[go: up one dir, main page]

JP5301285B2 - 集束型質量分析計イオンガイド、分光計および方法 - Google Patents

集束型質量分析計イオンガイド、分光計および方法 Download PDF

Info

Publication number
JP5301285B2
JP5301285B2 JP2008549729A JP2008549729A JP5301285B2 JP 5301285 B2 JP5301285 B2 JP 5301285B2 JP 2008549729 A JP2008549729 A JP 2008549729A JP 2008549729 A JP2008549729 A JP 2008549729A JP 5301285 B2 JP5301285 B2 JP 5301285B2
Authority
JP
Japan
Prior art keywords
ion guide
guide
stages
ion
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008549729A
Other languages
English (en)
Other versions
JP2009523300A (ja
JP2009523300A5 (ja
Inventor
ゴーラムレザ ジャヴァへリー
リサ クーザンズ
チャールズ ジョリフェ
イリア トムスキー
Original Assignee
イオニクス マス スペクトロメトリー グループ インコーポレーティッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イオニクス マス スペクトロメトリー グループ インコーポレーティッド filed Critical イオニクス マス スペクトロメトリー グループ インコーポレーティッド
Publication of JP2009523300A publication Critical patent/JP2009523300A/ja
Publication of JP2009523300A5 publication Critical patent/JP2009523300A5/ja
Application granted granted Critical
Publication of JP5301285B2 publication Critical patent/JP5301285B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/062Ion guides
    • H01J49/065Ion guides having stacked electrodes, e.g. ring stack, plate stack
    • H01J49/066Ion funnels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/062Ion guides
    • H01J49/063Multipole ion guides, e.g. quadrupoles, hexapoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

発明の分野
本発明は概して、質量分析法に関し、さらに詳細には質量分析計に用いられるイオンガイドに関する。
発明の背景
質量分析法は、未知の化合物を識別し、公知の化合物の正確な質量を決定するための効果的な分析技術であることが証明されている。有利なことに、化合物を微量で検出または分析することができ、これによって化合物を化学的複合混合物においてきわめて低濃度で識別することができる。驚くほどのことではないが、質量分析法は、医学、薬学、食品科学、半導体製造、環境科学、セキュリティおよび他の多くの分野において実用的な用途を見出している。
一般的な質量分析計は、関心対象の粒子を電離するイオン源を含む。イオンは、分析器領域に移動され、そこで質量(m)対電荷量(z)比(m/z)に応じて分離される。分離されたイオンは、検出器で検出される。検出器からの信号は、計算デバイスまたは類似のデバイスに送信され、m/z比がm/zスペクトルの形式における表示のために、相対量と共に記憶される。
一般的なイオン源は、「Ionization Methods in Organic Mass Spectrometry」、Alison E. Ashcroft, The Royal Society of Chemistry, UK, 1997(非特許文献1)に例示されており、本明細書において参照される。従来のイオン源は、大気圧化学電離(APCI)、化学電離(CI)、電子衝撃(EI)、電子スプレ電離(ESI)、高速原子衝撃(FAB)、電界脱離/電界電離(FD/FI)、マトリックス支援レーザ脱離電離(MALDI)または熱スプレ電離(TSP)によって、イオンを生成しうる。
電離された粒子は、4極子飛行時間(TOF)分析器、磁気セクタ、フーリエ変換およびイオントラップによって分離されうる。
少量を分析するための能力は、高感度を必要とする。高感度は、分析物イオンの高い伝達率および化学的バックグラウンドとして公知の非分析物イオンおよび粒子の低い伝達率によって得られる。
イオンガイドは、イオン源と分析器/検出器との間で電離された粒子を導く。イオンガイドの主な目的は、分光計の低圧分析器領域に向かってイオンを輸送することである。多くの公知の質量分析計は、費用効果の高い様式で分析器領域の圧力を低下させるために、高圧で電離した粒子を生成し、複数の圧力領域による複数段のポンピングを必要とする。一般に、関連するイオンガイドは、これらの種々の圧力領域を通じてイオンを輸送する。
高感度を得るための1つの手法は、大きな入口開口部とより小さな出口開口部を用い、高圧の領域から低圧の領域にイオンを輸送することである。真空ポンプおよび複数段のポンピングは、費用効果の高い様式で圧力を低下させる。したがって、分析器領域に入るイオンの数が増大される一方で、種々の圧力段に沿って総ガス負荷が減少される。ビームが種々の真空領域を通じて分析器に輸送されるので、イオンガイドは、イオンを受け入れて励起する複数のそのような段を含むことが多い。
高感度のためには、各段におけるイオン損失は小さいことが望ましい。したがって、イオンビームの半径を減少させ、入口開口部における大きな初期ビーム直径から出口における小さなビーム直径を生成することが好都合である。すなわち、イオンが出口の前にイオン経路に沿って軸方向に横断するとき、イオンビームにおける一連の個別のイオンの最大半径偏位が減少され、それによってイオンビームを集束化する。一般に、分析器に入るビームが集束化すればするほど、所望のイオン束が高くなり、質量分析計の全体感度が大きくなる。
1つの一般的なガイドは、ほぼ等しいサイズの入口開口部および出口開口部を有する複数の平行ロッドを含む。典型的には、4、6、8以上のロッドが、4極子、6極子などに配置される。重畳(superimposed)高周波数RF電圧を有するDC電圧がロッドに印加される。印加された電圧の周波数および振幅はすべてのロッドに関して同一であるが、隣接するロッド電極の高周波数電圧の位相は逆転している。別の従来のRFイオンガイドは、開口部を有する一連の平行リングまたはプレートとして形成される。この場合も同様に、RF電圧およびDC電圧は、リングまたはプレートに印加される。
これらの従来のイオンガイドは、軸方向のドリフト電界の印加によってイオン移動度分離(たとえば、G. Javahery and B. Thomson, J. Am. Soc. Mass. Spectrom.8, 692(1997)(非特許文献2)など)およびイオントラッピング(Raymond E. March, John F. J. Todd, Practical Aspects of Ion Trap Mass Spectrometry: Volume 2 : Ion Trap Instrumentation, CRC Press Boca Raton, Florida 1995)(非特許文献3)など、中程度の圧力でさらなる機能性を提供する。さらに、4極子イオンガイドは、共振励起方法を用いて、質量対電荷量比の選択的励起および放出を可能にする。
一般に、中程度の圧力のRFイオンガイドにおいて、バックグラウンドガスとイオンの衝突は、半径方向の振幅のある程度の減少を引き起こし、出口付近でイオンビームを集束化するのに役立つ(たとえば、米国特許第4,963,736号(特許文献1)およびR.E. March and J.F.J. Todd(Eds.),1995, Practical Aspects of Ion Trap Mass Spectrometry: Fundamentals, Modern Mass Spectrometry Series, vol.1.(Boca Raton, FL: CRC Press)(非特許文献4)に詳述)。
しかし、従来のRFイオンガイドの入口または出口でイオンビームを効率的に集束化することが常に可能であるわけではない。たとえば、イオンおよびガスが、大きな開口部を通じて、高圧領域を出て低圧領域に入るときに、イオンビームは、高密度ガスのフローに同伴(entrain)されてもよい。高密度ガスにおけるイオンは、容易に導かれたり集束化されることはできない。イオンは、高密度ガス中で散乱し、ロッド電極までに消失する可能性がある。出口で、イオンビームが集束化されうる程度は、圧力およびRF電圧によって、実際には放電およびクリープなどの電気的な理由のために、少なくとも部分的に制限される。
いくつかの既存のRFイオンガイドは、イオンビームをさらに集束化するが、これらのイオンガイドにはその幾何的な構成に起因する欠点がある。これらのイオンガイドは、等しくないサイズの入口開口部および出口開口部を有する間隙によって分離される可変開口部を有する1組または複数組のプレートまたはディスクを含む。典型的にはこの幾何構成は電界の歪みをもたらし、質量分析計の感度を低下させる。この問題は、導かれるイオンビームにおいてイオンを累積するイオンガイドにおいて深刻である可能性がある。通常、蓄積されるイオンは、放出前に、場合によって数回、イオンガイドを通じて前後に通過される。画定が不十分な電界は、イオンが反復通過を受けるにつれて、伝達における損失を誘発し、これは、イオンがガイドから離脱するまたはガイドと衝突する原因となる。同様に、移動度に基づくイオンの分離は、イオン分離時間および拡散損失の広がりに起因して効果が薄れる。最後に、これらのイオンガイドは、ガイドを介する進行の際のイオンの振動周波数の維持または増分的な変動によって、イオンの動きを維持せず、質量対電荷量比選択的励起法を低減する。
したがって、ガイド軸を中心としたイオンビームの進行の半径を低減し、かつ、いくつかの恩典を有し、従来のイオンガイドおよび技術に関連する欠点をほとんど有さない、イオンガイドおよび方法に対する需要がある。そのようなデバイスおよび方法は、質量分析計の感度および有用性を改善し、広く利用可能である従来のイオンガイドおよび方法より広い適用可能性および高い感度を有する。
米国特許第4,963,736号 「Ionization Methods in Organic Mass Spectrometry」、Alison E. Ashcroft, The Royal Society of Chemistry, UK, 1997 G. Javahery and B. Thomson, J. Am. Soc. Mass. Spectrom.8, 692(1997) Raymond E. March, John F. J. Todd, Practical Aspects of Ion Trap Mass Spectrometry: Volume 2 : Ion Trap Instrumentation, CRC Press Boca Raton, Florida 1995) R.E. March and J.F.J. Todd(Eds.),1995, Practical Aspects of Ion Trap Mass Spectrometry: Fundamentals, Modern Mass Spectrometry Series, vol.1.(Boca Raton, FL: CRC Press)
発明の概要
したがって、本発明の目的は、効率的に捕捉しかつガスに同伴されるイオンの広い直径のビームの半径を低減する、より高感度の集束型イオンガイドを提供することである。
本発明によれば、イオンガイドは、複数段を含む。各段の中の電界は、ガイド軸に沿ってイオンを導く。各段の中で、電界の振幅および周波数および分解電位は、独立に変動してもよい。ロッドの幾何構成によって、同じ形状の電界が段から段へと維持され、これにより、軸に沿ったイオンの効率的誘導が可能になる。特に、i番目の段の各ロッドセグメントは、断面半径riおよびガイド軸から距離Ri+riに位置する中心軸を有する。比ri/Riは、ガイド軸に沿って実質的に一定であり、それによって電界の形状を維持する。
本発明の局面によれば、ガイド軸に沿って延びるn段を含むイオンガイドが提供される。n段のそれぞれは、ガイド軸を中心として配置される複数の対向する細長い導電ロッドセグメントを含む。n段のうちi番目の細長い導電ロッドセグメントのそれぞれは、長さli、断面半径riおよびガイド軸から距離Ri+riに位置する中心軸を有する。電圧源は、段のそれぞれの複数の対向する細長い導電ロッドセグメントのうちの2つの隣接する導電ロッドセグメントの間にAC成分を有する電圧を提供し、ガイド軸に沿ってイオンを導くために交流電界を生成する。ri/Riは、ガイド軸に沿って実質的に一定であり、段のうちの少なくとも2つの段に関して、Riは異なる。
本発明の別の局面によれば、その間に交流電界を生成するようにガイド軸を中心として配置される、少なくとも部分的に導電性の複数の対向する細長いロッドセグメントを含む、イオンガイドが提供される。細長いロッドセグメントのそれぞれは、半径r(x)を有する実質的に円形の断面を有し、ガイド軸から位置r(x)+R(x)で中心に置かれ、xは、ガイド軸に沿った位置xを表し、r(x)/R(x)は、ガイド軸に沿ってxの値に関して実質的に一定であり、r(x)およびR(x)の少なくとも一方は、該軸に沿って一定でない
本発明のさらに別の局面によれば、ガイド軸に沿ってイオンガイド内に選択されたm/z比のイオンを導く方法が提供される。本方法は、ガイド軸に沿って配置される複数のガイド段を設ける工程であって、複数のガイド段のそれぞれがガイド軸を中心として配置される複数のロッドを含む工程と、複数のガイド段のそれぞれの中で、ガイド軸に沿ってイオンを導きかつ段のそれぞれにおいてガイド軸を中心とした半径内で選択されたm/z比のイオンを閉じ込める、交流電界を生成する工程とを含む。ガイド軸からの複数のロッドの最小距離は、ガイド軸に沿ってガイド段からガイド段へと連続的に低下する
好都合なことに、例示的なイオンガイドは、十分に画定された電界を維持する高感度ガイドを提供する。
本発明の他の局面および特徴は、添付の図面に関連して本発明の特定の態様の以下の説明を検討すれば、当業者には明白となる。
詳細な説明
図1は、本発明の態様の例示としてのイオンガイド12を含む例示的な質量分析計10を示す。図示されているように、質量分析計10は、オリフィス78を通じて低圧境界16にイオンを供給するイオン源14を含む。低圧境界16は、オリフィス80によってイオンガイド12にイオンを供給する。排出されるイオンおよび他の粒子は、オリフィス86によって4極子質量フィルタ20aおよび20bおよび加圧衝突セル21を含む分析器領域18に供給される。質量フィルタ20bを出たイオンは、イオン検出器22に衝突する。
データ取得および制御インターフェイスを含む計算デバイス24は、イオン検出器22および制御線23と通信している。計算デバイス24は、ソフトウェア制御下にある。計算結果は、相互接続されたディスプレイ26の上にデバイス24によって表示される。
真空源28、30および32は、以下に詳細に記載されるように、質量分析計10の種々の部分に真空を生じさせる。したがって、イオンガイド12は、真空ポンプ28によって排気される境界16の付近のより高い圧力の第1の領域から、真空ポンプ30によって排気される低圧の第2の領域13を通じて、真空ポンプ32によって排気されるさらに低圧の第3の領域18にイオンを導く。
イオン源14、低圧境界16、分析器領域18、検出器22、計算デバイス24、制御線23および真空源28、30および32はすべて、従来型であってもよい。示された態様において、イオン源14は、たとえば、APCI源、ESI源、APPI源、またはMALDI源の形態をとってもよい。分析器領域18は、質量フィルタ20aおよび20bを用いて形成されるが、飛行時間(TOF)分析器、磁気セクタ、フーリエ変換または4極子イオントラップまたは当業者によって理解される他の適切な質量分析器として形成されることも可能である。従って、イオン源14、分析器領域18、検出器22、計算デバイス24および真空源28、30および32は、詳細に記載されない。
計算デバイス24の動作を管理するソフトウェアは、本発明の態様の例示となりうる。そのようなソフトウェアの例示的な構造および機能は、明白となる。
分光計10において用いるのに適した例示的なイオン源、低圧境界、質量フィルタ、真空源、検出器および計算デバイスは、「Electrospray Ionization Mass Spectrometry, Fundamentals, Instrumentation & Applications」、Richard B. Cole編集、(1997)ISBN 0-4711456-4-5、および本明細書において参照される文献においてさらに記載される。
図2は、例示的なイオンガイド12の概略図である。図示されているように、イオンガイド12は、複数の段34-1、34-2、34-i、34-n(個別にかつ集合的に段34)を含む。各段34は、図3に示されているように、すべての段34に共通であるガイド軸38を中心として4極子に配置される4つのロッドセグメント36a、36b、36cおよび36d(個別にかつ集合的にロッドセグメント36)を含む。
図示されているように、別個の電圧源52-1、52-2、52-3および52-n(個別にかつ集合的に電圧源52)はそれぞれ、段34-1、34-2、34-3、34-nのロッドセグメント36間に電位Vs-1、Vs-2、Vs-3、Vs-nを提供する。認識されているように、複数の電圧源が用いられてもよい。
軸38に沿って通過するときにイオンを集束化するために、各段34の中でイオンガイド12のロッドセグメント36は、図2に示されているように、段から段へと半径方向により近づく。すなわち、n段のそれぞれに関してRi+1≦Riである。
図3に示されているように、段34の中のロッドセグメント36は、ガイド軸38を中心として90°角度分離される。i番目の段の中のロッドセグメント36の半径は、riであり、セグメント36によって画定される外接半径はRiである。例示的なRiおよびriは、約2mm〜30mmの範囲内であり得る。各段のロッドセグメント36は平行に配置され、それらの中心軸は、この軸38から距離Ri+riでガイド軸38に沿って集中する円を中心にしている。一般に、任意の段34に関するロッドセグメント36の形状および構成は、ロッドセグメント36間の領域における電位の形状を決定する。
任意で、4極子に配置される代わりに、(セグメント36のような)ロッドセグメントは、2n>4個のロッドを有しRi+1<Riで一定のri/Riを有する多極子中に配置されることが可能である。たとえば、6個のロッド(すなわち3対)の場合には、6極電界が生成され、8個のロッド(すなわち4対)の場合には、8極電界が生成される。より高い数(たとえば、5対以上)のロッドも同様に用いることが可能である。すべて、イオンに関する閉じ込め電界を提供する。結果として生じる時間変化電界は、対応して、4極、6極、8極などである。
2n個の隣接するロッド間に印加される交流電位に関する一般的な形態は、直交座標において、以下のように表現されうる。
Figure 0005301285
式中、φoは、印加される時間に独立な電圧であり、
Figure 0005301285
であり、nは、ロッド対の数である(Gerlich, Inhomogeneous Rf-Fields - A Versatile Tool For The Study Of Processes With Slow Ions, Advances In Chemical Physics 82: 1-176 1992によって説明されている)。一般にイオンガイドは、半径rの丸いロッドから構成される。式(1)を近似するために、丸い断面を有する2n個の等しく分離されたロッドセグメントの場合には、外接半径Riに対するロッドの半径riの関係は、1次に対して、以下のように与えられる。
Figure 0005301285
その結果、n=2の場合には、Ri〜riであり、n=3の場合には、Ri〜2riであり、n=4の場合には、Ri〜3riなどとなる。4極子イオンガイドの場合には、ri/Riが、たとえば、1.148として計算され、電界の歪みを最小限に抑え、実質的に4極電界を提供する(「Quadrupole Mass Spectrometry and its Applications」、(1995)Peter H. Dawson, ed., American Institute of Physics Press, Woodbury, New York, NY,1995, p.129に記載されている)。実際には、比は、所望の性能特性を達成するために、実験的に調整されることができる。
特に、4極子イオンガイドの場合には、電位φは、隣接するロッドセグメント36間に印加される。
Figure 0005301285
Figure 0005301285
Ubは、DC電圧であり、VaccosΩtは、Dawson(前記)によって定義されるx軸およびy軸に沿った半径方向の偏位を有する角周波数Ω=2πfで振動する振幅VacのRF電圧である。通常、φは、4個のロッドに印加され、その結果、一方の対向する対のロッドは、DC電圧Ubおよび振幅VacのRF電圧を受信し、他方の対のロッドは、対向する極性の電圧-Ubおよび振幅VacのRFの対向する位相を受信する。次に、任意の段34に関して軸38に沿ったイオンの移動の式は、Mathieuの式を用いて分析的に解かれることができ、イオンは、質量対電荷量比に基づいて、効率的に伝達、放出または分離されることができ、それによって、m/z選択可能性を提供する。
解は、Mathieu変数aおよびqを生じる。
Figure 0005301285
式中、m/zは、イオンの質量対電荷量比であり、Riは、ロッドの外接半径である。4極子イオンガイドの電位が式(3)および(4)によって記載される限り、特定のm/zのイオンがイオンガイド12の各段34のロッドセグメント36間を通過するかどうかは、式(5)および(6)のそれぞれのaおよびqによって主に決定される。ロッド間を通過するイオンは、安定であることを示している。
図4は、aおよびqの種々の値に関して不安定領域200および202を境界とした安定領域198を有する周知のMathieu安定度図を示している。安定領域198においてa、qの値を有するイオンガイド12中のイオンは、4極子質量フィルタを通じて伝達されるのに対し、これらの境界の外側のa、qの値を有するイオンは、不安定な軌跡を呈し、ロッドセグメント36に衝突する。
図2の例示的なイオンガイド12の場合には、ロッドセグメント36は、4個の丸いロッドセグメント36として構成され、式(3)および(4)に基づく近似的に双曲線である電位を生じ、m/z選択可能性を可能にする。段の境界、すなわち式(3)〜(6)および領域198、200および208におけるエッジ効果を無視することは、複数段イオンガイド12の一つまたは複数の段34に個別に適用する。式(3)の電位は、ロッドセグメント36のri/Riを調整することによって近似される。実際には、図3の丸いロッドセグメント36の有用なri/Riは近似的に1.12〜1.15であり、少なくとも2つの段に関して実質的に一定であってもよく、場合によっては、図示されているようにすべての段に関して実質的に一定であってもよい。空間的に、ロッドセグメント36a〜36dおよび36c〜36d間に印加される電圧は、図5に示されているように、本質的に双曲線の等電位41を生成する。
任意で、ロッドセグメント36は、ロッドセグメント36の少なくとも一部に双曲線面を生じるように機械加工され、式(3)の電位を提供してもよい。しかし、丸いロッドを用いることは実質的に費用が少なくて済む。
さらに、任意で、丸いロッドセグメント36の比ri/Riを1.12〜1.15以外の値に設定してもよい。しかし、m/z選択可能性には制限がありうる。
図6に示されているように、例示的なイオンガイド12において、電圧源52-iによって、段の中の対向するロッドセグメント36aおよび36cに交流電圧Vac-iが印加され、該段の中の対向するロッドセグメント36bおよび36dに180°位相の異なる電圧-Vac-iが印加される。したがって、隣接する電極間の電圧は2Vac-iである。この場合も同様に、電圧源52-iによって、式(4)の分解電圧Ub-iは段の中の対向するロッドセグメント36aおよび36cに印加されてもよく、-Ub-iが段の中の36bおよび36dに印加されてもよい。この場合も同様に、電圧源52-iによって、4つのセグメント36のすべてに静的DC電圧Uc-iが印加されてもよい。
さらに一般的には、2n個のロッドセグメントに関して、電圧源52-iは、2n個のロッドセグメントの隣接するロッド間で対向する位相のRF電圧Vac-iを任意で供給してもよい。同様に、静的電圧Uc-iが印加されてもよく、分解電圧+/-Ub-i(すなわち、電位差2Ub-i)もまた印加されてもよい。
一般に、安定領域において、(前記のGerlichの場合のように)印加された電圧Vsおよび周波数Ωは、約0.8Ri以内にガイド軸38に沿ってイオンビームを閉じ込める。図1および図2に示されているように、Riが減少すると、イオンビームの半径Reが減少する。たとえば、4極子イオンガイドの場合のq<0.4に関して、イオン永年周波数ωがイオン高速微細動作Ωの大部分である場合には、(Dehmelt, H. G., Advances in Atomic Physics 3(1967)53およびDawson、前記参照の場合のように)イオン移動は、深さ<D>の擬似ポテンシャルウェル内で軸38を中心にした簡素な高調波に近似する。分解DC電圧(Ub)および空間電荷がない場合には、イオンは、ガイド軸38に向かう駆動力を有する復元力を受ける。ウェル深さ<D>は、Mathieuの変数qおよびRF電圧Vacの積に比例し、以下によって推定される。
Figure 0005301285
ウェルは、より小さいRi、より大きいRF電圧Vacおよびより高いRF周波数Ωの場合により深くなる。分解DCの振幅Ub-iのほか、空間電荷は、ウェル深さ<D>を減少させる傾向がある。多極子に関する完全な表現はまた、Gerlichによって与えられるUb-lの影響を含む。イオンがより低圧の第2の領域13を通じてバックグラウンドガスとの接触を受けるときには、イオンは、バックグラウンドガスによって運動量移行を受ける。イオンの並進エネルギを低減するそれらの衝突は、イオン移動の全体的な振幅を低減するように機能し、軸38付近のイオンを閉じ込め、それによって、イオンビームの半径をさらに減少させる。Ri、VacおよびΩを調整することによって、ウェル深さを増大させることは、軸38付近のさらなる集束化を促進する。
各段34の長さlstage-iおよび関連するロッドセグメントの長さlrod-iは、段から段へと変化してもよく、2〜5cm程度であるが、異なる長さ(典型的には>1cm)は、イオンが各段34の軸38に沿って進行するのにつれて、イオン永年周波数、典型的には(RF電界において)5〜10サイクルを確立するために十分なサイクルを、電界において進行イオンが受けることを可能にするのに適切な長さである。たとえば、0.05eV運動エネルギを有する60Daのイオンが、動作圧力およびバッファガスに応じて、長さ1cmの500KHzのRF電界において約10サイクルを受ける可能性がある。可変長さlstage-iは、特定の段34の中でイオンが費やす時間の調整を可能にし、ガイド軸38に沿ったウェル深さ、イオン密度分布および空間電荷を制御するのに有用であるがこれらに限定されるわけではない。
図2を再び参照すると、段34は、典型的には各段の間が0.5mm〜2mmである間隙50によって分離される。この狭い間隙サイズにより段の間のほぼ連続的な電界が可能になり、バックグラウンドガスとの衝突に起因する散乱損失が最小限に抑えられる。好ましくは、間隙がバックグラウンドガスにおけるイオンの平均自由経路より小さいが、高圧において最小の間隔は、電気因子によって制限されるようになる。間隙50は、空隙であってもよく、適切な電気絶縁体によって充填されてもよい。
ロッド上にDCのない、すなわちa=0であるロッドセグメント36の場合には、そのqがおよそ0.05〜0.9の範囲に収まるイオンは、図4に示されているように安定である。これは、伝達される広範囲のm/zを可能にする。十分に低い圧力において、a、qを先端205(a=0.237、q=0.706)の付近で設定することができ、1Da程度で、m/zの狭い窓を伝達する。しかし、中程度の圧力で散乱損失が生じ得る。好都合なことに、中程度の圧力で、Mathieuの変数を有利により低い値、典型的には0〜0.1に設定されることができ、aおよびqの値を質量対電荷量比放出、伝達または分離、化学的バックグラウンドまたは望ましくないイオンの削減を含むがこれらに限定されるわけではない一つまたは複数の段34のロッドセグメント36を用いて機能を提供するように選択することができ、かつ、境界202または204付近で断片化を誘発するように選択することができる。
同じく好都合なことに、励起の他の形態が、特定のm/z比のイオンの選択を可能にし得る。したがって、一つまたは複数の補助周波数ω'iは、RFイオンガイド周波数Ωに加算され、周波数ωlで振動する質量対電荷量比(m/z)iの一つまたは複数のイオンを共振的に励起するように選択されることができる(Practical Aspects of Ion Trap Mass Spectrometry: Volume 2 : Ion Trap Instrumentationなど)。イオンガイド12の各段34におけるイオン移動の周波数ωiは、以下のように与えられる。
Figure 0005301285
式中、βlは、質量対電荷量比iのイオンの安定度係数(βx<1およびβy>0内のイオンのみが安定である)であり、Ωは、半径方向の周波数2πfである。イオン基本周波数βx、βyは、β<0.6の場合に近似されることができるが、aおよびqにおける級数展開によって与えられている。
Figure 0005301285
a=0の場合には、x方向およびy方向における動きは、以下となるように同一である。
Figure 0005301285
補助励起は、たとえば、衝突誘発断片化、質量フィルタリングなどの目的のために、a≧0、q>0に関して一つまたは複数の段34において特定のm/zのイオンを選択的に励起するように用いられることができる。
電圧源52の例示的な配置構成およびイオンガイド12の1つの段34のロッドセグメント36a、36dおよび36b、36dとの相互接続関係は、図6および図7に示されている。
当然ながら、以下に詳細に記載されるように、Vs-iを提供する各電圧源52は、それぞれに独立に調整可能または制御可能な電圧Vac-i、Uc-i、Ub-i、-Ub-i、V'ac-iを提供する複数の電圧源54、60、64、66、72から形成されてもよい。電圧源52および電圧Vac-i、Uc-i、Ub-i、-Ub-i、V'ac-iは、計算デバイス24によって制御されてもよい。
図6に示されているように、電圧源54は、周波数Ωiで電極36aと電極36dとの間および電極36bと電極36cとの間に交流電圧Vac-iを印加する。電極36aと電極36dとの間に印加される電圧は、電極36bと電極36cとの間に印加される電圧と180°位相が異なる。位相シフトは、反転増幅器(図示せず)を介して交流電圧を通過させるなどの当技術分野において理解された任意の数の方法によって実現されてもよい。電圧Vac-iは、式(6)(前記)に基づく関心対象のイオンの所望の質量対電荷量比範囲、式(7)(前記)に基づく所望のウェル深さ、および式(8〜13)(前記)に基づくイオン振動周波数ωiに関して選択される。
図6に示されているように、さらなるロッド偏(bias)源60は、ノード62とグランドとの間に接続され、電極36a、36dおよび電極36b、36cにDC電位Uc-iを供給し、ガイド軸38に沿って電位を制御する。Uc-iは通常、段から段へと抽出するのに役立てるために変化されるか、または一定であってもよい。変動する場合、電位差Uc(i+1)-Uc-i、すなわちΔUcは、ガイド軸38に沿ってDC電界を供給する。低電界は、イオンをイオンガイド12の出口に穏やかに輸送する。より強力な電界を、間隙50の間でイオンを断片化するために用いることができる。Uc-iの極性は、いずれかの極性(負または正)のイオンが段iから段nへと正味の吸引力を受けるように、たとえば、負のイオンが正のΔUcを受け、正のイオンが負のΔUcを受けるように、調整される。
正および負のDC電圧源64、66はそれぞれ、コンデンサ68によってVac-iから分断される電極36aおよび36cおよび電極36bおよび36dに電位+Ub-i、および-Ub-iを供給する。コンデンサ68は、交流電圧源54によって、電極36a、36cおよび電極36b、36dに供給されるVac-iの相対的振幅を調整するために変動してもよく、したがって、軸38上にRFバランスを調整する。抵抗器70は、電圧源66および64へのRF電流を削減するように機能する。
Ub-iおよび-Ub-iは、形成された電界のさらなる精度のために、正確に制御されてもよい。+/-Ub-iは分解電位として作用し、したがって、イオンガイド12が式(4)および(5)ならびに図4に基づく粗い質量フィルタとして機能することを可能にする。DC振幅Ub-iは、イオンの所望の質量対電荷量比範囲を伝達するように設定され、ゼロに設定されてもよい。安定なイオンは、ロッドセグメント36と衝突することなく、イオンガイドの次の段に供給される。DC振幅Ub-iはAC振幅Vac-iに比例し、比Ub-i/Vac-iは通常、0.325を超えず、典型的にはずっと低い。Ub-iはまた、ウェル深さ(Gerlichなど、前記)、式(8〜13)(前記)のイオン振動周波数ωiにも寄与する。
図7に示されているように、補足電圧源72は、変換器74を用いて電圧源54によってVac-iに重畳可変振幅の一つまたは複数の周波数ω'iで、V'ac-iに供給されてもよい。補足周波数ω'iは、式(11)におけるイオン振動周波数ωの共振励起によって、4極子段34の中で、質量対電荷量比m/zまたは質量対電荷量比値の範囲のイオンの範囲の一つまたは複数の特定のイオンを励起するように設定されてもよい。電圧源V'ac-i72は、励起周波数ωに変換される周波数ω'iの一つまたは複数の成分を出力する。複数の周波数ω1、ω2、ω3...ωnは、質量対電荷量比の範囲を励起するために用いられることができる。補足電圧源72は、ロッドセグメント36aおよび36cの間の2極子の様式で印加されるが、4極子の様式で印加される電圧による4極子の励起もまた、当技術分野において公知であるように可能である。
補助周波数ω'iは、衝突に誘発される解離を含むがこれらに限定されるわけではない質量対電荷量比選択励起のために、Vac-iに加算されることができる。たとえば、補足電圧源72が印加されるとき、イオンガイド12に入るイオンは、RF閉じ込め電界およびより弱いAC励起電界の組み合わせを受ける。AC励起周波数ω'iは、特定の質量対電荷量比の一つまたは複数のイオンを共振的に励起するように設定されてもよく、これらが著しい運動エネルギを取得させる。バッファガスとの衝突の際、このエネルギはイオンの結合に移され、これらを断片化してもよく、断片は、第2の質量分析器(図示せず)によって検出されてもよい。断片の分析は、構造的な情報、たとえば、ペプチド鎖の定性的分析または化学的バックグラウンドを低減するために特異性のさらなる段として定量化を提供する。
印加される電圧の形状はすべての段34に関して本質的に同一であるが、一般に、印加される電圧の振幅および周波数ならびに結果として生じる電界は変動してもよい。別個の電圧源または1つの相互接続される電圧源は、電圧源52をその周波数および振幅(Vsource-AC)が変動してもよいセグメント36のそれぞれに供給し、+/-Ub-iおよびUc-iをそのDC振幅が変動してもよいセグメント36のそれぞれに供給するために用いられてもよい。
任意で、段34の少なくとも1つに関するUc-iは、ガイド軸38に沿って導かれるイオンの運動エネルギを超え、該複数の段のうちの該段の間の間隙付近にエネルギ障壁を提供する。たとえば、段34-nの最後の(すなわち、n番目の)段に関するUc-iは、ガイド軸38に沿って導かれるイオンのエネルギを超えてもよく、エネルギを印加されていないイオンは、この最後の段34-nの入口の近傍で、軸38に対して反発する。正確な位置は、印加される電圧の範囲に左右される。あるいは、(n-1)番目の段34-(n-1)に関するUc-iは、ガイド軸に沿って導かれるイオンのエネルギを超え、n段の(n-1)付近でイオンを捕捉する。
当業者によって認識されるように、すべてのn段34に関するAC電圧源54およびDC電圧源60は、図8に示されているように一つまたは複数の等価な電圧源によって結合して、電圧をすべての段34に供給してもよい。AC電圧源155は、コンデンサ110〜113によって段34と相互接続され、各段のロッドセグメント36aと36dとの間およびロッドセグメント36bと36cとの間に時間変化する電圧を印加する。AC周波数は一定であり、AC振幅はセグメント間で減少する。各セグメント120〜128の2つのロッド対は静電容量に寄与し、余分なコンデンサとしてロッドセグメント36を含む等価な回路を作成する。インピーダンスZi<<Riである場合には、正味の等価な回路は、
Figure 0005301285
となり、式中、
Figure 0005301285
であり、VnおよびCnはそれぞれ、セグメントnとn-1との間の電圧および静電容量であり、Cnは、セグメントnに関するロッドの静電容量である。DC電圧源160は、図示されるように分離抵抗器130〜136を介して供給されることができ、または各セグメントに関して独立に駆動されることができ、または両方の手法の組み合わせを用いることができる。
動作中、図1に示されるイオン源14は、電離された粒子を大気圧またはその付近で生成する。イオンおよびガスは、オリフィス78を通じて、低圧境界16にサンプリングされる。真空ポンプ28は、約1〜10トールで、境界16において圧力を維持する。イオンは、フリージェット膨張、層流または他の手段のいずれかを介してガスのフローに同伴され、オリフィス80を通じてイオンガイド12に輸送される。オリフィス80付近の圧力と領域13の圧力の間の圧力差が、フローを形成する。イオンガイド12に入る際、フローにおける衝突はイオンの同伴を生じる。最終的には、圧力は、領域13においてバックグラウンドガスとの平衡に達する。上記で詳述したように、イオンガイド12の中で、電圧源52は、ガイド12の各i番目の段34の中で隣接するロッドセグメント36の間で可変電位Vs-iを生成する。
図1の例示的な態様において、イオンおよびガスは、600μmのオリフィス78を通じて粗引きポンプによって排気される境界16、すなわち加熱された層流境界の中でサンプリングされる。平衡圧力は約2トールの領域82で得られる。イオンは、境界16に印加される電圧に起因するガスフローおよび電界の組み合わせによって、オリフィス80(通常5mm)を通じて、軸38およびイオンガイド12へと向けられる。ガスに最初に同伴されるイオンは、イオンガイド12の段34-1に入る。半径Riは、イオンが段34-1のロッドセグメント36に当たらないほど十分に大きい。600l/sのポンプによって排気されるため、領域13の圧力は、オリフィス80の付近の約1〜2トールからガイド12の入口84付近の数百ミリトールまで軸38に沿って降下し、30〜40mmの遷移で図2の段34-1から数十ミリトールに降下し、段34-3において、イオンガイド12の50mmである段34-nの中で約5〜10ミリトールの平衡圧力に達する。
イオンガイド12の例示的な4つのセグメント34-1に関して、R1は8mmであり、R2は6mmであり、R3は4mmであり、R4は3mmである。
ロッドセグメント36に印加されるAC電位は4極性の電界を提供し、ガイド12の入口で、ガイド軸38を中心にして最初は距離約2Riでイオンを含有する。例示的な態様において、各セグメントに関して、Riが減少するのにつれて、予め選択された量、たとえば4倍、すなわちガイド12の入口付近の段34-1の約20eVからイオンガイド12の段34-n付近の80eVまで擬似ポテンシャルウェル深さが増大するように、比V/Riは調整される。このように、最大伝達に対してイオン損失を最小限に抑え、さらに、放電、クリープなどの電気効果を最小限に抑えるほど十分に低いままであるように、AC電位を調整することができる。
Riがそれぞれの次の段34に関して減少するとき、ガイド12は、軸38に沿ってビームにおいてイオンを段階的に集束化する。AC電界と組み合わせた衝突は、イオンビームの軸方向および半径方向の運動エネルギの削減によって、有効半径を削減する。ウェル深さは、各セグメント36に関して増大しつつあるため、イオンガイド12の出口に輸送されるときに、さらに正味の追加的な半径方向の削減がおこる。ガイド12のn段の終わりで、イオンのストリームは、熱エネルギに近い約2Rnよりも実質的に小さな直径を有するストリームに集束化されている。
DC電圧Uc-iがセグメント間で変更されて、軸38に沿って電位差を提供する。真空源28および30によって生成される圧力勾配ならびに印加されるUc-iから結果として生じる軸方向の電界により、電離される粒子が軸38に沿って質量フィルタ20aまで加速させられる。
段に関して(略定数ri/Riによって生じるような)i番目の段34-iにおける幾何的に類似する(典型的には同一の)電界パターンは、段から段への伝達損失を最小限に抑える。Mathieu変数qおよびウェル深さは、より低いqの領域からより高いqの領域までイオンが伝達されるときに、永年周波数における勾配変化によってイオン移動が増分的に変化するように制御される。同様に、隣接する段34の間の相対的に小さな間隙は、部分から部分へのイオンの通過を容易にする。
次に、放出されたイオンは、300l/sでポンプによって送り込まれる約1e-5トールの圧力でオリフィス86(約1mmを有する)から分析器領域18の4極子質量フィルタ20aに送り込まれる。4極子質量フィルタ20aに印加される分解DC電圧およびAC電圧は、質量対電荷量比値の選択された範囲に関するノッチフィルタとして作用する。フィルタ20aを十分に通過するように伝達されるイオンは、通常30〜70eVの衝突セル21への実験室枠内の(lab frame)並進エネルギまで加速され、断片化を誘発するために加圧される。断片イオンは次に、4極子質量フィルタ20bを通じて伝達され、検出器22に当たる。
計算デバイス24は次に、フィルタ20aおよび20bに印加される電圧(ならびに、したがって、フィルタ20aおよび20bによって供給されるイオンの質量対電荷量比)および検出器22における信号の大きさを記録してもよい。フィルタ20aおよび20bに印加される電圧が変化するときに、質量スペクトルが形成されてもよい。
好都合なことに、次に、複数段34-iのそれぞれは、ガイド軸38に沿ってイオンを導くために、隣接する段における電界特性に独立な電界特性を有する全体的4極性(または他の極性の)電界の生成を可能にする。各段の中で電界の振幅または周波数の少なくとも1つは、隣接する段の振幅または周波数から変化してもよい。さらに、追加のDC電界(Ubによって生成される)は、ガイド軸38に対して全体的直交方向に印加されてもよい。同様に、周波数ωiを有する追加の交流電界成分が、ガイド軸38に対して全体的直交方向の平面に印加されてもよい。これにより、各段34-iがイオンガイド12を通じたイオン経路に沿って別個に独立な機能を提供することを可能にする。たとえば、各段34-iは、独立に選択されたウェル深さ、Mathieu変数q、補助周波数、分解DC電圧および/または軸方向の電界のDC電圧を提供するように構成されてもよい。たとえば、複数段34-iの第1の段34-1は、設定されたウェル深さおよびqでイオンビームを捕捉するように機能してもよく、第2の段34-2は、異なるウェル深さおよびqで、望ましくないイオンの解離的励起または放出を生じるように機能してもよく、次の段34-3は、望ましいイオンをよりよく閉じ込めるように機能してもよい。好都合なことに、複数段のそれぞれのロッドセグメント36は、半径方向の距離Riでガイド軸を中心として円周方向に配置される。各段34-iに関するロッド36の半径方向の距離は、ガイド12の入口から出口まで段階的に減少する。このように、イオンは、ガスのストリームに自由に同伴され、ガイド12の段から段へと通過しているときに集束化されるストリームに入射してもよい。さらに、隣接する段34-iは、互いに対して十分に近く、その結果、電界が軸38に沿ってイオンを導き続けるようになっている。
したがって、任意の動作モードを用いて、イオンガイド12の感度および機能性をさらに改善してもよい。
たとえば、イオンを捕捉するために、計算デバイス24は、図2の第1の段34-1およびn番目の段34-nに抵抗するDC電圧Uc-iを印加して、イオンビームのエネルギUc-(n-1)より高い運動エネルギを提供してもよい。したがって、イオンは、セグメント36-2〜36 n+1の中で時間の期間に関して蓄積される。数時間τ後、Uc-(n-1)は減少し、イオンは、質量分析器領域16に放出される。
イオンがイオンガイド12を通って捕捉または流れている間に、補足的なAC電圧はまた、イオンの一つまたは複数の質量対電荷量比範囲を励起するために、同時に一つまたは複数のセグメントに印加されてもよい。さらに具体的には、電圧源52は、式(10)によって定義されるような一つまたは複数のωxまたはωyを励起するために、予め選択された複数の対向する細長いロッド36の間に印加される周波数ω'iを有する一つまたは複数のさらなる追加のAC成分を提供し、イオンをそれらの永年周波数ωiに基づいて共振させてもよい。ωi成分のAC振幅は、一つまたは複数の複数段34に関してゼロであってもよく、可変であり、質量対電荷量比選択励起、断片化および放出を含むがこれらに限定されるわけではない。
このように、任意で、イオンは、1つの段34の境界で質量選択的に放出、伝達または断片化されてもよい。質量分析計10における負荷サイクル損失を低減するために、ガイド12によって質量対電荷量比選択的放出の形態を提供することが好ましいことがある。たとえばイオンビームを、質量対電荷量比選択方法を用いて、質量対電荷量比に基づいて集束化することができる。たとえば、質量対電荷量比の特定の範囲のイオンを分析器に伝達させてもよく、残りの分析物イオンは蓄積され、所望でないイオンは除去される。また、伝達を防止し、それによって伝達されるビームの信号対雑音比を改善するために、種々の質量対電荷量比値で化学的バックグラウンドを生じ得る一連のイオンの励振および断片化または排出を行うことが好ましいことがある。
任意で、イオンガイド12における電圧源52は、Mathieu変数qがn段34の一部またはすべてに関して実質的に一定に設定されるように動作する。これは、比Vac/ri 2Ωi 2[z/m]を維持することによって、具体的には各段に適切なAC振幅VacまたはAC周波数Ωを印加することによって、達成される。略定数のqは、複数段34にわたる同一の補助周波数によってm/zのイオンを励起すること、高いガスフローの領域におけるイオンの移動における摂動を最小限に抑えて、損失を低減すること、印加されるDC電界によって本質的にドリフト時間を確立すること、および小さなRiで誘発され得る軸方向の捕捉を最小限に抑えることを含むがこれらに限定されるわけではない目的のために、有用である。
さらに、各段の隣接するロッドに印加される任意のDC分解電位Ub-iは、安定領域の外側の質量対電荷量比を有する電離される粒子をロッドセグメント36に衝突することによって、ガイド12を粗い質量フィルタとして作用させるか、境界作動断片化またはa≠0である質量選択的放出を生じるように機能する。
さらに、電圧源54のAC電圧VacおよびAC周波数Ωの一つまたは複数は、比V2 ac/ri 2Ωi 2[z/m]を調整することによって、各段に適切なVacまたはAC周波数Ωを印加することによって、等しいまたは可変のウェル深さを提供するために切り替えられうる。たとえば、選択されたウェル深さを用いてイオンを捕捉し、選択されたqを用いてそれらのイオンを励起し、別の選択されたウェル深さでそれらを排出することが好都合である可能性がある。これを行うために、予め選択されたウェル深さおよびAC電圧Vac-iを用いてイオンを捕捉して閉じ込めるように設定された電圧源52によって、イオンガイド12は大きなオリフィス84からイオンを収集する。反発的DC電位は、Uc-n 60を切り替えることによって最後の段34-nに印加されてもよい。±Ubn 64および66はゼロに設定される。段34-1におけるUc-1は反発的に切り替えられ、段34-1と段34-nとの間でイオンを捕捉する。AC電圧Vac-iは、定数qを生じるように切り替えられる。AC電圧源Vs-iは、周波数ωiで補助電圧Vac-iを段34-2,...,34-(n-1)に印加する。これは、ガイド軸38に対して直交方向にさらなる交流電界を生成し、特定の対応する質量対電荷量比のイオンを選択的に励起して、ロッド36と衝突させる。複数のωsを用いることによって、時間または異なる段のいずれかにおいて、望ましくない質量対電荷量比のイオンがガイド12から除去されてもよく、または所望の質量対電荷量比のイオンが分離されてもよい。一旦、所望の質量対電荷量比のイオンが分離されると、段34-nに関して、イオンガイド12からイオンを放出するようにUc-nは逆転されてもよい。
種々の段に関するUc-iはまた時間内にイオンを分離し、イオン移動度の研究を行うためにDC電界勾配を提供してもよい。これを行うために、段34-iの1つがゲート段として最初に用いられ、次の段へのイオンのフローを妨げる。これを実行するために、適切なUcがゲート段に印加され、イオンを押し返す。これは、イオンがゲート段を通過しないように妨害する。その後、この電圧が短期間除去され、イオンがその期間中ゲート段を通過することが可能になる。結果として、イオンの小さなパケットが次の段に供給され、次の段に関するDC電圧Uc-iが、軸38に沿って電位差および電界を提供する。印加されたUc-iから結果として生じるDC電界は、電離される粒子をイオンの質量に比例してガイド軸38に沿って加速させる。同様に、イオンはバックグラウンドガスと衝突し、異なる分子構造のイオンはバックグラウンドガスとの異なる衝突速度および衝突断面を有する(EA Mason and EW McDaniel: Transport Properties of Ions in Gases(Wiley, New York,1988)に記載のとおり)。イオンの分子構造に応じてある程度のドリフト時間tDを経た後、段34-nを出て質量分析器領域16に入射する。電界強度に対するドリフト電界Eにおける分子イオンドリフトtDは、
Figure 0005301285
であり、式中、Eは電界強度であり、Pはバッファガスの圧力であり、Lはイオンガイドのゲート段と出口段34-nの出口との距離であり、Tはバッファガスの温度であり、K0は、
Figure 0005301285
であり、式中、zeはイオンの電荷であり、kbはボルツマン定数であり、mIおよびmBはイオンおよびバッファガスの質量であり、Nはバッファガスの数密度である。間隙50は、各段34の間の最小縞電界歪み(minimum fringe field distortion)を提供する。イオンガイド12の幾何構成は、間隙50を含み、定数ri/Riは、十分に画定された1/Eを提供し、それによって、十分に画定されたtdおよび衝突断面Ω'の潜在的に正確な尺度を得ることが可能となる。
図1の分光計10を用いる場合、イオンガイド12は、イオン移動度分離器、原料質量フィルタ、雑音除去装置として機能でき、一方でビームを集束し、改善した信号対雑音比を提供する。特に分析する質量が多い(数十または数百)であるとき、質量分析と組み合わせて負荷サイクル損失を低減することによって、質量選択的放出はさらに感度を向上することができる。代替の質量選択的励起および放出を、態様のいずれにおいても採用することができる。
ここで、ガイド12を用いた複数の態様が可能であることが認識されよう。たとえば図9は、イオンガイド12の代替の態様を示しており、34-nの入口90および出口92が2つの圧力領域13および18を分離するために、開口部86と置き換えられている。絶縁体93は、イオンガイド34-nと真空の仕切り95との間の電気的孤立を提供する。段34-4は、分析器20bに輸送されることになっているイオンのための出口として機能する。
有利なことに分光計10の衝突セル21などの衝突セルとして従来のイオンガイドとイオンガイド12を置き変えることができることが、当業者には認識されよう。衝突セル21の従来のイオンガイドと置き換えたイオンガイド12の封入型バージョンが、図10に示されている。本質的に軸38に沿ってフィルタ20aを出るイオンは、加速され、数十ミリトールまで加圧された封入体積96の中に絶縁体98を介して電気的に孤立される開口部94を通じて焦点化される。大きな角度で散乱されるイオンは、ロッドに衝突することなく、段34-1によって捕捉される。断片イオンの半径方向の分布は圧縮され、34-2から34-4に輸送されるときにエネルギが熱運動化される。絶縁体100はさらに、予め選択されたフロー伝導率のために幾何的に設計されたセグメント34-4を電気的に孤立させ、または任意で、第2の開口部(開口部86など)が用いられてもよい。次に、断片イオンは、続いて分析器20bに効率的に輸送される。散乱損失が削減され、従来のイオンガイドの恩典が維持される。
任意で、一つまたは複数の段34は、4極子イオンガイドと組み合わせた2n>2の多極子イオンガイドから形成されることができる。たとえば、入口開口部においてきわめて大きいビーム直径の場合には、図11に示されているように、第1のセグメント102-1については6極子イオンガイド104またはさらに高次のイオンガイドであることが有利である可能性がある。
軸38を横断するイオンは、より大きな数のロッドの多極子RFイオンガイドによって効果的に捕捉されることができる。これは、部分的には、0.8Ri程度(Gerlich,38ページ)の大きな有効許容開口部に起因しており、Riおよびriは、式(2)において定義されているとおりである。任意で、次に、類似のriおよび電圧要件を用いて、イオンガイド12の4つのロッドセグメント36より大きい入射ビーム直径を捕捉するために6極子イオンガイド102を用いてもよい。しかし、ビーム半径は、より低いn(式(7))を用いてより効果的に削減される。したがって、イオンがイオンガイド104の第1のセグメント102-1によるガスのフローに捕捉された後、次に、減少するriの次の4極子イオンガイド段34-nに入ることが好ましい場合がある。
所与のRiについては、ロッド上の必要なAC電圧は通常、nが大きくなるほど低い(Gerlich,たとえば、42ページ)。したがって、任意で、多数の小さな直径のロッドによって動作し、より低いAC電圧における類似の許容開口部を達成し、たとえば、放電などを回避することが好ましいことがある。
当然のことながら、ロッドの幾何構成の性質は、電界の性質に影響を受ける。ガイド104において、ロッド102は、ガイド軸38を中心にして60°角度分離される。ロッド電極の半径はr'iであり、ロッド44によって画定される外接半径はR'iである。例示的なR'iおよびr'iはまた、式(2)によって与えられる比で約2mm〜30mmの範囲内であり得る。交流電圧Vac-iは、対向するロッド44a、44cおよび44dに印加され、それに対向するロッド(図示せず)および異なる位相-Vac-i/の電圧180が、対向するロッド電極44b、44dおよび44fに印加され、その結果、2つの隣接するロッドセグメント間の電圧はVac-iとなる。
さらに一般的には、多極子は、隣接する電極に印加される対向する位相のAC電圧で、角度π/2n角度分離される2n個の電極を含む。
ここで認識されるように、イオンガイド12に具体化される原理は、当業者によって理解される異なる幾何構成において容易に具体化されてもよい。そのために、図12〜図13は、4つの連続的な少なくとも部分的に伝導性のガイドロッド142a、142b、142c(3つのみが図示されている)(個別にかつ集合的に142)から形成される代替のイオンガイド140を示している。また、開口部147および149を有する電気的に孤立された開口部レンズエンドプレート144および146が示されている。各ロッド142は先細りであり、面150および152の平面は、長さLと共に線形に変化する半径rの直角軸154で交差する軸154に対して円形の断面を有するような角度で位置決めされる。したがって、ガイド140は、x=0に開口部があり、x=Lに出口があり、軸148に対して非円形(楕円形)の断面を有する。図13において、ロッド142は、x=0に位置決めされ、2r1に等しい第1の平行面150と、x=Lに位置決めされ、2rnに等しい第2の平行面152とを有する。r/Rが長さに沿って一定であり、面150の中心148が面152の中心149および軸154からR1+r1-Rn+rnだけずれているように、4つのロッド142a-dは軸を中心として配置されている。たとえば、L=150mmの場合には、r1=16であり、r2=4であり、長さLに沿ったr/R=1.14であり、中心線148が軸154から4.30°の角度をなしている。
加えて、ロッド142a、142b、142cおよび142dは、任意の点における各ロッド142の断面の中心が軸154からr+Rの中心線を有する半径rの円形断面の円の上にあるように分離される。その上、ロッド142は、各断面の中心がガイド軸154を中心にして等しく分離されるように配置される。
図14は、位置xの関数としてr(x)を示している。
動作中、AC電位はイオンガイド140に印加され、rおよびRが減少するときにイオン周波数を増分的に増大させる。
開口部147または149を通じて放出される前の期間中にイオンガイド140でイオンを捕捉するために、合成された反発電圧はさらに、開口部レンズエンドプレート144および146に印加されてもよい。
ロッド142の幾何構成は、Rおよびrがxに関して線形または非線形に変化することができるように構成され、r(x)はロッドの形状を決定し、r(x)/R(x)は軸に関するその角度を決定している。
ロッド142は半導体材料または絶縁材料から形成されてもよく、(電圧源60などによって)その端部に印加される電圧Vsourceが、各ロッド142の長さに沿って線形電圧勾配を生成してもよい。
すなわちV(x)=x/l*Vsourceである。
上述したように、Vsourceはまた、周波数Ωおよび任意でωにおけるAC成分のほか、DC成分Uを有してもよい。このように、ガイド140は、ガイド12とほぼ同じ様式で機能してもよい。この場合も同様に、電圧源52は、周波数および振幅において変動してもよい。
さらに、図6〜図9を参照して示したように、イオンガイド140は、セグメントに分割されることができ、電気的に相互接続されることができ、これによって上記の機能性および特性の少なくとも一部を提供する。
従って、ガイド140を分光計10のガイド12の代わりに用いてもよく、その開口部は源14と連通し、その出口は質量フィルタ20bと連通している。
当業者はここで、上述の態様が多くの改変の影響を受けやすいことを容易に認識するであろう。たとえば、セグメント間の間隙を絶縁体で満たすことが可能である。代替の電極の形状を用いることができる。たとえば電極を、ガイド軸に沿って矩形の板としてまたはそれ以外で形成することも可能であり、一方で、r/Rは記載のように維持されうる。
当然のことながら、上述の態様は、説明のためにのみ意図されており、限定するものではない。本発明を実行する上述の態様は、形態、部材の構成、詳細および動作の順序の種々な改変の余地がある。正確に言えば、本発明、添付の特許請求の範囲によって定義されるように、その範囲内にそのような改変を包含することを意図している。
添付の図面は、本発明の態様を一例としてのみ示す。
本発明の態様の例示としての質量分析計の概略図である。 本発明の態様の例示としてのイオンガイドの概略図である。 図2のイオンガイドの断面図である。 4極子イオンガイドの安定性の領域の図である。 等しい電位線を示す図2のイオンガイドの断面図である。 図2のイオンガイドの電源の概略図である。 図2のイオンガイドの電源の概略図である。 本発明の別の態様の例示としてのさらに別のイオンガイドの概略図である。 本発明の別の態様の例示としてのさらに別のイオンガイドの概略図である。 図2のイオンガイドを含む別の質量分析計を示す。 本発明の別の態様の例示としてのさらに別のイオンガイドの概略図である。 本発明の別の態様の例示としてのさらに別のイオンガイドの斜視図である。 図12のイオンガイドの概略断面図である。 その長さに沿って位置(x)の関数として図13のイオンガイドの半径を示すグラフである。

Claims (58)

  1. ガイド軸に沿って延びるn段を含むイオンガイドであって、
    該n段のそれぞれが、該ガイド軸を中心として配置される複数の対向する細長い導電ロッドセグメントを含み、
    該n段のうちi番目の該細長い導電ロッドセグメントのそれぞれが、長さli、断面半径riおよび該ガイド軸から距離Ri+riに位置する中心軸を有し、
    電圧源が、該段のそれぞれの該複数の対向する細長い導電ロッドセグメントのうちの2つの隣接する導電ロッドセグメントの間にAC成分を有する電圧を提供し、該ガイド軸に沿ってイオンを導くために交流電界を生成し、
    ri/Riが、該ガイド軸に沿って実質的に一定であり、該段のうちの少なくとも2つの段に関してはRiが異なる、イオンガイド。
  2. n段のそれぞれに関して、Ri+1≦Riである、請求項1記載のイオンガイド。
  3. 電圧源が、段のそれぞれにおいて、対向する細長い導電ロッドセグメントにDC分解電位をさらに提供する、請求項2記載のイオンガイド。
  4. 電圧源が、対向する細長い導電ロッドセグメント間に大きさ2Ub-iのDC成分をさらに提供する、請求項3記載のイオンガイド。
  5. 電圧源が、少なくとも1組の隣接するn段の間にDC成分Uc-iをさらに提供する、請求項1記載のイオンガイド。
  6. DC成分Uc-iが、ガイド軸に沿ってDC電界を提供する、請求項5記載のイオンガイド。
  7. n段のうち少なくとも1つの段に関してUc-iが、該n段のうちの該段においてイオンを捕捉するために、ガイド軸に沿って導かれる該イオンのエネルギを超える、請求項5記載のイオンガイド。
  8. n段のうちn番目の段に関してUc-iが、該n段のうちの該n番目の段の付近でイオンを捕捉するために、ガイド軸に沿って導かれる該イオンのエネルギを超える、請求項5記載のイオンガイド。
  9. n段のうち(n-1)番目の段に関してUciが、該n段のうちの該(n-1)番目の段の付近でイオンを捕捉するために、ガイド軸に沿って導かれる該イオンのエネルギを超える、請求項5記載のイオンガイド。
  10. AC成分が、n段のそれぞれのうちi番目のそれぞれに関して周波数Ωiおよび振幅Vac-iを有する、請求項1記載のイオンガイド。
  11. n段のうち少なくとも2つに関してVac-iが異なる、請求項10記載のイオンガイド。
  12. n段のうち少なくとも2つに関してΩiが異なる、請求項10記載のイオンガイド。
  13. 質量対電荷量比m/zの各イオンに関して、q=zVac-i/mri 2Ωi 2が、n段のすべてに関して実質的に一定である、請求項12記載のイオンガイド。
  14. 電圧源が、n段のそれぞれのうちi番目の複数の対向する細長いロッドの間に周波数ω'iを有する少なくとも1つの追加AC成分をさらに提供する、請求項1記載のイオンガイド。
  15. n段のそれぞれが、2対の対向する細長いロッドを含み、実質的に4極性の電界を生成する、請求項1記載のイオンガイド。
  16. n段のそれぞれに関してri/Riが1.12〜1.15である、請求項15記載のイオンガイド。
  17. liのそれぞれが1cmより大きい、請求項1記載のイオンガイド。
  18. li>li+1である、請求項1記載のイオンガイド。
  19. n段のそれぞれの隣接する段のロッドが、ガイド軸に沿って少なくとも1mmの間隙によって分離される、請求項1記載のイオンガイド。
  20. 電圧源が、複数の直列相互接続されるコンデンサを含み、n段のそれぞれのロッドに対する電圧が、該直列コンデンサのうちの2つの間から提供される、請求項1記載のイオンガイド。
  21. 電圧源が、直列相互接続されるコンデンサの1つとそれぞれが並列に相互接続される、複数の抵抗器をさらに含む、請求項20記載のイオンガイド。
  22. n段のうち第1のが、第1の圧力の領域から延び、該n段のうちn番目のが、第2の圧力の領域へと延び、該第2の圧力が、該第1の圧力より大きい、請求項1記載のイオンガイド。
  23. n個のセグメントのうち第1のセグメントが、第1の圧力の領域から延びるよう導き、該n個のセグメントのうちn番目のセグメントが、第2の圧力の領域へと導き、該第1の圧力が、該第2の圧力より大きい、請求項1記載のイオンガイド。
  24. Riが、各段に関して入口から出口まで減少する、請求項1記載のイオンガイド。
  25. 請求項1記載のイオンガイドを備える、質量分析計。
  26. 少なくとも3つのn段に関してRiが異なる、請求項1記載のイオンガイド。
  27. n段のうちの少なくとも1つの段が、2対の対向する細長いロッドを含み、実質的に4極性の電界を生成する、請求項1記載のイオンガイド。
  28. n段のそれぞれの少なくとも1つの段に関してri/Riが1.12〜1.15である、請求項27記載のイオンガイド。
  29. n段の少なくとも1つの段が、3対の対向する細長いロッドを含む、請求項1記載のイオンガイド。
  30. n段の少なくとも1つの段が、4対の対向する細長いロッドを含む、請求項1記載のイオンガイド。
  31. n段の少なくとも1つの段が、5対またはそれ以上の対向する細長いロッドを含む、請求項1記載のイオンガイド。
  32. n段のそれぞれの隣接する段のロッドが、ガイド軸に沿って1〜3mmの間隙によって分離される、請求項1記載のイオンガイド。
  33. n段の少なくとも2つに関してri/Riが一定である、請求項1記載のイオンガイド。
  34. 請求項1記載のイオンガイドを備える、質量分析計。
  35. liの少なくとも1つがli+1より大きい、請求項1記載のイオンガイド。
  36. その間に交流電界を生成するための、ガイド軸を中心として配置される少なくとも部分的に導電性の複数の対向する細長いロッドセグメントを含むイオンガイドであって、
    該細長いロッドセグメントのそれぞれが、半径r(x)を有する実質的に円形の断面を有し該ガイド軸から位置r(x)+R(x)で中心に置かれ、xは、該ガイド軸に沿った位置xを表し、r(x)/R(x)は、該ガイド軸に沿ったxの値に関して実質的に一定でありかつ少なくともr(x)とR(x)のうちの1つが、該ガイド軸に沿って一定ではない、
    イオンガイド。
  37. 細長いロッドセグメントと相互に接続されて交流電界を生成するAC電圧源をさらに含む、請求項36記載のイオンガイド。
  38. AC電圧源が、対向するロッドセグメント対の間にAC電圧を印加する、請求項37記載のイオンガイド。
  39. 細長い導電ロッドが、ガイドの開口部および出口を画定し、該出口でイオンを捕捉するために捕捉レンズをさらに含む、請求項36記載のイオンガイド。
  40. 捕捉レンズが開口部プレートを含む、請求項39記載のイオンガイド。
  41. 捕捉レンズが少なくとも1対の対向するロッドを含む、請求項40記載のイオンガイド。
  42. R(x)がガイド軸に沿って線形に減少する、請求項36記載のガイド。
  43. 細長い導電ロッドが、ガイド軸に沿ってより高圧の領域からより低圧の領域まで延びる、請求項36記載のイオンガイド。
  44. イオンガイドが、軸に沿って実質的に4極性の電界を生成するように配置された、少なくとも部分的に導電性の2対の複数の対向する細長いロッドセグメントを含む、請求項36記載のイオンガイド。
  45. 電圧源が、複数の対抗する細長いロッドの間に大きさU(x)のDC成分をさらに提供する、請求項36記載のイオンガイド。
  46. AC電圧源が、Ωの周波数の成分を有するAC電圧を生成する、請求項37記載のイオンガイド。
  47. AC電圧源が、可変振幅のAC電圧を提供するように変更されてもよい、請求項37記載のイオンガイド。
  48. AC電圧源が調節可能な周波数のAC電圧を提供する、請求項37記載のイオンガイド。
  49. 電圧源が、複数の対向する細長いロッド間で周波数ωiを有する少なくとも1つの追加AC成分をさらに提供する、請求項38記載のイオンガイド。
  50. 請求項36記載のイオンガイドを備える、質量分析計。
  51. n段のそれぞれが、ガイド軸に沿って少なくとも実質的に4極性の電界を生成するように配置される2対の細長い導電ロッドセグメントを含む、請求項1記載のイオンガイド。
  52. n段のそれぞれが、ガイド軸に沿って6極性の電界を生成するように配置される3対の細長い導電ロッドセグメントを含む、請求項1記載のイオンガイド。
  53. n段のそれぞれが、ガイド軸に沿って8極性の電界を生成するように配置される4対の細長い導電ロッドセグメントを含む、請求項1記載のイオンガイド。
  54. n段のそれぞれが、ガイド軸に沿ってn極性の電界を生成するように配置される2n対の細長い導電ロッドセグメントを含む、請求項1記載のイオンガイド。
  55. n段を更に含み、かつ該n段のそれぞれが、ガイド軸に沿って実質的に4極性の電界を生成するように配置される2対の細長いロッドセグメントを含む、請求項36記載のイオンガイド。
  56. n段を更に含み、かつ該n段のそれぞれが、ガイド軸に沿って6極性の電界を生成するように配置される3対の細長いロッドセグメントを含む、請求項36記載のイオンガイド。
  57. n段を更に含み、かつ該n段のそれぞれが、ガイド軸に沿って8極性の電界を生成するように配置される4対の細長いロッドセグメントを含む、請求項36記載のイオンガイド。
  58. n段を更に含み、かつ該n段のそれぞれが、ガイド軸に沿ってn極性の電界を生成するように配置される2n対の細長いロッドセグメントを含む、請求項36記載のイオンガイド。
JP2008549729A 2006-01-13 2007-01-11 集束型質量分析計イオンガイド、分光計および方法 Active JP5301285B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/331,153 2006-01-13
US11/331,153 US7569811B2 (en) 2006-01-13 2006-01-13 Concentrating mass spectrometer ion guide, spectrometer and method
PCT/CA2007/000049 WO2007079588A1 (en) 2006-01-13 2007-01-11 Concentrating mass spectrometer ion guide, spectrometer and method

Publications (3)

Publication Number Publication Date
JP2009523300A JP2009523300A (ja) 2009-06-18
JP2009523300A5 JP2009523300A5 (ja) 2011-03-10
JP5301285B2 true JP5301285B2 (ja) 2013-09-25

Family

ID=38255947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008549729A Active JP5301285B2 (ja) 2006-01-13 2007-01-11 集束型質量分析計イオンガイド、分光計および方法

Country Status (6)

Country Link
US (2) US7569811B2 (ja)
JP (1) JP5301285B2 (ja)
CA (1) CA2636821C (ja)
DE (1) DE112007000146B4 (ja)
GB (1) GB2455831B (ja)
WO (1) WO2007079588A1 (ja)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569811B2 (en) * 2006-01-13 2009-08-04 Ionics Mass Spectrometry Group Inc. Concentrating mass spectrometer ion guide, spectrometer and method
GB0620468D0 (en) * 2006-10-16 2006-11-22 Micromass Ltd Mass spectrometer
JP4918846B2 (ja) * 2006-11-22 2012-04-18 株式会社日立製作所 質量分析装置及び質量分析方法
US7868289B2 (en) * 2007-04-30 2011-01-11 Ionics Mass Spectrometry Group Inc. Mass spectrometer ion guide providing axial field, and method
JP5262010B2 (ja) 2007-08-01 2013-08-14 株式会社日立製作所 質量分析計及び質量分析方法
US7671344B2 (en) 2007-08-31 2010-03-02 Battelle Memorial Institute Low pressure electrospray ionization system and process for effective transmission of ions
US7985951B2 (en) * 2007-12-20 2011-07-26 Shimadzu Corporation Mass spectrometer
US7659505B2 (en) * 2008-02-01 2010-02-09 Ionics Mass Spectrometry Group Inc. Ion source vessel and methods
EP2266130A1 (en) 2008-04-02 2010-12-29 Sociedad Europea De Analisis Diferencial De Movilidad S.L. The use ion guides with electrodes of small dimensions to concentrate small charged species in a gas at relatively high pressure
US8008618B2 (en) * 2008-06-09 2011-08-30 Frank Londry Multipole ion guide for providing an axial electric field whose strength increases with radial position, and a method of operating a multipole ion guide having such an axial electric field
US8193489B2 (en) * 2009-05-28 2012-06-05 Agilent Technologies, Inc. Converging multipole ion guide for ion beam shaping
US8124930B2 (en) * 2009-06-05 2012-02-28 Agilent Technologies, Inc. Multipole ion transport apparatus and related methods
US20110049360A1 (en) * 2009-09-03 2011-03-03 Schoen Alan E Collision/Reaction Cell for a Mass Spectrometer
DE102010001349B9 (de) * 2010-01-28 2014-08-28 Carl Zeiss Microscopy Gmbh Vorrichtung zum Fokussieren sowie zum Speichern von Ionen
DE102010013546B4 (de) * 2010-02-01 2013-07-25 Bruker Daltonik Gmbh Ionenmanipulationszelle mit maßgeschneiderten Potenzialprofilen
US8455814B2 (en) * 2010-05-11 2013-06-04 Agilent Technologies, Inc. Ion guides and collision cells
WO2011161788A1 (ja) * 2010-06-24 2011-12-29 株式会社島津製作所 大気圧イオン化質量分析装置
US9362196B2 (en) * 2010-07-15 2016-06-07 Kabushiki Kaisha Toshiba Semiconductor package and mobile device using the same
US8829434B2 (en) * 2010-11-19 2014-09-09 Hitachi High-Technologies Corporation Mass spectrometer and mass spectrometry method
EP2770523A4 (en) * 2011-10-20 2015-05-27 Shimadzu Corp MASS SPECTROMETRY
WO2013063660A1 (en) 2011-11-03 2013-05-10 Bruker Biosciences Pty Ltd Improvements in or relating to mass spectrometry
US9653278B2 (en) 2011-12-28 2017-05-16 DH Technologies Development Ptd. Ltd. Dynamic multipole Kingdon ion trap
EP2798666B1 (en) * 2011-12-29 2018-07-04 DH Technologies Development Pte. Ltd. Ion extraction method for ion trap mass spectrometry
CN104011830B (zh) * 2011-12-29 2016-11-16 Dh科技发展私人贸易有限公司 用于改良质谱仪灵敏度的方法和设备
GB2502155B (en) * 2012-05-18 2020-05-27 Fasmatech Science And Tech Sa Apparatus and method for controlling ions
US9916969B2 (en) 2013-01-14 2018-03-13 Perkinelmer Health Sciences Canada, Inc. Mass analyser interface
DE102013114421B4 (de) * 2013-12-19 2016-02-18 Gottfried Wilhelm Leibniz Universität Hannover Gasanalyseeinrichtung und Verfahren zur Gasanalyse
CN105874331A (zh) * 2013-12-31 2016-08-17 Dh科技发展私人贸易有限公司 使用高效离子导向器的真空dms
WO2015151160A1 (ja) * 2014-03-31 2015-10-08 株式会社島津製作所 質量分析方法及び質量分析装置
US10153147B2 (en) 2014-06-10 2018-12-11 Micromass Uk Limited Method of compressing an ion beam
GB201410247D0 (en) * 2014-06-10 2014-07-23 Micromass Ltd Separation for space charge reduction
EP3155632B1 (en) 2014-06-11 2022-07-27 Micromass UK Limited Ion profiling with a scanning quadrupole mass filter
US9449804B2 (en) 2014-11-11 2016-09-20 Agilent Technologies, Inc. Dual field multipole converging ion guides, hyperbolic ion guides, and related methods
EP3224856A4 (en) * 2014-11-28 2018-10-10 DH Technologies Development PTE. Ltd. Rf ion guide
US9536723B1 (en) * 2015-02-06 2017-01-03 Agilent Technologies, Inc. Thin field terminator for linear quadrupole ion guides, and related systems and methods
US9929003B2 (en) * 2015-06-04 2018-03-27 Thermo Finnigan Llc Ion source filter
JP6571124B2 (ja) * 2017-03-30 2019-09-04 太陽誘電株式会社 電子部品モジュールの製造方法
US12002672B2 (en) * 2017-07-11 2024-06-04 Dh Technologies Development Pte. Ltd. Apparatus and methods for reduced neutral contamination in a mass spectrometer
EP3688789A4 (en) * 2017-09-29 2021-09-29 Perkinelmer Health Sciences Canada, Inc OFF-AXIS IONIZATION DEVICES AND SYSTEMS
US10658168B2 (en) 2018-05-03 2020-05-19 Perkinelmer Health Sciences Canada, Inc. Multiple gas flow ionizer
GB2595876B (en) * 2020-06-09 2024-02-07 Microsaic Systems Plc Mass spectrometry ion funnel
GB2625377A (en) 2022-12-16 2024-06-19 Thermo Fisher Scient Bremen Gmbh Interface Ion guide

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234791A (en) 1978-11-13 1980-11-18 Research Corporation Tandem quadrupole mass spectrometer for selected ion fragmentation studies and low energy collision induced dissociator therefor
US4963738A (en) * 1986-12-22 1990-10-16 Xerox Corporation Flat comb-like scorotron charging device
CA1307859C (en) 1988-12-12 1992-09-22 Donald James Douglas Mass spectrometer and method with improved ion transmission
US5248875A (en) 1992-04-24 1993-09-28 Mds Health Group Limited Method for increased resolution in tandem mass spectrometry
JPH07240171A (ja) 1994-02-24 1995-09-12 Shimadzu Corp Ms/ms型質量分析装置
CA2229070C (en) 1995-08-11 2007-01-30 Mds Health Group Limited Spectrometer with axial field
US6753523B1 (en) 1998-01-23 2004-06-22 Analytica Of Branford, Inc. Mass spectrometry with multipole ion guides
US6107628A (en) 1998-06-03 2000-08-22 Battelle Memorial Institute Method and apparatus for directing ions and other charged particles generated at near atmospheric pressures into a region under vacuum
GB2341270A (en) 1998-09-02 2000-03-08 Shimadzu Corp Mass spectrometer having ion lens composed of plurality of virtual rods comprising plurality of electrodes
GB2346730B (en) 1999-02-11 2003-04-23 Masslab Ltd Ion source for mass analyser
US6417511B1 (en) * 2000-07-17 2002-07-09 Agilent Technologies, Inc. Ring pole ion guide apparatus, systems and method
CA2364676C (en) 2000-12-08 2010-07-27 Mds Inc., Doing Business As Mds Sciex Ion mobility spectrometer incorporating an ion guide in combination with an ms device
GB2404784B (en) 2001-03-23 2005-06-22 Thermo Finnigan Llc Mass spectrometry method and apparatus
US6919562B1 (en) * 2002-05-31 2005-07-19 Analytica Of Branford, Inc. Fragmentation methods for mass spectrometry
US7034292B1 (en) * 2002-05-31 2006-04-25 Analytica Of Branford, Inc. Mass spectrometry with segmented RF multiple ion guides in various pressure regions
JP2004014177A (ja) 2002-06-04 2004-01-15 Shimadzu Corp 質量分析装置
GB0226017D0 (en) 2002-11-08 2002-12-18 Micromass Ltd Mass spectrometer
US6730604B1 (en) * 2002-12-11 2004-05-04 Taiwan Semiconductor Manufacturing Company, Ltd. Dynamic contamination control of equipment controlled by a split runcard
US20040195503A1 (en) * 2003-04-04 2004-10-07 Taeman Kim Ion guide for mass spectrometers
US6730904B1 (en) 2003-04-30 2004-05-04 Varian, Inc. Asymmetric-field ion guiding devices
CA2583653C (en) * 2004-10-28 2016-12-06 Albert Edward Litherland Method and apparatus for separation of isobaric interferences
US7259371B2 (en) * 2005-01-10 2007-08-21 Applera Corporation Method and apparatus for improved sensitivity in a mass spectrometer
US7449687B2 (en) * 2005-06-13 2008-11-11 Agilent Technologies, Inc. Methods and compositions for combining ions and charged particles
US7569811B2 (en) * 2006-01-13 2009-08-04 Ionics Mass Spectrometry Group Inc. Concentrating mass spectrometer ion guide, spectrometer and method
EP1984934A4 (en) * 2006-02-08 2015-01-14 Dh Technologies Dev Pte Ltd HIGH FREQUENCY ION GUIDE
US7868289B2 (en) * 2007-04-30 2011-01-11 Ionics Mass Spectrometry Group Inc. Mass spectrometer ion guide providing axial field, and method
US7985951B2 (en) * 2007-12-20 2011-07-26 Shimadzu Corporation Mass spectrometer

Also Published As

Publication number Publication date
JP2009523300A (ja) 2009-06-18
DE112007000146T5 (de) 2008-12-18
GB0813724D0 (en) 2008-09-03
GB2455831B (en) 2011-06-15
CA2636821A1 (en) 2007-07-19
US7932488B2 (en) 2011-04-26
WO2007079588A1 (en) 2007-07-19
US20090218484A1 (en) 2009-09-03
US7569811B2 (en) 2009-08-04
DE112007000146B4 (de) 2014-09-04
US20070164213A1 (en) 2007-07-19
CA2636821C (en) 2015-04-07
GB2455831A (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP5301285B2 (ja) 集束型質量分析計イオンガイド、分光計および方法
US7329866B2 (en) Two-dimensional ion trap mass spectrometry
US8969798B2 (en) Abridged ion trap-time of flight mass spectrometer
US20160225598A1 (en) Pulsed ion guides for mass spectrometers and related methods
US7329864B2 (en) Mass spectrometry with multiple ionization sources and multiple mass analyzers
US8637816B1 (en) Systems and methods for MS-MS-analysis
US8927940B2 (en) Abridged multipole structure for the transport, selection and trapping of ions in a vacuum system
EP1341205A2 (en) Electric charge adjusting method, device therefor, and mass spectrometer
JP2008507108A (ja) 質量分析計
WO2005067000A2 (en) Ion extraction devices and methods of selectively extracting ions
US9184040B2 (en) Abridged multipole structure for the transport and selection of ions in a vacuum system
EP1267386A2 (en) Method and apparatus for Fourier transform mass spectrometry (FTMS) in a linear multipole ion trap
US20230055007A1 (en) Ion guide with varying multipoles
US20200234939A1 (en) Mass spectrometer components including programmable elements and devices and systems using them
US20130009050A1 (en) Abridged multipole structure for the transport, selection, trapping and analysis of ions in a vacuum system
US20240136167A1 (en) Mass spectrometer and method
CA2837873C (en) Abridged multipole structure for the transport, selection and trapping of ions in a vacuum system
US20240404810A1 (en) Mass spectrometer and method
CA2837876C (en) Abridged multipole structure for the transport, selection, trapping and analysis of ions in a vacuum system
JP2005032476A (ja) 質量分析装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121024

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130118

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130222

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130322

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130619

R150 Certificate of patent or registration of utility model

Ref document number: 5301285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250