[go: up one dir, main page]

JP5855691B2 - 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体 - Google Patents

半導体装置の製造方法、基板処理装置、プログラム及び記録媒体 Download PDF

Info

Publication number
JP5855691B2
JP5855691B2 JP2014034332A JP2014034332A JP5855691B2 JP 5855691 B2 JP5855691 B2 JP 5855691B2 JP 2014034332 A JP2014034332 A JP 2014034332A JP 2014034332 A JP2014034332 A JP 2014034332A JP 5855691 B2 JP5855691 B2 JP 5855691B2
Authority
JP
Japan
Prior art keywords
gas
film
processing chamber
solid layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014034332A
Other languages
English (en)
Other versions
JP2015159247A (ja
Inventor
山本 隆治
隆治 山本
島本 聡
聡 島本
義朗 ▲ひろせ▼
義朗 ▲ひろせ▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2014034332A priority Critical patent/JP5855691B2/ja
Priority to US14/628,963 priority patent/US9890458B2/en
Priority to KR1020150026175A priority patent/KR101624459B1/ko
Publication of JP2015159247A publication Critical patent/JP2015159247A/ja
Priority to US15/011,033 priority patent/US10066298B2/en
Application granted granted Critical
Publication of JP5855691B2 publication Critical patent/JP5855691B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/38Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Description

この発明は、基板上に薄膜を形成する工程を含む半導体装置の製造方法、基板処理装置およびプログラムに関するものである。
半導体装置(デバイス)の製造工程の一工程として、基板に対して、例えばシリコンを含む原料ガスや、窒化ガスや酸化ガス等の反応ガスを供給し、基板上に窒化膜や酸化膜等の膜を形成する工程が行われることがある。
基板上に形成する上述の膜中に炭素(C)等を含有させることで、例えばフッ化水素(HF)に対する耐性等を向上させることができる。この場合に、膜中の炭素濃度を高精度に制御し、膜中に高濃度に炭素を含有させることができれば、膜のHF耐性等をいっそう向上させることができる。
本発明の目的は、炭素濃度の高い膜を形成することが可能な技術を提供することにある。
本発明の一態様によれば、
処理室内の基板に対して、第1の元素と炭素との化学結合を有する原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する工程と、
前記処理室内の前記原料ガスを排気系より排気する工程と、
前記処理室内の前記基板に対して、第2の元素を含む反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する工程と、
前記処理室内の前記反応ガスを前記排気系より排気する工程と、
を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する工程を有する半導体装置の製造方法が提供される。
本発明の他の態様によれば、
基板を収容する処理室と、
前記処理室内の基板に対して第1の元素と炭素との化学結合を有する原料ガスを供給する原料ガス供給系と、
前記処理室内の基板に対して第2の元素を含む反応ガスを供給する反応ガス供給系と、
前記処理室内の基板を加熱するヒータと、
前記処理室内を排気する排気系と、
前記処理室内の基板に対して、前記原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する処理と、前記処理室内の前記原料ガスを前記排気系より排気する処理と、前記処理室内の前記基板に対して、前記反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する処理と、前記処理室内の前記反応ガスを前記排気系より排気する処理と、を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する処理を行うように、前記原料ガス供給系、前記反応ガス供給系、前記ヒータおよび前記排気系を制御するよう構成される制御部と、
を有する基板処理装置が提供される。
本発明のさらに他の態様によれば、
処理室内の基板に対して、第1の元素と炭素との化学結合を有する原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する手順と、
前記処理室内の前記原料ガスを排気系より排気する手順と、
前記処理室内の前記基板に対して、第2の元素を含む反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する手順と、
前記処理室内の前記反応ガスを前記排気系より排気する手順と、
を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する手順をコンピュータに実行させるプログラムが提供される。
本発明によれば、炭素濃度の高い膜を形成することが可能となる。
本発明の一実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。 本発明の一実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を図1のA−A線断面図で示す図である。 本発明の一実施形態で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。 本発明の一実施形態の成膜シーケンスにおけるガス供給のタイミングと処理室内の圧力変化を示す図である。 本発明の一実施形態の成膜シーケンスの変形例1におけるガス供給のタイミングおよび処理室内の圧力変化を示す図である。 本発明の一実施形態の成膜シーケンスの変形例3におけるガス供給タイミングを示す図である。 本発明の一実施形態の成膜シーケンスの変形例10におけるガス供給タイミングを示す図である。 本発明の一実施形態の成膜シーケンスの変形例11におけるガス供給タイミングを示す図である。 本発明の一実施形態の成膜シーケンスの変形例12におけるガス供給タイミングを示す図である。 本発明の一実施形態の成膜シーケンスの変形例15におけるガス供給タイミングを示す図である。 (a)はBTCSMの化学構造式を、(b)はBTCSEの化学構造式を、(c)はTCDMDSの化学構造式を、(d)はDCTMDSの化学構造式を、(e)はMCPMDSの化学構造式を示す図である。 (a)はボラジンの化学構造式を、(b)はボラジン化合物の化学構造式を、(c)はn,n’,n”−トリメチルボラジンの化学構造式を、(d)はn,n’,n”−トリ−n−プロピルボラジンの化学構造式を示す図である。 本発明の他の実施形態で好適に用いられる基板処理装置の処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。 本発明の他の実施形態で好適に用いられる基板処理装置の処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。 本発明の他の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。
<本発明の一実施形態>
以下、本発明の一実施形態について、図1〜図3を用いて説明する。
(1)基板処理装置の構成
図1に示すように、処理炉202は加熱手段(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。ヒータ207は、後述するようにガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
ヒータ207の内側には、ヒータ207と同心円状に反応容器(処理容器)を構成する反応管203が配設されている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の筒中空部には、処理室201が形成されている。処理室201は、基板としてのウエハ200を後述するボート217によって水平姿勢で垂直方向に多段に整列した状態で収容可能に構成されている。
処理室201内には、ノズル249a,249bが、反応管203の下部を貫通するように設けられている。ノズル249a,249bは、例えば石英またはSiC等の耐熱性材料からなる。ノズル249a,249bには、ガス供給管232a,232bがそれぞれ接続されている。ガス供給管232bにはガス供給管232cが接続されている。このように、反応管203には、2本のノズル249a,249bと、3本のガス供給管232a〜232cとが設けられており、処理室201内へ複数種類のガスを供給することができるように構成されている。
但し、本実施形態の処理炉202は上述の形態に限定されない。例えば、反応管203の下方に、反応管203を支持する金属製のマニホールドを設け、各ノズルを、マニホールドの側壁を貫通するように設けてもよい。この場合、マニホールドに、後述する排気管231をさらに設けてもよい。この場合であっても、排気管231を、マニホールドではなく、反応管203の下部に設けてもよい。このように、処理炉202の炉口部を金属製とし、この金属製の炉口部にノズル等を取り付けてもよい。
ガス供給管232a〜232cには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a〜241cおよび開閉弁であるバルブ243a〜243cがそれぞれ設けられている。ガス供給管232a,232bのバルブ243a,243bよりも下流側には、不活性ガスを供給するガス供給管232d,232eがそれぞれ接続されている。ガス供給管232d,232eには、上流方向から順に、流量制御器(流量制御部)であるMFC241d,241eおよび開閉弁であるバルブ243d,243eがそれぞれ設けられている。
ガス供給管232a,232bの先端部には、ノズル249a,249bがそれぞれ接続されている。ノズル249a,249bは、図2に示すように、反応管203の内壁とウエハ200との間における円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるようにそれぞれ設けられている。すなわち、ノズル249a,249bは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにそれぞれ設けられている。ノズル249a,249bは、L字型のロングノズルとしてそれぞれ構成されており、それらの各水平部は反応管203の下部側壁を貫通するように設けられており、それらの各垂直部は少なくともウエハ配列領域の一端側から他端側に向かって立ち上がるように設けられている。ノズル249a,249bの側面には、ガスを供給するガス供給孔250a,250bがそれぞれ設けられている。ガス供給孔250a,250bは、反応管203の中心を向くようにそれぞれ開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250a,250bは、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。
このように、本実施形態では、反応管203の内壁と、積載された複数のウエハ200の端部と、で定義される円環状の縦長の空間内、すなわち、円筒状の空間内に配置したノズル249a,249bを経由してガスを搬送している。そして、ノズル249a,249bにそれぞれ開口されたガス供給孔250a,250bから、ウエハ200の近傍で初めて反応管203内にガスを噴出させている。そして、反応管203内におけるガスの主たる流れを、ウエハ200の表面と平行な方向、すなわち、水平方向としている。このような構成とすることで、各ウエハ200に均一にガスを供給でき、各ウエハ200に形成される薄膜の膜厚均一性を向上させることが可能となる。ウエハ200の表面上を流れたガス、すなわち、反応後の残ガスは、排気口、すなわち、後述する排気管231の方向に向かって流れる。但し、この残ガスの流れの方向は、排気口の位置によって適宜特定され、垂直方向に限ったものではない。
ガス供給管232aからは、所定元素と炭素(C)との化学結合を有する原料ガスとして、例えば、所定元素としてのSi、アルキレン基およびハロゲン基を含み、SiとCとの化学結合(Si−C結合)を有するアルキレンハロシラン原料ガス、或いは、Si、アルキル基およびハロゲン基を含み、Si−C結合を有するアルキルハロシラン原料ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給されるように構成されている。
ここで、アルキレン基とは、一般式C2n+2で表される鎖状飽和炭化水素(アルカン)から水素(H)を2つ取り除いた官能基であり、一般式C2nで表される原子の集合体である。アルキレン基には、メチレン基、エチレン基、プロピレン基、ブチレン基等が含まれる。また、アルキル基とは、一般式C2n+2で表される鎖状飽和炭化水素からHを1つ取り除いた官能基であり、一般式C2n+1で表される原子の集合体である。アルキル基には、メチル基、エチル基、プロピル基、ブチル基等が含まれる。また、ハロゲン基には、クロロ基、フルオロ基、ブロモ基、ヨード基等が含まれる。すなわち、ハロゲン基には、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)等のハロゲン元素が含まれる。
アルキレンハロシラン原料ガスとしては、例えば、Si、アルキレン基としてのメチレン基(−CH−)およびハロゲン基としてのクロロ基(Cl)を含む原料ガス、すなわち、メチレン基を含むクロロシラン原料ガスや、Si、アルキレン基としてのエチレン基(−C−)およびハロゲン基としてのクロロ基(Cl)を含む原料ガス、すなわち、エチレン基を含むクロロシラン原料ガスを用いることができる。メチレン基を含むクロロシラン原料ガスとしては、例えば、メチレンビス(トリクロロシラン)ガス、すなわち、ビス(トリクロロシリル)メタン((SiClCH、略称:BTCSM)ガス等を用いることができる。エチレン基を含むクロロシラン原料ガスとしては、例えば、エチレンビス(トリクロロシラン)ガス、すなわち、1,2−ビス(トリクロロシリル)エタン((SiCl、略称:BTCSE)ガス等を用いることができる。
図11(a)に示すように、BTCSMは、その化学構造式中(1分子中)にアルキレン基としてのメチレン基を1つ含んでいる。メチレン基が有する2つの結合手は、それぞれSiと結合しており、Si−C−Si結合を構成している。
図11(b)に示すように、BTCSEは、1分子中にアルキレン基としてのエチレン基を1つ含んでいる。エチレン基が有する2つの結合手は、それぞれSiと結合しており、Si−C−C−Si結合を構成している。
アルキルハロシラン原料ガスとしては、例えば、Si、アルキル基としてのメチル基(−CH)およびハロゲン基としてのクロロ基(Cl)を含む原料ガス、すなわち、メチル基を含むクロロシラン原料ガスを用いることができる。メチル基を含むクロロシラン原料ガスとしては、例えば、1,1,2,2−テトラクロロ−1,2−ジメチルジシラン((CHSiCl、略称:TCDMDS)ガス、1,2−ジクロロ−1,1,2,2−テトラメチルジシラン((CHSiCl、略称:DCTMDS)ガス、1−モノクロロ−1,1,2,2,2−ペンタメチルジシラン((CHSiCl、略称:MCPMDS)ガス等を用いることができる。TCDMDSガス、DCTMDSガス、MCPMDSガス等のアルキルハロシラン原料ガスは、BTCSEガス、BTCSMガス等のアルキレンハロシラン原料ガスとは異なり、Si−Si結合を有するガス、すなわち、所定元素およびハロゲン元素を含み、所定元素同士の化学結合を有する原料ガスでもある。
図11(c)に示すように、TCDMDSは、1分子中にアルキル基としてのメチル基を2つ含んでいる。2つのメチル基が有する各結合手は、それぞれSiと結合しており、Si−C結合を構成している。TCDMDSはジシランの誘導体であり、Si−Si結合を有している。すなわち、TCDMDSは、Si同士が結合し、且つ、SiとCとが結合したSi−Si−C結合を有している。
図11(d)に示すように、DCTMDSは、1分子中にアルキル基としてのメチル基を4つ含んでいる。4つのメチル基が有する各結合手は、それぞれSiと結合しており、Si−C結合を構成している。DCTMDSはジシランの誘導体であり、Si−Si結合を有している。すなわち、DCTMDSは、Si同士が結合し、且つ、SiとCとが結合したSi−Si−C結合を有している。
図11(e)に示すように、MCPMDSは、1分子中にアルキル基としてのメチル基を5つ含んでいる。5つのメチル基が有する各結合手は、それぞれSiと結合しており、Si−C結合を構成している。MCPMDSはジシランの誘導体であり、Si−Si結合を有している。すなわち、MCPMDSは、Si同士が結合し、且つ、SiとCとが結合したSi−Si−C結合を有している。MCPMDSは、BTCSM、BTCSE、TCDMDS、DCTMDS等とは異なり、1分子中(化学構造式中)のメチル基およびクロロ基のSiを囲む配置が、非対称となったアシメトリ(asymmetry)な構造を有している。このように、本実施形態では、図11(a)〜(d)のようなシンメトリ(symmetry)な化学構造式を有する原料だけでなく、アシメトリな化学構造式を有する原料も用いることができる。
BTCSMガスやBTCSEガス等のアルキレンハロシラン原料ガスや、TCDMDSガス、DCTMDSガス、MCPMDSガス等のアルキルハロシラン原料ガスは、1分子中に少なくとも2つのSiを含み、さらにCおよびClを含み、Si−C結合を有する原料ガスであるともいえる。これらのガスは、後述する基板処理工程において、Siソースとしても作用し、Cソースとしても作用する。BTCSMガスやBTCSEガス等を、アルキレンクロロシラン原料ガスと称することもできる。TCDMDSガスやDCTMDSガスやMCPMDSガス等を、アルキルクロロシラン原料ガスと称することもできる。
本明細書において、原料ガスとは、気体状態の原料、例えば、常温常圧下で液体状態である原料を気化することで得られるガスや、常温常圧下で気体状態である原料等のことである。本明細書において「原料」という言葉を用いた場合は、「液体状態である液体原料」を意味する場合、「気体状態である原料ガス」を意味する場合、または、その両方を意味する場合がある。BTCSM等のように、常温常圧下で液体状態である液体原料を用いる場合は、液体原料を気化器やバブラ等の気化システムにより気化して、原料ガス(BTCSMガス等)として供給することとなる。
ガス供給管232bからは、原料ガスとは化学構造(分子構造)が異なる反応ガスとして、例えば、窒素(N)含有ガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給されるように構成されている。窒素含有ガスとしては、例えば、窒化水素系ガスを用いることができる。窒化水素系ガスは、NおよびHの2元素のみで構成される物質ともいえ、後述する基板処理工程において、窒化ガス、すなわち、Nソースとして作用する。窒化水素系ガスとしては、例えば、アンモニア(NH)ガスを用いることができる。
また、ガス供給管232bからは、原料ガスとは化学構造が異なる反応ガスとして、例えば、酸素(O)含有ガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給されるようにも構成されている。酸素含有ガスは、後述する基板処理工程において、酸化ガス、すなわち、Oソースとして作用する。酸素含有ガスとしては、例えば、酸素(O)ガスを用いることができる。
また、ガス供給管232bからは、原料ガスとは化学構造が異なる反応ガスとして、例えば、NおよびCを含むガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給されるようにも構成されている。NおよびCを含むガスとしては、例えば、アミン系ガスを用いることができる。
アミン系ガスとは、気体状態のアミン、例えば、常温常圧下で液体状態であるアミンを気化することで得られるガスや、常温常圧下で気体状態であるアミン等のアミン基を含むガスのことである。アミン系ガスは、エチルアミン、メチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、イソブチルアミン等のアミンを含む。アミンとは、アンモニア(NH)のHをアルキル基等の炭化水素基で置換した形の化合物の総称である。アミンは、Cを含むリガンド、すなわち、有機リガンドとして、アルキル基等の炭化水素基を含む。アミン系ガスは、C、NおよびHの3元素を含んでおり、Siを含んでいないことからSi非含有のガスともいえ、Siおよび金属を含んでいないことからSiおよび金属非含有のガスともいえる。アミン系ガスは、C、NおよびHの3元素のみで構成される物質ともいえる。アミン系ガスは、後述する基板処理工程において、Nソースとしても作用し、Cソースとしても作用する。本明細書において「アミン」という言葉を用いた場合は、「液体状態であるアミン」を意味する場合、「気体状態であるアミン系ガス」を意味する場合、または、その両方を意味する場合がある。
アミン系ガスとしては、例えば、その化学構造式中(1分子中)におけるCを含むリガンド(エチル基)の数が複数であり、1分子中においてNの数よりもCの数の方が多いトリエチルアミン((CN、略称:TEA)ガスを用いることができる。TEAのように常温常圧下で液体状態であるアミンを用いる場合は、液体状態のアミンを気化器やバブラ等の気化システムにより気化して、NおよびCを含むガス(TEAガス)として供給することとなる。
また、ガス供給管232bからは、原料ガスとは化学構造が異なる反応ガスとして、例えば、ボラジン環骨格非含有の硼素含有ガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給されるようにも構成されている。ボラジン環骨格非含有の硼素含有ガスとしては、例えば、ボラン系ガスを用いることができる。
ボラン系ガスとは、気体状態のボラン化合物、例えば、常温常圧下で液体状態であるボラン化合物を気化することで得られるガスや、常温常圧下で気体状態であるボラン化合物等のことである。ボラン化合物には、Bとハロゲン元素とを含むハロボラン化合物、例えば、BおよびClを含むクロロボラン化合物が含まれる。また、ボラン化合物には、モノボラン(BH)やジボラン(B)のようなボラン(硼化水素)や、ボランのHを他の元素等で置換した形のボラン化合物(ボラン誘導体)が含まれる。ボラン系ガスは、後述する基板処理工程においてBソースとして作用する。ボラン系ガスとしては、例えば、トリクロロボラン(BCl)ガスを用いることができる。BClガスは、後述するボラジン化合物を含まない硼素含有ガス、すなわち、非ボラジン系の硼素含有ガスである。
また、ガス供給管232bからは、原料ガスとは化学構造が異なる反応ガスとして、例えば、ボラジン環骨格を含むガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給されるようにも構成されている。ボラジン環骨格を含むガスとしては、例えば、ボラジン環骨格および有機リガンドを含むガス、すなわち、有機ボラジン系ガスを用いることができる。
有機ボラジン系ガスとしては、例えば、有機ボラジン化合物であるアルキルボラジン化合物を含むガスを用いることができる。有機ボラジン系ガスを、ボラジン化合物ガス、或いは、ボラジン系ガスと称することもできる。
ここで、ボラジンとは、B、NおよびHの3元素で構成される複素環式化合物であり、組成式はBで表すことができ、図12(a)に示す化学構造式で表すことができる。ボラジン化合物は、3つのBと3つのNとで構成されるボラジン環を構成するボラジン環骨格(ボラジン骨格ともいう)を含む化合物である。有機ボラジン化合物は、Cを含むボラジン化合物であり、Cを含むリガンド、すなわち、有機リガンドを含むボラジン化合物ともいえる。アルキルボラジン化合物は、アルキル基を含むボラジン化合物であり、アルキル基を有機リガンドとして含むボラジン化合物ともいえる。アルキルボラジン化合物は、ボラジンに含まれる6つのHのうち少なくともいずれかを、1つ以上のCを含む炭化水素で置換したものであり、図12(b)に示す化学構造式で表すことができる。ここで、図12(b)に示す化学構造式中のR〜Rは、Hであるか、あるいは1〜4つのCを含むアルキル基である。R〜Rは同じ種類のアルキル基であってもよいし、異なる種類のアルキル基であってもよい。但し、R〜Rは、その全てがHである場合を除く。アルキルボラジン化合物は、ボラジン環を構成するボラジン環骨格を有し、B、N、HおよびCを含む物質ともいえる。また、アルキルボラジン化合物は、ボラジン環骨格を有しアルキルリガンドを含む物質ともいえる。なお、R〜Rは、Hであるか、あるいは1〜4つのCを含むアルケニル基、アルキニル基であってもよい。R〜Rは同じ種類のアルケニル基、アルキニル基であってもよいし、異なる種類のアルケニル基、アルキニル基であってもよい。但し、R〜Rは、その全てがHである場合を除く。
ボラジン系ガスは、後述する基板処理工程において、Bソースとしても作用し、Nソースとしても作用し、Cソースとしても作用する。
ボラジン系ガスとしては、例えば、n,n’,n”−トリメチルボラジン(略称:TMB)ガス、n,n’,n”−トリエチルボラジン(略称:TEB)ガス、n,n’,n”−トリ−n−プロピルボラジン(略称:TPB)ガス、n,n’,n”−トリイソプロピルボラジン(略称:TIPB)ガス、n,n’,n”−トリ−n−ブチルボラジン(略称:TBB)ガス、n,n’,n”−トリイソブチルボラジン(略称:TIBB)ガス等を用いることができる。TMBは、図12(b)に示す化学構造式中のR、R、RがHであり、R、R、Rがメチル基であり、図12(c)に示す化学構造式で表すことができるボラジン化合物である。TEBは、図12(b)に示す化学構造式中のR、R、RがHであり、R、R、Rがエチル基であるボラジン化合物である。TPBは、図12(b)に示す化学構造式中のR、R、RがHであり、R、R、Rがプロピル基であり、図12(d)に示す化学構造式で表すことができるボラジン化合物である。TIPBは、図12(b)に示す化学構造式中のR、R、RがHであり、R、R、Rがイソプロピル基であるボラジン化合物である。TIBBは、図12(b)に示す化学構造式中のR、R、RがHであり、R、R、Rがイソブチル基であるボラジン化合物である。
TMB等のように常温常圧下で液体状態であるボラジン化合物を用いる場合は、液体状態のボラジン化合物を気化器やバブラ等の気化システムにより気化して、ボラジン系ガス(TMBガス等)として供給することとなる。
ガス供給管232cからは、原料ガスとは化学構造が異なる反応ガスとして、例えば、炭素含有ガスが、MFC241c、バルブ243c、ガス供給管232b、ノズル249bを介して処理室201内へ供給されるように構成されている。炭素含有ガスとしては、例えば、炭化水素系ガスを用いることができる。炭化水素系ガスは、CおよびHの2元素のみで構成される物質ともいえ、後述する基板処理工程においてCソースとして作用する。炭化水素系ガスとしては、例えば、プロピレン(C)ガスを用いることができる。
ガス供給管232d,232eからは、不活性ガスとして、例えば、窒素(N)ガスが、それぞれMFC241d,241e、バルブ243d,243e、ガス供給管232a,232b、ノズル249a,249bを介して処理室201内へ供給されるように構成されている。
ガス供給管232aから上述のような原料ガスを流す場合、主に、ガス供給管232a、MFC241a、バルブ243aにより、原料ガス供給系が構成される。ノズル249aを原料ガス供給系に含めて考えてもよい。原料ガス供給系を原料供給系と称することもできる。ガス供給管232aからアルキルハロシラン原料ガスを流す場合、原料ガス供給系を、アルキルハロシラン原料ガス供給系、或いは、アルキルハロシラン原料供給系と称することもできる。ガス供給管232aからアルキレンハロシラン原料ガスを流す場合、原料ガス供給系を、アルキレンハロシラン原料ガス供給系、或いは、アルキレンハロシラン原料供給系と称することもできる。
ガス供給管232bから窒素含有ガスを供給する場合、主に、ガス供給管232b、MFC241b、バルブ243bにより、窒素含有ガス供給系が構成される。ノズル249bを窒素含有ガス供給系に含めて考えてもよい。窒素含有ガス供給系を、窒化ガス供給系、或いは、窒化剤供給系と称することもできる。ガス供給管232bから窒化水素系ガスを流す場合、窒素含有ガス供給系を、窒化水素系ガス供給系、或いは、窒化水素供給系と称することもできる。
ガス供給管232bから酸素含有ガスを供給する場合、主に、ガス供給管232b、MFC241b、バルブ243bにより、酸素含有ガス供給系が構成される。ノズル249bを酸素含有ガス供給系に含めて考えてもよい。酸素含有ガス供給系を、酸化ガス供給系、或いは、酸化剤供給系と称することもできる。
ガス供給管232bからNおよびCを含むガスを供給する場合、主に、ガス供給管232b、MFC241b、バルブ243bにより、窒素および炭素を含むガス供給系が構成される。ノズル249bを窒素および炭素を含むガス供給系に含めて考えてもよい。ガス供給管232bからからアミン系ガスを供給する場合、窒素および炭素を含むガス供給系を、アミン系ガス供給系、或いは、アミン供給系と称することもできる。NおよびCを含むガスは、窒素含有ガスでもあり、炭素含有ガスでもあることから、窒素および炭素を含むガス供給系を、窒素含有ガス供給系、後述する炭素含有ガス供給系に含めて考えることもできる。
ガス供給管232bから硼素含有ガスを供給する場合、主に、ガス供給管232b、MFC241b、バルブ243bにより、硼素含有ガス供給系が構成される。ノズル249bを硼素含有ガス供給系に含めて考えてもよい。ガス供給管232bからボラン系ガスを流す場合、硼素含有ガス供給系を、ボラン系ガス供給系、或いは、ボラン化合物供給系と称することもできる。ガス供給管232bからボラジン系ガスを流す場合、硼素含有ガス供給系を、ボラジン系ガス供給系、有機ボラジン系ガス供給系、或いは、ボラジン化合物供給系と称することもできる。ボラジン系ガスは、NおよびCを含むガスでもあり、窒素含有ガスでもあり、炭素含有ガスでもあることから、ボラジン系ガス供給系を、窒素および炭素を含むガス供給系、窒素含有ガス供給系、炭素含有ガス供給系に含めて考えることもできる。
ガス供給管232cから炭素含有ガスを供給する場合、主に、ガス供給管232c、MFC241c、バルブ243cにより、炭素含有ガス供給系が構成される。ガス供給管232bのガス供給管232cとの接続部よりも下流側、ノズル249bを炭素含有ガス供給系に含めて考えてもよい。ガス供給管232cから炭化水素系ガスを供給する場合、炭素含有ガス供給系を、炭化水素系ガス供給系、或いは、炭化水素供給系と称することもできる。
上述の窒素含有ガス供給系、酸素含有ガス供給系、窒素および炭素を含むガス供給系、硼素含有ガス供給系、炭素含有ガス供給系のうち、いずれか、或いは、全てのガス供給系を、反応ガス供給系と称することもできる。
また、主に、ガス供給管232d,232e、MFC241d,241e、バルブ243d,243eにより、不活性ガス供給系が構成される。不活性ガス供給系を、パージガス供給系、或いは、キャリアガス供給系と称することもできる。
反応管203には、処理室201内の雰囲気を排気する排気管231が設けられている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されているバルブである。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。なお、APCバルブ244は、排気系の排気流路の一部を構成しており、圧力調整器として機能するだけではなく、排気系の排気流路を閉塞したり、さらには、密閉したりすることが可能な排気流路開閉部、すなわち、排気バルブとして機能する。
反応管203の下方には、反応管203の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、反応管203の下端に垂直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属からなり、円盤状に形成されている。シールキャップ219の上面には、反応管203の下端と当接するシール部材としてのOリング220が設けられている。シールキャップ219の処理室201と反対側には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出することが可能なように構成されている。すなわち、ボートエレベータ115は、ボート217すなわちウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。
基板支持具としてのボート217は、複数、例えば25〜200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料からなる。ボート217の下部には、例えば石英やSiC等の耐熱性材料からなる断熱板218が水平姿勢で多段に支持されている。この構成により、ヒータ207からの熱がシールキャップ219側に伝わりにくくなっている。但し、本実施形態は上述の形態に限定されない。例えば、ボート217の下部に断熱板218を設けずに、石英やSiC等の耐熱性材料からなる筒状の部材として構成された断熱筒を設けてもよい。
反応管203内には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となるように構成されている。温度センサ263は、ノズル249a,249bと同様にL字型に構成されており、反応管203の内壁に沿って設けられている。
図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理工程における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
I/Oポート121dは、上述のMFC241a〜241e、バルブ243a〜243e、圧力センサ245、APCバルブ244、真空ポンプ246、ヒータ207、温度センサ263、回転機構267、ボートエレベータ115等に接続されている。
CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからプロセスレシピを読み出すように構成されている。CPU121aは、読み出したプロセスレシピの内容に沿うように、MFC241a〜241eによる各種ガスの流量調整動作、バルブ243a〜243eの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作等を制御するように構成されている。
コントローラ121は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていてもよい。例えば、上述のプログラムを格納した外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123を用意し、この外部記憶装置123を用いて汎用のコンピュータにプログラムをインストールすること等により、本実施形態のコントローラ121を構成することができる。但し、コンピュータにプログラムを供給するための手段は、外部記憶装置123を介して供給する場合に限らない。例えば、インターネットや専用回線等の通信手段を用い、外部記憶装置123を介さずにプログラムを供給するようにしてもよい。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。
(2)基板処理工程
上述の基板処理装置を用い、半導体装置(デバイス)の製造工程の一工程として、基板上に膜を形成するシーケンス例について、図4を用いて説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
図4に示す成膜シーケンスでは、
処理室201内の基板としてのウエハ200に対して、Si−C結合を有するBTCSMガスが熱分解すると共に、BTCSMガスに含まれるSi−C結合の少なくとも一部が切断されることなく保持される条件下で、原料ガスとしてBTCSMガスを供給し、BTCSMガスを処理室201内に封じ込めることで、1原子層を超え数原子層以下の厚さのSiおよびCを含む第1の固体層を形成する工程と、
処理室201内のBTCSMガスを排気系より排気する工程と、
処理室201内のウエハ200に対して、Nを含む反応ガスとしてNHガスを供給し、第1の固体層を改質して、第2の固体層を形成する工程と、
処理室201内のNHガスを排気系より排気する工程と、
を非同時に、すなわち、同期させることなく行うサイクルを所定回数(n回)行うことで、ウエハ200上に、Si、NおよびCを含む膜として、シリコン炭窒化膜(SiCN膜)を形成する。
図4に示す成膜シーケンスでは、一例として、処理室201内へのBTCSMガスの供給を行う際に、排気系を閉塞するようにしている。具体的には、BTCSMガスを処理室201内に封じ込める際に、排気系に設けられたAPCバルブ244の開度を全閉(フルクローズ)とし、排気系の排気流路を隙間のないように完全に(ぴったりと)閉じるように、すなわち、排気系を密閉するようにしている。また、図4に示す成膜シーケンスでは、一例として、処理室201内へのBTCSMガスの供給を停止した後も、排気系の密閉状態を維持し、BTCSMガスが封じ込められた状態を所定時間維持するようにしている。なお、図4の「圧力」は、処理室201内の圧力(全圧)を任意単位(a.u.)で示している。
なお、本明細書において、上述のサイクルを所定回数行うとは、このサイクルを1回もしくは複数回行うことを意味する。すなわち、サイクルを1回以上行うことを意味する。図4は、上述のサイクルをn回繰り返す例を示している。
また、本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体(集合体)」を意味する場合、すなわち、表面に形成された所定の層や膜等を含めてウエハと称する場合がある。また、本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面(露出面)」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面、すなわち、積層体としてのウエハの最表面」を意味する場合がある。
従って、本明細書において「ウエハに対して所定のガスを供給する」と記載した場合は、「ウエハそのものの表面(露出面)に対して所定のガスを直接供給する」ことを意味する場合や、「ウエハ上に形成されている層や膜等に対して、すなわち、積層体としてのウエハの最表面に対して所定のガスを供給する」ことを意味する場合がある。また、本明細書において「ウエハ上に所定の層(または膜)を形成する」と記載した場合は、「ウエハそのものの表面(露出面)上に所定の層(または膜)を直接形成する」ことを意味する場合や、「ウエハ上に形成されている層や膜等の上、すなわち、積層体としてのウエハの最表面の上に所定の層(または膜)を形成する」ことを意味する場合がある。
また、本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同様であり、その場合、上記説明において、「ウエハ」を「基板」に置き換えて考えればよい。
(ウエハチャージおよびボートロード)
複数のウエハ200がボート217に装填(ウエハチャージ)される。その後、図1に示すように、複数のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220を介して反応管203の下端をシールした状態となる。
(圧力調整および温度調整)
処理室201内、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。真空ポンプ246は、少なくともウエハ200に対する処理が終了するまでの間は常時作動させた状態を維持する。また、処理室201内のウエハ200が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。ヒータ207による処理室201内の加熱は、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。また、回転機構267によるボート217およびウエハ200の回転を開始する。回転機構267によるボート217およびウエハ200の回転は、少なくとも、ウエハ200に対する処理が終了するまでの間は継続して行われる。
(SiCN膜形成工程)
その後、次の2つのステップ、すなわち、ステップ1,2を順次実行する。
[ステップ1]
(BTCSMガス供給)
排気系を密閉した状態で、処理室201内のウエハ200に対してBTCSMガスを供給し、処理室201内にBTCSMガスを封じ込める。
排気系を密閉する際は、APCバルブ244を全閉とする。処理室201内のウエハ200に対してBTCSMガスを供給する際は、バルブ243aを開き、ガス供給管232a内にBTCSMガスを流す。BTCSMガスは、MFC241aにより流量調整され、ガス供給孔250aから処理室201内へ供給される。このとき同時にバルブ243dを開き、ガス供給管232d内にNガスを流す。Nガスは、MFC241dにより流量調整され、BTCSMガスと一緒に処理室201内へ供給される。また、ノズル249b内へのBTCSMガスの侵入を防止するため、バルブ243eを開き、ガス供給管232e内にNガスを流す。Nガスは、ガス供給管232b、ノズル249bを介して処理室201内へ供給される。
このとき、MFC241aで制御するBTCSMガスの供給流量は、例えば1〜2000sccm、好ましくは10〜1000sccmの範囲内の流量とする。MFC241d,241eで制御するNガスの供給流量は、それぞれ例えば100〜10000sccmの範囲内の流量とする。排気系を密閉した状態で、処理室201内へBTCSMガスを供給することで、図4に示すように、処理室201内の圧力が上昇し始める。その後、処理室201内の圧力が、例えば1〜4000Pa、好ましくは67〜2666Pa、より好ましくは133〜1333Paの範囲内の所定の圧力に到達したら、バルブ243a,243d,243eを閉じ、処理室201内へのBTCSMガスおよびNガスの供給を停止する。その後、排気系の密閉状態を維持し、処理室201内の圧力が所定時間一定に維持されるようにする。BTCSMガスを処理室201内へ供給する時間は、例えば、1〜60秒、好ましくは1〜30秒の範囲内の時間とする。BTCSMガスの供給を停止した後、排気系の密閉状態を維持する時間は、例えば、1〜60秒、好ましくは1〜30秒の範囲内の時間とする。ウエハ200に対するガス供給時間(照射時間)、すなわち、ウエハ200がBTCSMガスに晒される時間は、BTCSMガスの供給時間とBTCSMガスの供給停止後に排気系の密閉を維持する時間との合計となる。ヒータ207の温度は、ウエハ200の温度が、例えば400℃以上800℃以下、好ましくは500℃以上700℃以下、より好ましくは600℃以上700℃以下の範囲内の温度となるような温度に設定する。
ウエハ200の温度が400℃未満となると、ウエハ200上にBTCSMが化学吸着しにくくなり、実用的な成膜レートが得られなくなることがある。ウエハ200の温度を400℃以上とすることで、これを解消することが可能となる。ウエハ200の温度を500℃以上とすることで、ウエハ200上にBTCSMを充分に吸着させることが可能となり、充分な成膜レートが得られるようになる。ウエハ200の温度を600℃以上、さらには650℃以上とすることで、ウエハ200上にBTCSMをより充分に吸着させることが可能となり、より充分な成膜レートが得られるようになる。
ウエハ200の温度が800℃を超えると、CVD反応が強くなり過ぎる(過剰な気相反応が生じる)ことで、膜厚均一性が悪化しやすくなり、その制御が困難となってしまう。ウエハ200の温度を800℃以下とすることで、適正な気相反応を生じさせることができることにより、膜厚均一性の悪化を抑制でき、その制御が可能となる。特に、ウエハ200の温度を700℃以下とすることで、気相反応よりも表面反応が優勢になり、膜厚均一性を確保しやすくなり、その制御が容易となる。
よって、ウエハ200の温度は400℃以上800℃以下、好ましくは500℃以上700℃以下、より好ましくは600℃以上700℃以下の範囲内の温度とするのがよい。BTCSMガスは分解性が低く(反応性が低く)、熱分解温度が高いことから、例えば650〜800℃のような比較的高い温度帯で成膜する場合でも、適正な気相反応を生じさせ、過剰な気相反応が生じることを抑制でき、それによるパーティクルの発生を抑制することができる。
上述の条件下で処理室201内にBTCSMガスを封じ込めることにより、処理室201内におけるBTCSMガスの滞在時間、すなわち、BTCSMガスの熱分解に必要な加熱時間が充分に確保される。また、この封じ込めにより、処理室201内の圧力を、排気系を開放する場合よりも高い状態に速やかに到達させ、維持することができ、反応効率を高め、BTCSMガスの熱分解を適正に促進させることができるようになる。これにより、処理室201内に封じ込められたBTCSMガスの少なくとも一部が熱分解(自己分解)し、処理室201内で、BTCSMガスの気相反応、すなわち、CVD(Chemical Vapor Deposition)反応が適正に生じることとなる。その結果、ウエハ200(表面の下地膜)上に、第1の固体層として、例えば、1原子層を超え数原子層程度の厚さのCおよびClを含むSi含有層が形成(堆積)される。
第1の固体層は、BTCSMガスの吸着層等の非固体層ではなく、BTCSMガスが熱分解することでBTCSMガスに含まれていたSi、CおよびClが堆積されてなる堆積層、すなわち、固体の層となる。第1の固体層を、CおよびClを含むSi層、或いは、Clを含むSiC層と称することもできる。第1の固体層は、BTCSMの化学吸着層を含んでいてもよいが、BTCSMガスの物理吸着層を含まない層、或いは、殆ど含まない層となる。第1の固体層は、例えば、ウエハ200上へBTCSMガスが物理吸着する条件下で形成されるBTCSMガスの物理吸着層、すなわち、非固体の層に比べ、層を構成する原子間の結合が強固で安定した層となる。また、第1の固体層は、BTCSMの化学吸着層だけで構成される層に比べ、層を構成する原子間の結合が強固で安定した層となる。ウエハ200上に非固体層であるBTCSMガスの吸着層を形成するよりも、ウエハ200上に固体層であるSi、CおよびClが堆積されてなる堆積層を形成する方が、ステップ1で形成する層の厚さ、すなわち、1サイクルあたりに形成する層の厚さを厚くでき、サイクルレート、つまり、成膜レートを高くすることができる点で、好ましい。
第1の固体層を構成するSiは、CやClとの結合が完全に切れていないものの他、CやClとの結合が完全に切れているものも含む。
但し、上述の条件下では、第1の固体層が形成される過程において、BTCSMガスに含まれるSi−C結合の少なくとも一部は、切断されることなく保持(維持)されたまま、第1の固体層中にそのまま取り込まれる。このため、第1の固体層は、例えばプラズマを用いる等のBTCSMガスに含まれるSi−C結合が切断されやすくなる条件下で形成される層に比べ、層中に含まれるSi−C結合の割合が大きい(多い)層となる。これにより、第1の固体層は、強固なSi−C結合を多く含む安定した層となる。また、層中に含まれるSi−C結合の割合が大きいことから、第1の固体層は、層中からCが脱離しにくい層、すなわち、Cの脱離確率が小さい(少ない)層となる。
また、BTCSMガスは1分子中(その化学構造式中)にSi−C結合を複数(2つ)有することから、第1の固体層中にSi−C結合がさらに取り込まれやすくなる。例えば、BTCSMガスの熱分解反応が生じる条件下において、BTCSMガスにおけるSi−C−Si結合の一方のSi−C結合が切断されたとしても、他方のSi−C結合は切断されることなく保持され、第1の固体層中にそのまま取り込まれることとなる。このため、第1の固体層は、Si−C結合を1つしか有さない原料ガスを用いて形成される層に比べ、層中に含まれるSi−C結合の割合が大きく、強固なSi−C結合を多く含み安定した、Cの脱離確率が小さい層となる。
なお、第1の固体層の形成を、BTCSMガスの気相反応、すなわち、CVD反応が生じる条件下で行うことで、第1の固体層の厚さを、ウエハ200上へのBTCSMの化学吸着が飽和する条件下で形成されるBTCSMの化学吸着層(飽和吸着層)の厚さよりも厚くすることができる。すなわち、第1の固体層の厚さを、ウエハ200上へのBTCSMの化学吸着にセルフリミットがかかることで形成されるBTCSMの化学吸着層の厚さよりも厚くすることができる。ウエハ200上に形成される第1の固体層の厚さは、例えば、1原子層を超える厚さとするのが好ましい。第1の固体層の厚さを1原子層を超える厚さとすることで、BTCSMの飽和吸着層よりも、層中に含まれるSi−C結合の絶対量を増やすことができる。これにより、第1の固体層を、強固なSi−C結合をより多く含み、層を構成する原子間の結合がより強固で、より安定した層とすることができる。層中からのCの脱離確率も、より小さくすることができる。
また、ウエハ200上に形成される第1の固体層の厚さが数原子層を超えると、後述するステップ2での改質の作用が第1の固体層の全体に届かなくなる。
よって、第1の固体層の厚さは1原子層を超え数原子層程度以下とするのが好ましい。第1の固体層の厚さを例えば2〜3原子層以下、好ましくは2原子層以下とすることで、後述するステップ2での改質反応の作用を相対的に高めることができ、ステップ2での改質反応に要する時間を短縮することができる。ステップ1での第1の固体層の形成に要する時間を短縮することもできる。結果として、1サイクルあたりの処理時間を短縮することができ、トータルでの処理時間を短縮することも可能となる。すなわち、成膜レートを高くすることも可能となる。また、第1の固体層の厚さを例えば2〜3原子層以下、好ましくは2原子層以下とすることで、膜厚均一性の制御性を高めることも可能となる。
(残留ガス除去)
第1の固体層が形成された後、バルブ243aを閉じ、BTCSMガスの供給を停止する。また、APCバルブ244を開き、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくは第1の固体層の形成に寄与した後のBTCSMガスを処理室201内から排除する。このとき、バルブ243d,243eを開き、処理室201内へNガスを供給する。Nガスはパージガスとして作用し、これにより、処理室201内に残留する未反応もしくは第1の固体層の形成に寄与した後のBTCSMガスを処理室201内から排除する効果を高めることができる。
このとき、処理室201内に残留するガスを完全に排除しなくてもよく、処理室201内を完全にパージしなくてもよい。処理室201内に残留するガスが微量であれば、その後に行われるステップ2において悪影響が生じることはない。処理室201内へ供給するNガスの流量も大流量とする必要はなく、例えば、反応管203(処理室201)の容積と同程度の量のNガスを供給することで、ステップ2において悪影響が生じない程度のパージを行うことができる。このように、処理室201内を完全にパージしないことで、パージ時間を短縮し、スループットを向上させることができる。Nガスの消費を必要最小限に抑えることも可能となる。
原料ガスとしては、BTCSMガスの他、例えば、BTCSEガス、TCDMDSガス、DCTMDSガス、MCPMDSガス等を用いることができる。不活性ガスとしては、Nガスの他、例えば、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。
[ステップ2]
(NHガス供給)
ステップ1が終了した後、排気系を開放した状態で、処理室201内のウエハ200に対してNHガスを供給する。
このステップでは、ガス供給管232bからNHガスを流すようにする。すなわち、APCバルブ244を所定の開度に開いた状態で、バルブ243bを開き、ガス供給管232b内にNHガスを流す。また、バルブ243d,243eの開閉制御を、ステップ1におけるバルブ243d,243eの開閉制御と同様の手順で行う。
このとき、MFC241bで制御するNHガスの供給流量は、例えば100〜10000sccmの範囲内の流量とする。処理室201内の圧力は、例えば1〜4000Pa、好ましくは1〜3000Paの範囲内の圧力とする。処理室201内におけるNHガスの分圧は、例えば0.01〜3960Paの範囲内の圧力とする。処理室201内の圧力をこのような比較的高い圧力帯とすることで、NHガスをノンプラズマで熱的に活性化させることが可能となる。NHガスは熱で活性化させて供給した方が、比較的ソフトな反応を生じさせることができ、後述する第1の固体層の窒化を比較的ソフトに行うことができる。例えば、窒化を行う際に、第1の固体層に含まれるSi−C結合の切断を抑制したり、第1の固体層からのCの脱離を抑制したりすることができる。熱で活性化させたNHガスをウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1〜120秒、好ましくは1〜60秒の範囲内の時間とする。その他の処理条件は、例えば、ステップ1と同様な処理条件とする。
上述の条件下でウエハ200に対して熱的に活性化させたNHガスを供給することで、第1の固体層の少なくとも一部が窒化(改質)される。第1の固体層が改質されることで、ウエハ200上に、第2の固体層として、Si、CおよびNを含む層、すなわち、SiCN層が形成されることとなる。
第2の固体層を形成する際、第1の固体層中に含まれるSi−C結合の少なくとも一部は、切断されることなく保持され、第2の固体層中にそのまま取り込まれる(残存する)こととなる。このため、第2の固体層は、例えば、NHガスをプラズマで活性化させて用いる等の第1の固体層中に含まれるSi−C結合が切断されやすい条件下で形成された層に比べて、層中に含まれるSi−C結合の割合が大きい層となる。これにより、第2の固体層は、強固なSi−C結合を多く含み、層を構成する原子間の結合が強固な、安定した層となる。また、層中に含まれる強固なSi−C結合の割合が大きく、層中における原子間の結合が強固であることから、第2の固体層は、Cの脱離確率が小さい層となる。なお、第1の固体層は、それ自体が、強固なSi−C結合を多く含み、層を構成する原子間の結合が強固で安定した層、すなわち、Cの脱離確率が小さい層であることから、プラズマで活性化させたNHガスを用いる場合であっても、層中からのCの脱離を抑制することができる。すなわち、本実施形態では、プラズマで活性化させたNHガスを用いることも可能である。
また、第2の固体層を形成する際、第1の固体層に含まれていたCl等の不純物は、NHガスによる改質反応の過程において、少なくともClを含むガス状物質を構成し、処理室201内から排出される。すなわち、第1の固体層中のCl等の不純物は、第1の固体層中から引き抜かれたり、脱離したりすることで、第1の固体層から分離する。これにより、第2の固体層は、第1の固体層に比べてCl等の不純物が少ない層となる。
(残留ガス除去)
第2の固体層が形成された後、バルブ243bを閉じ、NHガスの供給を停止する。そして、ステップ1と同様の処理手順により、処理室201内に残留する未反応もしくは第2の固体層の形成に寄与した後のNHガスや反応副生成物を処理室201内から排除する。このとき、処理室201内に残留するガス等を完全に排除しなくてもよい点は、ステップ1と同様である。
反応ガスとして用いる窒素含有ガス(窒化ガス)としては、NHガスの他、例えば、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス等の窒化水素系ガスや、これらの化合物を含むガス等を用いることができる。不活性ガスとしては、Nガスの他、例えば、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。
(所定回数実施)
上述したステップ1,2を非同時に行うサイクルを1回以上(所定回数)行うことにより、すなわち、ステップ1,2を交互に1回以上行うことにより、ウエハ200上に、所定組成および所定膜厚のSiCN膜を形成することができる。上述のサイクルは、複数回繰り返すのが好ましい。すなわち、1サイクルあたりに形成されるSiCN層の厚さを所望の膜厚よりも小さくし、上述のサイクルを所望の膜厚になるまで複数回繰り返すのが好ましい。
サイクルを複数回行う場合、少なくとも2サイクル目以降の各ステップにおいて、「ウエハ200に対して所定のガスを供給する」と記載した部分は、「ウエハ200上に形成されている層に対して、すなわち、積層体としてのウエハ200の最表面に対して所定のガスを供給する」ことを意味し、「ウエハ200上に所定の層を形成する」と記載した部分は、「ウエハ200上に形成されている層の上、すなわち、積層体としてのウエハ200の最表面の上に所定の層を形成する」ことを意味している。この点は、上述の通りである。この点は、後述する各変形例、他の実施形態においても同様である。
(パージおよび大気圧復帰)
バルブ243d,243eを開き、ガス供給管232d,232eのそれぞれからNガスを処理室201内へ供給し、排気管231から排気する。Nガスはパージガスとして作用する。これにより、処理室201内がパージされ、処理室201内に残留するガスや反応副生成物が処理室201内から除去される(パージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(ボートアンロードおよびウエハディスチャージ)
ボートエレベータ115によりシールキャップ219が下降され、反応管203の下端が開口される。そして、処理済のウエハ200が、ボート217に支持された状態で、反応管203の下端から反応管203の外部に搬出される(ボートアンロード)。処理済のウエハ200は、ボート217より取出される(ウエハディスチャージ)。
(3)本実施形態による効果
本実施形態によれば、以下に示す1つまたは複数の効果を奏する。
(a)第1の固体層の形成を、BTCSMガスが熱分解する条件下で行うことにより、第1の固体層を、BTCSMガスの吸着層等の非固体層ではなく、Si、CおよびClが堆積されてなる堆積層、すなわち、固体の層とすることが可能となる。これにより、第1の固体層は、層を構成する原子間の結合が強固で安定した層となる。
また、第1の固体層の形成を、BTCSMガスに含まれるSi−C結合の少なくとも一部が切断されることなく保持される条件下で行うことにより、第1の固体層を、層中に含まれるSi−C結合の割合が大きな層とすることが可能となる。これにより、第1の固体層を、強固なSi−C結合を多く含む安定した層とすることができ、また、Cの脱離確率が小さな層とすることが可能となる。
また、BTCSMガスのような、1分子中にSi−C結合を複数有する原料ガスを用いることで、第1の固体層を、層中に含まれるSi−C結合の割合がさらに大きな層とすることが可能となる。これにより、第1の固体層を、強固なSi−C結合をより多く含むより安定した層とすることができ、また、Cの脱離確率がさらに小さな層とすることが可能となる。
また、第1の固体層の厚さを1原子層を超える厚さとすることで、BTCSMの飽和吸着層よりも層中に含まれるSi−C結合の絶対量を増やすことができる。これにより、第1の固体層を、強固なSi−C結合をさらに多く含み、層を構成する原子間の結合がさらに強固で、さらに安定した層とすることができ、また、Cの脱離確率がよりいっそう小さな層とすることが可能となる。
また、第2の固体層を形成する際、NHガスの活性化をノンプラズマの雰囲気下で、すなわち、ノンプラズマの条件下で、つまり、熱的に行うことにより、第1の固体層中のSi−C結合の切断等を抑制することが可能となる。すなわち、第2の固体層の形成を、第1の固体層中に含まれるSi−C結合の少なくとも一部が切断されることなく保持される条件下で行うことにより、第1の固体層中のSi−C結合の減少や第1の固体層からのCの脱離を抑制することが可能となる。これにより、第2の固体層中のSi−C結合の減少やC濃度の低下を抑制することが可能となり、第2の固体層を、強固なSi−C結合を多く含み、層を構成する原子間の結合が強固な、安定した層とすることができ、また、Cの脱離確率が小さな層とすることが可能となる。
これらの結果、最終的に形成されるSiCN膜を、強固なSi−C結合を多く含み、層を構成する原子間の結合が強固な、安定した膜とすることが可能となる。また、最終的に形成されるSiCN膜を、Cの脱離確率が小さく、C濃度の高い膜とすることが可能となる。またその結果、SiCN膜を、HF耐性の高い膜とすることが可能となる。
なお、上述のように、第1の固体層は、それ自体が、強固なSi−C結合を多く含み、層を構成する原子間の結合が強固で安定した層、すなわち、Cの脱離確率が小さい層であることから、第2の固体層を形成する際に、プラズマで活性化させたNHガスを用いる場合であっても、層中からのCの脱離を抑制することができる。すなわち、プラズマで活性化させたNHガスを用いる場合であっても、最終的に形成されるSiCN膜を、C濃度の高い膜、つまり、HF耐性の高い膜とすることができる。但し、プラズマで活性化させたNHガスを用いる場合よりも、熱で活性化させたNHガスを用いる場合の方が、よりC濃度の高いSiCN膜、すなわち、よりHF耐性の高いSiCN膜を得ることができる。
(b)第1の固体層を形成する際に、排気系を密閉して処理室201内にBTCSMガスを封じ込めることで、BTCSMガスの熱分解に必要な加熱時間を充分に確保できるようになる。また、この封じ込めにより、処理室201内の圧力を、排気系を開放する場合よりも高い状態に速やかに到達させ、維持することができ、反応効率を高めることができるようになる。これにより、処理室201内に供給したBTCSMガスの熱分解を適正に促すことができ、第1の固体層の形成を促進させることが可能となる。結果として、第1の固体層の形成レート、すなわち、最終的に形成されるSiCN膜の成膜レートを高めることが可能となる。本実施形態によれば、例えば400〜500℃のような比較的低い温度帯でSiCN膜を成膜する場合であっても、BTCSMガスの熱分解を生じさせやすくなり、SiCN膜の形成を実用的な成膜レートで行うことが可能となる。また、第1の固体層の形成に寄与しないまま処理室201内から排出されてしまうBTCSMガスの量を削減することができ、BTCSMガスの利用効率を高め、成膜コストを低減させることも可能となる。
(c)第1の固体層の形成を、CVD反応が生じる条件下で、すなわち、BTCSMガスの気相反応が生じる条件下で行うことにより、第1の固体層の厚さを、BTCSMの飽和吸着層の厚さよりも厚くすることが可能となる。結果として、第1の固体層の形成レート、すなわち、最終的に形成されるSiCN膜の成膜レートを向上させ、成膜処理の生産性を高めることが可能となる。
(d)ステップ2で、活性化させたNHガスのような反応ガスを供給することにより、第1の固体層中から、Cl等の不純物を効率的に引き抜いたり脱離させたりすることができ、第2の固体層を、第1の固体層よりも不純物が少ない層とすることができる。結果として、例えば400〜500℃のような比較的低い温度帯で成膜する場合でも、SiCN膜中の不純物濃度を低減させることが可能となる。またその結果、SiCN膜を、よりHF耐性の高い膜とすることが可能となる。
(e)上述のサイクルを、ノンプラズマの条件下で所定回数行うことにより、ウエハ200上に形成するSiCN膜やウエハ200に対するプラズマダメージを回避することが可能となる。例えば、ウエハ200上に形成されているゲート絶縁膜等が荷電粒子の衝突等の物理的ダメージを受けて破壊されたり、ウエハ200上に形成されているデバイス構造に電荷が帯電することでデバイス構造がチャージングダメージを受けて破壊されたりすることを回避することが可能となる。また、同様に、処理室201内の部材等に対するプラズマダメージを回避することも可能となり、基板処理装置のメンテナンスコストを低減することも可能となる。
(f)BTCSMガスのような、1分子中に複数のハロゲン元素(Cl)を含むハロシラン原料ガスを用いることで、第1の固体層を効率よく形成することが可能となり、SiCN膜の成膜レートを高めることが可能となる。また、成膜に寄与しないBTCSMガスの消費量を削減することができ、成膜コストを低減させることも可能となる。
(g)BTCSMガスのような、1分子中に含まれるアルキレン基の分子量(分子サイズ)が小さなアルキレンハロシラン原料ガスを用いることで、成膜レートをさらに高め、また、強固な膜を形成することが可能となる。というのも、例えばヘキシレン基やヘプチレン基等の分子量の大きなアルキレン基を1分子中に含むアルキレンハロシラン原料ガスを用いた場合、この分子量の大きなアルキレン基が、原料ガスに含まれるSiの反応を阻害する立体障害を引き起こし、第1の固体層の形成を阻害してしまうことがある。また、第1の固体層中に、上述のアルキレン基が未分解、或いは一部しか分解していない状態で残っていた場合、この分子量の大きなアルキレン基が、第1の固体層に含まれるSiとNHガスとの反応を阻害する立体障害を引き起こし、第2の固体層の形成を阻害してしまうことがある。これに対し、BTCSMガスのような、1分子中に含まれるアルキレン基の分子量が小さなアルキレンハロシラン原料ガスを用いることで、上述の立体障害の発生を抑制することができ、第1の固体層および第2の固体層の形成をそれぞれ促進させることができる。結果として、成膜レートを高め、膜を構成する原子間の結合が強固なSiCN膜を形成することが可能となる。また、TCDMDSガスのような、1分子中に含まれるアルキル基の分子量が小さなアルキルハロシラン原料ガスを用いた場合にも、同様の効果が得られる。
(h)BTCSMガスのような、1分子中に2つのSiを含む原料ガスを用いることで、最終的に形成されるSiCN膜を、膜中に含まれるSi同士が互いに近接した膜とすることが可能となる。というのも、BTCSMガスが自己分解しない条件下で第1の固体層を形成する際、BTCSMガス分子に含まれる2つのSiは、互いに近接した状態を保ったままウエハ200(表面の下地膜)上に吸着することとなる。また、BTCSMガスが自己分解する条件下で第1の固体層を形成する際、BTCSMガス分子に含まれる2つのSiは、互いに近接した状態を保ったままウエハ200上に堆積する傾向が強くなる。すなわち、BTCSMガスのような1分子中に2つのSiを含むガスを用いることで、ジクロロシラン(SiHCl、略称:DCS)ガスのような1分子中に1つのSiしか有さないガスを用いる場合と比べ、第1の固体層中に含まれるSi同士を互いに近接した状態とすることが可能となる。結果として、SiCN膜を、膜中のSi同士が互いに近接した膜とすることが可能となる。これにより、膜のHF耐性を向上させることも可能となる。
(i)BTCSMガスのようなSiソース、Cソースとして作用する原料ガスと、NHガスのようなNソースとして作用する反応ガスと、を用いることで、すなわち、2種類のガスを用いることで、Si、CおよびNの3元素を含む膜を形成することが可能となる。すなわち、成膜の際に、3種類のガス、すなわち、Siソース、Cソース、Nソースを別々に供給する必要がない。そのため、3種類のガスを用いる場合に比べ、ガス供給工程を1工程少なくすることができ、1サイクルあたりの所要時間を短縮させることができ、成膜処理の生産性を向上させることができる。また、3種類のガスを用いる場合に比べ、ガス供給ラインを1ライン少なくすることができ、基板処理装置の構造を簡素化することができ、その製造コストやメンテナンスコストを低減させることも可能となる。
(j)BTCSMガスは分解性が低く(反応性が低く)、熱分解温度が高いことから、例えば650〜800℃のような比較的高い温度帯で成膜する場合でも、過剰な気相反応を抑制することができる。結果として、処理室201内におけるパーティクルの発生を抑制することができ、基板処理の品質を向上させることが可能となる。
(k)各種ガスの供給を非同時、すなわち、交互に行うことで、これらのガスを、気相反応や表面反応が適正に生じる条件下で、適正に反応に寄与させることができる。結果として、SiCN膜の段差被覆性、膜厚制御の制御性をそれぞれ向上させることが可能となる。また、処理室201内における過剰な気相反応を回避することができ、パーティクルの発生を抑制することも可能となる。
(l)上述の効果は、原料ガスとしてBTCSMガス以外のSi−C結合を有する原料ガスを用いる場合や、反応ガスとしてNHガス以外の窒素含有ガスを用いる場合や、反応ガスとして窒素含有ガス以外のガス、例えば、NおよびCを含むガス、酸素含有ガス、硼素含有ガス、炭素含有ガス等を用いる場合にも、同様に奏することができる。
(4)変形例
本実施形態における成膜シーケンスは、図4に示す態様に限定されず、以下に示す変形例のように変更することができる。
(変形例1)
図5に示すように、BTCSMガスを封じ込めるステップでは、排気系を密閉した状態で、BTCSMガスを処理室201内へ供給し続けることで、処理室201内の圧力を上昇させ続けるようにしてもよい。
排気系を密閉した状態で、BTCSMガスを処理室201内へ供給し続けることで、処理室201内の圧力が上昇し続ける。このように、排気系を密閉した状態で、BTCSMガスの供給を継続することで、最終的に到達する処理室201内の圧力、すなわち、処理室201内の到達圧力を、例えば、図4に示す成膜シーケンスのステップ1でBTCSMガスを供給する際における処理室201内の到達圧力よりも大きく(高く)する。また、例えば、処理室201内の到達圧力を、ステップ2でNHガスを供給する際における処理室201内の到達圧力よりも大きくする。具体的には、処理室201内の到達圧力(全圧)を、例えば10〜4666Pa、好ましくは67〜4000Pa、より好ましくは133〜2666Paの範囲内の圧力とする。処理室201内の圧力をこのような高い圧力帯とすることで、処理室201内へ供給したBTCSMガスを、効率よく熱分解させることが可能となる。なお、本変形例のNHガスを供給するステップにおける処理手順、処理条件は、図4に示す成膜シーケンスと同様とする。
本変形例においても、図4に示す成膜シーケンスと同様の効果を奏する。また、BTCSMガスのような原料ガスを封じ込める際の処理室201内の圧力を上昇させ続け、BTCSMガスの熱分解を促すことで、第1の固体層の形成レート、すなわち、最終的に形成されるSiCN膜の成膜レートを高めることが可能となる。また、BTCSMガスを封じ込める際に、BTCSMガスを処理室201内へ供給し続けることで、熱分解により消費されたBTCSMガスを補充すること、すなわち、処理室201内のBTCSMガスの分圧を維持することが可能となる。これにより、第1の固体層の形成レート、すなわち、最終的に形成されるSiCN膜の成膜レートの低下を抑制することが可能となる。
(変形例2)
NHガスを供給するステップの代わりに、TEAガス等のNおよびCを含むガスを供給するステップを行うようにしてもよい。すなわち、BTCSMガスを封じ込めるステップ、TEAガス等のNおよびCを含むガスを供給するステップを非同時に行うサイクルを所定回数(n回)行うようにしてもよい。
TEAガスを供給するステップでは、ガス供給管232bからTEAガスを流すようにし、APCバルブ244、バルブ243b,243d,243eの開閉制御を、図4に示す成膜シーケンスのステップ2におけるAPCバルブ244、バルブ243b,243d,243eの開閉制御と同様の手順で行う。MFC241bで制御するTEAガスの供給流量は、例えば100〜10000sccmの範囲内の流量とする。処理室201内の圧力は、例えば1〜5000Pa、好ましくは1〜4000Paの範囲内の圧力とする。処理室201内におけるTEAガスの分圧は、例えば0.01〜4950Paの範囲内の圧力とする。処理室201内の圧力をこのような比較的高い圧力帯とすることで、TEAガスをノンプラズマで熱的に活性化させることが可能となる。TEAガスをウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1〜200秒、好ましくは1〜120秒、より好ましくは1〜60秒の範囲内の時間とする。その他の処理条件は、例えば、図4に示す成膜シーケンスのステップ2と同様な処理条件とする。なお、本変形例のBTCSMガスを封じ込めるステップにおける処理手順、処理条件は、図4に示す成膜シーケンスと同様とする。
上述の条件下でウエハ200に対して熱的に活性化させたTEAガスを供給することで、ウエハ200上に形成された第1の固体層(CおよびClを含むSi含有層)とTEAガスとを反応させ、第1の固体層を改質させることができる。このとき、TEAガスに含まれていたN成分およびC成分を第1の固体層に付加することで、ウエハ200上に、第2の固体層として、Si、CおよびNを含む層、すなわち、SiCN層が形成されることとなる。TEAガスに含まれていたC成分が取り込まれることで、この層は、図4に示す成膜シーケンスで形成される第2の固体層よりもC成分の多い層、すなわち、Cリッチな層となる。TEAガスは、熱的に活性化させて供給した方が、比較的ソフトな反応を生じさせることができ、第1の固体層の改質を比較的ソフトに行うことができる。例えば、第1の固体層の改質を行う際に、第1の固体層に含まれるSi−C結合の切断を抑制したり、第1の固体層からのCの脱離を抑制したりすることができる。
SiCN層を形成する際、第1の固体層に含まれていたCl等の不純物は、TEAガスによる第1の固体層の改質反応の過程において、少なくともClを含むガス状物質を構成し、処理室201内から排出される。すなわち、第1の固体層中のCl等の不純物は、第1の固体層中から引き抜かれたり、脱離したりすることで、第1の固体層から分離する。これにより、SiCN層は、第1の固体層に比べてCl等の不純物が少ない層となる。
SiCN層が形成された後、バルブ243bを閉じ、TEAガスの供給を停止する。そして、図4に示す成膜シーケンスのステップ2と同様の処理手順により、処理室201内に残留する未反応もしくはSiCN層の形成に寄与した後のTEAガスや反応副生成物を処理室201内から排除する。
NおよびCを含むガスとしては、TEAガスの他、例えば、ジエチルアミン((CNH、略称:DEA)ガス、モノエチルアミン(CNH、略称:MEA)ガス等のエチルアミン系ガス、トリメチルアミン((CHN、略称:TMA)ガス、ジメチルアミン((CHNH、略称:DMA)ガス、モノメチルアミン(CHNH、略称:MMA)ガス等のメチルアミン系ガス、トリプロピルアミン((CN、略称:TPA)ガス、ジプロピルアミン((CNH、略称:DPA)ガス、モノプロピルアミン(CNH、略称:MPA)ガス等のプロピルアミン系ガス、トリイソプロピルアミン([(CHCH]N、略称:TIPA)ガス、ジイソプロピルアミン([(CHCH]NH、略称:DIPA)ガス、モノイソプロピルアミン((CHCHNH、略称:MIPA)ガス等のイソプロピルアミン系ガス、トリブチルアミン((CN、略称:TBA)ガス、ジブチルアミン((CNH、略称:DBA)ガス、モノブチルアミン(CNH、略称:MBA)ガス等のブチルアミン系ガス、または、トリイソブチルアミン([(CHCHCHN、略称:TIBA)ガス、ジイソブチルアミン([(CHCHCHNH、略称:DIBA)ガス、モノイソブチルアミン((CHCHCHNH、略称:MIBA)ガス等のイソブチルアミン系ガスを用いることができる。すなわち、アミン系ガスとしては、例えば、(CNH3−x、(CHNH3−x、(CNH3−x、[(CHCH]NH3−x、(CNH3−x、[(CHCHCHNH3−x(式中、xは1〜3の整数)の組成式で表されるガスのうち、少なくとも1種類のガスを用いることができる。SiCN膜中のN濃度の増加を抑制しつつ、そのC濃度を高くするには、アミン系ガスとして、1分子中においてNの数よりもCの数の方が多いガスを用いるのが好ましい。すなわち、アミン系ガスとしては、TEA、DEA、MEA、TMA、DMA、TPA、DPA、MPA、TIPA、DIPA、MIPA、TBA、DBA、MBA、TIBA、DIBAおよびMIBAからなる群より選択される少なくとも1つのアミンを含むガスを用いるのが好ましい。
また、NおよびCを含むガスとしては、アミン系ガスの他、例えば、有機ヒドラジン系ガスを用いることができる。ここで、有機ヒドラジン系ガスとは、気体状態の有機ヒドラジン(化合物)、例えば、常温常圧下で液体状態である有機ヒドラジンを気化することで得られるガスや、常温常圧下で気体状態である有機ヒドラジン等のヒドラジン基を含むガスのことである。有機ヒドラジン系ガスを、単に、有機ヒドラジンガス、または、有機ヒドラジン化合物ガスと呼ぶこともできる。有機ヒドラジン系ガスは、C、NおよびHの3元素で構成されるSi非含有のガスであり、更には、Siおよび金属非含有のガスである。有機ヒドラジン系ガスとしては、例えば、モノメチルヒドラジン((CH)HN、略称:MMH)ガス、ジメチルヒドラジン((CH、略称:DMH)ガス、トリメチルヒドラジン((CH(CH)H、略称:TMH)ガス等のメチルヒドラジン系ガスや、エチルヒドラジン((C)HN、略称:EH)ガス等のエチルヒドラジン系ガスを用いることができる。SiCN膜中のN濃度の増加を抑制しつつ、そのC濃度を高くするには、有機ヒドラジン系ガスとして、1分子中においてNの数よりもCの数の方が多いガスを用いるのが好ましい。
アミン系ガスや有機ヒドラジン系ガスとしては、1分子中にCを含むリガンドを複数有するガス、すなわち、1分子中にアルキル基等の炭化水素基を複数有するガスを用いるのが好ましい。具体的には、アミン系ガスや有機ヒドラジン系ガスとしては、1分子中にCを含むリガンド(アルキル基等の炭化水素基)、すなわち、有機リガンドを3つ、或いは2つ有するガスを用いるのが好ましい。
上述の各ステップを非同時に行うサイクルを1回以上(所定回数)行うことにより、ウエハ200上に、所定組成および所定膜厚のSiCN膜を形成することができる。1サイクルあたりに形成するSiCN層の厚さを所望の膜厚よりも小さくして、上述のサイクルを所望の膜厚になるまで複数回繰り返すのが好ましい点は、図4に示す成膜シーケンスと同様である。
本変形例によれば、図4に示す成膜シーケンスと同様の効果を奏する。また、Cソースとしても作用するTEAガスを供給するステップを行うことで、すなわち、1サイクル中に2種類のカーボンソース(ダブルカーボンソース)を用いて成膜を行うことにより、ウエハ200上に形成するSiCN膜を、図4に示す成膜シーケンスで形成されるSiCN膜よりもC成分の多い膜、すなわち、Cリッチな膜とすることができる。すなわち、SiCN膜の組成比制御のウインドウを広げることが可能となる。
(変形例3)
図6に示すように、さらに、Oガス等の酸素含有ガスを供給するステップを行うようにしてもよい。すなわち、BTCSMガスを封じ込めるステップ、NHガスを供給するステップ、Oガス等の酸素含有ガスを供給するステップを非同時に行うサイクルを所定回数(n回)行うようにしてもよい。
ガスを供給するステップでは、ガス供給管232bからOガスを流すようにし、APCバルブ244、バルブ243b,243d,243eの開閉制御を、図4に示す成膜シーケンスのステップ2におけるAPCバルブ244、バルブ243b,243d,243eの開閉制御と同様の手順で行う。MFC241bで制御するOガスの供給流量は、例えば100〜10000sccmの範囲内の流量とする。処理室201内の圧力は、例えば1〜4000Pa、好ましくは1〜3000Paの範囲内の圧力とする。処理室201内におけるOガスの分圧は、例えば0.01〜3960Paの範囲内の圧力とする。処理室201内の圧力をこのような比較的高い圧力帯とすることで、Oガスをノンプラズマで熱的に活性化させることが可能となる。Oガスをウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1〜120秒、より好ましくは1〜60秒の範囲内の時間とする。その他の処理条件は、例えば、図4に示す成膜シーケンスのステップ2と同様な処理条件とする。なお、本変形例のBTCSMガスを封じ込めるステップ、NHガスを供給するステップにおける処理手順、処理条件は、図4に示す成膜シーケンスと同様とする。
上述の条件下でウエハ200に対して熱的に活性化させたOガスを供給することで、ウエハ200上に形成された第2の固体層(SiCN層)の少なくとも一部が酸化(改質)される。SiCN層が改質されることで、ウエハ200上に、第3の固体層として、Si、O、CおよびNを含む層、すなわち、シリコン酸炭窒化層(SiOCN層)が形成されることとなる。Oガスは熱的に活性化させて供給した方が、比較的ソフトな反応を生じさせることができ、第2の固体層の酸化を比較的ソフトに行うことができる。例えば、第2の固体層の酸化を行う際に、第2の固体層に含まれるSi−C結合の切断を抑制したり、第2の固体層からのCの脱離を抑制したりすることができる。
SiOCN層を形成する際、SiCN層に含まれていたCl等の不純物は、OガスによるSiCN層の改質反応の過程において、少なくともClを含むガス状物質を構成し、処理室201内から排出される。すなわち、SiCN層中のCl等の不純物は、SiCN層中から引き抜かれたり、脱離したりすることで、SiCN層から分離する。これにより、SiOCN層は、SiCN層に比べてCl等の不純物がさらに少ない層となる。
SiOCN層が形成された後、バルブ243bを閉じ、Oガスの供給を停止する。そして、図4に示す成膜シーケンスのステップ2と同様の処理手順により、処理室201内に残留する未反応もしくはSiOCN層の形成に寄与した後のOガスや反応副生成物を処理室201内から排除する。
酸素含有ガスとしては、Oガスの他、例えば、亜酸化窒素(NO)ガス、一酸化窒素(NO)ガス、二酸化窒素(NO)ガス、オゾン(O)ガス、水素(H)ガス+Oガス、Hガス+Oガス、水蒸気(HO)、一酸化炭素(CO)ガス、二酸化炭素(CO)ガス等を用いることができる。
上述の各ステップを非同時に行うサイクルを1回以上(所定回数)行うことで、ウエハ200上に、Si、O、CおよびNを含む膜として、所定組成および所定膜厚のシリコン酸炭窒化膜(SiOCN膜)を形成することができる。1サイクルあたりに形成するSiOCN層の厚さを所望の膜厚よりも小さくして、上述のサイクルを所望の膜厚になるまで複数回繰り返すのが好ましい点は、図4に示す成膜シーケンスと同様である。
本変形例によれば、図4に示す成膜シーケンスと同様の効果を奏する。また、Oガスを供給することでSiCN層中からCl等の不純物をさらに脱離させることができ、最終的に形成されるSiOCN膜中の不純物濃度をさらに低減させることが可能となる。またその結果、膜のHF耐性をさらに向上させることが可能となる。
(変形例4)
NHガスを供給するステップの代わりにTEAガスを供給するステップを行い、さらにOガスを供給するステップを行うようにしてもよい。すなわち、BTCSMガスを封じ込めるステップ、TEAガスを供給するステップ、Oガスを供給するステップを非同時に行うサイクルを所定回数(n回)行うようにしてもよい。本変形例の各ステップにおける処理手順、処理条件は、図4に示す成膜シーケンスや変形例2,3と同様とする。
BTCSMガスを封じ込めるステップ、TEAガスを供給するステップを行うことでウエハ200上に第2の固体層(SiCN層)を形成した後、Oガスを供給するステップを行うことで、ウエハ200上に形成されたSiCN層の少なくとも一部が酸化(改質)される。このとき、例えば処理室201内の圧力を高くする等して酸化力を高めることで、SiCN層に含まれるNの大部分を脱離させて不純物レベルとしたり、SiCN層に含まれるNを実質的に消滅させたりすることもできる。これにより、SiCN層は、第3の固体層としての、SiOCN層、或いは、Si、OおよびCを含む層、すなわち、シリコン酸炭化層(SiOC層)に改質される。Oガスは、ノンプラズマで熱的に活性化させて供給した方が、上述の反応をソフトに進行させることができ、SiOCN層、或いは、SiOC層の形成が容易となる。本変形例によれば、ウエハ200上に、SiOCN膜、或いは、Si、OおよびCを含む膜、すなわち、シリコン酸炭化膜(SiOC膜)が形成されることとなる。
本変形例によれば、図4に示す成膜シーケンスや変形例2,3等と同様の効果を奏する。また、本変形例によれば、Oガスを供給することでSiCN層中からCl等の不純物をさらに脱離させることができ、SiOCN膜、或いは、SiOC膜中の不純物濃度を低減させることが可能となる。またその結果、膜のHF耐性をさらに向上させることが可能となる。
(変形例5)
NHガスを供給するステップの代わりにOガスを供給するステップを行うようにしてもよい。すなわち、BTCSMガスを封じ込めるステップ、Oガスを供給するステップを非同時に行うサイクルを所定回数(n回)行うようにしてもよい。本変形例の各ステップにおける処理手順、処理条件は、図4に示す成膜シーケンスや変形例3と同様とする。
BTCSMガスを封じ込めるステップを行うことでウエハ200上に第1の固体層(CおよびClを含むSi含有層)を形成した後、Oガスを供給するステップを行うことで、ウエハ200上に形成された第1の固体層の少なくとも一部が酸化(改質)される。第1の固体層が改質されることで、ウエハ200上に、第2の固体層として、SiOC層が形成されることとなる。本変形例によれば、ウエハ200上に、SiOC膜が形成されることとなる。
本変形例によれば、図4に示す成膜シーケンスと同様の効果を奏する。また、本変形例によれば、Oガスを供給することで第1の固体層中からCl等の不純物を脱離させることができ、最終的に形成されるSiOC膜中の不純物濃度を低減させることが可能となる。またその結果、膜のHF耐性を向上させることが可能となる。
(変形例6)
BTCSMガスを封じ込めるステップと、NHガスを供給するステップとの間に、BClガス等のボラン系ガスを供給するステップを行うようにしてもよい。すなわち、BTCSMガスを封じ込めるステップ、BClガス等のボラン系ガスを供給するステップ、NHガスを供給するステップを非同時に行うサイクルを所定回数(n回)行うようにしてもよい。本変形例のBTCSMガスを供給するステップ、NHガスを供給するステップにおける処理手順、処理条件は、図4に示す成膜シーケンスと同様とする。
BClガスを供給するステップでは、ガス供給管232bからBClガスを流すようにし、APCバルブ244、バルブ243b,243d,243eの開閉制御を、図4に示す成膜シーケンスのステップ2におけるAPCバルブ244、バルブ243b,243d,243eの開閉制御と同様の手順で行う。MFC241bで制御するBClガスの供給流量は、例えば100〜10000sccmの範囲内の流量とする。処理室201内の圧力は、例えば1〜2666Pa、好ましくは67〜1333Paの範囲内の圧力とする。処理室201内におけるBClガスの分圧は、例えば0.01〜2640Paの範囲内の圧力とする。BClガスをウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1〜120秒、好ましくは1〜60秒の範囲内の時間とする。その他の処理条件は、例えば、図4に示す成膜シーケンスのステップ2と同様な処理条件とする。
上述の条件下でウエハ200に対してBClガスを供給することで、ウエハ200上に形成された第1の固体層(CおよびClを含むSi含有層)の表面上に、1原子層未満の厚さのB含有層、すなわち、不連続なB含有層が形成される。B含有層は、B層であってもよいし、BClの化学吸着層であってもよいし、その両方を含んでいてもよい。第1の固体層の表面上にB含有層が形成されることで、ウエハ200上に、Si、BおよびCを含む層が形成されることとなる。BClガスは非ボラジン系の硼素含有ガスであるため、Si、BおよびCを含む層は、ボラジン環骨格非含有の層となる。BClガスは、ノンプラズマで熱的に活性化させて供給した方が、上述の反応をソフトに進行させることができ、Si、BおよびCを含む層の形成が容易となる。
ボラジン環骨格非含有の硼素含有ガスとしては、BClガス以外のハロゲン化ボロン系ガス(ハロボラン系ガス)、例えば、BClガス以外のクロロボラン系ガスや、トリフルオロボラン(BF)ガス等のフルオロボラン系ガスや、トリブロモボラン(BBr)ガス等のブロモボラン系ガスを用いることができる。また、Bガス等のボラン系ガスを用いることもできる。また、無機ボラン系ガスの他、有機ボラン系ガスを用いることもできる。
Si、BおよびCを含む層が形成された後、バルブ243bを閉じ、BClガスの供給を停止する。そして、図4に示すステップ2と同様の処理手順により、処理室201内に残留する未反応もしくはSi、BおよびCを含む層の形成に寄与した後のBClガスや反応副生成物を処理室201内から排除する。
その後、ウエハ200、すなわち、Si、BおよびCを含む層に対してNHガスを供給するステップを行うことで、Si、BおよびCを含む層は、第2の固体層としての、Si、B、CおよびNを含む層、すなわち、シリコン硼炭窒化層(SiBCN層)へと改質される。
上述の各ステップを非同時に行うサイクルを1回以上(所定回数)行うことで、ウエハ200上に、Si、B、CおよびNを含む膜として、所定組成および所定膜厚のシリコン硼炭窒化膜(SiBCN膜)を形成することができる。1サイクルあたりに形成するSiBCN層の厚さを所望の膜厚よりも小さくして、上述のサイクルを所望の膜厚になるまで複数回繰り返すのが好ましい点は、図4に示す成膜シーケンスと同様である。
本変形例によれば、図4に示す上述の成膜シーケンスや上述の各変形例と同様の効果を奏する。また、ウエハ200上に形成する膜中にBを添加することで、例えば、膜のHF耐性等をより向上させることが可能となる。
(変形例7)
NHガスを供給するステップの代わりにTEAガスを供給するステップを行い、BTCSMガスを封じ込めるステップとTEAガスを供給するステップとの間に、BClガスを供給するステップを行うようにしてもよい。すなわち、BTCSMガスを封じ込めるステップ、BClガスを供給するステップ、TEAガスを供給するステップを非同時に行うサイクルを所定回数(n回)行うようにしてもよい。本変形例によれば、ウエハ200上に、SiBCN膜が形成されることとなる。本変形例の各ステップにおける処理手順、処理条件は、図4に示す成膜シーケンスや変形例2,6と同様とする。
本変形例によれば、図4に示す上述の成膜シーケンスや変形例6と同様の効果を奏する。また、TEAガスを供給するステップを行うことで、ウエハ200上に形成するSiBCN膜を、変形例6で形成するSiBCN膜よりもC成分の多い膜、すなわち、Cリッチな膜とすることができる。すなわち、SiBCN膜の組成比制御のウインドウを広げることが可能となる。
(変形例8)
NHガスを供給するステップの代わりに、TMBガス等のボラジン系ガスを供給するステップを行うようにしてもよい。すなわち、BTCSMガスを封じ込めるステップ、TMBガス等のボラジン系ガスを供給するステップを非同時に行うサイクルを所定回数(n回)行うようにしてもよい。本変形例のBTCSMガスを供給するステップにおける処理手順、処理条件は、図4に示す成膜シーケンスと同様とする。
TMBガスを供給するステップでは、ガス供給管232bからTMBガスを流すようにし、APCバルブ244、バルブ243b,243d,243eの開閉制御を、図4に示す成膜シーケンスのステップにおけるAPCバルブ244、バルブ243b,243d,243eの開閉制御と同様の手順で行う。MFC241bで制御するTMBガスの供給流量は、例えば1〜1000sccmの範囲内の流量とする。処理室201内の圧力は、例えば1〜2666Pa、好ましくは67〜1333Paの範囲内の圧力とする。処理室201内におけるTMBガスの分圧は、例えば0.0001〜2424Paの範囲内の圧力とする。TMBガスをウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1〜120秒、好ましくは1〜60秒の範囲内の時間とする。その他の処理条件は、例えば、図4に示す成膜シーケンスのステップ2と同様な処理条件とする。
上述の条件下でウエハ200に対してTMBガスを供給することで、第1の固体層(CおよびClを含むSi含有層)とTMBガスとが反応する。すなわち、第1の固体層に含まれるCl(クロロ基)とTMBに含まれるリガンド(メチル基)とが反応する。それにより、TMBのリガンドと反応させた第1の固体層のClを、第1の固体層から分離させる(引き抜く)と共に、第1の固体層のClと反応させたTMBのリガンドを、TMBから分離させることができる。そして、リガンドが分離したTMBのボラジン環を構成するNと、第1の固体層のSiと、を結合させることができる。すなわち、TMBのボラジン環を構成するB、Nのうちメチルリガンドが外れ未結合手(ダングリングボンド)を有することとなったNと、第1の固体層に含まれ未結合手を有することとなったSi、もしくは、未結合手を有していたSiとを結合させて、Si−N結合を形成することが可能となる。このとき、TMBのボラジン環を構成するボラジン環骨格は、壊れることなく保持されることとなる。
TMBガスを上述の条件下で供給することで、TMBにおけるボラジン環骨格を破壊することなく保持しつつ、第1の固体層とTMBとを適正に反応させることができ、上述の一連の反応を生じさせることが可能となる。TMBのボラジン環骨格を保持した状態で、この一連の反応を生じさせるための最も重要なファクター(条件)は、ウエハ200の温度と処理室201内の圧力、特にウエハ200の温度と考えられ、これらを適正に制御することで、適正な反応を生じさせることが可能となる。
この一連の反応により、第1の固体層中にボラジン環が新たに取り込まれ、第1の固体層は、第2の固体層としての、ボラジン環骨格を有しSi、B、CおよびNを含む層、すなわち、ボラジン環骨格を含むシリコン硼炭窒化層(SiBCN層)へと変化する(改質される)。ボラジン環骨格を含むSiBCN層は、例えば1原子層未満から数原子層程度の厚さの層となる。ボラジン環骨格を含むSiBCN層は、Si、Cおよびボラジン環骨格を含む層ともいえる。
第1の固体層中にボラジン環が新たに取り込まれることにより、第1の固体層中に、ボラジン環を構成するB成分、N成分が取り込まれることとなる。さらにこのとき、第1の固体層中に、TMBのリガンドに含まれていたC成分も取り込まれることとなる。すなわち、第1の固体層とTMBとを反応させて第1の固体層中にボラジン環を取り込むことにより、第1の固体層中に、B成分、C成分およびN成分を添加することができる。
ボラジン環骨格を含むSiBCN層を形成する際、第1の固体層に含まれていたClや、TMBガスに含まれていたHは、TMBガスによる第1の固体層の改質反応の過程において、少なくともCl、Hを含むガス状物質を構成し、処理室201内から排出される。すなわち、第1の固体層中のCl等の不純物は、第1の固体層中から引き抜かれたり、脱離したりすることで、第1の固体層から分離することとなる。これにより、ボラジン環骨格を含むSiBCN層は、第1の固体層に比べてCl等の不純物が少ない層となる。
ボラジン環骨格を含むSiBCN層を形成する際、TMBに含まれるボラジン環を構成するボラジン環骨格を破壊することなく維持(保持)することにより、ボラジン環の中央の空間を維持(保持)することができ、ポーラス状のSiBCN層を形成することが可能となる。
ボラジン環骨格を含むSiBCN層が形成された後、バルブ243bを閉じ、TMBガスの供給を停止する。そして、図4に示す成膜シーケンスのステップ2と同様の処理手順により、処理室201内に残留する未反応もしくはボラジン環骨格を含むSiBCN層の形成に寄与した後のTMBガスや反応副生成物を処理室201内から排除する。
ボラジン環骨格を含むガスとしては、TMBガスの他、例えば、TEBガス、TPBガス、TIPBガス、TBBガス、TIBBガス等を用いることができる。
上述の各ステップを非同時に行うサイクルを1回以上(所定回数)行うことにより、ウエハ200上に、所定組成および所定膜厚のボラジン環骨格を含むSiBCN膜を形成することができる。1サイクルあたりに形成するSiBCN層の厚さを所望の膜厚よりも小さくして、上述のサイクルを所望の膜厚になるまで複数回繰り返すのが好ましい点は、図4に示す成膜シーケンスと同様である。
本変形例によれば、図4に示す上述の成膜シーケンスや変形例6,7等と同様の効果を奏する。また、ウエハ200上に形成する膜を、ボラジン環骨格を含む膜、すなわち、原子密度の低いポーラス状の膜とすることで、膜の誘電率を、例えば、変形例6,7におけるSiBCN膜の誘電率よりも低下させることが可能となる。また、ウエハ200上に形成する膜を、ボラジン環骨格を含む膜、すなわち、Bを、膜を構成するボラジン環骨格の一構成要素として含む膜とすることで、膜の酸化耐性を向上させることが可能となる。
(変形例9)
BTCSMガスを封じ込めるステップと、NHガスを供給するステップと、の間に、TMBガスを供給するステップを行うようにしてもよい。すなわち、BTCSMガスを封じ込めるステップ、TMBガスを供給するステップ、NHガスを供給するステップを非同時に行うサイクルを所定回数(n回)行うようにしてもよい。本変形例の各ステップにおける処理手順、処理条件は、図4に示す成膜シーケンスや変形例8と同様とする。
BTCSMガスを封じ込めるステップ、TMBガスを供給するステップを行うことで、ウエハ200上に、第2の固体層(ボラジン環骨格を含むSiBCN層)を形成した後、NHガスを供給するステップを行うことで、ウエハ200上に形成されたボラジン環骨格を含むSiBCN層の少なくとも一部が窒化(改質)される。これにより、ボラジン環骨格を含むSiBCN層は、第3の固体層としての、ボラジン環骨格を含みNリッチなSiBCN層に改質される。本変形例によれば、ウエハ200上に、ボラジン環骨格を含みNリッチなSiBCN膜が形成されることとなる。
本変形例によれば、図4に示す成膜シーケンスや変形例8等と同様の効果を奏する。また、本変形例によれば、NHガスを供給することで第2の固体層中からCl等の不純物を脱離させることができ、最終的に形成される膜中の不純物濃度を低減させることが可能となる。またその結果、膜のHF耐性を向上させることが可能となる。
(変形例10〜14)
図7に示すように、BTCSMガスを封じ込めるステップ、NHガスを供給するステップを非同時に行うセットを所定回数(m回)行うことで、第1の膜としてSiCN膜を形成するステップと、
BTCSMガスを封じ込めるステップ、NHガスを供給するステップ、Oガスを供給するステップを非同時に行うセットを所定回数(m回)行うことで、第2の膜としてSiOCN膜を形成するステップと、
を含むサイクルを所定回数(n回)行うことで、ウエハ200上に、第1の膜と第2の膜とがナノレベルで交互に積層されてなる積層膜(SiOCN膜)を形成するようにしてもよい(変形例10)。なお、図7は、各セットの実施回数(m回、m回)をそれぞれ2回とする例を示している。
また、図8に示すように、BTCSMガスを封じ込めるステップ、NHガスを供給するステップ、Oガスを供給するステップを非同時に行うセットを所定回数(m回)行うことで、第1の膜としてSiOCN膜を形成するステップと、
BTCSMガスを封じ込めるステップ、Oガスを供給するステップを非同時に行うセットを所定回数(m回)行うことで、第2の膜としてSiOC膜を形成するステップと、
を含むサイクルを所定回数(n回)行うことで、ウエハ200上に、第1の膜と第2の膜とがナノレベルで交互に積層されてなる積層膜(SiOCN膜)を形成するようにしてもよい(変形例11)。なお、図8は、各セットの実施回数(m回、m回)をそれぞれ2回とする例を示している。
また、図9に示すように、BTCSMガスを封じ込めるステップ、NHガスを供給するステップを非同時に行うセットを所定回数(m回)行うことで、第1の膜としてSiCN膜を形成するステップと、
BTCSMガスを封じ込めるステップ、Oガスを供給するステップを非同時に行うセットを所定回数(m回)行うことで、第2の膜としてSiOC膜を形成するステップと、
を含むサイクルを所定回数(n回)行うことで、ウエハ200上に、第1の膜と第2の膜とがナノレベルで交互に積層されてなる積層膜(SiOCN膜)を形成するようにしてもよい(変形例12)。なお、図9は、各セットの実施回数(m回、m回)をそれぞれ2回とする例を示している。
また、BTCSMガスを封じ込めるステップ、NHガスを供給するステップを非同時に行うセットを所定回数(m回)行うことで、第1の膜としてSiCN膜を形成するステップと、
BTCSMガスを封じ込めるステップ、BClガスを供給するステップ、NHガスを供給するステップを非同時に行うセットを所定回数(m回)行うことで、第2の膜としてボラジン環骨格非含有のSiBCN膜を形成するステップと、
を含むサイクルを所定回数(n回)行うことで、ウエハ200上に、第1の膜と第2の膜とがナノレベルで交互に積層されてなる積層膜(ボラジン環骨格非含有のSiBCN膜)を形成するようにしてもよい(変形例13)。
また、BTCSMガスを封じ込めるステップ、BClガスを供給するステップ、NHガスを供給するステップを非同時に行うセットを所定回数(m回)行うことで、第1の膜としてボラジン環骨格非含有のSiBCN膜を形成するステップと、
BTCSMガスを封じ込めるステップ、TMBガスを供給するステップを非同時に行うセットを所定回数(m回)行うことで、第2の膜としてボラジン環骨格を含むSiBCN膜を形成するステップと、
を含むサイクルを所定回数(n回)行うことで、ウエハ200上に、第1の膜と第2の膜とがナノレベルで交互に積層されてなる積層膜(ボラジン環骨格を含むSiBCN膜)を形成するようにしてもよい(変形例14)。
変形例10〜14の各ステップにおける処理手順、処理条件は、図4に示す成膜シーケンスや変形例2〜9の各ステップと同様とする。また、変形例10〜14においては、第1の膜および第2の膜の膜厚が、それぞれ、例えば5nm以下、好ましくは1nm以下の膜厚となるように、各セットの実施回数(m回、m回)をそれぞれ制御する。
変形例10〜14においても、図4に示す成膜シーケンスや変形例2〜9と同様の効果を奏する。
また、第1の膜と第2の膜とを交互に積層することで、最終的に形成する積層膜の組成比制御の制御性を向上させることが可能となる。例えば、第1の膜中のC濃度と第2の膜中のC濃度とを異ならせることで、最終的に形成される積層膜中のC濃度を、第1の膜中のC濃度と第2の膜中のC濃度との間の任意の濃度とするように制御することが可能となる。このとき、例えば、第1の膜の膜厚と第2の膜の膜厚との比率を制御することで、最終的に形成される積層膜中のC濃度を微調整することが可能となる。すなわち、第1の膜と第2の膜とを交互に積層することで、最終的に形成される積層膜の組成比を、第1の膜を形成する際と同様の手法でウエハ200上に単膜を形成する場合や、第2の膜を形成する際と同様の手法でウエハ200上に単膜を形成する場合等には実現不可能な値とするよう制御することが可能となる。すなわち、組成比制御のウインドウを広げることが可能となる。
また、最終的に形成する積層膜を、第1の膜および第2の膜のいずれか或いは両方の特性を併せ持つ膜としたり、第1の膜と第2の膜との中間的な特性を有する膜としたり、第1の膜とも第2の膜とも異なる別の特性を有する膜としたりすることが可能となる。これらの場合、上述したように、第1の膜および第2の膜の膜厚を、それぞれ例えば0.1nm以上5nm以下、好ましくは0.1nm以上1nm以下の膜厚とすることが好ましい。
第1の膜および第2の膜の膜厚をそれぞれ0.1nm未満の膜厚とすることは困難である。また、第1の膜および第2の膜のいずれかの膜の膜厚が5nmを超える膜厚となると、最終的に形成される積層膜が、積層方向に非統一(不統一)な特性を有する膜、すなわち、第1の膜と第2の膜とが単に積層され、積層方向に特性が分離した膜となることがある。第1の膜および第2の膜の膜厚をそれぞれ0.1nm以上5nm以下、好ましくは0.1nm以上1nm以下とすることで、最終的に形成する積層膜を、積層方向において統一された特性を有する膜、すなわち、第1の膜および第2の膜のそれぞれの特性、性質が適正に融合した膜とすることが可能となる。すなわち、第1の膜および第2の膜の膜厚を上述の範囲内の膜厚とすることで、最終的に形成する積層膜を、膜全体として一体不可分の特性を有するナノラミネート膜とすることが可能となる。なお、上述のセットの実施回数(m回、m回)をそれぞれ1回以上50回以下、好ましくは1回以上10回以下とすることで、第1の膜および第2の膜の膜厚をそれぞれ上述の範囲内の膜厚とすることができる
また、変形例14においては、さらに、以下に示す1つまたは複数の効果を奏する。
(a)第1の膜と第2の膜とを交互に積層することで、最終的に形成されるSiBCN膜に含まれるB成分とN成分との比率(以下、B/N比とも呼ぶ)を制御する際の制御性を向上させることが可能となる。というのも、BTCSMガス、TMBガスを用いて形成する第2の膜のB/N比は、TMBガスの1分子中に含まれるBの数とNの数との比率(TMBガスでは1/1)、すなわち、ボラジン環骨格を含むガスの種類により決定され、この値から大きく離れた値とするように制御することは困難である。これに対し、BTCSMガス、BClガス、NHガスを用いて形成する第1の膜のB/N比は、BClガスとNHガスとの流量比を調整すること等により、自在に制御することが可能である。そのため、第1の膜と第2の膜とを交互に積層する際、第1の膜と第2の膜とでB/N比を異ならせることで、最終的に形成されるSiBCN膜のB/N比を、第1の膜のB/N比と第2の膜のB/N比との間の任意の値とするように制御することが可能となる。
(b)第1の膜と第2の膜とを交互に積層することで、最終的に形成されるSiBCN膜の膜密度、すなわち、膜中の原子密度の制御性を向上させることができる。結果として、最終的に形成されるSiBCN膜の誘電率制御の制御性を向上させることが可能となる。というのも、ボラジン環骨格を含む第2の膜(ポーラス状の膜)は、ボラジン環骨格非含有の第1の膜(非ポーラス状の膜)よりも、膜中の原子濃度が低く、誘電率の低い膜となる。そのため、第1の膜と第2の膜とを交互に積層することで、最終的に形成されるSiBCN膜の誘電率を、例えば、BTCSMガス、TMBガスを用いて形成したボラジン環骨格を含むSiBCN膜(単膜)の誘電率と、BTCSMガス、BClガス、NHガス等を用いて形成したボラジン環骨格非含有のSiBCN膜(単膜)の誘電率との間の、任意の値とするように制御することが可能となる。すなわち、第1の膜と第2の膜とを交互に積層することで、最終的に形成されるSiBCN膜の誘電率を、BTCSMガス、TMBガスを用いて単膜を形成する場合や、BTCSMガス、BClガス、NHガス等を用いて単膜を形成する場合等には実現不可能な値とすることができ、誘電率制御のウインドウを広げることが可能となる。また、第1の膜の膜厚と第2の膜の膜厚との比率を制御することで、最終的に形成されるSiBCN膜の誘電率を微調整することが可能となる。
(c)第1の膜と第2の膜とを交互に積層することで、最終的に形成されるSiBCN膜の表面ラフネスを向上させることが可能となる。「表面ラフネス」とは、ウエハ面内あるいは任意の対象面内の高低差を意味しており、表面粗さと同様の意味を有している。表面ラフネスが向上する(良好)とは、この高低差が小さくなる(小さい)こと、すなわち、表面が平滑となる(平滑である)ことを意味している。表面ラフネスが悪化する(悪い)とは、この高低差が大きくなる(大きい)こと、すなわち、表面が粗くなる(粗い)ことを意味している。ボラジン環骨格非含有の第1の膜は、ボラジン環骨格を含む第2の膜よりも、表面ラフネスが良好となる傾向がある。そのため、第1の膜と第2の膜とを交互に積層することで、最終的に形成されるSiBCN膜の表面ラフネスを向上させることが可能となる。すなわち、第1の膜と第2の膜とを交互に積層することで、最終的に形成されるSiBCN膜の表面ラフネスを、BTCSMガス、TMBガスを用いてボラジン環骨格を含むSiBCN膜(単膜)を形成する場合よりも、向上させることが可能となる。
この際、ボラジン環骨格非含有の第1の膜の形成を、ボラジン環骨格を含む第2の膜の形成よりも先に行うことで、最終的に形成されるSiBCN膜の表面ラフネスをさらに向上させることが可能となる。すなわち、第2の膜を形成する前に、その形成の下地として表面ラフネスの良好な第1の膜を形成し、この第1の膜の上に第2の膜を形成することで、第2の膜が下地の影響を受けることとなり、第2の膜の表面ラフネスを向上させることができる。結果として、最終的に形成されるSiBCN膜の表面ラフネスをさらに向上させることが可能となる。
また、この際、最後に形成する膜をボラジン環骨格非含有の第1の膜とすることで、最終的に形成されるSiBCN膜の表面ラフネスをさらに向上させることも可能となる。すなわち、最終的に生成されるSiBCN膜、すなわち、積層膜の最上部を、表面ラフネスの良好な第1の膜により構成することで、最終的に形成されるSiBCN膜の表面ラフネスをさらに向上させることが可能となる。
また、この際、第1の膜および第2の膜の膜厚をそれぞれ薄くするほど、すなわち、上述のセットの実施回数(m回、m回)をそれぞれ少なくするほど、最終的に形成されるSiBCN膜の表面ラフネスをさらに向上させることが可能となる。
(d)第1の膜と第2の膜とを交互に積層することで、最終的に形成されるSiBCN膜の酸化耐性制御の制御性を向上させることが可能となる。というのも、ボラジン環骨格を含む第2の膜は、Bを、膜を構成するボラジン環骨格の一構成要素として含むこととなる。ボラジン環骨格を構成するB−N結合は、強固な結合を有している。そのため、第2の膜は、ボラジン環骨格非含有の第1の膜よりも、酸化による膜中からのBの脱離が少なく、酸化耐性、例えば、酸素プラズマ等に対する耐性の高い膜、すなわち、アッシング耐性の高い膜となる。第1の膜と第2の膜とを交互に積層することで、最終的に形成されるSiBCN膜の酸化耐性を、例えば、第1の膜と第2の膜との間の任意の特性とするように制御することが可能となる。すなわち、第1の膜と第2の膜とを交互に積層することで、最終的に形成されるSiBCN膜の酸化耐性を、BTCSMガス、TMBガスを用いて単膜を形成する場合や、BTCSMガス、BClガス、NHガスを用いて単膜を形成する場合等には実現不可能な特性とすることができる。つまり、酸化耐性制御、すなわち、アッシング耐性制御のウインドウを広げることが可能となる。
(変形例15)
図4に示す成膜シーケンスや上述の各変形例では、反応ガスとしてのCガスを、BTCSMガス等の原料ガスや、NHガス、Oガス、TEAガス、BClガス、TMBガス等の反応ガスと同時に供給するようにしてもよい。すなわち、Cガスを供給するステップを、原料ガスを供給するステップ、および、Cガス以外の反応ガスを供給するステップのうち少なくともいずれかのステップと同時に行うようにしてもよい。図10は、変形例2において、Cガスを供給するステップを、TEAガスを供給するステップと同時に行う例を示している。
ガスを供給するステップでは、ガス供給管232cからCガスを流すようにし、APCバルブ244、バルブ243c,243d,243eの開閉制御を、図4に示す成膜シーケンスのステップ2におけるAPCバルブ244、バルブ243b,243d,243eの開閉制御と同様の手順で行う。MFC241cで制御するCガスの供給流量は、例えば100〜10000sccmの範囲内の流量とする。処理室201内の圧力は、例えば1〜5000Pa、好ましくは1〜4000Paの範囲内の圧力とする。処理室201内におけるCガスの分圧は、例えば0.01〜4950Paの範囲内の圧力とする。Cガスをウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1〜200秒、好ましくは1〜120秒、より好ましくは1〜60秒の範囲内の時間とする。その他の処理条件は、例えば、図4に示す成膜シーケンスのステップ2と同様な処理条件とする。炭素含有ガスとしては、Cガスの他、例えば、アセチレン(C)ガス、エチレン(C)ガス等の炭化水素系ガスを用いることができる。
この変形例によっても、図4に示す成膜シーケンスや上述の各変形例と同様の効果を奏する。また、この変形例によれば、最終的に形成される膜中に、Cガスに含まれていたC成分を添加することが可能となる。これにより、最終的に形成される膜の組成比制御の制御性を高め、最終的に形成される膜中のC濃度を高めることが可能となる。但し、Cガスを、BTCSMガスと同時に供給するのではなく、NHガスやOガスやTEAガスやBClガスやTMBガスと同時に供給する方が、処理室201内における過剰な気相反応を回避することができ、処理室201内でのパーティクルの発生を抑制することが可能となる点で、好ましい。また、Cガスを、NHガスやOガスやBClガスと同時に供給するのではなく、TMBガスやTEAガスと同時に供給する方が、形成される膜の組成比制御の制御性を高めることができる点で、好ましい。
<本発明の他の実施形態>
以上、本発明の実施形態を具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
例えば、上述の実施形態では、排気流路開閉部としてAPCバルブ244を用いる例について説明したが、本発明はこの態様に限定されない。例えば、排気管231に、APCバルブ244の代わりに、もしくは、APCバルブ244以外に開閉バルブを設け、この開閉バルブを排気流路開閉部として用いるようにしてもよい。
また例えば、上述の実施形態では、排気系を閉塞する際に、APCバルブ244を全閉とせず、僅かに開くようにしてもよい。例えば、処理室201内へ原料ガスを封じ込める際に、APCバルブ244を僅かに開くことで、処理室201内から排気管231へと向かう原料ガスの流れを僅かに形成するようにしてもよい。これにより、処理室201内で原料ガスが分解した後のClを含むガス状物質等を処理室201内から除去することが可能となり、成膜処理の品質を向上させることが可能となる。
また例えば、図15に示すように、APCバルブ244をバイパスするサブ排気管としてのバイパス排気管(スロー排気管)231aを、排気管231に設けるようにしてもよい。バイパス排気管231aの内径は、排気管231の内径よりも小さくするのが好ましい。バイパス排気管231aには、バルブ244aと、コンダクタンス調整部として作用する絞り部としてのオリフィス244bと、が設けられている。この構成により、バイパス排気管231a内のコンダクタンスを、排気管231内のコンダクタンスよりも充分に小さくすることができる。排気系を閉塞する際に、バルブ244aを開き、バイパス排気管231aを開放することで、APCバルブ244を全閉とした場合であっても、APCバルブ244を僅かに開いた場合の上述の効果と同様の効果が得られるようになる。また、排気系の排気流路を閉塞する際のAPCバルブ244の開度制御を簡素化することも可能となる。バイパス排気管231a、バルブ244a、オリフィス244bにより構成されるバイパス排気系(スロー排気系)を、上述の排気系に含めて考えてもよい。また、バイパス排気管231a、オリフィス244bにより構成されるバイパス排気流路(スロー排気流路)を、上述の排気流路に含めて考えてもよい。なお、開度が固定されたオリフィス244bの代わりに、開度調整機構を備えたニードルバルブ等を用いることも可能である。
なお、BTCSMガス等の原料ガスを封じ込めるステップでAPCバルブ244を僅かに開くようにした場合や、排気管231にバイパス排気管231aを設ける場合には、変形例1のように、処理室201内へ原料ガスを供給し続けることが好ましい。この場合、熱分解により消費された原料ガスを補充すること、すなわち、処理室201内における原料ガスの分圧を維持することが可能となる。これにより、第1の固体層の形成レート、すなわち、最終的に形成される膜の成膜レートの低下を抑制することが可能となる。
原料ガスを供給するステップだけでなく、反応ガスを供給するステップにおいても、排気系を閉塞した状態で、処理室201内のウエハ200に対して反応ガスを供給し、反応ガスを処理室201内に封じ込めるようにしてもよい。また、反応ガスを処理室201内に封じ込める際には、排気系の排気流路を密閉するようにしてもよい。また、このとき、反応ガスを処理室201内へ供給し続け、処理室201内の圧力を上昇させ続けるようにしてもよい。このようにした場合、処理室201内に供給した反応ガスの活性化を促すことができ、結果として、ウエハ200上への第2の固体層の形成レート、すなわち、最終的に形成される膜の成膜レートを高めることが可能となる。また、このとき、一旦、排気系を開放した状態で、反応ガスを処理室201内にプリフローした後に、排気系を閉塞した状態で、反応ガスを処理室201内へ供給して封じ込めるようにしてもよい。このようにした場合、処理室201内に残留していた原料ガスと反応ガスとの反応により生成される反応副生成物やパーティクルの処理室201内からの除去を促すことが可能となる。結果として、最終的に形成される膜の膜質を向上させることが可能となる。
上述の実施形態では、原料ガスを供給した後、反応ガスを供給する例について説明した。本発明はこのような形態に限定されず、これらのガスの供給順序は逆でもよい。すなわち、反応ガスを供給した後、原料ガスを供給するようにしてもよい。ガスの供給順序を変えることにより、形成される薄膜の膜質や組成比を変化させることが可能となる。また、複数種の反応ガスを用いる場合、その供給順序は任意に変更することが可能である。ガスの供給順序を変えることにより、形成される薄膜の膜質や組成比を変化させることが可能となる。
上述の実施形態や各変形例の手法により形成したシリコン系絶縁膜を、サイドウォールスペーサとして使用することにより、リーク電流が少なく、加工性に優れたデバイス形成技術を提供することが可能となる。また、上述のシリコン系絶縁膜を、エッチストッパーとして使用することにより、加工性に優れたデバイス形成技術を提供することが可能となる。また、上述の実施形態や変形例によれば、プラズマを用いず、理想的量論比のシリコン系絶縁膜を形成することができる。プラズマを用いずシリコン系絶縁膜を形成できることから、例えばDPTのSADP膜等、プラズマダメージを懸念する工程への適応も可能となる。
上述の実施形態では、所定元素を含む膜として、半導体元素であるSiを含むシリコン系薄膜(SiCN膜、SiOCN膜、SiOC膜、SiBCN膜)、すなわち、シリコンカーバイド系薄膜を形成する例について説明した。本発明は上述の態様に限定されず、例えば、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、タンタル(Ta)、ニオブ(Nb)、アルミニウム(Al)、モリブデン(Mo)、タングステン(W)等の金属元素、すなわち、遷移金属や典型金属等を含む金属系薄膜を形成する場合にも好適に適用することができる。
すなわち、本発明は、例えば、TiCN膜、TiOCN膜、TiOC膜、TiBCN膜、ZrCN膜、ZrOCN膜、ZrOC膜、ZrBCN膜、HfCN膜、HfOCN膜、HfOC膜、HfBCN膜、TaCN膜、TaOCN膜、TaOC膜、TaBCN膜、NbCN膜、NbOCN膜、NbOC膜、NbBCN膜、AlCN膜、AlOCN膜、AlOC膜、AlBCN膜、MoCN膜、MoOCN膜、MoOC膜、MoBCN膜、WCN膜、WOCN膜、WOC膜、WBCN膜等の金属系薄膜、すなわち、メタルカーバイド系薄膜を形成する場合にも、好適に適用することができる。この場合、原料ガスとして、上述の実施形態におけるSiを含む原料ガスの代わりに、金属元素を含む原料ガスを用い、上述の実施形態や変形例と同様なシーケンスにより成膜を行うことができる。
Ti系薄膜を形成する場合は、Tiを含む原料ガスとして、Ti、Cおよびハロゲン元素を含みTi−C結合を有する原料ガスを用いることができる。反応ガスとしては、上述の実施形態と同様なガスを用いることができる。このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
Zr系薄膜を形成する場合は、Zrを含む原料ガスとして、Zr、Cおよびハロゲン元素を含みZr−C結合を有する原料ガスを用いることができる。反応ガスとしては、上述の実施形態と同様なガスを用いることができる。このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
Hf系薄膜を形成する場合は、Hfを含む原料ガスとして、Hf、Cおよびハロゲン元素を含みHf−C結合を有する原料ガスを用いることができる。反応ガスとしては、上述の実施形態と同様なガスを用いることができる。このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
Ta系薄膜を形成する場合は、Taを含む原料ガスとして、Ta、Cおよびハロゲン元素を含みTa−C結合を有する原料ガスを用いることができる。反応ガスとしては、上述の実施形態と同様なガスを用いることができる。このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
Nb系薄膜を形成する場合は、Nbを含む原料ガスとして、Nb、Cおよびハロゲン元素を含みNb−C結合を有する原料ガスを用いることができる。反応ガスとしては、上述の実施形態と同様なガスを用いることができる。このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
Al系薄膜を形成する場合は、Alを含む原料ガスとして、Al、Cおよびハロゲン元素を含みAl−C結合を有する原料ガスを用いることができる。反応ガスとしては、上述の実施形態と同様なガスを用いることができる。このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
Mo系薄膜を形成する場合は、Moを含む原料ガスとして、Mo、Cおよびハロゲン元素を含みMo−C結合を有する原料ガスを用いることができる。反応ガスとしては、上述の実施形態と同様なガスを用いることができる。このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
W系薄膜を形成する場合は、Wを含む原料ガスとして、W、Cおよびハロゲン元素を含みW−C結合を有する原料ガスを用いることができる。反応ガスとしては、上述の実施形態と同様なガスを用いることができる。このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
すなわち、本発明は、第1の元素として半導体元素や金属元素等の所定元素を含み、第2の元素(第3の元素)としてN、O、B等の非金属元素を含む薄膜を形成する場合に好適に適用することができる。
これらの各種薄膜の形成に用いられるプロセスレシピ(処理手順や処理条件等が記載されたプログラム)は、基板処理の内容(形成する薄膜の膜種、組成比、膜質、膜厚等)に応じて、それぞれ個別に用意する(複数用意する)ことが好ましい。そして、基板処理を開始する際、基板処理の内容に応じて、複数のプロセスレシピの中から、適正なプロセスレシピを適宜選択することが好ましい。具体的には、基板処理の内容に応じて個別に用意された複数のプロセスレシピを、電気通信回線や当該プロセスレシピを記録した記録媒体(外部記憶装置123)を介して、基板処理装置が備える記憶装置121c内に予め格納(インストール)しておくことが好ましい。そして、基板処理を開始する際、基板処理装置が備えるCPU121aが、記憶装置121c内に格納された複数のプロセスレシピの中から、基板処理の内容に応じて、適正なプロセスレシピを適宜選択することが好ましい。このように構成することで、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の薄膜を汎用的に、かつ、再現性よく形成できるようになる。また、オペレータの操作負担(処理手順や処理条件等の入力負担等)を低減でき、操作ミスを回避しつつ、基板処理を迅速に開始できるようになる。
上述のプロセスレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のプロセスレシピを変更することで用意してもよい。プロセスレシピを変更する場合は、変更後のプロセスレシピを、電気通信回線や当該プロセスレシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のプロセスレシピを直接変更するようにしてもよい。
上述の実施形態では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて薄膜を形成する例について説明した。本発明は上述の実施形態に限定されず、例えば、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて薄膜を形成する場合にも、好適に適用できる。また、上述の実施形態では、ホットウォール型の処理炉を有する基板処理装置を用いて薄膜を形成する例について説明した。本発明は上述の実施形態に限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて薄膜を形成する場合にも、好適に適用できる。これらの場合においても、処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
例えば、図13に示す処理炉302を備えた基板処理装置を用いて膜を形成する場合にも、本発明は好適に適用できる。処理炉302は、処理室301を形成する処理容器303と、処理室301内にガスをシャワー状に供給するシャワーヘッド303sと、1枚または数枚のウエハ200を水平姿勢で支持する支持台317と、支持台317を下方から支持する回転軸355と、支持台317に設けられたヒータ307と、を備えている。シャワーヘッド303sのインレット(ガス導入口)には、上述の原料ガスを供給するガス供給ポート332aと、上述の反応ガスを供給するガス供給ポート332bと、が接続されている。ガス供給ポート332aには、上述の実施形態の原料ガス供給系と同様の原料ガス供給系が接続されている。ガス供給ポート332bには、上述の実施形態の反応ガス供給系と同様の反応ガス供給系が接続されている。シャワーヘッド303sのアウトレット(ガス排出口)には、処理室301内にガスをシャワー状に供給するガス分散板が設けられている。処理容器303には、処理室301内を排気する排気ポート331が設けられている。排気ポート331には、上述の実施形態の排気系と同様の排気系が接続されている。
また例えば、図14に示す処理炉402を備えた基板処理装置を用いて膜を形成する場合にも、本発明は好適に適用できる。処理炉402は、処理室401を形成する処理容器403と、1枚または数枚のウエハ200を水平姿勢で支持する支持台417と、支持台417を下方から支持する回転軸455と、処理容器403のウエハ200に向けて光照射を行うランプヒータ407と、ランプヒータ407の光を透過させる石英窓403wと、を備えている。処理容器403には、上述の原料ガスを供給するガス供給ポート432aと、上述の反応ガスを供給するガス供給ポート432bと、が接続されている。ガス供給ポート432aには、上述の実施形態の原料ガス供給系と同様の原料ガス供給系が接続されている。ガス供給ポート432bには、上述の実施形態の反応ガス供給系と同様の反応ガス供給系が接続されている。処理容器403には、処理室401内を排気する排気ポート431が設けられている。排気ポート431には、上述の実施形態の排気系と同様の排気系が接続されている。
これらの基板処理装置を用いる場合においても、上述の実施形態や変形例と同様なシーケンス、処理条件にて成膜を行うことができる。
また、上述の実施形態や変形例等は、適宜組み合わせて用いることができる。また、このときの処理条件は、例えば上述の実施形態と同様な処理条件とすることができる。
<本発明の好ましい態様>
以下、本発明の好ましい態様について付記する。
(付記1)
本発明の一態様によれば、
処理室内の基板に対して、第1の元素と炭素との化学結合を有する原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する工程と、
前記処理室内の前記原料ガスを排気系より排気する工程と、
前記処理室内の前記基板に対して、第2の元素を含む反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する工程と、
前記処理室内の前記反応ガスを前記排気系より排気する工程と、
を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する工程を有する半導体装置の製造方法、および、基板処理方法が提供される。
(付記2)
付記1に記載の方法であって、好ましくは、
前記第1の固体層を形成する工程では、前記排気系を閉塞する。
(付記3)
付記1または2に記載の方法であって、好ましくは、
前記第1の固体層を形成する工程では、前記排気系(の排気流路)を密閉する。
(付記4)
付記1乃至3のいずれかに記載の方法であって、好ましくは、
前記第1の固体層を形成する工程では、前記排気系の排気流路の開度を全閉(フルクローズ)とする。
(付記5)
付記1乃至4のいずれかに記載の方法であって、好ましくは、
前記第1の固体層を形成する工程では、前記排気系に設けられた排気流路開閉部(排気バルブ)を全閉(フルクローズ)とする。
(付記6)
付記1乃至5のいずれかに記載の方法であって、好ましくは、
前記第1の固体層を形成する工程では、前記原料ガスに含まれていた前記第1の元素と炭素との化学結合の少なくとも一部を切断することなく保持したまま前記第1の固体層中に取り込ませる。
(付記7)
付記1乃至6のいずれかに記載の方法であって、好ましくは、
前記第1の固体層は、前記第1の元素および炭素が堆積されてなる堆積層である。
(付記8)
付記1乃至7のいずれかに記載の方法であって、好ましくは、
前記第1の固体層は、前記原料ガスの化学吸着が飽和する(前記原料ガスの化学吸着にセルフリミットがかかる)ことで形成される前記原料ガスの化学吸着層よりも厚い。
(付記9)
付記1乃至8のいずれかに記載の方法であって、好ましくは、
前記第1の固体層を形成する工程は、CVD反応が生じる条件下で行われる。
(付記10)
付記1乃至9のいずれかに記載の方法であって、好ましくは、
前記第1の固体層を形成する工程は、気相反応が生じる条件下で行われる。
(付記11)
付記1乃至10のいずれかに記載の方法であって、好ましくは、
前記第2の固体層を形成する工程では、前記第1の固体層中に含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記処理室内の前記基板に対して、前記反応ガスを供給する。
(付記12)
付記1乃至11のいずれかに記載の方法であって、好ましくは、
前記サイクルは、さらに、
前記処理室内の前記基板に対して、第3の元素を含む反応ガスを供給する工程と、
前記処理室内の前記反応ガスを前記排気系より排気する工程と、
を含み、
前記サイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素、前記第3の元素および炭素を含む膜を形成する。
(付記13)
付記1乃至12のいずれかに記載の方法であって、好ましくは、
前記サイクルは、さらに、
前記処理室内の前記基板に対して、第3の元素を含む反応ガスを供給し、前記第2の固体層を改質して、第3の固体層を形成する工程と、
前記処理室内の前記反応ガスを前記排気系より排気する工程と、
を、上記各工程と非同時に行うことを含み、
前記サイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素、前記第3の元素および炭素を含む膜を形成する。
(付記14)
付記1乃至13のいずれかに記載の方法であって、好ましくは、
前記原料ガスは、前記第1の元素、炭素およびハロゲン元素を含む。
(付記15)
付記1乃至13のいずれかに記載の方法であって、好ましくは、
前記原料ガスは、1分子中(その化学構造式中)に前記第1の元素と炭素との化学結合を少なくとも2つ有する。
(付記16)
付記1乃至15のいずれかに記載の方法であって、好ましくは、
前記反応ガスは、窒素含有ガス(窒化ガス、窒化水素系ガス)、炭素含有ガス(炭化水素系ガス)、窒素および炭素を含むガス(アミン系ガス、有機ヒドラジン系ガス)、酸素含有ガス(酸化ガス)、硼素含有ガス(ボラン系ガス)、および、硼素、窒素および炭素を含むガス(ボラジン系ガス)からなる群より選択される少なくとも1つを含む。
(付記17)
付記1乃至16のいずれかに記載の方法であって、好ましくは、
前記サイクルはノンプラズマの条件下で所定回数行われる。
(付記18)
本発明の他の態様によれば、
基板を収容する処理室と、
前記処理室内の基板に対して第1の元素と炭素との化学結合を有する原料ガスを供給する原料ガス供給系と、
前記処理室内の基板に対して第2の元素を含む反応ガスを供給する反応ガス供給系と、
前記処理室内の基板を加熱するヒータと、
前記処理室内を排気する排気系と、
前記処理室内の基板に対して、前記原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する処理と、前記処理室内の前記原料ガスを前記排気系より排気する処理と、前記処理室内の前記基板に対して、前記反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する処理と、前記処理室内の前記反応ガスを前記排気系より排気する処理と、を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する処理を行うように、前記原料ガス供給系、前記反応ガス供給系、前記ヒータおよび前記排気系を制御するよう構成される制御部と、
を有する基板処理装置が提供される。
(付記19)
本発明のさらに他の態様によれば、
処理室内の基板に対して、第1の元素と炭素との化学結合を有する原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する手順と、
前記処理室内の前記原料ガスを排気系より排気する手順と、
前記処理室内の前記基板に対して、第2の元素を含む反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する手順と、
前記処理室内の前記反応ガスを前記排気系より排気する手順と、
を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する手順をコンピュータに実行させるプログラム、および、該プログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。
121 コントローラ
200 ウエハ
201 処理室
202 処理炉
203 反応管
207 ヒータ
231 排気管
232a〜232e ガス供給管

Claims (18)

  1. 処理室内の基板に対して、第1の元素、炭素およびハロゲン元素を含み、前記第1の元素と炭素との化学結合を有する原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する工程と、
    前記処理室内の前記原料ガスを排気系より排気する工程と、
    前記処理室内の前記基板に対して、第2の元素を含む反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する工程と、
    前記処理室内の前記反応ガスを前記排気系より排気する工程と、
    を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する工程を有する半導体装置の製造方法。
  2. 前記第1の固体層を形成する工程では、前記排気系を閉塞する請求項1に記載の半導体装置の製造方法。
  3. 前記第1の固体層を形成する工程では、前記排気系を密閉する請求項1または2に記載の半導体装置の製造方法。
  4. 前記第1の固体層を形成する工程では、前記排気系の排気流路の開度を全閉とする請求項1乃至3のいずれかに記載の半導体装置の製造方法。
  5. 前記第1の固体層を形成する工程では、前記排気系に設けられた排気流路開閉部を全閉とする請求項1乃至4のいずれかに記載の半導体装置の製造方法。
  6. 前記第1の固体層を形成する工程では、前記原料ガスに含まれていた前記第1の元素と炭素との化学結合の少なくとも一部を切断することなく保持したまま前記第1の固体層中に取り込ませる請求項1乃至5のいずれかに記載の半導体装置の製造方法。
  7. 前記第1の固体層は、前記第1の元素および炭素が堆積されてなる堆積層である請求項1乃至6のいずれかに記載の半導体装置の製造方法。
  8. 前記第1の固体層は、前記原料ガスの化学吸着が飽和することで形成される前記原料ガスの化学吸着層よりも厚い請求項1乃至7のいずれかに記載の半導体装置の製造方法。
  9. 前記第1の固体層を形成する工程は、気相反応が生じる条件下で行われる請求項1乃至8のいずれかに記載の半導体装置の製造方法。
  10. 前記第2の固体層を形成する工程では、前記第1の固体層中に含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記処理室内の前記基板に対して、前記反応ガスを供給する請求項1乃至9のいずれかに記載の半導体装置の製造方法。
  11. 前記サイクルは、さらに、
    前記処理室内の前記基板に対して、第3の元素を含む反応ガスを供給する工程と、
    前記処理室内の前記反応ガスを前記排気系より排気する工程と、
    を含み、
    前記サイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素、前記第3の元素および炭素を含む膜を形成する請求項1乃至10のいずれかに記載の半導体装置の製造方法。
  12. 前記サイクルは、さらに、
    前記処理室内の前記基板に対して、第3の元素を含む反応ガスを供給し、前記第2の固体層を改質して、第3の固体層を形成する工程と、
    前記処理室内の前記反応ガスを前記排気系より排気する工程と、
    を、上記各工程と非同時に行うことを含み、
    前記サイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素、前記第3の元素および炭素を含む膜を形成する請求項1乃至10のいずれかに記載の半導体装置の製造方法。
  13. 前記原料ガスは、1分子中に前記第1の元素と炭素との化学結合を少なくとも2つ有する請求項1乃至12のいずれかに記載の半導体装置の製造方法。
  14. 前記反応ガスは、窒素含有ガス、炭素含有ガス、窒素および炭素を含むガス、酸素含有ガス、硼素含有ガス、および、硼素、窒素および炭素を含むガスからなる群より選択される少なくとも1つを含む請求項1乃至13のいずれかに記載の半導体装置の製造方法。
  15. 前記サイクルはノンプラズマの条件下で所定回数行われる請求項1乃至14のいずれかに記載の半導体装置の製造方法。
  16. 基板を収容する処理室と、
    前記処理室内の基板に対して第1の元素、炭素およびハロゲン元素を含み、前記第1の元素と炭素との化学結合を有する原料ガスを供給する原料ガス供給系と、
    前記処理室内の基板に対して第2の元素を含む反応ガスを供給する反応ガス供給系と、
    前記処理室内の基板を加熱するヒータと、
    前記処理室内を排気する排気系と、
    前記処理室内の基板に対して、前記原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する処理と、前記処理室内の前記原料ガスを前記排気系より排気する処理と、前記処理室内の前記基板に対して、前記反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する処理と、前記処理室内の前記反応ガスを前記排気系より排気する処理と、を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する処理を行うように、前記原料ガス供給系、前記反応ガス供給系、前記ヒータおよび前記排気系を制御するよう構成される制御部と、
    を有する基板処理装置。
  17. 処理室内の基板に対して、第1の元素、炭素およびハロゲン元素を含み、前記第1の元素と炭素との化学結合を有する原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する手順と、
    前記処理室内の前記原料ガスを排気系より排気する手順と、
    前記処理室内の前記基板に対して、第2の元素を含む反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する手順と、
    前記処理室内の前記反応ガスを前記排気系より排気する手順と、
    を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する手順をコンピュータに実行させるプログラム。
  18. 処理室内の基板に対して、第1の元素、炭素およびハロゲン元素を含み、前記第1の元素と炭素との化学結合を有する原料ガスが熱分解すると共に、前記原料ガスに含まれる前記第1の元素と炭素との化学結合の少なくとも一部が切断されることなく保持される条件下で、前記原料ガスを供給し、前記原料ガスを前記処理室内に封じ込めることで、1原子層を超え数原子層以下の厚さの前記第1の元素および炭素を含む第1の固体層を形成する手順と、
    前記処理室内の前記原料ガスを排気系より排気する手順と、
    前記処理室内の前記基板に対して、第2の元素を含む反応ガスを供給し、前記第1の固体層を改質して、第2の固体層を形成する手順と、
    前記処理室内の前記反応ガスを前記排気系より排気する手順と、
    を非同時に行うサイクルを所定回数行うことで、前記基板上に、前記第1の元素、前記第2の元素および炭素を含む膜を形成する手順をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体。
JP2014034332A 2014-02-25 2014-02-25 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体 Active JP5855691B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014034332A JP5855691B2 (ja) 2014-02-25 2014-02-25 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体
US14/628,963 US9890458B2 (en) 2014-02-25 2015-02-23 Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
KR1020150026175A KR101624459B1 (ko) 2014-02-25 2015-02-25 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
US15/011,033 US10066298B2 (en) 2014-02-25 2016-01-29 Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014034332A JP5855691B2 (ja) 2014-02-25 2014-02-25 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体

Publications (2)

Publication Number Publication Date
JP2015159247A JP2015159247A (ja) 2015-09-03
JP5855691B2 true JP5855691B2 (ja) 2016-02-09

Family

ID=53882894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014034332A Active JP5855691B2 (ja) 2014-02-25 2014-02-25 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体

Country Status (3)

Country Link
US (2) US9890458B2 (ja)
JP (1) JP5855691B2 (ja)
KR (1) KR101624459B1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6247095B2 (ja) * 2013-12-27 2017-12-13 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
US10312137B2 (en) * 2016-06-07 2019-06-04 Applied Materials, Inc. Hardmask layer for 3D NAND staircase structure in semiconductor applications
KR102248860B1 (ko) * 2016-09-21 2021-05-06 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 액체 원료 보충 시스템, 반도체 장치의 제조 방법, 프로그램
JP6851173B2 (ja) * 2016-10-21 2021-03-31 東京エレクトロン株式会社 成膜装置および成膜方法
JP6814057B2 (ja) * 2017-01-27 2021-01-13 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JP6857503B2 (ja) * 2017-02-01 2021-04-14 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
KR102214218B1 (ko) * 2017-10-18 2021-02-10 한양대학교 산학협력단 막 제조방법 및 그 제조장치
US11015243B2 (en) 2017-10-18 2021-05-25 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Method and apparatus for forming layer, metal oxide transistor and fabrication method thereof
WO2019207864A1 (ja) 2018-04-27 2019-10-31 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JP6946374B2 (ja) * 2019-06-20 2021-10-06 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JP7437596B2 (ja) * 2020-03-25 2024-02-26 東京エレクトロン株式会社 炭素ケイ素含有膜を形成する方法及び装置
US20230360906A1 (en) * 2022-05-05 2023-11-09 Applied Materials, Inc. Silicon-and-carbon-containing materials with low dielectric constants

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7125582B2 (en) * 2003-07-30 2006-10-24 Intel Corporation Low-temperature silicon nitride deposition
US20050145177A1 (en) * 2003-12-30 2005-07-07 Mcswiney Michael Method and apparatus for low temperature silicon nitride deposition
US20060228903A1 (en) 2005-03-30 2006-10-12 Mcswiney Michael L Precursors for the deposition of carbon-doped silicon nitride or silicon oxynitride films
JP5665289B2 (ja) 2008-10-29 2015-02-04 株式会社日立国際電気 半導体装置の製造方法、基板処理方法および基板処理装置
US8647722B2 (en) 2008-11-14 2014-02-11 Asm Japan K.K. Method of forming insulation film using plasma treatment cycles
JP2010129666A (ja) 2008-11-26 2010-06-10 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法
JP5223804B2 (ja) 2009-07-22 2013-06-26 東京エレクトロン株式会社 成膜方法及び成膜装置
JP2011082493A (ja) 2009-09-14 2011-04-21 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
JP5541223B2 (ja) 2010-07-29 2014-07-09 東京エレクトロン株式会社 成膜方法及び成膜装置
JP2012049290A (ja) * 2010-08-26 2012-03-08 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び半導体装置
JP2013040398A (ja) 2011-07-20 2013-02-28 Tokyo Electron Ltd 成膜装置及び成膜方法
JP6043546B2 (ja) 2011-10-21 2016-12-14 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6105967B2 (ja) 2012-03-21 2017-03-29 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
US9243324B2 (en) * 2012-07-30 2016-01-26 Air Products And Chemicals, Inc. Methods of forming non-oxygen containing silicon-based films
KR101703671B1 (ko) 2013-09-02 2017-02-07 한온시스템 주식회사 차량용 공조장치

Also Published As

Publication number Publication date
KR101624459B1 (ko) 2016-05-25
US20150243499A1 (en) 2015-08-27
US20160153090A1 (en) 2016-06-02
JP2015159247A (ja) 2015-09-03
KR20150100570A (ko) 2015-09-02
US10066298B2 (en) 2018-09-04
US9890458B2 (en) 2018-02-13

Similar Documents

Publication Publication Date Title
JP5852151B2 (ja) 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体
JP5855691B2 (ja) 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体
JP6347544B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP5883049B2 (ja) 半導体装置の製造方法、基板処理装置、プログラムおよび記録媒体
JP5886381B2 (ja) 半導体装置の製造方法、基板処理装置、プログラムおよび記録媒体
JP6284285B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6247095B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6105967B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6125279B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
CN104805414B (zh) 半导体器件的制造方法及衬底处理装置
JP5886366B2 (ja) 半導体装置の製造方法、基板処理装置、プログラムおよび記録媒体
JP6490374B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6254848B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP2013140946A (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP2015103729A (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6523186B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP6224258B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
WO2016038744A1 (ja) 半導体装置の製造方法、基板処理装置および記録媒体

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151209

R150 Certificate of patent or registration of utility model

Ref document number: 5855691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250