[go: up one dir, main page]

JP5807344B2 - 角速度センサ及び電子機器 - Google Patents

角速度センサ及び電子機器 Download PDF

Info

Publication number
JP5807344B2
JP5807344B2 JP2011040509A JP2011040509A JP5807344B2 JP 5807344 B2 JP5807344 B2 JP 5807344B2 JP 2011040509 A JP2011040509 A JP 2011040509A JP 2011040509 A JP2011040509 A JP 2011040509A JP 5807344 B2 JP5807344 B2 JP 5807344B2
Authority
JP
Japan
Prior art keywords
angular velocity
frame
velocity sensor
beams
pendulum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011040509A
Other languages
English (en)
Other versions
JP2012177610A (ja
JP2012177610A5 (ja
Inventor
本多 順一
順一 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2011040509A priority Critical patent/JP5807344B2/ja
Priority to US13/372,053 priority patent/US8833163B2/en
Priority to CN201210038714.2A priority patent/CN102650519B/zh
Publication of JP2012177610A publication Critical patent/JP2012177610A/ja
Publication of JP2012177610A5 publication Critical patent/JP2012177610A5/ja
Priority to US14/484,841 priority patent/US9885576B2/en
Application granted granted Critical
Publication of JP5807344B2 publication Critical patent/JP5807344B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/574Structural details or topology the devices having two sensing masses in anti-phase motion
    • G01C19/5747Structural details or topology the devices having two sensing masses in anti-phase motion each sensing mass being connected to a driving mass, e.g. driving frames

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Description

本技術は、例えば、ビデオカメラの手振れ検知やバーチャルリアリティ装置における動作検知、カーナビゲーションシステムにおける方向検知などに用いられる角速度センサに関する。
民生用の角速度センサとして、振動型のジャイロセンサが広く用いられている。振動型ジャイロセンサは、振動子を所定の周波数で振動させておき、振動子に生じるコリオリ力を圧電素子などで検出することによって角速度を検出する。上記ジャイロセンサは、例えば、ビデオカメラ、バーチャルリアリティ装置、カーナビゲーションシステムなどの電子機器に搭載され、それぞれ手振れ検知、動作検知、方向検知などのセンサとして活用されている。
この種のジャイロセンサを用いて空間内での姿勢変化を検出する場合、直交する2軸または3軸の方向に沿ってジャイロセンサを配置する構成が知られている。例えば特許文献1には、3個のジャイロスコープの振動子がフレキシブル基板上に実装されており、このフレキシブル基板を折り曲げて3個の振動子を互いに直交させることで、3次元の角速度検出を可能とする構成が記載されている。同様に、特許文献2には、基台上に3個の三脚音叉振動子を3軸方向に互いに直交するように配置した三次元角速度センサが記載されている。
特開平11−211481号公報(段落[0017]、図1) 特開2000−283765号公報(段落[0019]、図8)
近年、電子機器の小型化に伴い、これに搭載される電子部品の小型化、薄型化が要求されている。しかしながら、特許文献1及び2に記載の構成では、3つの振動子のうち1つはその長手方向を垂直方向(厚み方向)に向けて配置されているため、センサの薄型化が困難である。また小型化による角速度の検出特性の低下を抑制する必要がある。
以上のような事情に鑑み、本技術の目的は、検出特性の低下を抑制しつつセンサの薄型化を実現することができる角速度センサを提供することにある。
本技術の一形態に係る角速度センサは、環状のフレームと、駆動部と、第1の検出部と、支持機構とを具備する。
上記フレームは、第1の梁の組と、第2の梁の組と、複数の接続部とを有する。上記第1の梁の組は、第1の方向に延在し上記第1の方向と直交する第2の方向に相互に対向する。上記第2の梁の組は、上記第2の方向に延在し上記第1の方向に相互に対向する。上記複数の接続部は、上記第1の梁の組と上記第2の梁の組との間をそれぞれ接続する。
上記駆動部は、上記第1の梁の組と上記第2の梁の組のうち一方の組が近接したときに他方の組が離間し、上記一方の組が離間したときに上記他方の組が近接する振動モードで、上記フレームを上記第1の方向及び上記第2の方向が属する第1の面内において振動させる。
上記第1の検出部は、上記振動モードで振動する上記フレームの上記第1の面内における変形量に基づいて、上記第1の面と直交する第3の方向の軸回りの角速度を検出する。
上記支持機構は、前記フレームの外側を囲む内周部を有する環状のベース部と、上記内周部と上記複数の接続部との間をそれぞれ連結する複数の連結部とを有する。
上記角速度センサによれば、第3の方向の軸回りの角速度を、当該第3の方向と直交する平面内で振動するフレームの当該平面内における変形に基づいて検出することができる。これによりセンサの厚み寸法を大きくすることなく厚み方向の軸回りの角速度を検出することができるため、センサの薄型化を実現することができる。また、複数の連結部がフレームの振動に追従して変形可能であるため、フレームとベース部との間における振動の伝搬が抑制される。これにより例えば外乱等による角速度の検出感度の変動を阻止でき、検出特性の低下を抑制することができる。
以上のように、本技術によれば、検出特性の低下を抑制しつつセンサの薄型化を実現することができる。
本技術の第1の実施形態による角速度センサを示す平面図である。 上記角速度センサの要部の平面図である。 (A)は上記角速度センサのフレームの基本振動の時間変化を示し、(B)は駆動信号の時間変化を示す。 (A)は、Z軸回りに角速度が作用した上記フレームのある瞬間における変形の様子を概略的に示す平面図であり、(B)は、(A)において振り子部及びフレームの各部に作用するコリオリ力の方向を示す図である。 (A)は、上記フレームにX軸回りの角速度が作用したときの各振り子部の振動形態を説明する概略斜視図であり、(B)は、上記フレームにY軸回りの角速度が作用したときの各振り子部の振動形態を説明する概略斜視図である。 上記角速度センサの駆動回路を示すブロック図である。 上記角速度センサと、本技術の他の実施形態に係る角速度センサとの大きさを比較した平面図である。 構成の異なる2つの角速度センサの振動特性を評価したときの一実験結果である。 本技術の第2の実施形態による角速度センサを示す平面図である。 本技術の第3の実施形態による角速度センサを示す平面図である。 上記角速度センサの一変形例を示す要部の平面図である。 上記角速度センサの他の変形例を示す要部の平面図である。
以下、本技術に係る実施形態を、図面を参照しながら説明する。
<第1の実施形態>
[角速度センサの全体構成]
図1は本技術の第1の実施形態による角速度センサの全体構成を示す平面図である。角速度センサ1は、X軸方向に縦方向、Y軸方向に横方向、X軸方向に厚み方向をそれぞれ有する。
角速度センサ1は、フレーム10と、振り子部20と、駆動部30と、第1の検出部50と、第2の検出部70と、支持機構80とを有する。フレーム10は略四角形の枠状に形成され、その四隅には振り子部20がそれぞれ固定されている。駆動部30は、フレーム10の表面に設けられた圧電素子で構成され、フレーム10を所定の振動モードで振動させる。第1の検出部50は、フレーム10のXY平面内における変形を電気的に検出しその変形量に応じた検出信号を出力する。第2の検出部70は、各振り子部20のXY平面に垂直な方向の変形を電気的に検出しその変形量に応じた検出信号を出力する。支持機構80は、上記振動モードを阻害することなくフレーム10を支持し、配線基板等の固定部に実装される。
以下、角速度センサの各部の詳細について説明する。
図2は、角速度センサ1の駆動部分の基本構成を示す平面図である。図2では、角速度センサ1のフレーム10、振り子部20、駆動部30、第1の検出部50及び第2の検出部70の構成例が示されている。以下、図2を参照して、この角速度センサの駆動部分の基本構成を説明する。
[フレーム]
フレーム10の各辺は、振動梁として機能し、第1の梁11a、11bの組と、第2の梁12a、12bの組とを含む。第1の梁11a、11bは、図2においてY軸方向に相互に平行に延在し、X軸方向に相互に対向する一組の対辺で構成される。第2の梁12a、12bは、X軸方向に相互に平行に延在し、Y軸方向に相互に対向する他の一組の対辺で構成される。梁11a、11b、12a、12bは、それぞれ同一の長さ、幅及び厚みを有しており、フレーム10の外観は、中空の略正方形状を有している。
フレーム10は、シリコン単結晶基板に微細加工技術を施すことで形成される。例えば、フレーム10は、公知のMEMS(Micro-Electro-Mechanical Systems)の製造技術を用いて形成することができる。フレーム10の大きさは特に限定されず、例えば、フレーム10の一辺の長さは1000〜4000μm、フレーム10の厚みは10〜200μm、梁11a、11b、12a、12bの幅は50〜200μmである。
フレーム10の四隅に相当する部位には、第1の梁11a、11bと第2の梁12a、12bとの間を接続する複数の接続部13a、13b、13c、13dがそれぞれ形成されている。第1の梁11a、11b及び第2の梁12a、12bの両端は、接続部13a〜13dによってそれぞれ支持される。後述するように、各梁11a、11b、12a、12bは、接続部13a〜13dによって両端が支持された振動梁として機能する。フレーム10の四隅は、図示するように角張った形状に限らず、面取りされたり、丸みを帯びた形状に形成されたりしてもよい。
接続部13a〜13dは、正方形の各頂点に対応するフレーム10の四隅に各々配置されている。本実施形態において、第1の梁11a,11b及び第2の梁12a,12bは、各接続部13a〜13dを頂点とする正方形Sの内方側に突出するように全体として弓形に湾曲して形成されている。
すなわち、第1の梁11a,11bは、相互に対向する方向(X軸方向)に突出することで外周側に凹所11tを形成する湾曲部11pと、湾曲部11pの両端を接続部13a〜13dに固定する傾斜部11vとをそれぞれ有する。同様に、第2の梁12a,12bは、相互に対向する方向(Y軸方向)に突出することで外周側に凹所12tを形成する湾曲部12pと、湾曲部12pの両端を接続部13a〜13dに固定する傾斜部12vとをそれぞれ有する。傾斜部11v,12vは、湾曲部11p,12pが正方形Sの内方側に位置するように湾曲部11p,12pをそれぞれ支持する。
[振り子部]
角速度センサ1は、第1の振り子部21a,21bと、第2の振り子部22a,22bとを有する。
第1の振り子部21a,21bは、互いに対角関係にある一方の組の接続部13a,13c(第1の接続部)にそれぞれ形成されており、上記対角方向に沿ってフレーム10の内側に延在している。第1の振り子部21a,21bのそれぞれの一端は、接続部13a,13cに固定され、それぞれの他端は、フレーム10の中央付近において相互に対向している。
第2の振り子部22a,22bは、互いに対角関係にある他方の組の接続部13d,13b(第2の接続部)にそれぞれ形成されており、上記対角方向に沿ってフレーム10の内側に延在している。第2の振り子部22a,22bのそれぞれの一端は、接続部13d,13bに固定され、それぞれの他端は、フレーム10の中央付近において相互に対向している。
振り子部21a,21b,22a,22bは、それぞれ典型的には同一の形状及び大きさを有しており、フレーム10の外形加工の際に同時に形成される。振り子部21a,21b,22a,22bの形状、大きさは特に限定されず、全く同一の形状でなくてもよい。本実施形態において、振り子部21a,21b,22a,22bは、自由端側に形成されたヘッド部Hと、ヘッド部Hと接続部13a〜13dとの間を接続するアーム部Lとを有する。アーム部Lは、後述するように梁11a,11b,12a,12bの振動によってXY平面内において励振される。ヘッド部Hは梁11a,11b,12a,12bからみて振動錘として機能する。なお、振り子部21a,21b,22a,22bの形成は省略されてもよい。
フレーム10は上述した略正方形状に限られず、長方形状や平行四辺形状を含む他の四角形状あるいはこれらに準ずる略四角形状であってもよい。また、フレーム10は、四角形に限られず、八角形等の他の多角形状であってもよい。四隅の接続部により両端が支持された各梁は、直線的な形状であってもよい。
[駆動部]
角速度センサ1は、フレーム10を振動させる駆動部30として圧電駆動層を有する。圧電駆動層は、第1の駆動電極301と、第2の駆動電極302とを有する。これらの駆動電極301,302は、入力電圧に応じて機械的に変形し、その変形の駆動力で梁11a,11b,12a,12bを振動させる。変形の方向は、入力電圧の極性で制御される。
第1及び第2の駆動電極301,302は、梁11a,11b,12a,12bの上面であってそれらの軸線に関して対称な位置にそれぞれ直線的に形成されている。図1においては、理解を容易にするため、第1及び第2の駆動電極301,302をそれぞれ異なる種類のハッチングで示す。図示の例では、第1の駆動電極301は、第1の梁11a、11bの内縁側と、第2の梁12bの外縁側とにそれぞれ配置されている。第2の駆動電極302は、第1の梁11aの外縁側と、第2の梁12aの内縁側とにそれぞれ配置されている。
第1及び第2の駆動電極301,302は、それぞれ同一の構成を有している。第1及び第2の駆動電極301,302は、典型的には、下部電極層と、圧電材料層と、上部電極層との積層構造を有する。第1及び第2の駆動電極301、302は、例えば0.5〜3μmの厚みで形成される。なお、駆動電極が形成される梁を有するフレームはシリコン単結晶基板からなり、駆動電極が形成される面にはあらかじめシリコン酸化膜等の絶縁膜が形成されている。
圧電材料層は、下部電極層と上部電極層との電位差に応じて伸縮するように分極配向されている。したがって、駆動電極301、302の各々の下部電極層を共通の基準電位に接続し、各々の上部電極層に逆位相の交流電圧を印加することで、第1の駆動電極301と第2の駆動電極302とは相互に逆位相で伸縮することになる。
下部電極層、圧電材料層及び上部電極層の構成材料は特に限定されず、例えば、下部電極層はチタン(Ti)と白金(Pt)の積層膜、圧電材料層はチタン酸ジルコン酸鉛(PZT)、上部電極層は白金で構成される。これら各層は、スパッタリング法や真空蒸着法、CVD法等の薄膜製造技術を用いて形成することができる。また、形成された膜のパターニングには、フォトリソグラフィ技術を用いたエッチング加工を用いることができる。
第1及び第2の駆動電極301、302は全ての梁11a、11b、12a、12bにそれぞれ形成されてもよい。第1及び第2の駆動電極301、302のうち何れか一方が各梁に形成されていてもよい。また、相互に対向する梁の組のうち一方の梁が振動すれば、その振動がフレームの接続部を介して他方の梁に伝播し、当該他方の梁の振動を励起させることができる。このため、相互に対向する梁の組のうち一方の梁にのみ駆動電極が配置されてもよい。
第1の駆動電極301と第2の駆動電極302とは、一方が伸びたとき他方が縮むように相互に逆位相の電圧が印加される。これにより、第1の梁11a,11bの組は、両端が接続部13a〜13dに支持された状態でX軸方向に撓み変形を受け、XY平面内において双方が離間する方向と双方が近接する方向とに交互に振動する。同様に、第2の梁12a,12bの組は、両端が接続部13a〜13dに支持された状態でY軸方向に撓み変形を受け、XY平面内において双方が離間する方向と双方が近接する方向とに交互に振動する。
ここで、第1の梁11a,11bの組と第2の梁12a、12bの組とにおいては、それらの内縁側と外縁側とに配置される第1及び第2の駆動電極301,302の位置関係が反対の関係にある。したがって、第1の梁11a,11bの組(の対向する梁の中央部)が相互に近接する方向に振動する場合は、第2の梁12a,12bの組(の対向する梁の中央部)は相互に離間する方向に振動し、第1の梁11a,11bの組が相互に離間する方向に振動する場合は、第2の梁12a,12bの組は相互に近接する方向に振動する。このとき、各梁11a,11b,12a,12bの中央部は、振動の腹を形成し、それらの両端部(接続部13a〜13d)は、振動の節(ノード)を形成する。このような振動モードを以下、フレーム10の基本振動と称する。
梁11a,11b,12a,12bは、それらの共振周波数で駆動される。各梁11a,11b,12a,12bの共振周波数は、それらの形状、長さ等によって定められる。フレーム10の基本振動における共振周波数と、角速度検出時における共振周波数とが近いほど、検出出力を上げることができる。Z軸回りの角速度を検出する場合、上記2つの共振周波数は、フレーム10の厚みにほとんど依存しないため、フレーム10の厚みを小さくすることで、圧電駆動による機械的変位をより大きくすることができる。一方、フレーム10が薄いとフレーム10の機械的強度が低下するため、デバイスとしての信頼性を確保できる厚みに設定される。
また、振動梁の動作周波数が低いほど、振動子の振幅が大きくなるため、角速度センサとしては高特性が得られる。一方、振動梁が小型であるほど、その動作周波数は高くなる傾向にある。本実施形態では、梁11a,11b,12a,12bの共振周波数は、1〜100kHzの範囲で設定される。
図3(A)はフレーム10の基本振動の時間変化を示し、図3(B)は駆動信号1,2の時間変化を示す。図3(B)において、「駆動信号1」は、第1の駆動電極301に印加される入力電圧に相当し、「駆動信号2」は、第2の駆動電極302に印加される入力電圧に相当する。図3(B)に示すように、駆動信号1と駆動信号2とは相互に逆位相に変化する交流波形を有する。これによりフレーム10は、図3(A)において(a),(b),(c),(d),(a),・・・の順に変化し、第1の梁11a,11bの組と第2の梁12a,12bの組のうち、一方の組が近接したときは他方の組が離間し、上記一方の組が離間したときは上記他方の組が近接する振動モードで、フレーム10は振動する。
なお、実際には入力信号が印加されてからフレームが変化(変位)するまでには圧電体の応答時間や入力動作周波数、フレーム共振周波数などの影響で遅延時間が存在する。本例においては、上記遅延時間は十分に小さいものとして図3の時間変化を説明している。
上述したフレーム10の基本振動に伴って、第1の振り子部21a,21b及び第2の振り子部22a,22bもまた、フレーム10の振動に同期して、接続部13a〜13dを中心としてXY平面内でそれぞれ振動する。振り子部21a,21b,22a,22bの振動は、梁11a,11b,12a,12bの振動により励起される。この場合、第1の振り子部21a,21bと第2の振り子部22a,22bとは、XY平面内における振り子部分の支点部すなわち上記接続部13a〜13dからの左右の揺動方向において、相互に逆位相で振動(揺動)する。
図3(A)に示すように、第1の梁11a,11bの組が相互に近接する方向へ振動するときは、第1の振り子部21aと第2の振り子部22aとは相互に離間する方向へ振動し(状態(b))、第1の梁11a,11bの組が相互に離間する方向へ振動するときは、第1の振り子部21aと第2の振り子部22aとは相互に近接する方向へ振動する(状態(d))。第1の振り子部21bと第2の振り子部22bもまた、第2の梁12a,12bの組の振動方向によって、相互に離間する方向と近接する方向とに交互に振動する。以上のように、第1の振り子部21a,21bと第2の振り子部22a,22bとは、フレーム10の基本振動に同期して相互に逆位相で振動する。
以上のように構成される本実施形態の角速度センサ1においては、駆動電極301,302に対して逆位相の交流電圧が印加されることで、フレーム10の各梁11a,11b,12a,12bは、図3(A)に示した振動モードで振動する。このような基本振動を継続するフレーム10にZ軸回りの角速度が作用すると、フレーム10の各点に当該角速度に起因するコリオリ力が作用することで、フレーム10は図4(A)に示すようにXY平面内において歪むように変形する。したがって、このXY平面内におけるフレーム10の変形量を検出することで、フレーム10に作用した角速度の大きさ及び方向を検出することが可能となる。
図4(A)は、Z軸回りに角速度が作用したフレーム10のある瞬間における変形の様子を概略的に示す平面図である。図4(B)は、図4(A)において振り子部及びフレームの各部に作用するコリオリ力の方向を示す図である。なお説明を分かりやすくするため、フレーム10の形状及び変形の様子はやや誇張して示している。
基本振動をするフレーム10にZ軸を中心とする時計回り方向の角速度が作用すると、フレーム10内の各点(梁11a,11b,12a,12b、振り子部21a,21b,22a,22b)には、Z軸と直交するXY平面内において、上記各点のその瞬間における移動方向(振動方向)と時計回り方向へ90度をなす方向に当該角速度の大きさに比例したコリオリ力が発生する。すなわち、コリオリ力の向きは、図4(B)に示すように当該コリオリ力が作用する点の上記瞬間における振動の方向によって決まる。これにより、フレーム10は、正方形状から概略平行四辺形状となるように、XY平面内において、ひしゃげられる(歪む)。
なお、図4は、Z軸を中心として時計まわりに所定の角速度が作用したときの様子を示している。なお、角速度の向きが反対(反時計まわり)の場合は、各点に作用するコリオリ力の向きも反対となる。
[第1の検出部]
角速度センサ1は、フレーム10の振動によるXY平面内での変形を検出する第1の検出部50を有する。第1の検出部50は、第1の検出電極51aと、第2の検出電極51bとを有する。
第1及び第2の検出電極51a,51bは、第1の梁11bの内縁側に、その軸線方向の中央部に関して対称な位置にそれぞれ配置されている。第1及び第2の検出電極51a,51bは、駆動電極301,302と同様な構成を有しており、下部電極層と、圧電材料層と、上部電極層との積層体で構成され、梁11bの機械的変形を電気信号に変換する機能を有する。
図4(A)に示したように、Z軸回りに角速度が生じると、コリオリ力により各梁11a,11b,12a,12bは、XY平面内において歪み変形を受ける。この歪み変形は、各梁11a,11b,12a,12bに対して同時に発生する。したがって、一部の梁に検出電極51a,51bを配置することで、フレーム10に作用する角速度を検出することが可能となる。
また、検出電極51a,51bは、角速度に起因するフレーム10の変形だけでなく、基本振動における梁11bの変形をも検出する。ここで、角速度の発生に伴うフレーム10の変形は、各梁の軸線方向の中央部に関して対称である。すなわち、梁11bの中央部を境界とする一方の領域はフレーム10の内方側に向かって凸なる形状に変形し、他方の領域はフレーム10の外方側に凸なる形状に変形する。このため、梁11bの上記一方の領域の外縁側は縮み、上記他方の領域の外縁側は伸長する。これら領域の各々の外縁側に配置された第1及び第2の検出電極51a、51bは、相互の逆位相の検出信号を出力する。したがって、これら検出信号の差分信号を生成することで、梁11bの基本振動成分を除去しつつ、角速度成分を高精度に検出することが可能となる。
[参照電極]
本実施形態の角速度センサ1は、参照電極60を有する。参照電極60は、第2の梁12bの外縁側に、駆動電極302と平行に配置されている。参照電極61は、駆動電極301、302と同様な構成を有しており、下部電極層と、圧電検出層と、上部電極層との積層体で構成され、梁12aの機械的変形を電気信号に変換する機能を有する。
参照電極60は、梁12aの外縁側に配置されることで、駆動電極302によって励振される梁12aの振動を検出し、その検出出力は、フレーム10を基本振動で発振させるための参照信号の生成に用いられる。なお、参照電極60の形成に代えて、第1及び第2の検出電極51a,51bの各出力の和信号を生成し、これを上記参照信号とすることも可能である。
[第2の検出部]
第2の検出部70は、4つの検出電極71a,71b,72a,72bとにより構成される。検出電極71a,71b,72a,72bは、各振り子部21a,22a,21b,22bのアーム部Lの表面にそれぞれ配置される。各検出電極71a,71b,72a,72bは直線的に形成され、各アーム部Lの軸心部に当該アーム部Lの延在方向に平行にそれぞれ配置される。
検出電極71a,71b,72a,72bは、第1及び第2の駆動電極301,302と同様な構成を有しており、下部電極層と、圧電材料層と、上部電極層との積層体で構成され、アーム部Lの機械的変形を電気信号に変換する。すなわち検出電極71a,71b,72a,72bは、アーム部LのZ軸方向の変形を検出する機能をそれぞれ有する。
本実施形態では、X軸に平行な軸方向に一方の角速度検出軸が設定され、Y軸に平行な軸方向に他方の角速度検出軸が設定される。このような構成において検出電極71a,71b,72a,72b各々は、X軸回りの角速度及びY軸回りの角速度をそれぞれ検出するための検出部として機能する。
駆動電極301,302には、相互に逆位相の交流電圧がそれぞれ印加される。これにより、フレーム10の各梁11a,11b,12a,12b及び振り子部21a,21b,22a,22bは、図3(A)に示した振動モード(基本振動)で振動する。図5(A)は、フレーム10にX軸回りの角速度が作用したときの振り子部21a,21b,22a,22bの振動形態を説明する概略斜視図である。一方、図5(B)は、フレーム10にY軸回りの角速度が作用したときの振り子部21a,21b,22a,22bの振動形態を説明する概略斜視図である。
基本振動で振動するフレーム10にX軸回りの角速度が作用すると、図5(A)に示すように各振り子部21a,21b,22a,22bにその瞬間での振動方向と直交する方向のコリオリ力F1がそれぞれ発生する。これにより、X軸方向に隣接する一方の振り子部21a,22bの組は、コリオリ力F1によりZ軸の正の方向へ変形し、それらの変形量が検出電極71a,72bによって各々検出される。また、X軸方向に隣接する他方の振り子部22a,21bの組は、コリオリ力F1によりZ軸の負の方向へ変形し、それらの変形量が検出電極72a,71bによって各々検出される。
一方、基本振動で振動するフレーム10にY軸回りの角速度が作用すると、図5(B)に示すように各振り子部21a,21b,22a,22bにその瞬間での振動方向と直交する方向のコリオリ力F2がそれぞれ発生する。これにより、Y軸方向に隣接する一方の振り子部21a,22aの組は、コリオリ力F2によりZ軸の負の方向へ変形し、それらの変形量が検出電極71a,72aによって各々検出される。また、Y軸方向に隣接する他方の振り子部21b,22bの組は、コリオリ力F2によりZ軸の正の方向へ変形し、それらの変形量が検出電極71b,72bによって各々検出される。
X軸及びY軸に各々斜めに交差する方向の軸まわりに角速度が生じた場合にも上述と同様な原理で角速度が検出される。すなわち、各振り子部21a,21b,22a,22bは、当該角速度のX方向成分及びY方向成分に応じたコリオリ力によって変形し、それらの変形量が検出電極71a,71b,72a,72bによって各々検出される。角速度センサ1の駆動回路は、これら検出電極の出力に基づいて、X軸まわりの角速度及びY軸まわりの角速度をそれぞれ抽出する。これにより、XY平面に平行な任意の軸まわりの角速度を検出することができる。
[駆動回路]
図6は、角速度センサ1の駆動回路100を示すブロック図である。図6においては、簡便のため、フレーム10の各梁11a,11b,12a,12bはそれぞれ直線的に示されており、支持機構80の図示も省略されている。
駆動回路100は、Go1端子と、Go2端子と、GFB端子と、Vref端子とを有する。Go1端子は、第1の駆動電極301の上部電極層に接続されている。Go2端子は、第2の駆動電極302の上部電極層に接続されている。GFB端子は、参照電極60に接続されている。Vref端子は、駆動電極301、302の各々の下部電極層と、検出電極51a、51b、71a、71b、72a、72bの各々の下部電極層とに、それぞれ接続されている。
駆動回路100はさらに、角速度センサ1の各検出電極と電気的に接続されるGxy1端子、Gxy2端子、Gxy3端子、Gxy4端子、Gz1端子及びGz2端子を有する。Gxy1端子は、振り子部21aの検出電極71aに接続され、Gxy2端子は、振り子部22bの検出電極72bに接続される。Gxy3端子は、振り子部21bの検出電極71bに接続され、Gxy4端子は、振り子部22aの検出電極72aに接続される。そして、Gz1端子は、フレーム10の検出電極51aに接続され、Gz2端子は、フレーム10の検出電極51bに接続される。
駆動回路100において、Go1端子は、自励発振回路101の出力端に接続されている。自励発振回路101は、駆動電極301、302を駆動するための駆動信号(交流信号)を生成する。Go2端子は、反転アンプ102を介して自励発振回路101の出力端に接続されている。反転アンプ102は、自励発振回路101にて生成された駆動信号の位相を反転させる。これにより、第1の駆動電極301と第2の駆動電極302とは、相互に逆位相で伸縮される。Vref端子は、所定の基準電位に接続されている。基準電位は、グラウンド電位でもよいし、一定のオフセット電位でもよい。
駆動回路100はさらに、演算回路103と、検波回路104x,104y,104zと、平滑回路105x,105y,105zとを有する。GFB端子、Gxy1端子、Gxy2端子、Gxy3端子、Gxy4端子、Gz1端子及びGz2端子はそれぞれ演算回路103の入力端に接続されている。
演算回路103は、GFB端子を介して供給される参照電極60の出力電圧に基づいて参照信号を生成し、これを自励発振回路101へ出力する。演算回路103は、X軸回りの角速度信号を生成するための第1の差分回路と、Y軸回りの角速度信号を生成するための第2の差分回路と、Z軸回りの角速度信号を生成するための第3の差分回路とを有する。検出電極71aの出力をxy1、検出電極72bの出力をxy2、検出電極71bの出力をxy3、検出電極72aの出力をxy4、検出電極51aの出力をz1、そして、検出電極51bの出力をz2とする。このとき、上記第1の差分回路は、(xy1+xy2)−(xy3+xy4)を演算し、その演算値を検波回路104xへ出力する。上記第2の差分回路は、(xy1+xy4)−(xy2+xy3)を演算し、その演算値を検波回路104yへ出力する。そして、上記第3の差分回路は、(z1−z2)を演算し、その演算値を検波回路104zへ出力する。
検波回路104x,104y,104zは、自励発振回路101からの駆動信号の出力あるいは参照信号に同期して上記差分信号を全波整流し、直流化する。平滑回路105x,105y,105zは、検波回路の出力を平滑化する。平滑回路105xから出力される直流電圧信号ωxは、X軸回りの角速度の大きさ及び方向に関する情報が含まれる。また、平滑回路105yから出力される直流電圧信号ωyは、Y軸回りの角速度の大きさ及び方向に関する情報が含まれる。さらに、平滑回路105zから出力される直流電圧信号ωzは、Z軸回りの角速度の大きさ及び方向に関する情報が含まれる。すなわち、基準電位Vrefに対する上記直流電圧信号ωx,ωy,ωzの大きさが角速度の大きさに関する情報に相当し、当該直流電圧の極性が角速度の方向に関する情報に相当する。
以上のように、本実施形態によれば、X、Y及びZ軸方向の各軸回りの角速度を、XY平面内で振動するフレーム10のXZ平面内、YZ平面内及びXY平面内におけるそれぞれの変形に基づいて検出することができる。これにより、厚み寸法を大きくすることなく、X、Y及びZ軸方向の3軸まわりの角速度を高精度に検出することができ、さらにセンサの薄型化を実現することが可能となる。
また、本実施形態に係る角速度センサは、デジタルスチルカメラやビデオカメラ、バーチャルリアリティ装置、カーナビゲーションシステム等の電子機器に内蔵され、手振れ検知や動作検知、方向検知等のためのセンサ部品として広く用いられる。特に、本実施形態によれば、センサの小型化、薄型化を図ることができるため、電子機器の小型化、薄型化等に対する要求にも十分に応えることが可能である。
[支持機構]
次に、支持機構80について説明する。
支持機構80は、図1に示すように、ベース部81と、複数の連結部82a,82b,82c,82dとを有する。
ベース部81は、フレーム10の外側を囲む内周部を有する環状の枠体で構成されている。本実施形態においてベース部81は、X軸方向に縦方向、Y軸方向に横方向を有する四角形の枠体で構成されている。連結部82a〜82dは、それぞれフレーム10とベース部81との間にそれぞれ形成されている。すなわち連結部82a〜82dは、フレーム10の各接続部13a〜13dとベース部81の内周部81aとの間をそれぞれ連結する。
各連結部82a〜82dは、XY面内において折り曲げ形成された梁で形成され、第1の端部w1と、第2の端部w2と、第1の屈曲部waと、第2の屈曲部wbとをそれぞれ有する。
第1の端部w1は各々、接続部13a〜13dの各々からY軸方向に対向する接続部に向かって直線的に延びる。第2の端部w2は各々、ベース部81のX軸方向に平行な2つの辺の各々の内周部81a,81bと接続される。図示の例では、連結部82a,82b各々の第2の端部w2は一方の内周部81aに接続され、連結部82c,82d各々の第2の端部w2は他方の内周部81bに接続されている。
第1の屈曲部waは各々、第1の端部w1と第2の端部w2との間に位置し、第1の端部w1からベース部81側にほぼ180度折り返されるように形成される。第2の屈曲部wbは各々、第2の端部w2と第1の屈曲部waとの間に位置し、第2の端部w2からフレーム10側にほぼ180度折り返されるように形成される。第1の屈曲部waと第2の屈曲部wbとの間の領域は、概ねベース部81の内周部に沿って適宜折り曲げて形成される。
第1の端部w1の延在方向はY軸方向だけに限られず、X軸方向であってもよい。第1の端部w1の延在方向をY軸方向またはX軸方向とすることにより、角速度センサ1の形状がY軸方向またはX軸方向に関して対称となるため、フレーム10の振動特性の調整が容易となる。勿論これに限られず、Y軸方向に延びる第1の端部とX軸方向に延びる第1の端部とが混在していてもよい。なお第1の端部は、Y軸又はX軸方向に対して斜め方向に延びるように形成されてもよいが、Y軸又はX軸方向に形成されることで素子の小型化に有利となる。
連結部82a〜82dは以上のように構成されることによって、角速度センサ1の小型化を図ることが可能となる。図7は、本実施形態の角速度センサ1と、本技術の他の実施形態に係る角速度センサ2との大きさを比較した平面図であり、(A)は角速度センサ1を、(B)は角速度センサ2をそれぞれ示す。
比較として示す角速度センサ2は、正方形状のフレーム110と、フレーム110を図示しない固定部に固定する4本の連結部182a,182b,182c,182dとを有する。フレーム110は、例えば第1の実施形態と同様に、直線的な第1の梁111a,111bの組及び第2の梁112a,112bの組で構成されている。
ここで、角速度センサ1のフレーム10の外形を、角速度センサ2のフレーム110に対応する大きさの正方形Sで形成した場合を考える。角速度センサ2においては、各梁111a,111b,112a,112bが直線的に形成されているため、各連結部182a〜182dは例えばL2で示すフレーム110の外側領域に形成される必要がある。これに対して角速度センサ1においては、各梁11a,11b,12a,12bが弓型に形成されていること、連結部82a〜82dの第1の端部w1が上述のように直線的に形成されていることにより、各連結部82a〜82dは例えばL1で示すL2よりも小さい範囲で形成可能となる。
すなわち、フレームの各梁の中央部がフレームの内側に弓型に突出することで、逆に各梁の中央部の外側には弓型の凹部が形成される。この凹部に各連結部の一部を配置することで、連結部をコンパクトに配置することができ、角速度センサを小型化することが可能となる。
本実施形態の角速度センサ1は、図1のように連結部82a〜82dに2か所の屈曲部wa,wbが設けられている。これにより連結部82a〜82dの弾性が低下し、フレーム10の振動に追従して連結部82a〜82dが変形可能となる。したがって、フレーム10の振動モードやコリオリ力による歪変形を阻害することなくフレーム10を支持することができる。このような作用は、角速度センサ2においても同様に得ることができる。
本実施形態の角速度センサ1において、図1のように屈曲部wa,wbは、フレーム10の各梁の外側の凹所11t,12t内にそれぞれ配置されている。これにより、フレーム10の4つの接続部13a〜13dとベース部81の隙間には連結部82a〜82dの梁1本分だけ配置させることが可能となり、角速度センサ1の小型化と連結部82a〜82dの弾性維持による駆動検出特性確保を両立することができる。
以上のように本実施形態によれば、角速度センサの小型化を図ることができる。また、本実施形態の角速度センサ1によれば、梁11a,11b,12a,12bと振り子部21a,21b,22a,22bとの間の空間部を小さくすることができる。このため、例えばエッチング加工技術によってフレーム10を一枚のシリコン基板から形成する場合、エッチングによって除去する領域を低減できるとともに、エッチング領域の粗密の分布が小さくなるため安定したエッチング加工を実現することができる。これにより角速度センサを高精度に形成することが可能となる。
さらに本実施形態の角速度センサ1によれば、外部からの衝撃に対する角速度の検出感度の変動を防止して、例えば電子機器に作用する振動や衝撃等の外乱による影響を大幅に低減することができる。
次に、図1を参照して、Y軸方向に対向するベース部81の2辺には、複数の端子部83からなる端子列がそれぞれ配列されている。ベース部81の各辺において各端子部83は、X軸方向に平行に配列されている。各端子部83は、図示しない配線基板上のランドに電気的に接続される。
端子部83の端子列は、X軸方向に対向するベース部81の2辺にそれぞれ配列されてもよい。あるいはベース部81の各辺に上記端子列が配列されてもよい。
接続形態は特に限定されず、フリップチップ方式であってもよいし、ワイヤボンディング方式であってもよい。本実施形態では、各端子部83を配線基板上のランドに電気的かつ機械的に接続するフリップチップ方式が採用されている。
複数の端子部83は、フレーム10上の駆動電極301,302、検出電極51a,51b,71a,71b,72a,72b、参照電極60、基準電極等に個々に対応するように図示しない配線を介してそれぞれ接続されている。これらの配線は、フレーム10の表面、振り子部21a,21b,22a,22b各々のアーム部Lの表面、連結部82a〜82d各々の表面及びベース部81の表面に沿ってそれぞれ引き回されている。
さらに、ベース部81の内周部81a,81bと端子部83の端子列との各々の間には、溝84a,84bがそれぞれ形成されている。溝84a,84bはそれぞれ、Z軸方向にベース部81を貫通し、X軸方向に沿って形成されている。これらの溝84a,84bは、各端子部83を介して配線基板上に固定されるベース部81とフレーム10との間における振動の伝搬を抑えるために設けられる。なお溝84a,84bの形成は、必要に応じて省略されてもよい。
上記構成の角速度センサ1においては、角速度センサ1に作用する外乱、例えば電子機器に作用する外部衝撃が配線基板を介して角速度センサ1に伝達することを溝84a,84bによって抑制できる。これにより角速度センサ1の振動特性の変動を抑え、安定した角速度検出特性を維持することができる。
また、溝84a,84bの形成によりフレーム10からベース部81への振動の伝搬も抑制されるため、配線基板上の他の電子部品に及ぼす悪影響を排除することができる。
図8は、構成の異なる2つの角速度センサをそれぞれ配線基板上に実装し、フレームを基本振動させた状態で所定の各点における振動量を評価した一実験結果である。サンプル1は図7(A)に示した角速度センサ1に相当し、サンプル2は図7(B)に示した角速度センサに相当する。測定点Aは、各角速度センサの任意の一つの振り子部とし、測定点Bは、フレームとベース部とを接続する連結部のベース部側の端部とした。また測定点Cは、配線基板上の任意の点とした。図8に示すように、サンプル1の方がサンプル2と比較して、測定点B,Cにおける振動量を大幅に低減することができる。
さらに、角速度センサ1が搭載された配線基板を電子機器の制御基板へリフロー実装する場合において、リフロー温度による配線基板の熱変形がフレーム10に与える影響を抑えることができる。これによりリフロー実装前後におけるフレーム10の振動特性の変動が抑えられる。
<第2の実施形態>
図9は、本技術の第2の実施形態に係る角速度センサの全体構成を示す平面図である。以下、第1の実施形態と異なる構成について主に説明し、上述の実施形態と同様の構成については同様の符号を付しその説明を省略または簡略化する。
本実施形態の角速度センサ3は、ベース部81の内周部81aと端子部83の端子列との間に形成された溝85aと、ベース部81の内周部81bと端子部83の端子列との間に形成された溝85bとを有する。本実施形態において、溝85a,85bは、Z軸方向にベース部81をそれぞれ貫通し、X軸方向に沿って形成された第1の溝部851と、第1の溝部851に連絡しY軸方向に沿って形成された第2の溝部852とをそれぞれ有する。これらの溝85a,85bは、各端子部83を介して配線基板上に固定されるベース部81とフレーム10との間における振動の伝搬を抑えるために設けられる。
溝85a,85bは、図9においてベース部81に左右対称に形成されている。本実施形態では、溝85a,85bのうち、一方の溝部851の両端から延びる溝部852の先端と、他方の溝部851の両端から延びる溝部852の先端とは、ベース部81のY軸方向に平行な2辺の中央部で相互に対向するように形成されている。これによりフレーム10とベース部81の外周部分との間がほぼ全周にわたって溝85a,85bによって分離される。相互に対向する一方の溝部852と他方の溝部852との間の隙間は、複数の端子部83とフレーム10上の複数の電極との間を各々接続する複数の配線パターンが引き回される通路を形成する。
本実施形態によれば、フレーム10のほぼ全周を囲むように溝85a,85bが形成されているため、ベース部81とフレーム10との間における振動の伝搬を大幅に低減することが可能となる。これにより、フレーム10の振動特性を安定化でき、高精度な角速度検出特性を確保することができる。
<第3の実施形態>
図10は、本技術の第3の実施形態に係る角速度センサの全体構成を示す平面図である。以下、第1の実施形態と異なる構成について主に説明し、上述の実施形態と同様の構成については同様の符号を付しその説明を省略または簡略化する。
本実施形態の角速度センサ4は、フレーム10とベース部81との間を連結する連結部86a,86b,86c及び86dを有する。各連結部86a〜86dは、XY面内において折り曲げ形成された梁で形成され、第1の端部w1と、第2の端部w2と、第1の屈曲部waと、第2の屈曲部wbとをそれぞれ有する。
第1の端部w1は各々、接続部13a〜13dの各々からY軸方向に対向する接続部に向かって直線的に延びる。第2の端部w2は各々、ベース部81のY軸方向に平行な2つの辺の各々の内周部81c,81dと接続される。図示の例では、連結部86a,86d各々の第2の端部w2は、相互に一体化されて一方の内周部81dに接続され、連結部86b,86c各々の第2の端部w2は、相互に一体化されて他方の内周部81dに接続されている。
第1の屈曲部waは各々、第1の端部w1と第2の端部w2との間に位置し、第1の端部w1からベース部81側にほぼ180度折り返されるように形成される。第2の屈曲部wbは各々、第2の端部w2と第1の屈曲部waとの間に位置し、第2の端部w2からフレーム10側にほぼ180度折り返されるように形成される。第1の屈曲部waと第2の屈曲部wbとの間の領域は、概ねベース部81の内周部に沿って適宜折り曲げて形成される。
本実施形態において、図9のように屈曲部wa,wbは、フレーム10の各梁の外側の凹所11t,12tにそれぞれ配置されている。そして、フレーム10の4つの接続部13a〜13dとベース部81の隙間には連結部86a〜86dの梁2本分が配置されている。
さらに本実施形態においては、ベース部81のX軸方向に平行な2つの辺の内周部81a,81bにそれぞれ、フレーム10側に向かって突出する突出部87a,87bがそれぞれ形成されている。これら突出部87a,87bは、連結部86a〜86d各々の第2の屈曲部wbの外周側に所定の間隙を介して対向している。
以上のように構成される本実施形態の角速度センサ4によれば、第2の実施形態に係る角速度センサ3と同様の作用を得ることができる。また本実施形態によれば、連結部86a〜86dの長さを大きくすることができるため、センサを小型に形成しつつ、フレーム10の振動モードやコリオリ力による歪変形を阻害することなくフレーム10を支持することができる。
以上、本技術の実施形態について説明したが、本技術は上述の実施形態にのみ限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
例えば図11に示すように、フレーム10の各接続部13a〜13dに、各振り子部21a,21b,22a,22bに対応する複数の重錘部14a,14b,14d,14dを設けてもよい。重錘部14a〜14dは、振り子部21a,21b,22a,22bのカウンターウェイトとして機能する。これにより各振り子部21a,21b,22a,22bの振動特性(共振周波数、離調度など)の調整が容易となる。
あるいは、図12に示すように、例えば連結部82dの屈曲部wa1,wb1を幅広に形成し、当該一部を上記カウンターウェイトとして機能させてもよい。
なお、本技術は以下のような構成も取ることができる。
(1)第1の方向に延在し前記第1の方向と直交する第2の方向に相互に対向する第1の梁の組と、前記第2の方向に延在し前記第1の方向に相互に対向する第2の梁の組と、前記第1の梁の組と前記第2の梁の組との間をそれぞれ接続する複数の接続部とを有する環状のフレームと、
前記第1の梁の組と前記第2の梁の組のうち一方の組が近接したときに他方の組が離間し、前記一方の組が離間したときに前記他方の組が近接する振動モードで、前記フレームを前記第1の方向及び前記第2の方向が属する第1の面内において振動させる駆動部と、
前記振動モードで振動する前記フレームの前記第1の面内における変形量に基づいて、前記第1の面と直交する第3の方向の軸回りの角速度を検出する第1の検出部と、
前記フレームの外側を囲む内周部を有する環状のベース部と、前記内周部と前記複数の接続部との間をそれぞれ連結する複数の連結部とを有する支持機構と
を具備する角速度センサ。
(2)前記(1)に記載の角速度センサであって、
前記複数の連結部の各々は、前記複数の接続部のうちの1つに接続される第1の端部と、前記内周部に接続される第2の端部と、前記第1の端部と前記第2の端部との間に設けられ少なくとも1つの屈曲部を有する構造部とをそれぞれ有する
角速度センサ。
(3)前記(2)に記載の角速度センサであって、
前記ベース部は、
前記第1の方向又は前記第2の方向に沿って配列された複数の端子部を含む端子列と、
前記端子列と前記内周部との間に前記端子列に沿って形成された溝とを有する
角速度センサ。
(4)前記(3)に記載の角速度センサであって、
前記ベース部は、前記第1の方向に対向する2辺と前記第2の方向に対向する2辺を有する四角形の枠体であり、
前記溝は、前記第1の方向に対向する2辺にそれぞれ形成された第1の溝部と、前記第2の方向に対向する2辺にそれぞれ形成され前記第1の溝部にそれぞれ連絡する第2の溝部をさらに含む
角速度センサ。
(5)前記(1)〜(4)のいずれか1つに記載の角速度センサであって、
前記第1の梁の組は、相互に対向する方向に突出することで第1の凹所を形成する第1の湾曲部をそれぞれ有する一対の第1の梁を含み、
前記第2の梁の組は、相互に対向する方向に突出することで第2の凹所を形成する第2の湾曲部をそれぞれ有する一対の第2の梁を含む
角速度センサ。
(6)前記(5)に記載の角速度センサであって、
前記複数の連結部の少なくとも一部は、前記第1の凹所又は前記第2の凹所内に位置する
角速度センサ。
(7)前記(1)〜(6)のいずれか1つに記載の角速度センサであって、
前記複数の接続部のうち互いに対角関係にある第1の接続部の組にそれぞれ設けられ、前記第1の面内で前記フレームの振動に同期して振動する第1の振り子部と、
前記複数の接続部のうち互いに対角関係にある第2の接続部の組にそれぞれ設けられ、前記第1の面内で前記フレームの振動に同期して振動する第2の振り子部と、
前記第1の面と直交する方向への前記第1の振り子部及び前記第2の振り子部各々の変形量に基づいて、前記第1の面内における所定の2つの方向の軸回りの角速度を検出する第2の検出部と
をさらに具備する角速度センサ。
1〜4…角速度センサ
10…フレーム
11a,11b…第1の梁
12a,12b…第2の梁
11t,12t…凹所
12p…湾曲部
13a〜13d…接続部
21a,21b,22a,22b…振り子部
51a,51b,71a,71b,72a,72b…検出電極
80…支持機構
81…ベース部
82a〜82d,86a〜86d…連結部
83…端子部
84a,84b,85a,85b…溝
301,302…駆動電極

Claims (7)

  1. 第1の方向に延在し前記第1の方向と直交する第2の方向に相互に対向する第1の梁の組と、前記第2の方向に延在し前記第1の方向に相互に対向する第2の梁の組と、前記第1の梁の組と前記第2の梁の組との間をそれぞれ接続する複数の接続部とを有する環状のフレームと、
    前記第1の梁の組と前記第2の梁の組のうち一方の組が近接したときに他方の組が離間し、前記一方の組が離間したときに前記他方の組が近接する振動モードで、前記フレームを前記第1の方向及び前記第2の方向が属する第1の面内において振動させる駆動部と、
    前記振動モードで振動する前記フレームの前記第1の面内における変形量に基づいて、前記第1の面と直交する第3の方向の軸回りの角速度を検出する第1の検出部と、
    前記フレームの外側を囲む内周部を有する環状のベース部と、前記内周部と前記複数の接続部との間をそれぞれ連結する複数の連結部とを有する支持機構と、
    前記フレームに設けられ、前記第1の面内で前記フレームの振動に同期して振動する第1の振り子部と、
    前記フレームに設けられ、前記第1の面内で前記フレームの振動に同期して振動する第2の振り子部と、
    前記第1の面と直交する方向への前記第1の振り子部及び前記第2の振り子部各々の変形量に基づいて、前記第1の面内における所定の2つの方向の軸回りの角速度を検出する第2の検出部と
    を具備し、
    前記第1の振り子部は、前記複数の接続部のうち互いに対角関係にある第1の接続部の組にそれぞれ設けられ、
    前記第2の振り子部は、前記複数の接続部のうち互いに対角関係にある第2の接続部の組にそれぞれ設けられる
    角速度センサ。
  2. 請求項1に記載の角速度センサであって、
    前記複数の連結部の各々は、前記複数の接続部のうちの1つに接続される第1の端部と、前記内周部に接続される第2の端部と、前記第1の端部と前記第2の端部との間に設けられ少なくとも1つの屈曲部を有する構造部とをそれぞれ有する
    角速度センサ。
  3. 請求項2に記載の角速度センサであって、
    前記ベース部は、
    前記第1の方向又は前記第2の方向に沿って配列された複数の端子部を含む端子列と、
    前記端子列と前記内周部との間に前記端子列に沿って形成された溝とを有する
    角速度センサ。
  4. 請求項3に記載の角速度センサであって、
    前記ベース部は、前記第1の方向に対向する2辺と前記第2の方向に対向する2辺を有する四角形の枠体であり、
    前記溝は、前記第1の方向に対向する2辺にそれぞれ形成された第1の溝部と、前記第2の方向に対向する2辺にそれぞれ形成され前記第1の溝部にそれぞれ連絡する第2の溝部をさらに含む
    角速度センサ。
  5. 請求項1〜4のいずれか1つに記載の角速度センサであって、
    前記第1の梁の組は、相互に対向する方向に突出することで第1の凹所を形成する第1の湾曲部をそれぞれ有する一対の第1の梁を含み、
    前記第2の梁の組は、相互に対向する方向に突出することで第2の凹所を形成する第2の湾曲部をそれぞれ有する一対の第2の梁を含む
    角速度センサ。
  6. 請求項5に記載の角速度センサであって、
    前記複数の連結部の少なくとも一部は、前記第1の凹所又は前記第2の凹所内に位置する
    角速度センサ。
  7. 請求項1〜6のいずれか1つに記載の角速度センサを備える電子機器。
JP2011040509A 2011-02-25 2011-02-25 角速度センサ及び電子機器 Expired - Fee Related JP5807344B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011040509A JP5807344B2 (ja) 2011-02-25 2011-02-25 角速度センサ及び電子機器
US13/372,053 US8833163B2 (en) 2011-02-25 2012-02-13 Angular velocity sensor
CN201210038714.2A CN102650519B (zh) 2011-02-25 2012-02-17 角速度传感器
US14/484,841 US9885576B2 (en) 2011-02-25 2014-09-12 Angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011040509A JP5807344B2 (ja) 2011-02-25 2011-02-25 角速度センサ及び電子機器

Publications (3)

Publication Number Publication Date
JP2012177610A JP2012177610A (ja) 2012-09-13
JP2012177610A5 JP2012177610A5 (ja) 2014-03-13
JP5807344B2 true JP5807344B2 (ja) 2015-11-10

Family

ID=46692583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040509A Expired - Fee Related JP5807344B2 (ja) 2011-02-25 2011-02-25 角速度センサ及び電子機器

Country Status (3)

Country Link
US (2) US8833163B2 (ja)
JP (1) JP5807344B2 (ja)
CN (1) CN102650519B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220236057A1 (en) * 2019-07-30 2022-07-28 Seiko Epson Corporation Vibrator Device, Electronic Apparatus, And Vehicle

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8910517B2 (en) * 2010-01-12 2014-12-16 Sony Corporation Angular velocity sensor, electronic apparatus, and method of detecting an angular velocity
JP5716827B2 (ja) * 2011-07-04 2015-05-13 株式会社村田製作所 振動子および振動ジャイロ
JP5810685B2 (ja) * 2011-07-05 2015-11-11 株式会社村田製作所 振動子および振動ジャイロ
CN104870939B (zh) * 2012-12-11 2017-08-01 株式会社村田制作所 角速度检测元件
JP2014205198A (ja) * 2013-04-10 2014-10-30 セイコーエプソン株式会社 ロボット、ロボット制御装置およびロボットシステム
JP6354122B2 (ja) 2013-06-05 2018-07-11 セイコーエプソン株式会社 ロボット
JP2014240789A (ja) * 2013-06-12 2014-12-25 ソニー株式会社 圧電デバイス及び電子機器
WO2015045621A1 (ja) 2013-09-26 2015-04-02 株式会社村田製作所 角速度検出素子
JP6323034B2 (ja) * 2014-01-28 2018-05-16 セイコーエプソン株式会社 機能素子、電子デバイス、電子機器、および移動体
US9846036B2 (en) * 2014-11-14 2017-12-19 Samsung Electro-Mechanics Co., Ltd. Angular velocity sensor
WO2017130312A1 (ja) * 2016-01-27 2017-08-03 株式会社日立製作所 ジャイロスコープ
JP7024278B2 (ja) * 2017-09-21 2022-02-24 セイコーエプソン株式会社 物理量センサー、慣性計測装置、測位装置、携帯型電子機器、電子機器および移動体
JP7276008B2 (ja) * 2019-08-29 2023-05-18 セイコーエプソン株式会社 振動デバイス、電子機器および移動体
WO2021153491A1 (ja) * 2020-01-28 2021-08-05 株式会社村田製作所 圧電デバイス

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69102590T2 (de) * 1990-05-18 1994-10-06 British Aerospace Trägheitssensoren.
JPH06147902A (ja) * 1992-11-04 1994-05-27 Murata Mfg Co Ltd 振動ジャイロ
US5656777A (en) * 1996-06-13 1997-08-12 Alliedsignal, Inc. Miniature box vibrating gyroscope
JP3780086B2 (ja) 1998-01-22 2006-05-31 Necトーキン株式会社 姿勢角度検出装置
JP3942762B2 (ja) * 1998-02-12 2007-07-11 日本碍子株式会社 振動子、振動型ジャイロスコープ、直線加速度計および回転角速度の測定方法
US6151964A (en) * 1998-05-25 2000-11-28 Citizen Watch Co., Ltd. Angular velocity sensing device
JP4498491B2 (ja) * 1998-05-25 2010-07-07 シチズンホールディングス株式会社 角速度検出素子
JP2000009473A (ja) 1998-06-22 2000-01-14 Tokai Rika Co Ltd 2軸ヨーレートセンサ及びその製造方法
JP2000258165A (ja) * 1999-03-10 2000-09-22 Murata Mfg Co Ltd 角速度センサ
JP2000283765A (ja) 1999-03-30 2000-10-13 Matsushita Electric Ind Co Ltd 三脚音叉振動子および角速度センサ
JP4529203B2 (ja) * 1999-08-05 2010-08-25 パナソニック株式会社 角速度センサ
JP4292746B2 (ja) * 2002-02-15 2009-07-08 株式会社デンソー 角速度センサ
JP2007010452A (ja) * 2005-06-30 2007-01-18 Star Micronics Co Ltd 電磁駆動型角速度センサおよびその駆動回路
US7432189B2 (en) * 2005-11-30 2008-10-07 Lam Research Corporation Device with self aligned gaps for capacitance reduction
WO2009078284A1 (ja) * 2007-12-19 2009-06-25 Murata Manufacturing Co., Ltd. 角速度センサ
CN101910789B (zh) * 2008-01-07 2012-02-29 株式会社村田制作所 角速度传感器
EP2238460B1 (en) * 2008-02-05 2013-08-07 Invensense Inc. X-y axis dual-mass gyroscope with masses moving in opposite directions along z axis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220236057A1 (en) * 2019-07-30 2022-07-28 Seiko Epson Corporation Vibrator Device, Electronic Apparatus, And Vehicle
US11940275B2 (en) * 2019-07-30 2024-03-26 Seiko Epson Corporation Vibrator device, electronic apparatus, and vehicle

Also Published As

Publication number Publication date
US9885576B2 (en) 2018-02-06
JP2012177610A (ja) 2012-09-13
US20140373629A1 (en) 2014-12-25
US8833163B2 (en) 2014-09-16
CN102650519A (zh) 2012-08-29
US20120216613A1 (en) 2012-08-30
CN102650519B (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
JP5807344B2 (ja) 角速度センサ及び電子機器
JP5724817B2 (ja) 角速度センサ及び電子機器
JP6614157B2 (ja) センサ素子、ジャイロセンサ及び電子機器
US9366535B2 (en) Vibration gyro element, gyro sensor, and electronic apparatus
JPWO2013076942A1 (ja) 角速度センサとそれに用いられる検出素子
JP2010071758A (ja) 角速度センサ素子、角速度センサ及び電子機器
JP4911690B2 (ja) 振動ジャイロ用振動子
JP2010008300A (ja) 慣性センサ
WO2018003692A1 (ja) 物理量センサ
WO2018016190A1 (ja) ジャイロセンサ、信号処理装置、電子機器およびジャイロセンサの制御方法
WO2018092449A1 (ja) ジャイロセンサ及び電子機器
JP2012242240A (ja) ジャイロセンサー、電子機器
JP2012112819A (ja) 振動ジャイロ
JP6702053B2 (ja) ジャイロセンサ及び電子機器
JP2010145315A (ja) 振動ジャイロスコープ
WO2017204057A1 (ja) ジャイロセンサ及び電子機器
JP2015200580A (ja) 角速度検出回路、角速度センサ、電子機器および角速度検出回路の調整方法
JP2011127913A (ja) 振動ジャイロ
JPS60257312A (ja) 角速度センサ−
JP2008209253A (ja) 角速度センサ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150824

R151 Written notification of patent or utility model registration

Ref document number: 5807344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees