAガスを供給するステップを非同時に行うサイクルを所定回数(n回)行うようにしてもよい。本変形例によれば、ウエハ200上に、SiBCN膜が形成されることとなる。本変形例の各ステップにおける処理手順、処理条件は、図4に示す成膜シーケンスや変形例2,6と同様とする。
NH3ガスを供給するステップの代わりに、TMBガス等のボラジン系ガスを供給するステップを行うようにしてもよい。すなわち、BTCSMガスを封じ込めるステップ、TMBガス等のボラジン系ガスを供給するステップを非同時に行うサイクルを所定回数(n回)行うようにしてもよい。本変形例のBTCSMガスを供給するステップにおける処理手順、処理条件は、図4に示す成膜シーケンスと同様とする。
BTCSMガスを封じ込めるステップと、NH3ガスを供給するステップと、の間に、TMBガスを供給するステップを行うようにしてもよい。すなわち、BTCSMガスを封じ込めるステップ、TMBガスを供給するステップ、NH3ガスを供給するステップを非同時に行うサイクルを所定回数(n回)行うようにしてもよい。本変形例の各ステップにおける処理手順、処理条件は、図4に示す成膜シーケンスや変形例8と同様とする。
図7に示すように、BTCSMガスを封じ込めるステップ、NH3ガスを供給するステップを非同時に行うセットを所定回数(m1回)行うことで、第1の膜としてSiCN膜を形成するステップと、
BTCSMガスを封じ込めるステップ、NH3ガスを供給するステップ、O2ガスを供給するステップを非同時に行うセットを所定回数(m2回)行うことで、第2の膜としてSiOCN膜を形成するステップと、
を含むサイクルを所定回数(n回)行うことで、ウエハ200上に、第1の膜と第2の膜とがナノレベルで交互に積層されてなる積層膜(SiOCN膜)を形成するようにしてもよい(変形例10)。なお、図7は、各セットの実施回数(m1回、m2回)をそれぞれ2回とする例を示している。
BTCSMガスを封じ込めるステップ、O2ガスを供給するステップを非同時に行うセットを所定回数(m2回)行うことで、第2の膜としてSiOC膜を形成するステップと、
を含むサイクルを所定回数(n回)行うことで、ウエハ200上に、第1の膜と第2の膜とがナノレベルで交互に積層されてなる積層膜(SiOCN膜)を形成するようにしてもよい(変形例11)。なお、図8は、各セットの実施回数(m1回、m2回)をそれぞれ2回とする例を示している。
BTCSMガスを封じ込めるステップ、O2ガスを供給するステップを非同時に行うセットを所定回数(m2回)行うことで、第2の膜としてSiOC膜を形成するステップと、
を含むサイクルを所定回数(n回)行うことで、ウエハ200上に、第1の膜と第2の膜とがナノレベルで交互に積層されてなる積層膜(SiOCN膜)を形成するようにしてもよい(変形例12)。なお、図9は、各セットの実施回数(m1回、m2回)をそれぞれ2回とする例を示している。
BTCSMガスを封じ込めるステップ、BCl3ガスを供給するステップ、NH3ガスを供給するステップを非同時に行うセットを所定回数(m2回)行うことで、第2の膜としてボラジン環骨格非含有のSiBCN膜を形成するステップと、
を含むサイクルを所定回数(n回)行うことで、ウエハ200上に、第1の膜と第2の膜とがナノレベルで交互に積層されてなる積層膜(ボラジン環骨格非含有のSiBCN膜)を形成するようにしてもよい(変形例13)。
BTCSMガスを封じ込めるステップ、TMBガスを供給するステップを非同時に行うセットを所定回数(m2回)行うことで、第2の膜としてボラジン環骨格を含むSiBCN膜を形成するステップと、
を含むサイクルを所定回数(n回)行うことで、ウエハ200上に、第1の膜と第2の膜とがナノレベルで交互に積層されてなる積層膜(ボラジン環骨格を含むSiBCN膜)を形成するようにしてもよい(変形例14)。
図4に示す成膜シーケンスや上述の各変形例では、反応ガスとしてのC3H6ガスを、BTCSMガス等の原料ガスや、NH3ガス、O2ガス、TEAガス、BCl3ガス、TMBガス等の反応ガスと同時に供給するようにしてもよい。すなわち、C3H6ガスを供給するステップを、原料ガスを供給するステップ、および、C3H6ガス以外の反応ガスを供給するステップのうち少なくともいずれかのステップと同時に行うようにしてもよい。図10は、変形例2において、C3H6ガスを供給するステップを、TEAガスを供給するステップと同時に行う例を示している。
以上、本発明の実施形態を具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
以下、本発明の好ましい態様について付記する。
本発明の一態様によれば、
処理室内の基板に対して、第1の元素と炭素との化学結合を有する原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する工程と、
前記処理室内の前記原料ガスを排気系より排気する工程と、
前記処理室内の前記基板に対して、第2の元素を含む反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する工程と、
前記処理室内の前記反応ガスを前記排気系より排気する工程と、
を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する工程を有する半導体装置の製造方法、および、基板処理方法が提供される。
付記1に記載の方法であって、好ましくは、
前記第1の固体層を形成する工程では、前記排気系を閉塞する。
付記1または2に記載の方法であって、好ましくは、
前記第1の固体層を形成する工程では、前記排気系(の排気流路)を密閉する。
付記1乃至3のいずれかに記載の方法であって、好ましくは、
前記第1の固体層を形成する工程では、前記排気系の排気流路の開度を全閉(フルクローズ)とする。
付記1乃至4のいずれかに記載の方法であって、好ましくは、
前記第1の固体層を形成する工程では、前記排気系に設けられた排気流路開閉部(排気バルブ)を全閉(フルクローズ)とする。
付記1乃至5のいずれかに記載の方法であって、好ましくは、
前記第1の固体層を形成する工程では、前記原料ガスに含まれていた前記第1の元素と炭素との化学結合の少なくとも一部を切断することなく保持したまま前記第1の固体層中に取り込ませる。
付記1乃至6のいずれかに記載の方法であって、好ましくは、
前記第1の固体層は、前記第1の元素および炭素が堆積されてなる堆積層である。
付記1乃至7のいずれかに記載の方法であって、好ましくは、
前記第1の固体層は、前記原料ガスの化学吸着が飽和する(前記原料ガスの化学吸着にセルフリミットがかかる)ことで形成される前記原料ガスの化学吸着層よりも厚い。
付記1乃至8のいずれかに記載の方法であって、好ましくは、
前記第1の固体層を形成する工程は、CVD反応が生じる条件下で行われる。
付記1乃至9のいずれかに記載の方法であって、好ましくは、
前記第1の固体層を形成する工程は、気相反応が生じる条件下で行われる。
付記1乃至10のいずれかに記載の方法であって、好ましくは、
前記第2の固体層を形成する工程では、前記第1の固体層中に含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記処理室内の前記基板に対して、前記反応ガスを供給する。
付記1乃至11のいずれかに記載の方法であって、好ましくは、
前記サイクルは、さらに、
前記処理室内の前記基板に対して、第3の元素を含む反応ガスを供給する工程と、
前記処理室内の前記反応ガスを前記排気系より排気する工程と、
を含み、
前記サイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素、前記第3の元素および炭素を含む膜を形成する。
付記1乃至12のいずれかに記載の方法であって、好ましくは、
前記サイクルは、さらに、
前記処理室内の前記基板に対して、第3の元素を含む反応ガスを供給し、前記第2の固体層を改質して、第3の固体層を形成する工程と、
前記処理室内の前記反応ガスを前記排気系より排気する工程と、
を、上記各工程と非同時に行うことを含み、
前記サイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素、前記第3の元素および炭素を含む膜を形成する。
付記1乃至13のいずれかに記載の方法であって、好ましくは、
前記原料ガスは、前記第1の元素、炭素およびハロゲン元素を含む。
付記1乃至13のいずれかに記載の方法であって、好ましくは、
前記原料ガスは、1分子中(その化学構造式中)に前記第1の元素と炭素との化学結合を少なくとも2つ有する。
付記1乃至15のいずれかに記載の方法であって、好ましくは、
前記反応ガスは、窒素含有ガス(窒化ガス、窒化水素系ガス)、炭素含有ガス(炭化水素系ガス)、窒素および炭素を含むガス(アミン系ガス、有機ヒドラジン系ガス)、酸素含有ガス(酸化ガス)、硼素含有ガス(ボラン系ガス)、および、硼素、窒素および炭素を含むガス(ボラジン系ガス)からなる群より選択される少なくとも1つを含む。
付記1乃至16のいずれかに記載の方法であって、好ましくは、
前記サイクルはノンプラズマの条件下で所定回数行われる。
本発明の他の態様によれば、
基板を収容する処理室と、
前記処理室内の基板に対して第1の元素と炭素との化学結合を有する原料ガスを供給する原料ガス供給系と、
前記処理室内の基板に対して第2の元素を含む反応ガスを供給する反応ガス供給系と、
前記処理室内の基板を加熱するヒータと、
前記処理室内を排気する排気系と、
前記処理室内の基板に対して、前記原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する処理と、前記処理室内の前記原料ガスを前記排気系より排気する処理と、前記処理室内の前記基板に対して、前記反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する処理と、前記処理室内の前記反応ガスを前記排気系より排気する処理と、を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する処理を行うように、前記原料ガス供給系、前記反応ガス供給系、前記ヒータおよび前記排気系を制御するよう構成される制御部と、
を有する基板処理装置が提供される。
本発明のさらに他の態様によれば、
処理室内の基板に対して、第1の元素と炭素との化学結合を有する原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する手順と、
前記処理室内の前記原料ガスを排気系より排気する手順と、
前記処理室内の前記基板に対して、第2の元素を含む反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する手順と、
前記処理室内の前記反応ガスを前記排気系より排気する手順と、
を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する手順をコンピュータに実行させるプログラム、および、該プログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。
200 ウエハ
201 処理室
202 処理炉
203 反応管
207 ヒータ
231 排気管
232a〜232e ガス供給管
Claims (18)
- 処理室内の基板に対して、第1の元素、炭素およびハロゲン元素を含み、前記第1の元素と炭素との化学結合を有する原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する工程と、
前記処理室内の前記原料ガスを排気系より排気する工程と、
前記処理室内の前記基板に対して、第2の元素を含む反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する工程と、
前記処理室内の前記反応ガスを前記排気系より排気する工程と、
を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する工程を有する半導体装置の製造方法。 - 前記第1の固体層を形成する工程では、前記排気系を閉塞する請求項1に記載の半導体装置の製造方法。
- 前記第1の固体層を形成する工程では、前記排気系を密閉する請求項1または2に記載の半導体装置の製造方法。
- 前記第1の固体層を形成する工程では、前記排気系の排気流路の開度を全閉とする請求項1乃至3のいずれかに記載の半導体装置の製造方法。
- 前記第1の固体層を形成する工程では、前記排気系に設けられた排気流路開閉部を全閉とする請求項1乃至4のいずれかに記載の半導体装置の製造方法。
- 前記第1の固体層を形成する工程では、前記原料ガスに含まれていた前記第1の元素と炭素との化学結合の少なくとも一部を切断することなく保持したまま前記第1の固体層中に取り込ませる請求項1乃至5のいずれかに記載の半導体装置の製造方法。
- 前記第1の固体層は、前記第1の元素および炭素が堆積されてなる堆積層である請求項1乃至6のいずれかに記載の半導体装置の製造方法。
- 前記第1の固体層は、前記原料ガスの化学吸着が飽和することで形成される前記原料ガスの化学吸着層よりも厚い請求項1乃至7のいずれかに記載の半導体装置の製造方法。
- 前記第1の固体層を形成する工程は、気相反応が生じる条件下で行われる請求項1乃至8のいずれかに記載の半導体装置の製造方法。
- 前記第2の固体層を形成する工程では、前記第1の固体層中に含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記処理室内の前記基板に対して、前記反応ガスを供給する請求項1乃至9のいずれかに記載の半導体装置の製造方法。
- 前記サイクルは、さらに、
前記処理室内の前記基板に対して、第3の元素を含む反応ガスを供給する工程と、
前記処理室内の前記反応ガスを前記排気系より排気する工程と、
を含み、
前記サイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素、前記第3の元素および炭素を含む膜を形成する請求項1乃至10のいずれかに記載の半導体装置の製造方法。 - 前記サイクルは、さらに、
前記処理室内の前記基板に対して、第3の元素を含む反応ガスを供給し、前記第2の固体層を改質して、第3の固体層を形成する工程と、
前記処理室内の前記反応ガスを前記排気系より排気する工程と、
を、上記各工程と非同時に行うことを含み、
前記サイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素、前記第3の元素および炭素を含む膜を形成する請求項1乃至10のいずれかに記載の半導体装置の製造方法。 - 前記原料ガスは、1分子中に前記第1の元素と炭素との化学結合を少なくとも2つ有する請求項1乃至12のいずれかに記載の半導体装置の製造方法。
- 前記反応ガスは、窒素含有ガス、炭素含有ガス、窒素および炭素を含むガス、酸素含有ガス、硼素含有ガス、および、硼素、窒素および炭素を含むガスからなる群より選択される少なくとも1つを含む請求項1乃至13のいずれかに記載の半導体装置の製造方法。
- 前記サイクルはノンプラズマの条件下で所定回数行われる請求項1乃至14のいずれかに記載の半導体装置の製造方法。
- 基板を収容する処理室と、
前記処理室内の基板に対して第1の元素、炭素およびハロゲン元素を含み、前記第1の元素と炭素との化学結合を有する原料ガスを供給する原料ガス供給系と、
前記処理室内の基板に対して第2の元素を含む反応ガスを供給する反応ガス供給系と、
前記処理室内の基板を加熱するヒータと、
前記処理室内を排気する排気系と、
前記処理室内の基板に対して、前記原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する処理と、前記処理室内の前記原料ガスを前記排気系より排気する処理と、前記処理室内の前記基板に対して、前記反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する処理と、前記処理室内の前記反応ガスを前記排気系より排気する処理と、を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する処理を行うように、前記原料ガス供給系、前記反応ガス供給系、前記ヒータおよび前記排気系を制御するよう構成される制御部と、
を有する基板処理装置。 - 処理室内の基板に対して、第1の元素、炭素およびハロゲン元素を含み、前記第1の元素と炭素との化学結合を有する原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する手順と、
前記処理室内の前記原料ガスを排気系より排気する手順と、
前記処理室内の前記基板に対して、第2の元素を含む反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する手順と、
前記処理室内の前記反応ガスを前記排気系より排気する手順と、
を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する手順をコンピュータに実行させるプログラム。 - 処理室内の基板に対して、第1の元素、炭素およびハロゲン元素を含み、前記第1の元素と炭素との化学結合を有する原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する手順と、
前記処理室内の前記原料ガスを排気系より排気する手順と、
前記処理室内の前記基板に対して、第2の元素を含む反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する手順と、
前記処理室内の前記反応ガスを前記排気系より排気する手順と、
を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する手順をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014034332A JP5855691B2 (ja) | 2014-02-25 | 2014-02-25 | 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体 |
US14/628,963 US9890458B2 (en) | 2014-02-25 | 2015-02-23 | Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium |
KR1020150026175A KR101624459B1 (ko) | 2014-02-25 | 2015-02-25 | 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램 |
US15/011,033 US10066298B2 (en) | 2014-02-25 | 2016-01-29 | Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014034332A JP5855691B2 (ja) | 2014-02-25 | 2014-02-25 | 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015159247A JP2015159247A (ja) | 2015-09-03 |
JP5855691B2 true JP5855691B2 (ja) | 2016-02-09 |
Family
ID=53882894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014034332A Active JP5855691B2 (ja) | 2014-02-25 | 2014-02-25 | 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体 |
Country Status (3)
Country | Link |
---|---|
US (2) | US9890458B2 (ja) |
JP (1) | JP5855691B2 (ja) |
KR (1) | KR101624459B1 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6247095B2 (ja) * | 2013-12-27 | 2017-12-13 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置およびプログラム |
US10312137B2 (en) * | 2016-06-07 | 2019-06-04 | Applied Materials, Inc. | Hardmask layer for 3D NAND staircase structure in semiconductor applications |
KR102248860B1 (ko) * | 2016-09-21 | 2021-05-06 | 가부시키가이샤 코쿠사이 엘렉트릭 | 기판 처리 장치, 액체 원료 보충 시스템, 반도체 장치의 제조 방법, 프로그램 |
JP6851173B2 (ja) * | 2016-10-21 | 2021-03-31 | 東京エレクトロン株式会社 | 成膜装置および成膜方法 |
JP6814057B2 (ja) * | 2017-01-27 | 2021-01-13 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理装置、およびプログラム |
JP6857503B2 (ja) * | 2017-02-01 | 2021-04-14 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理装置およびプログラム |
KR102214218B1 (ko) * | 2017-10-18 | 2021-02-10 | 한양대학교 산학협력단 | 막 제조방법 및 그 제조장치 |
US11015243B2 (en) | 2017-10-18 | 2021-05-25 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) | Method and apparatus for forming layer, metal oxide transistor and fabrication method thereof |
WO2019207864A1 (ja) | 2018-04-27 | 2019-10-31 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理装置、およびプログラム |
JP6946374B2 (ja) * | 2019-06-20 | 2021-10-06 | 株式会社Kokusai Electric | 半導体装置の製造方法、基板処理装置、およびプログラム |
JP7437596B2 (ja) * | 2020-03-25 | 2024-02-26 | 東京エレクトロン株式会社 | 炭素ケイ素含有膜を形成する方法及び装置 |
US20230360906A1 (en) * | 2022-05-05 | 2023-11-09 | Applied Materials, Inc. | Silicon-and-carbon-containing materials with low dielectric constants |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7125582B2 (en) * | 2003-07-30 | 2006-10-24 | Intel Corporation | Low-temperature silicon nitride deposition |
US20050145177A1 (en) * | 2003-12-30 | 2005-07-07 | Mcswiney Michael | Method and apparatus for low temperature silicon nitride deposition |
US20060228903A1 (en) | 2005-03-30 | 2006-10-12 | Mcswiney Michael L | Precursors for the deposition of carbon-doped silicon nitride or silicon oxynitride films |
JP5665289B2 (ja) | 2008-10-29 | 2015-02-04 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理方法および基板処理装置 |
US8647722B2 (en) | 2008-11-14 | 2014-02-11 | Asm Japan K.K. | Method of forming insulation film using plasma treatment cycles |
JP2010129666A (ja) | 2008-11-26 | 2010-06-10 | Hitachi Kokusai Electric Inc | 基板処理装置及び半導体装置の製造方法 |
JP5223804B2 (ja) | 2009-07-22 | 2013-06-26 | 東京エレクトロン株式会社 | 成膜方法及び成膜装置 |
JP2011082493A (ja) | 2009-09-14 | 2011-04-21 | Hitachi Kokusai Electric Inc | 半導体装置の製造方法及び基板処理装置 |
JP5541223B2 (ja) | 2010-07-29 | 2014-07-09 | 東京エレクトロン株式会社 | 成膜方法及び成膜装置 |
JP2012049290A (ja) * | 2010-08-26 | 2012-03-08 | Hitachi Kokusai Electric Inc | 半導体装置の製造方法及び半導体装置 |
JP2013040398A (ja) | 2011-07-20 | 2013-02-28 | Tokyo Electron Ltd | 成膜装置及び成膜方法 |
JP6043546B2 (ja) | 2011-10-21 | 2016-12-14 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム |
JP6105967B2 (ja) | 2012-03-21 | 2017-03-29 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム |
US9243324B2 (en) * | 2012-07-30 | 2016-01-26 | Air Products And Chemicals, Inc. | Methods of forming non-oxygen containing silicon-based films |
KR101703671B1 (ko) | 2013-09-02 | 2017-02-07 | 한온시스템 주식회사 | 차량용 공조장치 |
-
2014
- 2014-02-25 JP JP2014034332A patent/JP5855691B2/ja active Active
-
2015
- 2015-02-23 US US14/628,963 patent/US9890458B2/en active Active
- 2015-02-25 KR KR1020150026175A patent/KR101624459B1/ko active Active
-
2016
- 2016-01-29 US US15/011,033 patent/US10066298B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR101624459B1 (ko) | 2016-05-25 |
US20150243499A1 (en) | 2015-08-27 |
US20160153090A1 (en) | 2016-06-02 |
JP2015159247A (ja) | 2015-09-03 |
KR20150100570A (ko) | 2015-09-02 |
US10066298B2 (en) | 2018-09-04 |
US9890458B2 (en) | 2018-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5852151B2 (ja) | 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体 | |
JP5855691B2 (ja) | 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体 | |
JP6347544B2 (ja) | 半導体装置の製造方法、基板処理装置およびプログラム | |
JP5883049B2 (ja) | 半導体装置の製造方法、基板処理装置、プログラムおよび記録媒体 | |
JP5886381B2 (ja) | 半導体装置の製造方法、基板処理装置、プログラムおよび記録媒体 | |
JP6284285B2 (ja) | 半導体装置の製造方法、基板処理装置およびプログラム | |
JP6247095B2 (ja) | 半導体装置の製造方法、基板処理装置およびプログラム | |
JP6105967B2 (ja) | 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム | |
JP6125279B2 (ja) | 半導体装置の製造方法、基板処理装置およびプログラム | |
CN104805414B (zh) | 半导体器件的制造方法及衬底处理装置 | |
JP5886366B2 (ja) | 半導体装置の製造方法、基板処理装置、プログラムおよび記録媒体 | |
JP6490374B2 (ja) | 半導体装置の製造方法、基板処理装置およびプログラム | |
JP6254848B2 (ja) | 半導体装置の製造方法、基板処理装置およびプログラム | |
JP2013140946A (ja) | 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム | |
JP2015103729A (ja) | 半導体装置の製造方法、基板処理装置およびプログラム | |
JP6523186B2 (ja) | 半導体装置の製造方法、基板処理装置およびプログラム | |
JP6224258B2 (ja) | 半導体装置の製造方法、基板処理装置およびプログラム | |
WO2016038744A1 (ja) | 半導体装置の製造方法、基板処理装置および記録媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151006 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151209 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5855691 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |