JP5775351B2 - ワクチンおよび遺伝子療法用の組換えインフルエンザウイルス - Google Patents
ワクチンおよび遺伝子療法用の組換えインフルエンザウイルス Download PDFInfo
- Publication number
- JP5775351B2 JP5775351B2 JP2011095240A JP2011095240A JP5775351B2 JP 5775351 B2 JP5775351 B2 JP 5775351B2 JP 2011095240 A JP2011095240 A JP 2011095240A JP 2011095240 A JP2011095240 A JP 2011095240A JP 5775351 B2 JP5775351 B2 JP 5775351B2
- Authority
- JP
- Japan
- Prior art keywords
- linked
- influenza
- virus
- promoter
- transcription termination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/16—Antivirals for RNA viruses for influenza or rhinoviruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5258—Virus-like particles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16123—Virus like particles [VLP]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16141—Use of virus, viral particle or viral elements as a vector
- C12N2760/16143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/30—Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2810/00—Vectors comprising a targeting moiety
- C12N2810/50—Vectors comprising as targeting moiety peptide derived from defined protein
- C12N2810/60—Vectors comprising as targeting moiety peptide derived from defined protein from viruses
- C12N2810/6072—Vectors comprising as targeting moiety peptide derived from defined protein from viruses negative strand RNA viruses
- C12N2810/6081—Vectors comprising as targeting moiety peptide derived from defined protein from viruses negative strand RNA viruses rhabdoviridae, e.g. VSV
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Virology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Pulmonology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Description
RNP複合体を精製されたポリメラーゼおよびNPタンパク質の存在下でインビトロvRNA合成により生成し、そして次いでそれらを使用して真核細胞を感染させる。続いてインフルエンザA型ヘルパーウイルスの感染により、クローン化cDNAから誘導された遺伝子を保有するウイルスの作成をもたらす。Neumann et al.,(1994)により開発された第2の方法は、RNAポリメラーゼI(5'キャップおよび3'ポリAテイルの両方を欠くリボゾームRNAを転写する細胞性酵素)によるvRNAのインビトロ合成に基づく。インフルエンザウイルスに感染し、そしてクローン化されたインフルエンザウイルスcDNA(マウスRNAポリメラーゼIプロモーターおよび終結配列に挟まれている)を含むプラスミドでトランスフェクトされた細胞は、トランスフェクション体ウイルスの生産を導いた。しかし両方法とも、トランスフェクション体は膨大な数のヘルパーウイルスのバックグラウンドから選択されなければならず、これは強力な選択系を必要とし、そして成長−欠損性ウイルスの作成を複雑にする。
プを含む任意のインフルエンザA型遺伝子)、BまたはC型 DNA(FieldsのVirology( et
al.,(編集)、リッピンコット−ラベン出版(Lippincott-Raven Publ.)、フィラデルフィア、ペンシルバニア州(1996)第45および46章を参照にされたい。これは引用により本明細書に編入する)を含むが、任意のウイルスの遺伝子(1つまたは複数)を本発明のベクターまたは方法に使用できると想定される。
ウイルスPA cDNAに操作可能に連結されたプロモーターを含んで成るベクター、転写終結配列に連結されたインフルエンザ ウイルスPB1 cDNAに操作可能に連結されたプロモーターを含んで成るベクター、転写終結配列に連結されたインフルエンザ ウイルスPB2 cDNAに操作可能に連結されたプロモーターを含んで成るベクター、転写終結配列に連結されたインフルエンザ ウイルスHA cDNAに操作可能に連結されたプロモーターを含んで成るベクター、転写終結配列に連結されたインフルエンザ ウイルスNP cDNAに操作可能に連結されたプロモーターを含んで成るベクター、転写終結配列に連結されたインフルエンザ ウイルスNA cDNAに操作可能に連結されたプロモーターを含んで成るベクター、転写終結配列に連結されたインフルエンザ ウイルスM cDNAに操作可能に連結されたプロモーターを含んで成るベクターおよび転写終結配列に連結されたインフルエンザ ウイルスNS cDNAに操作可能に連結されたプロモーターを含んで成るベクターから選択される少なくとも2つのベクター;およびb)インフルエンザ ウイルスPAをコードするベクター、インフルエンザ ウイルスPB1をコードするベクターおよびインフルエンザ ウイルスPB2をコードするベクターおよびインフルエンザ ウイルスNPをコードするベクターから選択される少なくとも2つのベクター、を含んで成る。好ましくはウイルスタンパク質をコードするベクターはさらに、転写終結配列を含んで成る。インフルエンザウイルスcDNAを含んで成るベクター用のプロモーターは、RNAポリメラーゼIプロモーター、RNAポリメラーゼIIプロモーター、RNAポリメラーゼIIIプロモーター、T7プロモーターおよびT3プロモーターを含むことが好ましい。またインフルエンザウイルスcDNAを含んで成る各ベクターは、RNAポリメラーゼI転写終結配列、RNAポリメラーゼII転写終結配列またはRNAポリメラーゼIII転写終結配列、あるいはリボザイムのような転写終結配列を含んで成ることが好ましい。好ましくは、ベクターはインフルエンザDNA、例えばインフルエンザA型、B型またはC型 DNAを含んで成る。
cDNAに操作可能に連結されたRNA ポリメラーゼIプロモーターを含んで成るベクターから選択される少なくとも2つのベクター;およびb)インフルエンザ ウイルスPAをコードするベクター、インフルエンザ ウイルスPB1をコードするベクター、インフルエンザ ウイルスPB2をコードするベクター、インフルエンザ ウイルスNPをコードするベクター、イ
ンフルエンザ ウイルスHAをコードするベクター、インフルエンザ ウイルスNAをコードするベクター、インフルエンザ ウイルスM1をコードするベクター、インフルエンザ ウイルスM2をコードするベクターおよびインフルエンザ ウイルスNS2をコードするベクターから選択される少なくとも2つのベクター、を含んで成る複数のオルトミクソウイルス ベクターを含んで成る。
ルス生成の効率を向上させることができる。
に連結された、宿主細胞中で機能的なプロモーターを含んで成る組換えDNA分子;インフルエンザウイルスPB1 コード領域に連結された第2lox部位に連結された転写停止または終結配列を含んで成るDNAセグメントに連結された第1lox部位に連結された、宿主細胞中で機能的なプロモーターを含んで成る組換えDNA分子;インフルエンザウイルスPB2 コード領域に連結された第2lox部位に連結された転写停止または終結配列を含んで成るDNAセグメントに連結された第1lox部位に連結された、宿主細胞中で機能的なプロモーターを含んで成る組換えDNA分子;またはインフルエンザウイルスNP コード領域に連結された第2lox部位に連結された転写停止または終結配列を含んで成るDNAセグメントに連結された第1lox部位に連結された、宿主細胞中で機能的なプロモーターを含んで成る組換えDNA分子、を含む。
た第1lox部位に連結された、宿主細胞中で機能的なプロモーターを含んで成る組換えDNA分子が加えられた宿主細胞を提供する。好ましくはlox部位はloxP部位である。
すなわちRNAの取り扱いを包含する。さらにRNAポリメラーゼI転写は高度に効率的であり、そして高い忠実度を有する。ゲノムRNAがキャップ形成していない(+)−センスRNAウイルス(例えばペスチウイルス;C型肝炎ウイルス;およびポリオウイルス、リノウイルス、A型肝炎ウイルスを含むピコナウイルス、および脚および口の疾患)について、完全長のゲノムをコードするcDNAをゲノムのセンス方向で、RNAポリメラーゼIプロモーターとターミネーター配列との間に挿入する。生成したプラスミドの許容宿主細胞へのトランスフェクションにより、ウイルス複製のためのゲノムRNAを生じる。多数の(+)−センスRNAウイルスがキャップ形成されたゲノムRNA(例えばデング熱ウイルスおよび数種の脳炎ウイルスを含むフラビウイルス)を含む。RNAポリメラーゼI転写物はキャップ形成されていないが、キャップ形成したゲノムRNAを有するRNAウイルスの完全長ゲノムをコードするcDNAは、アンチゲノム−センス方向でRNAポリメラーゼI転写ベクターに導入される。生成したプラスミドのトランスフェクション後、細胞性RNAポリメラーゼIはアンチゲノム(キャップ形成されていない)RNAを転写する。さらに複製に必要なタンパク質用のタンパク質発現プラスミドとのコトランスフェクション(cotransfection)により、アンチゲノムRNAの複製をもたらし、すなわちゲノムRNAおよび最終的には感染性ウイルスを生産する。
定義
本明細書で使用する用語「単離および/または精製された」とは、インビボの物質を付随しないか、またはインビトロの物質から実質的に精製されるように、本発明のウイルスまたはプラスミドのインビトロの調製、単離および/または精製を称する。本明細書で使用する用語「組換え核酸」または「組換えDNA配列またはセグメント」とは、その配列が自然には存在しないか、または天然のゲノムに位置するようには配置されていない自然に存在する配列に相当するように、インビトロで後に化学的に改変された、供給源から誘導または単離された核酸、例えばDNAを称する。供給源から「誘導された」DNAの例は、有用なフラグメントであると確認され、そして次いで本質的に純粋な形態に化学的に合成されるDNA配列である。そのような供給源から「単離」されたDNAの例は、遺伝子工学の方法論により本発明の方法に使用するためにさらに操作、例えば増幅できるように、該供給源から化学的手段、例えば制限エンドヌクレアーゼを使用することにより切り出されるか、または取り出される有用なDNA配列である。
インフルエンザウイルスの複製
インフルエンザA型ウイルスは、全部で10種のタンパク質をコードする8つの1本鎖(−)−センスウイルスRNA(vRNA)のゲノムを保有する。このインフルエンザウイルスの生活環は、赤血球凝集素(HA)の宿主細胞の表面上のシアル酸を含有するレセプターへの結合から始まり、レセプターが媒介するエンドサイトーシスが続く。後期エンドソーム内の低pHがHAの構造的ずれを誘発し、これによりHA2サブユニットのN-末端が露出する(いわゆる融合ペプチド)。融合タンパク質はウイルスおよびエンドソーム膜の融合を開始し、そしてマトリックスタンパク質(M1)およびRNP複合体が細胞質に放出される。RNPはvRNAをカプシド化する核タンパク質(NP)およびウイルスポリメラーゼ複合体(PA、PB1およびPB2タンパク質により形成される)から成る。RNPは核に輸送され、ここで転写および複製が起こる。RNAポリメラーゼ複合体は3つの異なる反応を触媒する:5'キャップおよび3'ポリA構造を持つmRNAの合成、完全長の相補的RNA(cRNA)の合成および鋳型としてcDNAを使用したゲノムvRNAの合成。新たに合成されたvRNA、NPおよびポリメラーゼタンパク質は次いでRNAに集成され、核から輸出され、そして細胞質膜へ輸送され、ここで子孫ウイルス粒子の分離(budding)が起こる。ノイラミニダーゼ(NA)タンパク質は、シアリルオリゴ糖からシアル酸の除去により感染の後期に重要な役割を演じ、これにより新たに集成されたビリオンが細胞表面から放出されウイルス粒子自体の凝集を防ぐ。ウイルス集成体はタンパク質−タンパク質およびタンパク質−vRNA相互作用に関与するが、このような相互作用の性質は、大部分が未知である。
トゴソウイルス(thogotovirus)
トゴソウイルス(THOV)は、オルソミクソウイルス科(Orthomyxoviridae)のファミリーの新しい属である。それらはダニにより伝播し、そしてラクダ、ヤギおよび家禽のような家畜動物で見いだされた。この結果、THOVはダニおよび脊椎動物の細胞中で複製できる。THOVのゲノムは1本鎖の(−)−センスRNAの6セグメントから成る。3つの最大セグメントによりコードされるタンパク質は、インフルエンザウイルスのポリメラーゼタンパク質PB2、PB2およびPAと有意な相同性を示す。セグメント5はインフルエンザウイルスNPに関連するタンパク質をコードする。セグメント4によりコードされるTHOVの糖タンパク質は、インフルエンザHAまたはNAとも相同的ではないが、バキュロウイルスの糖タンパク質と類似する配列を表す。最小のセグメントはマトリックスタンパク質をコードすると考えられ、そしてインフルエンザウイルスのタンパク質のいずれにも似ていない。インフルエンザウイルスのように、vRNAの3'および5'末端の両方がプロモーター活性に必要であり、そしてこの活性はvRNAの3'および5'末端の末端14および15ヌクレオチドにそれぞれ位置する。
ルスで示されたように(Cianci et al.,1995;Hagen et al.,1994)、モデルcRNAプロモーターの付加はエンドヌクレアーゼ活性を刺激しない(Leahy et al.,1998)。THOVについては「ホック」構造が提案され(Leahy et al.,1997;Weber et al.,1997)、これはインフルエンザウイルスについて提案されたコルクスクリュー構造に類似する(Fick et al.,1996)。しかしこの「ホック」構造は、THOV vRNAプロモーターでのみ見いだされる。cRNAプロモーター配列はcRNAの5'末端で2と9位との間、および3と8位との間の塩基対を形成させない。代わりの3または8位ではこのようなヌクレオチド間の塩基対を可能とし、エンドヌクレアーゼ活性を刺激し、これは提案された「ホック」構造の証拠を強力に支持している(Leahy et al.,1998)。さらにこの構造はTHOVの生活環の調節に重要であるかもしれない;「ホック」構造を形成するvRNAプロモーターは、PB2エンドヌクレアーゼ活性を刺激し、これにより転写を可能とする。対照的にcRNAプロモーターは「ホック」構造を形成できず、したがってエンドヌクレアーゼ活性を刺激することができず、すなわち複製をもたらす。
ブンヤウイルス科(Bunyavirisae)
ブンヤウイルス科(Bunyavirisae)ファミリーには、ヒトの出血性および脳炎熱(例えば、リフトバレー、ハンターン(Hantaan)、ラクロス(La Crosse)およびクリミア−コンゴ出血性熱)を引き起こす数種のウイルスが含まれる。球状で、しかもエンベロープに包まれたビリオンは、1本鎖の(−)−センスRNA(Elliot,1997を参照にされたい)の3つのセグメントを含む。最大のセグメント(L)はウイルスRNAポリメラーゼタンパク質(Lタンパク質)をコードし、Mセグメントは2つのウイルス糖タンパク質G1およびG2、および非構造タンパク質(NSm)をコードする。最小のセグメント(S)は、ヌクレオカプシドタンパク質(N)および第2非構造タンパク質(NSs)をコードする。ウイルスの複製および転写は細胞質で起こり、そして新しく集成したビリオンは、ゴルジ装置の膜を通って出芽する(bud)。
では検出されなかった。すなわちLおよびNタンパク質は、ブンヤウイルス−様RNAの転写および複製に十分である。
細胞およびウイルス 293Tヒト胚性腎細胞およびMadin-Darbyイヌ腎細胞(MDCK)は、10%ウシ胎児血清を補充したダルベッコの改良イーグル培地(DMEM)および5%ウシ新生児血清を含む改良イーグル培地でそれぞれ維持した。すべての細胞は5%CO2中にて37℃で維持した。インフルエンザウイルスA/WSN/33(H1N1)およびA/PR/8/34(H1N1)を、10日齢の卵中で増殖させた。
mBIで消化したBsmBI部位を含むプライマーを用いてPCRにより増幅し、そしてBsmBI部位により分けられたヒトRNAポリメラーゼIプロモーターおよびマウスRNAポリメラーゼIターミネーターを含むpHH21ベクターのBsmBI部位にクローン化した(図2)。A/WSN/33株のPB2、PB1、PA、HA、NP、NA、MおよびNS遺伝子は、以下のプラスミドを使用することによりPCR増幅した:それぞれpSCWPB2、pGW-PB1およびpSCWPA(すべてカリフォルニア大学ロサンゼルス校のDebi Nayak博士から得た)、およびpWH17、pWNP152、pT3WNA15(Castrucci et al.,1992)、pGT3WMおよびpWNS1。インフルエンザA/PR/8/34ウイルスのPB1遺伝子は、鋳型としてpcDNA774(PB1)を使用することにより増幅させた(Perez et al.,1998)。プライマーの配列に関しては図6を参照にされたい。遺伝子に望ましくない突然変異が無いことを確認するために、PCRで誘導したフラグメントを自動シークエンサーを用いて製造元により推薦されるプロトコールに従い配列決定した(アプライドバイオシステムズ社(Applied Biosystems Inc.、カリフォルニア州、米国)。A/WSN/33ウイルスのHA、NP、NAおよびM1遺伝子を記載されているようにクローン化し(Huddleston et al.,1982)、そして真核細胞発現ベクターpCAGGS/MCS(ニワトリβ-アクチンプロモーターにより制御される)にサブクローン化し(Niwa et al.,1991)、それぞれpEWSN-HA、pCAGGS-WSN-NPO-14、pCAGGS-WNA15およびpCAGGS-WSN-M1-2/1を得た。A/PR/8/34ウイルスからのM2およびNS2遺伝子をPCRにより増幅し、そしてpCAGGS/MCSにクローン化し、pEP24cおよびpCA-NS2を得た。最後にpcDNA774(PB1)、pcDNA762(PB2)およびpcDNA787(PA)を使用して、サイトメガロウイルスプロモーターの制御下にPB2、PB1およびPAタンパク質を発現させた(Perez et al.,1998)。感染性インフルエンザ粒子の作成
293T細胞(1×106)を、製造元の指示に従いTrans IT LT-1(パンベラ:Panvera,マジソン、ウィスコンシン州)を使用して、異なる量で最大17個のプラスミドでトランスフェクトした。簡単に説明すると、DNAおよびトランスフェクション試薬を混合し(1μgのDNAあたり2μlのTrans IT-LT-1)、室温で45分間インキューベーションし、そして細胞に加えた。6時間後、DNA−トランスフェクション試薬混合物を0.3%のウシ血清アルブミンおよび0.01%ウシ胎児血清を含有するOpi-MEM(ギブコ(Gibco)/BRL、ゲチスバーグ、メリーランド州)と交換した。トランスフェクションから様々な時間で、ウイルスを上清から回収し、そしてMDCK細胞上で滴定した。ヘルパーウイルスにはこの手順が必要ではないので、回収したトランスフェクション体ウイルスはプラーク形成無しで分析した。
ウイルスを生産するプラスミド−トランスフェクト細胞の割合の決定
トランスフェクションから24時間後、293T細胞を0.02%EDTAを用いて単一細胞に分散させた。次いで細胞懸濁液を10倍に希釈し、そして24-ウェルプレート中でMDCK細胞のコンフルエントな単層に移した。ウイルスは赤血球凝集アッセイにより検出した。
免疫染色アッセイ
インフルエンザウイルスの感染から9時間後、細胞をリン酸緩衝化生理食塩水(PBS)で2回洗浄し、そして3.7%パラホルムアルデヒド(PBS中)で室温にて20分間固定した。次いで細胞を0.1% Triton X-100で処理し、そしてNeumann et al.,(1997)に記載されているように処理した。
結果
ウイルスRNAセグメント、3つのポリメラーゼサブユニットおよびNPタンパク質のプラスミド-駆動発現による感染性ウイルスの作成
精製したビリオンから抽出したRNPの混合物を用いた細胞のトランスフェクションは感染性のインフルエンザ粒子を生じたが、この方法はインビトロで生成された8種の異なるRNPを用いて使用した時に効率的ではないようである。cDNAから感染性インフルエンザウイルスを完全に生産するために、8つのウイルスRNPsをインビボで作成した。すなわちヒトRNAポリメラーゼIプロモーターおよびマウスRNAポリメラーゼIターミネーターにより挟まれたA/WSN/33ウイルスの完全長ウイルスRNAに関するcDNAを含むプラスミドを調製した。原理的にはこのような8つのプラスミドの真核細胞へのトランスフェクションは、8つのインフルエンザvRNAの合成をもたらすはずである。タンパク質発現プラスミドのコ−トランスフェクションにより生成したPB2、PB1、PAおよびNPタンパク質は、次いで複製し、
そして転写され、最終的には感染性インフルエンザウイルスを形成する機能的vRNAに集成するはずである(図3)。1×106の293T細胞をタンパク質発現プラスミド(1μgのpcDNA762(PB2)、1μgのpcDNA774(PB1)、0.1μgのpcDNA787(PA)および1μgのpCAGGS-WSN-NP0/14)および各1μgの以下のRNAポリメラーゼIプラスミド(pPo1I-WSN-PB2、pPo1I-WSN-PB1、Po1I-WSN-PA、Po1I-WSN-HA、Po1I-WSN-NP、Po1I-WSN-NA、Po1I-WSN-MおよびPo1I-WSN-NS)を用いてトランスフェクトした。pcDNA787(PA)の量を下げて使用することの決定はこれまでの考察(Mena et al.,1996)およびウイルス−様粒子(VLPs)の作成に関する最適条件に関するデータ(データは示さず)に基づいた。293T細胞のトランスフェクションから24時間後、1mlあたり7×103pfuウイルスが上清に見いだされ(実験1、表1)、初めてインフルエンザA型ウイルスを完全にプラスミドから生産するための逆遺伝学の能力が示された。
†特に示さない限り、プラスミドはA/WSN/33ウイルスのRNAを表すcDNAを用いて構築した。
すべてのウイルス構造タンパク質の同時発現(coexpression)を用いたインフルエンザウイルス生産の効率
ウイルスNPおよびポリメラーゼタンパク質の発現はプラスミドが駆動するウイルスの作成に十分であるが、効率を改善し得ることが可能であった。これまでの研究では、すべてのインフルエンザウイルスの構造タンパク質(PB2、PB1、PA、HA、NP、NA、M1、M2およびNS2)の発現は、レポーターのクロラムフェニコール−アセチルトランスフェラーゼ遺伝子をコードする人工的vRNAを含んだVLPをもたらした(Mena et al.,1996)。すなわちウイルスRNAの複製および転写に必要なタンパク質だけに代わり、構造タンパク質の全補完物の利用性がウイルス生産の効率を改善するかもしれない。このために、293T細胞を最適な量のウイルスタンパク質発現プラスミド(VLP生産により判定;非公開データ)を用いてトランスフェクトした:1μgのpcDNA762(PB2)およびpcDNA774(PB1);0.1μgのpcDNA787(PA);1μgのpEWSN-HA、pCAGGS-WSN-NP0/14およびpCAGGS-WNA-15;2μgのpCAGGS-WSN-M1-2/1;0.3μgのpCA-NS2;および0.03μgのpEP24c(M2用)を、各1μgのRNAポリメラーゼIプラスミドと一緒に用いてトランスフェクトした(実験2、表1)。第2組の細胞は、PB1遺伝子については再集合ウイルスを生成するためにpPo1I-PR/8/34-PB1に代えて、PA、PB1、PB2およびNPのみを発現するプラスミドと一緒に(実験3、表1)またはすべてのインフルエンザ構造タンパク質を発現するプラスミドと一緒に(実験4、表1)用いて、同じRNAポリメラーゼIプラスミドの組でトランスフェクトした。WSNウイルスの収率、トランスフェクションから24時間後(実験1および2、表1)または36時間後(データは示さず)でそれほど変わらなかった。しかしすべてのインフルエンザウイルス構造タンパク質が提供された時、PR/8/34-PB1を含むウイルスの収率は10倍以上増加することが分かった(実験3および4、表1)。NPタンパク質のPA、PB1、PB2の発現について1つのプラスミドが欠けている陰性対照は、いかなるウイルスも生じなかった(実験5〜8、表1)。すなわち生成するウイルスに依存して、すべてのインフルエンザA型ウイルスの構造タンパク質の発現は逆遺伝学法の効率をかなり改善する。
ND=行わず。
NAタンパク質中にFLAGエピトープを含むインフルエンザウイルスの回収
新規な逆遺伝学系がインフルエンザA型ウイルスのゲノムに突然変異の導入を可能としたことを確認するために、NAタンパク質にFLAGエピトープ(Castrucci et al.,1992)を含有するウイルスを作成した。293T細胞を、NAタンパク質およびFLAGエピトープの両方をタンパク質ヘッドの底にコードするcDNAを含むRNAポリメラーゼIプラスミド(Po1I-WSN-NA/FL79)で、必要なRNAポリメラーゼIおよびタンパク質発現プラスミドと一緒にトランスフェクトした。回収したウイルス(PR8-WSN-FL79)が実際にNA-FLAGタンパク質を発現したことを確認するために、PR8-WSN-FL79またはA/WSN/33野生型ウイルスに感染した細胞の免疫染色アッセイを行った。FLAGエピトープに対するモノクローナル抗体はPR8-WSN-FL79に感染した細胞を検出したが、野生型ウイルスに感染した細胞を検出しなかった(図4)。PR8-WSN-FL79ウイルスの回収は、標識していない野生型ウイルスの回収と同程度に効率的であった(データは示さず)。このような結果は、新たな逆遺伝学系がインフルエンザA型ウイルスのゲノムに突然変異を導入することを可能にすることを示す。
PA遺伝子中に突然変異を含む感染性インフルエンザウイルスの作成
PA遺伝子中に突然変異を保有する感染性ウイルスを生産するために、2つのサイレント突然変異を導入して、制限エンドヌクレアーゼに関する新規認識配列を作成した(mRNAの846位でBsp120Iおよび1284位でPvuII)。これまでは信頼できる選択系が無かったので、逆遺伝学系によりこの遺伝子を修飾することは可能ではなかった。トランスフェクション体ウイルス、PA-T846CおよびPA-A1284が回収された。回収されたトランスフェクション体ウイルスは、2つの連続する限界希釈により生物学的にクローン化した。回収したウイルスが正にPA遺伝子に突然変異を有するトランスフェクション体であることを確認するために、PA遺伝子のcDNAを逆転写酵素-PCRにより得た。図5に示すように、新たに導入された制限部位の存在により示されるように、PA-T846CおよびPA-A1284CウイルスはPA遺伝子中に期待された突然変異を有した。逆転写工程が無い同じウイルスサンプルおよびプライマーのPCRは、いかなる生成物も生産できず(テータは示さず)、PAcDNAがウイルスを作成するために使用したプラスミドに代わり正にvRNAに由来することを示している。このような
結果は、突然変異した遺伝子をもつウイルスがヘルパーウイルスを使用することなくどのように生産でき、そして回収できるのかを具体的に説明している。
考察
本明細書に記載した逆遺伝学系は、インフルエンザA型ウイルスを完全にクローン化cDNAから効率よく生産することを可能にする。Bridgen および Elliott(1996)も、ブンヤウエラウイルスを作成するための逆遺伝学系を使用したが(ブンヤウイルス科(Bunyaviridae)のファミリー)、それは(−)−センスRNAのわずか3セグメントを含み、その生産の効率は低かった(102pfu/107細胞)。ウイルスの収率は実験間で異なったが、一環して>103pfu/106細胞がインフルエンザウイルスについては観察され、これらは8つのセグメント含む。上記の高い効率の逆遺伝学系については、いくつかの説明がある。インビトロでRNPを生産する代わりに(Luytjes et al.,1989)、RNPはRNAポリメラーゼIを使用したvRNAの細胞内合成を通して、およびウイルスポリメラーゼタンパク質およびNPのプラスミドが駆動する発現を通してインビボで生成された。またプラスミドで容易にトランスフェクトされる293T細胞(Goto et al.,1997)の使用により、確実に大多数の細胞群がウイルス生産に必要なすべてのプラスミドを受容した。さらに成長している細胞の中でも最も豊富に発現されるRNAポリメラーゼIにより生成される多数の転写物が、系の全体的な効率に貢献しているようである。このような特徴は、対応して豊富な数のvRNA転写物およびvRNAのカプシド化に十分な量のウイルスタンパク質、核内のRNPの形成および細胞膜へのこれらの複合体の輸出(ここで新規ウイルスが集成され、そして放出される)を導いた。
学系を使用することによるスクラッチ(scratch)から始めることができる。本明細書に記載する逆遺伝学系の最も興味のある応用は、インフルエンザウイルスの新たなHAまたはNAサブタイプが関与する流行が疑われる場合に、弱毒化した生のウイルスワクチンの迅速な生産にある。
インフルエンザVLPを生成するために、インフルエンザウイルスRNAのインビボの細胞内合成にRNAポリメラーゼI系を使用した(図7)。この系では、レポーター遺伝子をアンチセンス方向にコードするcDNAが、インフルエンザウイルスRNAの5'および3'非翻訳領域により挟まれている。このカセットをRNAポリメラーゼIプロモーターとターミネーターとの間に挿入する。そのような構築物の真核細胞中へのトランスフェクションは、細胞性RNAポリメラーゼIによるレポーター遺伝子の転写を導き、これによりインフルエンザウイルス−様RNAを生成する(Neumann et al.,1994)。インフルエンザウイルスの感染で、この人工的vRNAはウイルスポリメラーゼ複合体により複製し、そして転写され、レポーター遺伝子の発現を導く。
現するプラスミド(各1μg)、サイトメガロウイルスプロモーター[pcDNA762(PB2)、pcDNA774(PB1)およびpcDNA787(PA)]の制御下のA/PR/8/34ウイルスのポリメラーゼタンパク質、およびRNAポリメラーゼIレポーター遺伝子構築物(pPo1I-GFP)を、ヒトの胚性腎(293T)細胞にトランスフェクトした。48時間後、細胞の30%〜40%がGFPを発現していた(図9)。対照的にGFP発現はポリメラーゼまたはNPタンパク質を欠くトランスフェクト細胞では検出できなかった。これらの結果は、NPおよび3つのインフルエンザウイルスポリメラーゼタンパク質が、複製し、そしてRNAポリメラーゼI−由来GFP vRNAを転写する機能的複合体を形成したことを示していた。
最適なvRNA転写および複製
最適なレポーターGFP発現に必要なプラスミドDNAの量を決定するために、ポリメラーゼタンパク質およびNPの発現をモジュレートした。これまでの研究では、大量のPAが転写/複製系においてレポーター遺伝子発現の程度を下げたことを示した(Mena et al.,1996)。したがって段階的様式で、プラスミドからのPAの発現を減少させ、鋳型の量として0.1μgのpcDNA787(PA)が最強のGFP発現を生じることを確認した。RNP複合体の主要な構造成分であるNPを用いると、高量のタンパク質発現プラスミドが必要となるかもしれない。しかし高量のプラスミドはGFP-陽性293T細胞の数にそれほど影響を与えなかった。さらに様々な量のPB2およびPB1タンパク質発現プラスミド(1.0から0.03μgの範囲)では、293T細胞中のGFP発現に影響を与えなかった。したがってすべての後の実験では、0.1μgのpcDNA787(PA)および1.0μgのpcDNA774(PB1)、pcDNA762(PB2)およびpCAGGS-WSN-NP0/14を使用した。クローン化したcDNAからのインフルエンザVLPの形成
ワクシニアウイルスT7 ポリメラーゼ系を用いたこれまでの研究では、インフルエンザVLPの形成に9つのインフルエン ザウイルスタンパク質:PB2、PB1、PA、HA、NA、NP、M1、M2およびNS2が必要であることが示された(Mena et al.,1996)。対照的にNS1タンパク質は粒子形成に必須ではない(Mena et al.,1996)。VLP作成のために効率的なプラスミド-駆動系を確立するために、HA、NA、M1、M2およびNS2遺伝子をコードするcDNAを作成した。このcDNAを真核発現ベクターpCAGGS/MCS(ニワトリβ-アクチンプロモーターにより制御される)にクローン化し、それぞれpEWSN-HA、pCAGGS-WNA-15、pCAGGS-WSN-M1-2/4を、pEp24cおよびpCA-NS2を生成した。各タンパク質の発現は、ウエスタンブロット分析により確認した。
インフルエンザウイルスの最適な集成体
VLP形成も、異なる量のRNAポリメラーゼIレポーター遺伝子構築物ならびにHA、NA、M1、M2およびNS2プラスミドDNAを発現する細胞で実験した。pPo1I-GFPを用いた実験では、1.0μgのプラスミドDNAがVLPの生成に高度に効率的であるが、2.0μgまたは3.0μgに関する効率は有意に低下した。NS2およびM2タンパク質は感染の後期に低量で発現されるので、比較的少量の発現プラスミドが最適なVLP形成には必要であると思われた。M2発現構築物の1.0μgから0.3μgへの減少は、GFP−陽性MDCK細胞の数に10倍以上の増加をもたらした(表3)。さらにプラスミドを0.03μgに減少させると、VLPの数は増加しなかった。NS2に関しては、試験した低量のプラスミド(0.1μg)がVLPのより低い効率的形成と関連した(表3)。
から48時間後、VLPを含有する上清を集め、A/WSN/33ヘルパーウイルスと混合し、そしてMDCK細胞に接種した。細胞は感染から10時間後に固定し、そしてGFP発現を蛍光顕微鏡で測定した。MDCK細胞中のGFP発現について、M1、M2およびNS2プラスミドの最適な量を決定するために、それらプラスミドの量のみを変動させた(太字)。
†VLP形成の相対的効率は、5つの顕微鏡視野でGFP-陽性細胞の数を計数することにより決定した。1μgの各プラスミドを含有するサンプル(これは450の感染性VLP/上清(ml)を生じた)を参照として選択した(1の値)。
プラスミドから完全に生産されたVLPの確実性
VLPが本物のインフルエンザウイルスのように感染を開始することを確認するために、VLPをWSN HAに対する抗体で中和した。プラスミドでトランスフェクトした293T細胞に由来するVLPを含有する上清を、抗−WSN HAモノクローナル抗体のプールまたは水疱性口内炎ウイルス(VSV)のGタンパク質に対するモノクローナル抗体(陰性対照)と、室温で1時間インキューベーションした。抗−WSN HAモノクローナル抗体のプールにより中和されないA/PR/8/34ヘルパーウイルスを混合物に加え、そしてMDCK細胞に接種した。抗−WSN HAモノクローナル抗体のみがVSVを中和し、HAがVLPの細胞への付着および侵入を媒介することを示した。
VLPの生産においてVSV糖タンパク質はHAおよびNAタンパク質と置き換えることができる。
インフルエンザウイルスHAおよびNAタンパク質を、レセプターの結合および融合に機能するVSV糖タンパク質と置き換えた。pPo1I-GFPでトランスフェクトした293T細胞;PB2、PB1、PA、NP、M1、M2およびNS2発現構築物の最適量;および1μgのVSV-G構築物(pCAGGS-VSV-G)では、インフルエンザウイルスの糖タンパク質のVSV-Gタンパク質への置換はVLP形成に悪い影響を及ぼさなかった。対照的に、ウイルス糖タンパク質としてHAおよびNAを提供するよりははむしろVSV-Gの時に高い数のGFP-陽性細胞が再生産的に見いだされた。すなわちVSV Gタンパク質はインフルエンザビリオン中に効率的に取り込まれることができ、そしてウイルスの放出および侵入においてHAおよびNAと同様に機能することができる。
供された時に、VSV Gタンパク質を取り込めないと報告された(Naim et al.,1993)。本明細書に記載する結果はHAまたはNAのいずれもがVLPの形成に必須ではないが、これらの糖タンパク質が他のウイルスタンパク質との相互作用に役割を果たす可能性を除外することはできず、すなわち尾の少ないHA、NAまたは両方を発現するウイルスの細長い形状により示唆されるようなビリオンの構造に影響を及ぼすことを示唆している(Garcia-Sastre et al.,1995:Jin et al.,1994:Jin et al.,1997:Mitnaul et al.,1996)。
Cre-loxP系を使用することにより、複製−欠損性ウイルスの生産のためのパッケッージング細胞系を作成することができる。例えば2つのloxP部位により挟まれた転写停止カセット(例えばpBS302、ライフテクノロジーズ(Life Technologies)、ベセスダ、メリーランド州;およびSauer et al.,1993;Lasko et al.,1992;Pichel et al.,1993;Bolivar et al.,1977;Stuhl et al.,1981;Stuhl et al.,1985;Fiers et al.,1978)、およびウイルス遺伝子の1つを含むタンパク質発現ベクターを調製する。プロモーター配列で開始する転写を、転写停止部位で遮断する。すなわちウイルス遺伝子は停止および翻訳されない。そのようなベクターで安定にトランスフェクトされた細胞を、loxP系にクローン化された遺伝子をコードするvRNAを欠くインフルエンザウイルスに感染させる。このウイルスもCreタンパク質をコードするさらなるvRNAを含む。このウイルスはそのvRNAの1つが欠けているので正常な細胞では生存できない。しかしパッケージング細胞中ではvRNAから発現するCreタンパク質がloxP部位で組換えを生じ、転写停止部位の欠失をもたらす。このように個々のウイルス遺伝子(1つまたは複数)は今、転写そして発現され、ウイルスのこのような細胞中での増幅が可能となる(図11)。
性の子孫粒子が形成されず、厳しい安全的関心事(concern)に合う;(ii)それらは外来タンパク質を高レベルで発現するだろう;(iii)それらは主要抗原であるウイルスの糖タンパク質(HA、NA)を発現しない、すなわちウイルスタンパク質に対する宿主免疫応答が限定されるはずである。
Claims (15)
- ヘルパーウイルスの不存在下での感染性インフルエンザウイルスの作製方法であって、
(a)ヘルパーウイルスの不存在下で、
(i)転写終結配列に連結したインフルエンザウイルスPA cDNAと機能的に連結されたプロモーターを含むベクター、
(ii)転写終結配列に連結したインフルエンザウイルスPB1 cDNAと機能的に連結されたプロモーターを含むベクター、
(iii)転写終結配列に連結したインフルエンザウイルスPB2 cDNAと機能的に連結されたプロモーターを含むベクター、
(iv)転写終結配列に連結したインフルエンザウイルスHA cDNAと機能的に連結されたプロモーターを含むベクター、
(v)転写終結配列に連結したインフルエンザウイルスNP cDNAと機能的に連結されたプロモーターを含むベクター、
(vi)転写終結配列に連結したインフルエンザウイルスNA cDNAと機能的に連結されたプロモーターを含むベクター、
(vii)転写終結配列に連結したインフルエンザウイルスM cDNAと機能的に連結されたプロモーターを含むベクター、
(viii)転写終結配列に連結したインフルエンザウイルスNS cDNAと機能的に連結されたプロモーターを含むベクター、
(ix)転写終結配列に連結したインフルエンザPAポリペプチドをコードするDNAセグメントと機能的に連結されたプロモーターを含むベクター、
(x)転写終結配列に連結したインフルエンザPB1ポリペプチドをコードするDNAセグメントと機能的に連結されたプロモーターを含むベクター、
(xi)転写終結配列に連結したインフルエンザPB2ポリペプチドをコードするDNAセグメントと機能的に連結されたプロモーターを含むベクター、および
(xii)転写終結配列に連結したインフルエンザNPポリペプチドをコードするDNAセグメントと機能的に連結されたプロモーターを含むベクター
を含んでなる組成物を宿主細胞に導入する工程、および
(b)該宿主細胞から感染性インフルエンザウイルスを単離する工程
を含むことを特徴とする、方法。 - 感染性インフルエンザウイルスを少なくとも1×103pfu/ml生産する、請求項1記載の方法。
- 請求項1または2記載の方法であって、該細胞に、さらに、
(xiii)転写終結配列に連結したインフルエンザウイルスHAポリペプチドをコードするDNAセグメントと機能的に連結されたプロモーターを含むベクター
(xiv)転写終結配列に連結したインフルエンザウイルスNPポリペプチドをコードするDNAセグメントと機能的に連結されたプロモーターを含むベクター、
(xv)転写終結配列に連結したインフルエンザウイルスM1ポリペプチドをコードするDNAセグメントと機能的に連結されたプロモーターを含むベクター、
(xvi)転写終結配列に連結したインフルエンザウイルスM2ポリペプチドをコードするDNAセグメントと機能的に連結されたプロモーターを含むベクター、および
(xvii)転写終結配列に連結したインフルエンザウイルスNS2ポリペプチドをコードするDNAセグメントと機能的に連結されたプロモーターを含むベクター
を導入する工程を含む、方法。 - 感染性インフルエンザウイルスを少なくとも1×104pfu/ml生産する、請求項3記載の方法。
- プロモーターがRNAポリメラーゼIプロモーターまたはRNAポリメラーゼIIプロモーターまたはRNAポリメラーゼIIIプロモーターまたはT7プロモーターまたはT3プロモーターである、請求項1〜4のいずれかに記載の方法。
- プロモーターがRNAポリメラーゼIプロモーターである、請求項1〜5のいずれかに記載の方法。
- プロモーターがヒトRNAポリメラーゼIプロモーターである、請求項1〜6のいずれかに記載の方法。
- 転写終結配列がRNAポリメラーゼI転写終結配列またはRNAポリメラーゼII転写終結配列またはRNAポリメラーゼIII転写終結配列から選ばれる転写終結配列またはリボザイムである、請求項1〜7のいずれかに記載の方法。
- 2以上のベクターが物理的に連結されている、請求項1〜8のいずれかに記載の方法。
- 1以上のベクターが別々のプラスミド上にある、請求項1〜8のいずれかに記載の方法。
- 宿主細胞にベクターを導入する前に、さらに、インフルエンザPA cDNAまたはインフルエンザPB1 cDNAまたはインフルエンザPB2 cDNAまたはインフルエンザHA cDNAまたはインフルエンザNP cDNAまたはインフルエンザNA cDNAまたはインフルエンザM cDNAまたはインフルエンザNS cDNAの1以上に少なくとも1の突然変異を導入する工程を含む、請求項1〜10のいずれかに記載の方法。
- 宿主細胞にベクターを導入する前に、さらに、インフルエンザHA cDNAに少なくとも1の突然変異を導入する工程を含む、請求項1〜10のいずれかに記載の方法。
- 1以上のベクターが、さらに、インフルエンザウイルスの3’および5’非コーディング配列を含む、請求項1〜12のいずれかに記載の方法。
- ベクターが免疫原性ペプチドまたはワクチンとして有用なタンパク質をコードする、請求項1〜13のいずれかに記載の方法。
- 宿主細胞が哺乳動物細胞である、請求項1〜14のいずれかに記載の方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12791299P | 1999-04-06 | 1999-04-06 | |
US60/127,912 | 1999-04-06 | ||
US13283999P | 1999-05-06 | 1999-05-06 | |
US60/132,839 | 1999-05-06 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000609542A Division JP5543048B2 (ja) | 1999-04-06 | 2000-04-05 | ワクチンおよび遺伝子療法用の組換えインフルエンザウイルス |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015071406A Division JP6224645B2 (ja) | 1999-04-06 | 2015-03-31 | ワクチンおよび遺伝子療法用の組換えインフルエンザウイルス |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2011182797A JP2011182797A (ja) | 2011-09-22 |
JP2011182797A5 JP2011182797A5 (ja) | 2013-04-04 |
JP5775351B2 true JP5775351B2 (ja) | 2015-09-09 |
Family
ID=26826080
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000609542A Expired - Lifetime JP5543048B2 (ja) | 1999-04-06 | 2000-04-05 | ワクチンおよび遺伝子療法用の組換えインフルエンザウイルス |
JP2011095240A Expired - Lifetime JP5775351B2 (ja) | 1999-04-06 | 2011-04-21 | ワクチンおよび遺伝子療法用の組換えインフルエンザウイルス |
JP2015071406A Expired - Lifetime JP6224645B2 (ja) | 1999-04-06 | 2015-03-31 | ワクチンおよび遺伝子療法用の組換えインフルエンザウイルス |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000609542A Expired - Lifetime JP5543048B2 (ja) | 1999-04-06 | 2000-04-05 | ワクチンおよび遺伝子療法用の組換えインフルエンザウイルス |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015071406A Expired - Lifetime JP6224645B2 (ja) | 1999-04-06 | 2015-03-31 | ワクチンおよび遺伝子療法用の組換えインフルエンザウイルス |
Country Status (19)
Country | Link |
---|---|
EP (4) | EP2345716B1 (ja) |
JP (3) | JP5543048B2 (ja) |
KR (1) | KR100702275B1 (ja) |
CN (2) | CN101851636B (ja) |
AT (2) | ATE368729T1 (ja) |
AU (1) | AU4073300A (ja) |
BR (1) | BRPI0009580B8 (ja) |
CA (2) | CA2928263A1 (ja) |
CY (2) | CY1108520T1 (ja) |
DE (6) | DE122008000061I1 (ja) |
DK (3) | DK2345716T3 (ja) |
ES (3) | ES2533622T3 (ja) |
FR (1) | FR11C0027I2 (ja) |
HK (2) | HK1148778A1 (ja) |
IL (2) | IL145702A0 (ja) |
MX (1) | MXPA01010082A (ja) |
NL (2) | NL300364I2 (ja) |
PT (2) | PT1820853E (ja) |
WO (1) | WO2000060050A2 (ja) |
Families Citing this family (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6544785B1 (en) | 1998-09-14 | 2003-04-08 | Mount Sinai School Of Medicine Of New York University | Helper-free rescue of recombinant negative strand RNA viruses |
EP2345716B1 (en) * | 1999-04-06 | 2015-01-14 | Wisconsin Alumni Research Foundation | Recombinant influenza viruses for vaccines and gene therapy |
US8715940B2 (en) | 1999-04-06 | 2014-05-06 | Wisconsin Alumni Research Foundation | Method of making recombinant influenza virus |
DE122008000057I1 (de) * | 1999-07-14 | 2009-04-09 | Sinai School Medicine | In vitro-rekonstitution von segmentierten negativstrang-rna-viren |
GB9916794D0 (en) * | 1999-07-16 | 1999-09-22 | Isis Innovation | In vitro virus reconstitution |
ATE420189T1 (de) | 2000-04-28 | 2009-01-15 | St Jude Childrens Res Hospital | Dna-transfektionssystem zur erzeugung von infektiösen negativsträngigen rna virus |
CA2410297C (en) * | 2000-06-23 | 2011-03-15 | American Cyanamid Company | Assembly of wild-type and chimeric influenza virus-like particles (vlps) |
EP1862550A1 (en) * | 2000-06-23 | 2007-12-05 | Wyeth Holdings Corporation | Assembly of wild-type and chimeric influenza virus-like particles (VLPs) |
US7211378B2 (en) | 2002-01-31 | 2007-05-01 | Wisconsin Alumni Research Foundation | Filovirus vectors and noninfectious filovirus-based particles |
KR101113432B1 (ko) * | 2002-02-13 | 2012-02-29 | 위스콘신 얼럼나이 리서어치 화운데이션 | 인플루엔자 바이러스 벡터의 패키징을 위한 신호 |
US7465456B2 (en) | 2002-04-26 | 2008-12-16 | Medimmune, Llc | Multi plasmid system for the production of influenza virus |
CN103540568A (zh) | 2002-04-26 | 2014-01-29 | 米迪缪尼有限公司 | 制备流感病毒的多质粒系统 |
EA012965B1 (ru) * | 2003-05-28 | 2010-02-26 | Висконсин Эламни Рисёч Фаундэйшн | Композиция для получения реассортантного рекомбинантного вируса гриппа, способ получения указанного вируса и реассортантный рекомбинантный вирус гриппа |
EP2581093B1 (en) | 2003-06-16 | 2015-03-18 | MedImmune, LLC | Influenza hemagglutinin and neuraminidase variants |
ATE469972T1 (de) | 2003-12-23 | 2010-06-15 | Medimmune Llc | Multiplasmid-system zur erzeugung des grippevirus |
FR2866031B1 (fr) * | 2004-02-11 | 2012-10-19 | David Francois Joseph Millet | Chimere de virus pathogene emergent, medicament la contenant et utilisation en therapie antivirale |
EP1722815A1 (en) | 2004-03-09 | 2006-11-22 | Chiron Corporation | Influenza virus vaccines |
CA2879182C (en) | 2004-05-25 | 2017-02-14 | Medimmune, Inc. | Influenza hemagglutinin and neuraminidase variants |
EA200701097A1 (ru) | 2004-11-19 | 2007-10-26 | Висконсин Эламни Рисёч Фаундэйшн | Рекомбинантные векторы вируса гриппа с тандемными транскрипционными единицами |
CA2593036A1 (en) | 2004-12-08 | 2006-06-15 | Medimmune Vaccines, Inc. | Methods of producing influenza vaccine compositions |
RU2435855C2 (ru) | 2004-12-24 | 2011-12-10 | Солвей Байолоджикалз Б.В. | Способ продуцирования репликативной частицы вируса гриппа, композиция клеток (варианты), композиция клеточной культуры и ее применение |
EP1856271A4 (en) | 2005-03-08 | 2009-11-18 | Medimmune Vaccines Inc | INFLUENZA HEMAGGLUTININE AND NEURAMINIDASE VARIANTS |
WO2007052055A1 (en) * | 2005-11-04 | 2007-05-10 | Novartis Vaccines And Diagnostics Srl | Adjuvanted vaccines with non-virion antigens prepared from influenza viruses grown in cell culture |
US11707520B2 (en) | 2005-11-03 | 2023-07-25 | Seqirus UK Limited | Adjuvanted vaccines with non-virion antigens prepared from influenza viruses grown in cell culture |
JP2009514841A (ja) | 2005-11-04 | 2009-04-09 | ノバルティス ヴァクシンズ アンド ダイアグノスティクス エスアールエル | 粒子状アジュバントと免疫増強物質との組合せを含むインフルエンザワクチン |
BRPI0618254A2 (pt) | 2005-11-04 | 2011-08-23 | Novartis Vaccines & Diagnostic | emulsões com agente tensoativo de fase aquosa livre para fornecer adjuvante às vacinas contra influenza dividido |
JP2009514839A (ja) | 2005-11-04 | 2009-04-09 | ノバルティス ヴァクシンズ アンド ダイアグノスティクス エスアールエル | サイトカイン誘導剤を含むアジュバントインフルエンザワクチン |
WO2007064802A1 (en) | 2005-12-02 | 2007-06-07 | The Mount Sinai Medical Center Of New York University | Chimeric viruses presenting non-native surface proteins and uses thereof |
DK1976559T6 (da) | 2006-01-27 | 2020-04-06 | Seqirus Uk Ltd | Influenzavacciner indeholdende hæmagglutinin og matrixproteiner |
US20100068223A1 (en) | 2006-03-24 | 2010-03-18 | Hanno Scheffczik | Storage of Influenza Vaccines Without Refrigeration |
US9254318B2 (en) | 2006-03-31 | 2016-02-09 | Wisconsin Alumni Research Foundation | High titer recombinant influenza viruses for vaccines |
WO2007146057A2 (en) * | 2006-06-09 | 2007-12-21 | Wisconsin Alumni Research Foundation | Screening method for modulators of viral transcription or replication |
GB0614460D0 (en) | 2006-07-20 | 2006-08-30 | Novartis Ag | Vaccines |
US7601356B2 (en) | 2006-07-21 | 2009-10-13 | Medimmune, Llc | Methods and compositions for increasing replication capacity of an influenza virus |
CA2659267C (en) | 2006-08-09 | 2016-12-13 | Medimmune, Llc | Influenza hemagglutinin and neuraminidase variants |
NZ575271A (en) | 2006-09-11 | 2011-09-30 | Novartis Ag | Making influenza virus vaccines without using eggs |
CA2671629C (en) | 2006-12-06 | 2017-08-15 | Novartis Ag | Vaccines including antigen from four strains of influenza virus |
US8597661B2 (en) | 2007-05-04 | 2013-12-03 | Wisconsin Alumni Research Foundation | Neuraminidase-deficient live influenza vaccines |
CA2690196A1 (en) | 2007-06-18 | 2008-12-24 | Medimmune, Llc | Influenza b viruses having alterations in the hemaglutinin polypeptide |
WO2008156778A2 (en) | 2007-06-18 | 2008-12-24 | Tokiko Watanabe | Influenza m2 protein mutant viruses as live influenza attenuated vaccines |
EP2045323A1 (en) * | 2007-10-05 | 2009-04-08 | Avir Green Hills Biotechnology Research Development Trade Ag | Linear expression constructs for production of influenza virus particles |
KR20100045437A (ko) | 2007-06-27 | 2010-05-03 | 노파르티스 아게 | 첨가물이 적은 인플루엔자 백신 |
CN101497877B (zh) * | 2008-01-28 | 2012-09-05 | 河北摩百生物科技有限公司 | 流感全病毒减活疫苗重组体、其构建方法及应用 |
EP3459563A1 (en) | 2008-03-18 | 2019-03-27 | Seqirus UK Limited | Improvements in preparation of influenza virus vaccine antigens |
EP2574344A1 (en) | 2008-07-11 | 2013-04-03 | MedImmune, LLC | Influenza hemagglutinin and neuraminidase variants |
US20110195091A1 (en) | 2008-08-18 | 2011-08-11 | The Kitasato Institute | Avian Influenza Virus Antigen, and Booster Immunization Method for Avian Influenza Vaccine in Combination with Mucosal Adjuvant Which is Effective Through Oral Administration |
EP2233568A1 (en) | 2009-03-19 | 2010-09-29 | Avir Green Hills Biotechnology Research Development Trade AG | Novel method for generation of RNA virus |
CN105727281A (zh) | 2009-02-10 | 2016-07-06 | 诺华股份有限公司 | 具有减少量的角鲨烯的流感疫苗 |
CA2752041A1 (en) | 2009-02-10 | 2010-08-19 | Novartis Ag | Influenza vaccines with increased amounts of h3 antigen |
EA201171032A1 (ru) | 2009-02-10 | 2012-02-28 | Новартис Аг | Схемы лечения с помощью вакцины против гриппа, связанного с пандемическими штаммами |
SG173642A1 (en) | 2009-02-12 | 2011-09-29 | Medimmune Llc | Influenza hemagglutinin and neuraminidase variants |
EP2424565A1 (en) | 2009-04-27 | 2012-03-07 | Novartis AG | Adjuvanted vaccines for protecting against influenza |
CN102695523A (zh) | 2009-09-10 | 2012-09-26 | 诺华有限公司 | 针对呼吸道疾病的组合疫苗 |
EP2493912B1 (en) | 2009-10-26 | 2020-07-29 | Wisconsin Alumni Research Foundation | High titer recombinant influenza viruses with enhanced replication in vero cells |
US10130697B2 (en) | 2010-03-23 | 2018-11-20 | Wisconsin Alumni Research Foundation (Warf) | Vaccines comprising mutant attenuated influenza viruses |
EP2576773A2 (en) | 2010-06-02 | 2013-04-10 | Avir Green Hills Biotechnology Research Development Trade AG | Methods and helper viruses for the generation of rna virus |
CN102220293B (zh) * | 2011-05-26 | 2012-12-19 | 中国农业科学院上海兽医研究所 | 犬流感重组病毒及其制备方法和应用 |
EP2747778B1 (en) | 2011-08-26 | 2017-12-06 | Wisconsin Alumni Research Foundation | Influenza viruses with mutant pb2 gene segment as live attenuated vaccines |
WO2013030176A2 (en) | 2011-09-02 | 2013-03-07 | Westfälische Wilhelms-Universität Münster | Live attenuated influenza virus |
JP2014532620A (ja) | 2011-10-20 | 2014-12-08 | ノバルティス アーゲー | 小児の初回免疫のためのアジュバント添加インフルエンザbウイルスワクチン |
GB201218195D0 (en) | 2012-10-10 | 2012-11-21 | Istituto Zooprofilattico Sperimentale Delle Venezie | Composition |
WO2015009743A1 (en) | 2013-07-15 | 2015-01-22 | Wisconsin Alumni Research Foundation | High titer recombinant influenza viruses with enhanced replication in mdck or vero cells or eggs |
WO2015196150A2 (en) | 2014-06-20 | 2015-12-23 | Wisconsin Alumni Research Foundation (Warf) | Mutations that confer genetic stability to additional genes in influenza viruses |
CN104450695B (zh) * | 2014-11-26 | 2017-08-25 | 扬州大学 | A型流感病毒基因pcr扩增引物及其快速克隆方法 |
US10633422B2 (en) | 2015-06-01 | 2020-04-28 | Wisconsin Alumni Research Foundation (Warf) | Influenza virus replication by inhibiting microRNA lec7C binding to influenza viral cRNA and mRNA |
CA2987155A1 (en) * | 2015-06-10 | 2016-12-15 | Hookipa Biotech Ag | Hpv vaccines |
JP2018524323A (ja) | 2015-06-26 | 2018-08-30 | セキラス ユーケー リミテッド | 抗原がマッチしたインフルエンザワクチン |
US9890363B2 (en) | 2015-07-06 | 2018-02-13 | Wisconsin Alumni Research Foundation (Warf) | Influenza virus replication for vaccine development |
AU2016290603B2 (en) | 2015-07-07 | 2022-06-02 | Seqirus UK Limited | Influenza potency assays |
WO2017040203A1 (en) * | 2015-08-28 | 2017-03-09 | Yoshihiro Kawaoka | Generation of infectious influenza viruses from virus-like particles |
EP3417056A1 (en) | 2016-02-19 | 2018-12-26 | Wisconsin Alumni Research Foundation (WARF) | Improved influenza b virus replication for vaccine development |
US11013695B2 (en) * | 2017-08-28 | 2021-05-25 | Wisconsin Alumni Research Foundation | Nanocapsule delivery system for ribonucleoproteins |
US11197926B2 (en) | 2017-10-25 | 2021-12-14 | Wisconsin Alumni Research Foundation (Warf) | Recombinant influenza viruses with stabilized HA for replication in eggs |
CN107964035B (zh) * | 2017-12-06 | 2020-07-24 | 中国科学院微生物研究所 | 一种用于流感病毒的有限复制型黏膜免疫疫苗 |
EP3840780A1 (en) | 2018-08-20 | 2021-06-30 | Wisconsin Alumni Research Foundation | Vectors for eliciting immune responses to non-dominant epitopes in the hemagglutinin (ha) protein |
CN109097341B (zh) * | 2018-08-28 | 2021-09-24 | 青岛农业大学 | 一种同时表达ha和hef的复制缺陷型重组流感病毒 |
US11241492B2 (en) | 2019-01-23 | 2022-02-08 | Wisconsin Alumni Research Foundation (Warf) | Mutations that confer genetic stability to genes in influenza viruses |
WO2020163804A1 (en) | 2019-02-08 | 2020-08-13 | Wisconsin Alumni Research Foundation (Warf) | Humanized cell line |
CN114929269A (zh) | 2019-05-01 | 2022-08-19 | 威斯康星校友研究基金会(Warf) | 用于疫苗开发的改进的流感病毒复制 |
WO2021041624A2 (en) | 2019-08-27 | 2021-03-04 | Yoshihiro Kawaoka | Recombinant influenza viruses with stabilized ha for replication in eggs |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5840520A (en) * | 1989-08-28 | 1998-11-24 | Aviron | Recombinant negative strand RNA virus expression systems |
US5658772A (en) | 1989-12-22 | 1997-08-19 | E. I. Du Pont De Nemours And Company | Site-specific recombination of DNA in plant cells |
US5919676A (en) * | 1993-06-24 | 1999-07-06 | Advec, Inc. | Adenoviral vector system comprising Cre-loxP recombination |
EP0704533A1 (en) * | 1994-09-30 | 1996-04-03 | Bayer Ag | An attenuated vaccination virus, a method to make the virus and a pharmaceutical compositions comprising the virus |
WO1996010633A1 (en) * | 1994-09-30 | 1996-04-11 | Aviron | Chimeric influenza virus and electroporation method |
CN1200675A (zh) * | 1995-10-20 | 1998-12-02 | 耶路撒冷希伯来语大学依苏姆研究开发公司 | 流感疫苗 |
US5994526A (en) * | 1996-06-21 | 1999-11-30 | Plant Genetic Systems | Gene expression in plants |
EP1035209A1 (en) * | 1999-03-06 | 2000-09-13 | ARTEMIS Pharmaceuticals GmbH | Stable recombinant influenza viruses free of helper viruses |
EP2345716B1 (en) * | 1999-04-06 | 2015-01-14 | Wisconsin Alumni Research Foundation | Recombinant influenza viruses for vaccines and gene therapy |
-
2000
- 2000-04-05 EP EP10011896.7A patent/EP2345716B1/en not_active Expired - Lifetime
- 2000-04-05 ES ES10011896.7T patent/ES2533622T3/es not_active Expired - Lifetime
- 2000-04-05 ES ES07009953T patent/ES2373405T3/es not_active Expired - Lifetime
- 2000-04-05 JP JP2000609542A patent/JP5543048B2/ja not_active Expired - Lifetime
- 2000-04-05 KR KR1020017012743A patent/KR100702275B1/ko active IP Right Grant
- 2000-04-05 MX MXPA01010082A patent/MXPA01010082A/es active IP Right Grant
- 2000-04-05 CN CN201010155623.8A patent/CN101851636B/zh not_active Expired - Lifetime
- 2000-04-05 EP EP00920151A patent/EP1185615B1/en not_active Expired - Lifetime
- 2000-04-05 DK DK10011896.7T patent/DK2345716T3/en active
- 2000-04-05 CA CA2928263A patent/CA2928263A1/en not_active Abandoned
- 2000-04-05 CA CA2365526A patent/CA2365526C/en not_active Expired - Lifetime
- 2000-04-05 DK DK07009953.6T patent/DK1820853T3/da active
- 2000-04-05 CN CN00807495XA patent/CN1350578B/zh not_active Expired - Lifetime
- 2000-04-05 DK DK00920151T patent/DK1185615T3/da active
- 2000-04-05 DE DE122008000061C patent/DE122008000061I1/de active Pending
- 2000-04-05 AT AT00920151T patent/ATE368729T1/de active
- 2000-04-05 BR BRPI0009580A patent/BRPI0009580B8/pt not_active IP Right Cessation
- 2000-04-05 DE DE60035778T patent/DE60035778T2/de not_active Expired - Lifetime
- 2000-04-05 DE DE122008000035C patent/DE122008000035I1/de active Pending
- 2000-04-05 ES ES00920151T patent/ES2290024T3/es not_active Expired - Lifetime
- 2000-04-05 AU AU40733/00A patent/AU4073300A/en not_active Abandoned
- 2000-04-05 WO PCT/US2000/009021 patent/WO2000060050A2/en active IP Right Grant
- 2000-04-05 EP EP14200291.4A patent/EP2910629B1/en not_active Expired - Lifetime
- 2000-04-05 IL IL14570200A patent/IL145702A0/xx unknown
- 2000-04-05 AT AT07009953T patent/ATE525461T1/de active
- 2000-04-05 PT PT07009953T patent/PT1820853E/pt unknown
- 2000-04-05 DE DE122008000058C patent/DE122008000058I1/de active Pending
- 2000-04-05 PT PT00920151T patent/PT1185615E/pt unknown
- 2000-04-05 DE DE200812000014 patent/DE122008000014I1/de active Pending
- 2000-04-05 EP EP07009953A patent/EP1820853B1/en not_active Expired - Lifetime
-
2001
- 2001-09-30 IL IL145702A patent/IL145702A/en not_active IP Right Cessation
-
2007
- 2007-10-08 CY CY20071101295T patent/CY1108520T1/el unknown
-
2008
- 2008-11-13 NL NL300364C patent/NL300364I2/nl unknown
- 2008-11-13 NL NL300365C patent/NL300365I2/nl unknown
-
2011
- 2011-03-22 HK HK11102898.6A patent/HK1148778A1/zh not_active IP Right Cessation
- 2011-04-21 JP JP2011095240A patent/JP5775351B2/ja not_active Expired - Lifetime
- 2011-07-26 FR FR11C0027C patent/FR11C0027I2/fr active Active
- 2011-07-26 DE DE201112100037 patent/DE122011100037I1/de active Pending
- 2011-12-12 CY CY20111101234T patent/CY1112140T1/el unknown
-
2015
- 2015-03-31 JP JP2015071406A patent/JP6224645B2/ja not_active Expired - Lifetime
-
2016
- 2016-02-25 HK HK16102164.8A patent/HK1214298A1/zh unknown
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6224645B2 (ja) | ワクチンおよび遺伝子療法用の組換えインフルエンザウイルス | |
US9580693B2 (en) | Recombinant influenza viruses for vaccines and gene therapy | |
US20090017444A1 (en) | Screening method for modulators of viral transcription or replication | |
AU2008201521B2 (en) | Recombinant influenza viruses for vaccines and gene therapy | |
AU2005202386B2 (en) | Recombinant influenza viruses for vaccines and gene therapy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130423 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20130723 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20130726 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20130823 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20130828 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20130924 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20130927 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131023 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20140219 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20140224 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20140319 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20140325 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20140421 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20140424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140516 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141203 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20150302 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150331 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150610 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150703 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5775351 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |