[go: up one dir, main page]

JP5289989B2 - Phase difference measuring device - Google Patents

Phase difference measuring device Download PDF

Info

Publication number
JP5289989B2
JP5289989B2 JP2009015196A JP2009015196A JP5289989B2 JP 5289989 B2 JP5289989 B2 JP 5289989B2 JP 2009015196 A JP2009015196 A JP 2009015196A JP 2009015196 A JP2009015196 A JP 2009015196A JP 5289989 B2 JP5289989 B2 JP 5289989B2
Authority
JP
Japan
Prior art keywords
polarizer
phase difference
transmission axis
sample
azimuth angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009015196A
Other languages
Japanese (ja)
Other versions
JP2010175266A (en
Inventor
明生 和田
知行 深沢
勉 井上
文則 佐藤
充 佐野
央 眞砂
勝二 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp filed Critical Jasco Corp
Priority to JP2009015196A priority Critical patent/JP5289989B2/en
Publication of JP2010175266A publication Critical patent/JP2010175266A/en
Application granted granted Critical
Publication of JP5289989B2 publication Critical patent/JP5289989B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、複屈折試料の軸方位および位相差を測定する位相差測定装置に関する。   The present invention relates to a phase difference measuring apparatus that measures the axial direction and phase difference of a birefringent sample.

従来、露出器用のレンズ硝材などの複屈折試料の軸方位および位相差を測定する装置として、位相差測定装置が知られている(例えば、特許文献1参照)。この位相差測定装置は、光源からの直線偏光の偏光状態を所定の周波数で変調させて試料に照射し、試料を透過する光の強度を測定し、測定データに基づき軸方位および位相差を算出するものである。
一般的に位相差測定装置では、試料の屈折率の軸を軸立てすることが必要となる。ここで、屈折率の軸とは、試料が複屈折を起こす際の、進相軸および遅相軸を示し、これらの軸の方位角を本文にて軸方位と示す。また、軸立てとは、光軸の回りに試料を回転させて、複屈折に由来する信号の絶対値が最大となる方位に設定することを示す。
Conventionally, a phase difference measuring apparatus is known as an apparatus for measuring the axial direction and phase difference of a birefringent sample such as a lens glass material for an exposure device (see, for example, Patent Document 1). This phase difference measurement device modulates the polarization state of linearly polarized light from a light source at a predetermined frequency, irradiates the sample, measures the intensity of light transmitted through the sample, and calculates the axial orientation and phase difference based on the measurement data To do.
Generally, in a phase difference measuring apparatus, it is necessary to set the axis of the refractive index of a sample. Here, the axis of the refractive index indicates a fast axis and a slow axis when the sample causes birefringence, and the azimuth angle of these axes is referred to as an axial direction in the text. Further, the axis setting means that the sample is rotated around the optical axis and set to an orientation in which the absolute value of the signal derived from birefringence is maximized.

一方、一般的な光学顕微鏡または電子顕微鏡とは異なる原理に基づく近接場顕微鏡が開発され、広く用いられている(例えば、特許文献2参照)。近接場顕微鏡は、いわゆる近接場光を検出するものである。すなわち、被測定試料に光を照射すると、被測定物表面付近には近接場光と呼ばれる表面波が発生する。この表面波は光の波長以内の距離領域に局在している。そこで、光の波長以下の先端寸法をもつ先鋭化プローブ、いわゆる近接場プローブを近接場光の場の中に差し込んで近接場光を散乱させ、その散乱光強度を測定することによりプローブ先端と被測定物表面との距離を規定することができる。
例えば、散乱光の強度が一定となるようにプローブを走査することにより、該プローブ先端位置は被測定物表面の凹凸を的確に反映するものとなり、しかもプローブ先端は近接場光の場に存在するのみであり被測定物そのものには接触していないため、試料に対して非接触、非破壊でかつ光の波長の値より小さいものを観察できる。
特許文献2に記載の近接場プローブの先端には、所定の振動方向の直線偏光を得るための楕円形状またはスリット形状の開口が形成されている。このような近接場プローブは、偏光プローブと呼ばれ、散乱光の中から所定の振動方向の直線偏光を集光することができ、集光モード、照射モードのいずれの場合にも、良好な偏光選択性を示す。
On the other hand, a near-field microscope based on a principle different from a general optical microscope or electron microscope has been developed and widely used (see, for example, Patent Document 2). The near-field microscope detects so-called near-field light. That is, when light is irradiated on the sample to be measured, a surface wave called near-field light is generated near the surface of the object to be measured. This surface wave is localized in a distance region within the wavelength of light. Therefore, a sharpened probe having a tip dimension less than the wavelength of light, a so-called near-field probe, is inserted into the near-field light field to scatter the near-field light, and the scattered light intensity is measured to measure the probe tip and the object to be covered. The distance to the surface of the measurement object can be defined.
For example, by scanning the probe so that the intensity of scattered light is constant, the probe tip position accurately reflects the unevenness of the surface of the object to be measured, and the probe tip exists in the near-field light field. Since the object to be measured is not in contact with the sample, it can be observed that the sample is non-contact, non-destructive and smaller than the wavelength of light.
At the tip of the near-field probe described in Patent Document 2, an elliptical or slit-shaped opening for obtaining linearly polarized light in a predetermined vibration direction is formed. Such a near-field probe is called a polarization probe, can collect linearly polarized light in a predetermined vibration direction from scattered light, and has good polarization in both the condensing mode and the irradiation mode. Shows selectivity.

発明者らは、特許文献1の位相差測定装置に、特許文献2に記載の近接場を偏光プローブで集光する技術を適用し、試料を透過する光を偏光プローブにより検出することで、従来よりも精度のよい軸方位および位相差を測定できる位相差測定装置の開発に鋭意取り組んできた。   The inventors apply a technique for condensing the near field described in Patent Document 2 to the phase difference measurement apparatus of Patent Document 1 using a polarization probe, and detect light transmitted through the sample using a polarization probe. We have been diligently working on the development of a phase difference measuring device that can measure axial orientation and phase difference with higher accuracy.

特開2004−184225号公報JP 2004-184225 A 特開2002−162333号公報JP 2002-162333 A

しかしながら、プローブ先端を試料表面の近接場に対してナノメートル単位で近接させた状態で、試料の軸立てを行うには、偏光プローブに対して試料を回転させなければならない。この場合、プローブ先端を破損しないように試料の中心を高精度に保持しなければならず、回転機構の精度上の制約を受けてしまい、実現することが困難であった。
これに対して、試料を回転させずに位相差を測定する方法として、試料よりも後段に設けられた検光子の軸方位を0°および45°に設定し、それぞれの設定位置で検出光を測定し、検出信号のうち偏光変調の周波数と同じ周波数の信号成分および偏光変調の周波数の2倍の周波数の信号成分を取り出し、その信号成分に基づいて位相差を算出する方法や、あるいは、検出子を360°回転させ、回転角に伴う強度信号を測定し、その振幅と位相から位相差を算出するという方法もある。
しかしながら、これらいずれの測定方法によっても、偏光プローブを用いる場合には、プローブ先端を試料表面に近接させた状態で、偏光プローブの偏光方向を光軸中心に回転させなければならず、偏光プローブの回転機構の精度上の制約を受けて、実施することができなかった。
However, the sample must be rotated with respect to the polarizing probe in order to pivot the sample while the probe tip is close to the near field of the sample surface in nanometer units. In this case, the center of the sample has to be held with high accuracy so as not to damage the probe tip, which is difficult to achieve because it is restricted by the accuracy of the rotation mechanism.
On the other hand, as a method of measuring the phase difference without rotating the sample, the axial orientation of the analyzer provided at a stage after the sample is set to 0 ° and 45 °, and the detection light is set at each set position. Measure and extract a signal component having the same frequency as the polarization modulation frequency and a signal component having a frequency twice the polarization modulation frequency from the detection signal, and calculating the phase difference based on the signal component, or detection There is also a method in which the child is rotated 360 °, an intensity signal associated with the rotation angle is measured, and a phase difference is calculated from the amplitude and phase.
However, in any of these measurement methods, when a polarization probe is used, the polarization direction of the polarization probe must be rotated around the optical axis with the probe tip close to the sample surface. Due to the limitation on the accuracy of the rotating mechanism, it could not be implemented.

本発明の目的は、偏光プローブを用いて高精度に軸方位および位相差を測定できる位相差測定装置を提供することである。   The objective of this invention is providing the phase difference measuring apparatus which can measure an axial azimuth | direction and a phase difference with a high precision using a polarization probe.

本発明の位相差測定装置は、照射部からの光を直線偏光にして透過する偏光子と、前記偏光子と試料との間に設けられ前記偏光子からの直線偏光の偏光状態を変調する変調子と、前記変調子からの偏光が照射されることによって試料の測定面に発生する近接場光のうち、所定の振動方向の直線偏光を透過する楕円形状またはスリット形状の開口を有した偏光プローブと、前記偏光子の透過軸の方位角と前記変調子の変調軸の方位角との差が常に45°となるように、前記偏光子および前記変調子を一体として回転させ、かつ、前記偏光プローブの透過軸の方位角を基準として前記偏光子の透過軸の方位角を0°および45°の2通りの方位角に設定する回転機構と、前記偏光プローブによって集光された近接場光を検出して光強度信号を生じる検出部と、前記光強度信号に基づいて、試料に照射される偏光によって生じる進相軸方位の偏光成分と遅相軸方位の偏光成分との位相差、および、試料の軸方位を算出する演算部と、を備え、前記回転機構が前記偏光子の透過軸を0°および45°の2通りの方位角に設定して、前記検出部が設定された前記方位角における近接場光を検出することによって、試料の軸方位および位相差を測定することを特徴とする。 The phase difference measuring apparatus of the present invention includes a polarizer that transmits light from an irradiation unit as linearly polarized light, and a modulator that is provided between the polarizer and the sample and modulates the polarization state of linearly polarized light from the polarizer. and tone, the variable polarization from tone is generated in the measurement surface of the sample by being irradiated out of the near-field light, the polarization probe having an aperture of elliptical or slit-shaped to transmit predetermined vibration direction of the linearly polarized light The polarizer and the modulator are rotated together so that the difference between the azimuth angle of the transmission axis of the polarizer and the azimuth angle of the modulation axis of the modulator is always 45 °, and the polarization a rotating mechanism the azimuth angle of the transmission axis of the polarizer the azimuth angle of the transmission axis of the probe as a reference to set the azimuth of the two types of 0 ° and 45 °, near-field light collected by the polarization probe Detects light intensity signal Calculation for calculating the phase difference between the polarization component of the fast axis direction and the polarization component of the slow axis direction and the axis direction of the sample generated by the polarized light irradiated to the sample based on the light intensity signal And the rotation mechanism sets the transmission axis of the polarizer to two azimuth angles of 0 ° and 45 °, and the detection unit detects near-field light at the set azimuth angle. Thus, the axial direction and phase difference of the sample are measured.

本発明によれば、試料の前段に設けられる偏光子を回転させる回転機構を設け、試料の後段に設けられる偏光プローブの透過軸に対して、偏光子の透過軸を回転することによって、偏光プローブで集光される近接場光の光強度信号を取得するので、偏光プローブに対して試料を回転させることも、試料に対して偏光プローブを回転させることも不要となる。
また、偏光プローブを用いて近接場光を集光することで、試料の測定面に生じる近接場光を光の波長以下の空間分解で測定することができる。
従って、試料または偏光プローブを回転させる必要がなく、偏光プローブを用いて試料の軸方位および位相差を高い空間分解能で測定することができる。
According to the present invention, a polarizing mechanism is provided by rotating a polarizer provided at the front stage of the sample, and rotating the transmission axis of the polarizer with respect to the transmission axis of the polarizing probe provided at the rear stage of the sample. Since the light intensity signal of the near-field light collected at is acquired, it is not necessary to rotate the sample with respect to the polarization probe or to rotate the polarization probe with respect to the sample.
In addition, by collecting near-field light using a polarization probe, the near-field light generated on the measurement surface of the sample can be measured by spatial resolution below the wavelength of the light.
Therefore, it is not necessary to rotate the sample or the polarization probe, and the axial direction and phase difference of the sample can be measured with high spatial resolution using the polarization probe.

本発明によれば、偏光子および変調子が一体として回転できるように設けられ、偏光子の透過軸の方位角を0°および45°の2通りの方位角に設定して、設定された各方位角に応じた光強度信号を取得するので、これらの光強度信号の信号を解析すれば、試料に関する2つの未知数である位相差および軸方位を確実に算出できる。   According to the present invention, the polarizer and the modulator are provided so as to be rotated together, and the azimuth angle of the transmission axis of the polarizer is set to two azimuth angles of 0 ° and 45 °, Since the light intensity signal corresponding to the azimuth angle is acquired, by analyzing the signals of these light intensity signals, it is possible to reliably calculate the phase difference and the axial direction, which are two unknowns related to the sample.

本発明の位相差測定装置では、前記光強度信号から、前記変調子が偏光状態を変調する際の変調周波数と同じ周波数の信号、および、前記変調周波数の2倍の周波数の信号を抽出する抽出部を備え、前記演算部は、前記抽出部が抽出する信号の大きさに基づいて試料の軸方位および位相差を算出することが好ましい。   In the phase difference measuring apparatus of the present invention, extraction is performed by extracting from the light intensity signal a signal having the same frequency as the modulation frequency when the modulator modulates the polarization state, and a signal having a frequency twice the modulation frequency. Preferably, the calculation unit calculates the axial direction and phase difference of the sample based on the magnitude of the signal extracted by the extraction unit.

本発明によれば、変調子によって直線偏光の偏光状態が周期的に変調するので、その変調周波数(f)を参照して、光強度信号から等しい周波数の信号成分(f信号)、および、2倍の周波数の信号成分(2f信号)を容易に抽出することができ、試料の位相差および軸方位を短時間で算出することができる。   According to the present invention, the polarization state of linearly polarized light is periodically modulated by the modulator, so that the signal component (f signal) having the same frequency from the light intensity signal is referred to with reference to the modulation frequency (f), and 2 A signal component having a double frequency (2f signal) can be easily extracted, and the phase difference and axial orientation of the sample can be calculated in a short time.

本発明の位相差測定装置では、前記抽出部が抽出する信号は、前記偏光子の透過軸の方位角が0°である場合に前記光強度信号から抽出される前記変調周波数fと同じ周波数の信号成分I および2倍の周波数の信号I 2fと、前記偏光子の透過軸の方位角が45°である場合に前記光強度信号から抽出される前記変調周波数の2倍の周波数の信号成分I45 2fであり、前記演算部は、試料の軸方位θおよび位相差Δを以下の数1に基づいて算出することが好ましい。

Figure 0005289989
In the phase difference measuring apparatus of the present invention, the signal extracted by the extraction unit has the same frequency as the modulation frequency f extracted from the light intensity signal when the azimuth angle of the transmission axis of the polarizer is 0 °. A signal component I 0 f and a signal I 0 2f having a frequency twice that of the modulation frequency extracted from the light intensity signal when the azimuth angle of the transmission axis of the polarizer is 45 °. signal is a component I 45 2f, the arithmetic unit is preferably calculated based on the axial orientation θ and the phase difference Δ of the sample of 1 or less.
Figure 0005289989

本発明によれば、抽出部で信号成分I ,I 2fおよびI45 2fを抽出するだけで、数1に基づいて試料の位相差および軸方位を迅速かつ簡単に算出することができる。 According to the present invention, it is possible to quickly and easily calculate the phase difference and the axial direction of the sample based on Equation 1 simply by extracting the signal components I 0 f , I 0 2f and I 45 2f by the extraction unit. .

本発明の位相差測定装置では、前記偏光子の透過軸の回転範囲が−45°から90°であることが好ましい。   In the phase difference measuring apparatus of the present invention, it is preferable that the rotation range of the transmission axis of the polarizer is −45 ° to 90 °.

本発明によれば、偏光プローブの透過軸の方位角が不明であっても、偏光子の透過軸の方位角を−45°から90°の範囲で変化させることで、偏光子の透過軸を偏光プローブの透過軸に一致させることができる。従って、偏光プローブの透過軸の設定作業を省略することができ、測定作業の効率化を図ることができる。   According to the present invention, even if the azimuth angle of the transmission axis of the polarization probe is unknown, the transmission axis of the polarizer can be changed by changing the azimuth angle of the transmission axis of the polarizer in the range of −45 ° to 90 °. It can coincide with the transmission axis of the polarization probe. Therefore, the setting operation of the transmission axis of the polarization probe can be omitted, and the efficiency of the measuring operation can be improved.

本発明の位相差測定装置では、前記偏光子の透過軸の回転範囲が0°から135°であり、前記演算部は、前記偏光子の透過軸の方位角が0°および90°である場合の前記光強度信号から抽出される前記変調子の変調周波数の2倍の周波数の各信号成分I 2f,I90 2fの和と、前記偏光子の透過軸の方位角が45°および135°である場合の前記光強度信号から抽出される前記変調周波数の2倍の周波数の各信号成分I45 2f,I135 2fの和と、を算出して、前記偏光プローブの透過軸の方位角のゼロ点を補正することが好ましい。 In the phase difference measuring apparatus according to the present invention, the rotation range of the transmission axis of the polarizer is 0 ° to 135 °, and the calculation unit is configured such that the azimuth angle of the transmission axis of the polarizer is 0 ° and 90 °. The sum of signal components I 0 2f and I 90 2f having a frequency twice the modulation frequency of the modulator extracted from the light intensity signal and the azimuth of the transmission axis of the polarizer are 45 ° and 135 °. And the sum of the signal components I 45 2f and I 135 2f having a frequency twice the modulation frequency extracted from the light intensity signal in the case of It is preferable to correct the zero point.

本発明によれば、偏光子の透過軸が0°から135°の範囲で回転できるので、偏光子の透過軸の各方位角が0°,45°,90°および135°である場合の光強度信号の信号成分I 2f,I45 2f,I90 2fおよびI135 2fを取得することができる。信号成分I 2f,I90 2fは、互いに等価かつ逆符号であり、また、信号成分I45 2f,I135 2fも、互いに等価かつ逆符号であるので、これらの信号成分の和(I 2f+I90 2f,I45 2f+I135 2f)を用いて、偏光プローブの軸方位のゼロ点を補正することができる。 According to the present invention, since the transmission axis of the polarizer can be rotated in the range of 0 ° to 135 °, the light when the azimuth angles of the transmission axis of the polarizer are 0 °, 45 °, 90 °, and 135 °. The signal components I 0 2f , I 45 2f , I 90 2f and I 135 2f of the intensity signal can be acquired. Since the signal components I 0 2f and I 90 2f are equivalent and opposite in sign, and the signal components I 45 2f and I 135 2f are also equivalent and opposite in sign, the sum of these signal components (I 0 2f + I 90 2f , I 45 2f + I 135 2f ) can be used to correct the zero point of the axial orientation of the polarization probe.

本発明の位相差測定装置では、前記偏光子の透過軸の回転範囲が−45°から180°であることが好ましい。   In the phase difference measuring apparatus of the present invention, it is preferable that the rotation range of the transmission axis of the polarizer is −45 ° to 180 °.

本発明によれば、偏光プローブの透過軸の方位角が不明であっても、偏光子の透過軸の方位角を−45°から180°の範囲で変化させることで、偏光子の透過軸を偏光プローブの透過軸に一致させることができる。従って、偏光プローブの透過軸の設定作業を省略することができ、測定作業の効率化を図ることができる。   According to the present invention, even if the azimuth angle of the transmission axis of the polarizing probe is unknown, the transmission axis of the polarizer is changed by changing the azimuth angle of the transmission axis of the polarizer in the range of −45 ° to 180 °. It can coincide with the transmission axis of the polarization probe. Therefore, the setting operation of the transmission axis of the polarization probe can be omitted, and the efficiency of the measuring operation can be improved.

本発明の位相差測定装置は、照射部からの光を直線偏光にして透過する偏光子と、前記偏光子からの偏光が照射されることによって試料の測定面に発生する近接場光のうち、所定の振動方向の直線偏光を透過する楕円形状またはスリット形状の開口を有した偏光プローブと、前記偏光子の透過軸の方位角を前記偏光プローブの透過軸の方位角に対して変更するために前記偏光子を回転させる回転機構と、前記偏光プローブによって集光された近接場光を検出して光強度信号を生じる検出部と、前記光強度信号に基づいて、試料に照射される偏光によって生じる進相軸方位の偏光成分と遅相軸方位の偏光成分との位相差、および、試料の軸方位を算出する演算部と、を備える。そして、前記回転機構が前記偏光子の透過軸を回転させると同時に、前記検出部が前記偏光子の透過軸の方位角に応じて前記偏光プローブにより集光される近接場光を検出する。 The phase difference measuring apparatus of the present invention includes a polarizer that transmits light from an irradiation unit as linearly polarized light, and near-field light generated on a measurement surface of a sample by being irradiated with polarized light from the polarizer. In order to change the azimuth of the transmission axis of the polarizing probe with respect to the azimuth of the transmission axis of the polarizing probe, and a polarizing probe having an elliptical or slit-shaped opening that transmits linearly polarized light in a predetermined vibration direction A rotation mechanism that rotates the polarizer, a detection unit that detects a near-field light collected by the polarization probe and generates a light intensity signal, and a polarization that is applied to the sample based on the light intensity signal An arithmetic unit that calculates a phase difference between the polarization component of the fast axis direction and the polarization component of the slow axis direction and the axis direction of the sample. The rotation mechanism rotates the transmission axis of the polarizer, and at the same time, the detection unit detects near-field light collected by the polarization probe according to the azimuth angle of the transmission axis of the polarizer.

この際、前記演算部は、前記偏光子の透過軸の方位角φに応じた前記光強度信号Iφを、前記方位角φの2倍の方位角の余弦関数cos2φおよび正弦関数sin2φを用いてフィッティングして、Iφ=1+Acos2φ+Bsin2φで示される係数A,Bを取得し、試料の軸方位θおよび位相差Δを以下の数2に基づいて算出することを特徴とする。

Figure 0005289989
At this time, the calculation unit uses the cosine function cos2φ and sine function sin2φ of the azimuth angle twice the azimuth angle φ as the light intensity signal I φ corresponding to the azimuth angle φ of the transmission axis of the polarizer. Fitting is performed to obtain coefficients A and B represented by I φ = 1 + A cos 2φ + B sin 2φ, and the axial direction θ and the phase difference Δ of the sample are calculated based on the following formula 2.
Figure 0005289989

本発明によれば、偏光子の透過軸の方位角φ毎に、光強度信号Iφを取得するので、光強度信号Iφを余弦関数cos2φおよび正弦関数sin2φでフィッティングして、Iφ=1+Acos2φ+Bsin2φで示される係数A,Bを容易に算出することができ、試料の位相差および軸方位を短時間で算出することができる。 According to the present invention, each phi azimuth of the transmission axis of the polarizer, so to obtain a light intensity signal I phi, and the light intensity signal I phi fitted by a cosine function cos2φ and sine functions sin2φ, I φ = 1 + Acos2φ The coefficients A and B indicated by + Bsin2φ can be easily calculated, and the phase difference and axial direction of the sample can be calculated in a short time.

本発明によれば、演算部で係数A,Bを算出するだけで、数2に基づいて試料の位相差および軸方位を迅速かつ簡単に算出することができる。   According to the present invention, it is possible to quickly and easily calculate the phase difference and the axial direction of the sample based on Equation 2 only by calculating the coefficients A and B by the calculation unit.

本発明の第1実施形態に係る位相差測定装置の概略構成を示す図。The figure which shows schematic structure of the phase difference measuring apparatus which concerns on 1st Embodiment of this invention. 前記位相差測定装置の各光学素子の偏光の軸方位の関係を示す説明図。Explanatory drawing which shows the relationship of the axial direction of the polarization of each optical element of the said phase difference measuring apparatus. 本発明の第2実施形態に係る位相差測定装置の概略構成を示す図。The figure which shows schematic structure of the phase difference measuring apparatus which concerns on 2nd Embodiment of this invention. 前記位相差測定装置の各光学素子の偏光の軸方位の関係を示す説明図。Explanatory drawing which shows the relationship of the axial direction of the polarization of each optical element of the said phase difference measuring apparatus.

以下、本発明の実施形態を図面に基づいて説明する。
なお、後述する第2実施形態以降において、以下に説明する第1実施形態での構成部材と同じ構成部材および同様な機能を有する構成部材には同一符号を付し、説明を簡単にあるいは省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the second and later embodiments described later, the same reference numerals are given to the same components and the same members as the components in the first embodiment described below, and the description will be simplified or omitted. .

[第1実施形態]
図1は、本実施形態の位相差測定装置の概略構成を示す図である。
位相差測定装置1は、近接場光から所定の振動方向の直線偏光を得るための楕円形状またはスリット形状の開口を有する偏光プローブ2を用いて、従来の位相差測定装置では限界と考えられていた高い空間分解能を達成できるというものである。
[First Embodiment]
FIG. 1 is a diagram illustrating a schematic configuration of a phase difference measuring apparatus according to the present embodiment.
The phase difference measurement apparatus 1 is considered to be a limit in the conventional phase difference measurement apparatus using the polarization probe 2 having an elliptical or slit-shaped opening for obtaining linearly polarized light in a predetermined vibration direction from near-field light. High spatial resolution can be achieved.

位相差測定装置1は、全体構成として、特定の波長域の光を発生する照射部3と、照射部3からの光から直線偏光を得て偏光状態を周期的に変調させる変調部4と、変調部4の回転機構5と、変調部4からの偏光の照射により試料Sの測定面に発生する近接場光を集光する偏光プローブ2と、集光された近接場光を検出する検出器6と、各構成を駆動制御する制御部7と、検出器6からの検出信号に基づいて試料Sの位相差および軸方位を算出する演算部8とを備えている。   The phase difference measuring apparatus 1 includes, as an entire configuration, an irradiation unit 3 that generates light in a specific wavelength range, a modulation unit 4 that obtains linearly polarized light from the light from the irradiation unit 3 and periodically modulates the polarization state, A rotating mechanism 5 of the modulation unit 4, a polarization probe 2 that collects near-field light generated on the measurement surface of the sample S due to irradiation of polarized light from the modulation unit 4, and a detector that detects the collected near-field light 6, a control unit 7 that drives and controls each component, and a calculation unit 8 that calculates a phase difference and an axial direction of the sample S based on a detection signal from the detector 6.

照射部3は、図示しない光源および分光器31を備える。
変調部4は、照射部3からの光を透過し直線偏光にする偏光子41と、例えば光弾性変調子で構成される変調子(以降、PEM42と示す)と、PEM42を駆動制御するPEMコントローラ43とを含んでいる。
PEM42は、偏光子41からの直線偏光に位相差δを付与し、偏光方向を周波数fで変調させる。PEM42は、PEMコントローラ43に接続され、このPEMコントローラ43によって周波数fの交流電圧を加えられる。例えば、上記の位相差δは、δ=δsin(2πft)のように正弦変調するものとなる。ここでtは時間、δは振幅を示す。
The irradiation unit 3 includes a light source and a spectroscope 31 (not shown).
The modulation unit 4 is a polarizer 41 that transmits light from the irradiation unit 3 and linearly polarizes the light, a modulator composed of a photoelastic modulator (hereinafter referred to as PEM 42), and a PEM controller that drives and controls the PEM 42. 43.
The PEM 42 gives a phase difference δ to the linearly polarized light from the polarizer 41 and modulates the polarization direction with the frequency f. The PEM 42 is connected to the PEM controller 43, and an AC voltage having a frequency f is applied by the PEM controller 43. For example, the phase difference δ is sinusoidally modulated as δ = δ 0 sin (2πft). Here, t represents time, and δ 0 represents amplitude.

偏光プローブ2は、良好な偏光選択性を備えた近接場プローブであり、その先端21と試料Sの測定面との間隔がナノメートル単位の寸法となるように、試料Sに近接して保持されている。
なお、本実施形態では、図1に示すように、PEM42で変調された偏光が試料Sを透過し、その透過光によって試料Sの測定面に発生する近接場光が偏光プローブ2で集光される構成としたが、これに限られず、PEM42で変調された偏光の反射光によって発生する近接場光が偏光プローブ2で集光される構成としてもよい。
The polarization probe 2 is a near-field probe having good polarization selectivity, and is held close to the sample S so that the distance between the tip 21 and the measurement surface of the sample S is a size in nanometers. ing.
In the present embodiment, as shown in FIG. 1, the polarized light modulated by the PEM 42 is transmitted through the sample S, and the near-field light generated on the measurement surface of the sample S by the transmitted light is collected by the polarization probe 2. However, the present invention is not limited to this, and a configuration in which near-field light generated by reflected polarized light modulated by the PEM 42 is collected by the polarization probe 2 may be used.

次に、前述の変調部4を光軸周りに回転させる回転機構5について、図2も参照して説明する。
図2は、各光学素子の偏光の軸方位の関係を示す説明図である。図中、光軸をZ軸とし、X−Y平面においてX軸と一致する軸方位を基準とし、その方位角を0°とする。
回転機構5は、偏光子41およびPEM42をZ軸周りに回転させて偏光子41の透過軸の方位角を変更する。なお、偏光子41およびPEM42は一体として回転できるように支持されているが、偏光子41の透過軸の方位角とPEM42の変調軸の方位角との差は常に45°となるように設けられている。
一方、回転機構5により偏光子41の透過軸の方位角を、0°および45°に設定できるようになっている。図中、例えば偏光子41の透過軸の方位角が0°に設定された場合を実線で示し、45°に設定された場合を破線で示している。透過軸が45°に設定された場合、透過軸はX−Y平面におけるY=Xの直線と一致する。
Next, a rotation mechanism 5 that rotates the above-described modulation unit 4 around the optical axis will be described with reference to FIG.
FIG. 2 is an explanatory diagram showing the relationship of the polarization axis orientation of each optical element. In the figure, the optical axis is the Z axis, and the azimuth angle is 0 ° with reference to the axial direction that coincides with the X axis in the XY plane.
The rotation mechanism 5 rotates the polarizer 41 and the PEM 42 around the Z axis to change the azimuth angle of the transmission axis of the polarizer 41. The polarizer 41 and the PEM 42 are supported so that they can rotate as a unit. However, the difference between the azimuth angle of the transmission axis of the polarizer 41 and the azimuth angle of the modulation axis of the PEM 42 is always 45 °. ing.
On the other hand, the rotation mechanism 5 can set the azimuth angle of the transmission axis of the polarizer 41 to 0 ° and 45 °. In the figure, for example, the case where the azimuth angle of the transmission axis of the polarizer 41 is set to 0 ° is indicated by a solid line, and the case where the azimuth angle is set to 45 ° is indicated by a broken line. When the transmission axis is set to 45 °, the transmission axis coincides with a straight line of Y = X in the XY plane.

一方、前述の偏光プローブ2は、楕円形状またはスリット形状の開口の長軸方向に垂直な方向の透過軸を有し、透過軸方向に振動する直線偏光を選択的に集光する。偏光プローブ2の透過軸の方位角は45°に固定されている。なお、偏光プローブ2の詳細な形状については、前述の特許文献2に記載されているとおりである。   On the other hand, the above-described polarization probe 2 has a transmission axis perpendicular to the major axis direction of the elliptical or slit-shaped opening, and selectively collects linearly polarized light that vibrates in the transmission axis direction. The azimuth angle of the transmission axis of the polarization probe 2 is fixed at 45 °. The detailed shape of the polarization probe 2 is as described in the above-mentioned Patent Document 2.

検出器6は、本発明の検出部に相当し、偏光子41の方位角が0°および45°に設定された状態で、偏光プローブ2で集光された検出光の受光量を検出し、光強度信号として出力する。検出器6としては、例えば、光電子増倍管(PMT)を採用できる。
制御部7は、SPM(Scanning Probe Microscope) 電気系制御部71およびエリプソ電気系制御部72を有する。SPM電気系制御部71は、例えば、試料Sの載置テーブル9をマッピング制御やSF制御する制御部10と接続し、主に偏光プローブ2の走査を制御する。エリプソ電気系制御部72は、例えば、分光器31、回転機構5、検出器6およびPEMコントローラ43と接続し、偏光プローブ2で集光された検出光の検出に関わる機器を制御する。
The detector 6 corresponds to a detection unit of the present invention, and detects the amount of detection light collected by the polarization probe 2 in a state where the azimuth angle of the polarizer 41 is set to 0 ° and 45 °, Output as a light intensity signal. As the detector 6, for example, a photomultiplier tube (PMT) can be adopted.
The control unit 7 includes an SPM (Scanning Probe Microscope) electric system control unit 71 and an ellipso electric system control unit 72. For example, the SPM electrical system control unit 71 connects the mounting table 9 of the sample S to the control unit 10 that performs mapping control and SF control, and mainly controls the scanning of the polarization probe 2. The ellipsoelectric system control unit 72 is connected to, for example, the spectroscope 31, the rotation mechanism 5, the detector 6, and the PEM controller 43, and controls devices related to detection of detection light collected by the polarization probe 2.

検出器6からの検出信号は、エリプソ電気系制御部72に内蔵された図示しない抽出部としてのロックインアンプへ送られる。ロックインアンプは、PEM42に加えられる周波数fおよび2倍の周波数2fを参照して、検出信号の周波数fの信号成分(f信号と呼ぶ。)および周波数2fの信号成分(2f信号と呼ぶ。)を抽出する。f信号および2f信号は、CPU等の演算部8へ送られる。演算部8では、f信号および2f信号に基づき、記憶された計算手順に従って試料Sの軸方位および位相差が算出される。   The detection signal from the detector 6 is sent to a lock-in amplifier as an extraction unit (not shown) built in the ellipso electric system control unit 72. The lock-in amplifier refers to the frequency f applied to the PEM 42 and the doubled frequency 2f, and the signal component of the frequency f of the detection signal (referred to as f signal) and the signal component of the frequency 2f (referred to as 2f signal). To extract. The f signal and the 2f signal are sent to the calculation unit 8 such as a CPU. In the calculation unit 8, the axial orientation and phase difference of the sample S are calculated according to the stored calculation procedure based on the f signal and the 2f signal.

以上の位相差測定装置1を用いて、試料Sを測定する原理について説明する。
まず、複屈折性物質である試料Sの進相軸の方位角である軸方位をθ、位相差(リタデーション)をΔ、2色性をΨとすると、試料Sを表すミューラー行列Rθは下記数3で示される。ここで、位相差Δは、進相軸方位の偏光成分と遅相軸方位の偏光成分との試料射出時の位相差を示す。

Figure 0005289989
The principle of measuring the sample S using the above phase difference measuring apparatus 1 will be described.
First, when the axis direction which is the azimuth angle of the fast axis of the sample S which is a birefringent material is θ, the phase difference (retardation) is Δ, and the dichroism is Ψ, the Mueller matrix R θ representing the sample S is It is shown in Equation 3. Here, the phase difference Δ indicates the phase difference at the time of sample emission between the polarization component of the fast axis direction and the polarization component of the slow axis direction.
Figure 0005289989

次に、透過軸の方位角が45°である偏光プローブ2を表すミューラー行列A45は下記数4で示される。

Figure 0005289989
Next, the Mueller matrix A 45 representing the polarization probe 2 whose azimuth angle of the transmission axis is 45 ° is expressed by the following equation (4).
Figure 0005289989

ここで、数3と数4とを掛け合わせてファクタ1/2を除した行列A45θは、下記数5となる。紙面上の制約のため、転置行列(A45θ)−tを示す。

Figure 0005289989
Here, the matrix A 45 R θ obtained by multiplying Equation 3 and Equation 4 and dividing factor ½ is Equation 5 below. Due to space constraints, the transpose matrix (A 45 R θ ) −t is shown.
Figure 0005289989

試料Sに照射される照射光を示すストークスベクトルSについて説明する。
透過軸の方位角を0°に設定された偏光子41を透過し、変調軸の方位角が45°に設定されたPEM42により位相差δが付与され偏光状態を変調された照射光のストークスベクトルSは、下記数6で示される。

Figure 0005289989
The Stokes vector S 0 indicating the irradiation light irradiated on the sample S will be described.
Stokes vector of irradiation light that is transmitted through a polarizer 41 having an azimuth angle of the transmission axis set to 0 °, and whose polarization state is modulated by the phase difference δ given by the PEM 42 in which the azimuth angle of the modulation axis is set to 45 ° S 0 is represented by the following formula 6.
Figure 0005289989

ここで、偏光子41とPEM42との各方位角の差は常に45°としたのは、最も変調効率が良いからである。なお。偏光子41とPEM42との各方位角の差を最適角45°以外の任意の角度に設定しても構わない。   Here, the reason why the azimuth angle difference between the polarizer 41 and the PEM 42 is always 45 ° is that the modulation efficiency is the best. Note that. You may set the difference of each azimuth angle of the polarizer 41 and PEM42 to arbitrary angles other than the optimal angle of 45 degrees.

照射光によって試料Sの測定面に発生する近接場光のうち、偏光プローブ2で集光され検出器6で検波される検出光のストークスベクトルをSとすると、ストークスベクトルSの第1成分、つまり検出光の光強度信号Iを表す式は、数6を行列A45θに掛けた結果(A45θ)の第1成分であり、下記の数7となる。

Figure 0005289989
Among the near-field light generated in the measurement surface of the sample S by the irradiated light, the Stokes vector of the detection light detected by a condensed by polarization probe 2 detector 6 When S 0, the first component of the Stokes vector S 0 In other words, the expression representing the light intensity signal I 0 of the detection light is the first component of the result (A 45 R θ S 0 ) obtained by multiplying Equation 6 by the matrix A 45 R θ , and is given by Equation 7 below.
Figure 0005289989

同様に、透過軸の方位角が45°に設定された偏光子41を透過し、変調軸の方位角が90°に設定されたPEM42により偏光状態を変調された照射光のストークスベクトルS45は、下記数8で示される。

Figure 0005289989
Similarly, the Stokes vector S 45 of the irradiation light transmitted through the polarizer 41 whose transmission axis azimuth is set to 45 ° and whose polarization state is modulated by the PEM 42 whose modulation axis azimuth is set to 90 ° is The following equation 8 is shown.
Figure 0005289989

この照射光を用いて、偏光プローブ2で集光され検出器6で検波される検出光のストークスベクトルをS45とすると、ストークスベクトルS45の第1成分、つまり光強度信号I45を表す式は、数8を行列A45θに掛けた結果(A45θ45)の第1成分であり、下記の数9となる。

Figure 0005289989
With this irradiation light, the Stokes vector of the detection light detected by a condensed by polarization probe 2 detector 6 and S 45, the first component of the Stokes vector S 45, that is the formula representing the light intensity signal I 45 Is the first component of the result of multiplying the matrix 8 by the matrix A 45 R θ (A 45 R θ S 45 ), and the following formula 9 is obtained.
Figure 0005289989

上記の光強度信号I0,I45の式中、sinδの係数は、PEM42の変調周波数fと同じ周波数成分I ,I45 となり、検出器6の検出信号から抽出されるf信号によって取得される。I ,I45 は、下記の数10で表わされ、互いに大きさが等価で、符号が異なる関係となっている。

Figure 0005289989
In the equations of the light intensity signals I 0 and I 45 , the coefficient of sin δ is the same frequency components I 0 f and I 45 f as the modulation frequency f of the PEM 42, and depends on the f signal extracted from the detection signal of the detector 6. To be acquired. I 0 f and I 45 f are expressed by the following formula 10, and have a relationship in which the sizes are equivalent and the signs are different from each other.
Figure 0005289989

また、光強度信号I,I45の式中、cosδの係数は、PEM42の変調周波数fの2倍の周波数の信号成分I 2f,I45 2fとなり、検出器6の検出信号から抽出される2f信号によって取得される。I 2f,I45 2fは、下記の数11で表わされる。

Figure 0005289989
Further, in the expression of the light intensity signals I 0 and I 45 , the coefficient of cos δ becomes signal components I 0 2f and I 45 2f having a frequency twice the modulation frequency f of the PEM 42 and is extracted from the detection signal of the detector 6. 2f signal. I 0 2f and I 45 2f are expressed by the following formula 11.
Figure 0005289989

上記の各信号成分の式において、Ψ=45°、つまり試料Sの2色性がゼロとする。

Figure 0005289989
In the above equation for each signal component, Ψ = 45 °, that is, the dichroism of the sample S is zero.
Figure 0005289989

2f信号に関する数12の式は、下記の数13のように変形できる。

Figure 0005289989
Equation 12 relating to the 2f signal can be transformed as Equation 13 below.
Figure 0005289989

従って、数13から得られる下記の数14を用いれば、0°方位および45°方位の2f信号(I 2f,I45 2f)に基づいて軸方位θを算出し、この軸方位θ、0°方位のf信号(I )および2f信号(I 2f)に基づいて位相差Δを算出することができる。

Figure 0005289989
Therefore, by using the following Expression 14 obtained from Expression 13, the axial azimuth θ is calculated based on the 2f signals (I 0 2f , I 45 2f ) of 0 ° azimuth and 45 ° azimuth, and the axial azimuth θ, 0 The phase difference Δ can be calculated based on the f signal (I 0 f ) and the 2f signal (I 0 2f ) in the ° direction.
Figure 0005289989

以上の測定原理に基づく測定方法について説明する。
本実施形態の測定方法は、変調部4を45°回転させて、偏光子41の方位角を0°および45°の2通りに設定し、設定された各方位角において偏光プローブ2で集光される検出光を検出する手法である。
事前に、試料Sが設置されていない状態で、偏光プローブ2に対して変調部4を回転させて、2f信号(例えば100kHz信号)がゼロとなる方位に偏光子41の方位角を設定する。あるいは、偏光プローブ2が光軸に対して回転可能に設けられている場合であれば、偏光プローブ2の軸方位を回転させて2f信号がゼロとなる方位に偏光プローブ2の方位角を設定してもよい。以上の方法により、偏光プローブ2の方位角を、偏光子41の方位角に対して45°方位とすることができる。続いて、試料Sを設置した状態で、試料Sを光軸周りに回転させる。そして、f信号(例えば50kHz信号)の絶対値が最大となる方位に試料Sの方位角を設定する。このようにして試料Sの軸立てを行うことができる。
本実施形態の測定方法においては、まず、変調部4を用いて偏光子41の透過軸の方位角を0°に設定して測定を行い、検出器6にて検出信号を取得する。
次に、偏光子41の方位角を45°に設定して測定を行い、検出信号を取得する。
各検出信号より制御部7にてf信号および2f信号を抽出する。
最後に、演算部8にてf信号および2f信号に基づいて数14により、試料Sの軸方位θおよび位相差Δを算出する。
A measurement method based on the above measurement principle will be described.
In the measurement method of this embodiment, the modulator 4 is rotated by 45 °, the azimuth angle of the polarizer 41 is set in two ways, 0 ° and 45 °, and the light is collected by the polarization probe 2 at each set azimuth angle. This is a technique for detecting detected light.
In advance, with the sample S not installed, the modulator 4 is rotated with respect to the polarization probe 2, and the azimuth angle of the polarizer 41 is set to an azimuth in which the 2f signal (for example, 100 kHz signal) becomes zero. Alternatively, if the polarization probe 2 is provided so as to be rotatable with respect to the optical axis, the axis direction of the polarization probe 2 is rotated and the azimuth angle of the polarization probe 2 is set to an orientation where the 2f signal is zero. May be. With the above method, the azimuth angle of the polarization probe 2 can be set to 45 ° with respect to the azimuth angle of the polarizer 41. Subsequently, the sample S is rotated around the optical axis while the sample S is installed. Then, the azimuth angle of the sample S is set to the azimuth in which the absolute value of the f signal (for example, 50 kHz signal) is maximized. In this way, the sample S can be pivoted.
In the measurement method of the present embodiment, first, measurement is performed by setting the azimuth angle of the transmission axis of the polarizer 41 to 0 ° using the modulation unit 4, and the detection signal is acquired by the detector 6.
Next, measurement is performed by setting the azimuth angle of the polarizer 41 to 45 °, and a detection signal is acquired.
The control unit 7 extracts the f signal and the 2f signal from each detection signal.
Finally, the calculation unit 8 calculates the axial orientation θ and the phase difference Δ of the sample S by Equation 14 based on the f signal and the 2f signal.

なお、本実施形態では、偏光プローブ2の透過軸の向きを予め45°の方位角に設定した上で、偏光子41の透過軸を2通りに設定する方法を説明したが、例えば、回転機構5が偏光子41の方位角を変更できる範囲、つまり、偏光子41の回転範囲を−45°から90°としてもよい。
このようにすれば、偏光プローブ2の透過軸の方位角が不明であっても、偏光子41の透過軸の方位角を−45°から90°の範囲で変化させることで、偏光子41の透過軸を偏光プローブ2の透過軸に一致させることができる。従って、偏光プローブ2の透過軸の設定作業を省略することができ、測定作業の効率化を図ることができる。
In the present embodiment, the method of setting the transmission axis of the polarizer 41 in two ways after setting the orientation of the transmission axis of the polarization probe 2 to an azimuth angle of 45 ° in advance has been described. 5 may change the azimuth angle of the polarizer 41, that is, the rotation range of the polarizer 41 may be −45 ° to 90 °.
In this way, even if the azimuth angle of the transmission axis of the polarization probe 2 is unknown, the azimuth angle of the transmission axis of the polarizer 41 is changed in the range of −45 ° to 90 °, thereby The transmission axis can coincide with the transmission axis of the polarization probe 2. Therefore, the setting operation of the transmission axis of the polarization probe 2 can be omitted, and the efficiency of the measuring operation can be improved.

あるいは、回転機構5による偏光子41の回転範囲を0°から135°としてもよい。
この場合、偏光子41の透過軸の方位角を0°,45°,90°および135°として、周波数の2倍の光強度信号の信号成分I 2f,I45 2f,I90 2fおよびI135 2fを取得できる。信号成分I 2f,I90 2fは、互いに等価かつ逆符号であり、また、信号成分I45 2f,I135 2fも、互いに等価かつ逆符号であるので、これらの信号成分の和(I 2f+I90 2f,I45 2f+I135 2f)を用いて、偏光プローブ2の軸方位のゼロ点を補正すれば、測定精度の向上を図ることができる。
Alternatively, the rotation range of the polarizer 41 by the rotation mechanism 5 may be 0 ° to 135 °.
In this case, the azimuth angles of the transmission axis of the polarizer 41 are set to 0 °, 45 °, 90 °, and 135 °, and the signal components I 0 2f , I 45 2f , I 90 2f, and I 135 2f can be acquired. Since the signal components I 0 2f and I 90 2f are equivalent and opposite in sign, and the signal components I 45 2f and I 135 2f are also equivalent and opposite in sign, the sum of these signal components (I 0 2f + I 90 2f , I 45 2f + I 135 2f ) is used to correct the zero point of the axial direction of the polarization probe 2, the measurement accuracy can be improved.

前述のようにゼロ点を補正する場合には、さらに、偏光子41の回転範囲を−45°から180°としてもよい。
このようにすれば、前述と同様に、偏光プローブ2の透過軸の方位角が不明であっても、偏光子41の透過軸の方位角を−45°から180°の範囲で変化させることで、偏光子41の透過軸を偏光プローブ2の透過軸に一致させることができ、測定作業の効率化を図ることができる。
As described above, when the zero point is corrected, the rotation range of the polarizer 41 may be set to −45 ° to 180 °.
In this way, as described above, even if the azimuth angle of the transmission axis of the polarization probe 2 is unknown, the azimuth angle of the transmission axis of the polarizer 41 can be changed in the range of −45 ° to 180 °. The transmission axis of the polarizer 41 can be made to coincide with the transmission axis of the polarization probe 2, and the efficiency of measurement work can be improved.

本実施形態によれば、次のような効果を奏することができる。
試料Sの前段の偏光子41をPEM42と一体として回転させる回転機構5を設け、試料Sの後段に設けられる偏光プローブ2の透過軸に対して、偏光子41の透過軸の方位角を変更することによって、偏光プローブ2で集光される近接場光の光強度信号を取得するので、偏光プローブ2に対して試料Sを回転させることも、試料Sに対して偏光プローブ2を回転させることも不要となる。
According to this embodiment, the following effects can be achieved.
A rotation mechanism 5 that rotates the polarizer 41 at the front stage of the sample S integrally with the PEM 42 is provided, and the azimuth angle of the transmission axis of the polarizer 41 is changed with respect to the transmission axis of the polarization probe 2 provided at the rear stage of the sample S. Thus, since the light intensity signal of the near-field light collected by the polarization probe 2 is acquired, the sample S can be rotated with respect to the polarization probe 2 or the polarization probe 2 can be rotated with respect to the sample S. It becomes unnecessary.

さらには、偏光プローブ2を用いて近接場光を集光することで、試料Sの測定面に生じる近接場光を光の波長以下の空間分解で測定することができ、光の回折限界を超えて試料Sの軸方位および位相差を高い空間分解能で測定することができる。   Furthermore, by collecting the near-field light using the polarization probe 2, the near-field light generated on the measurement surface of the sample S can be measured with spatial resolution below the wavelength of the light, exceeding the light diffraction limit. Thus, the axial orientation and phase difference of the sample S can be measured with high spatial resolution.

また、偏光子41の透過軸の方位角を0°および45°の2通りの方位角に設定して、設定された各方位角に応じた光強度信号I,I45を取得するので、これらの光強度信号I,I45の信号を解析すれば、試料Sに関する2つの未知数である軸方位θおよび位相差Δを確実に算出できる。 Further, since the azimuth angle of the transmission axis of the polarizer 41 is set to two azimuth angles of 0 ° and 45 °, the light intensity signals I 0 and I 45 corresponding to the set azimuth angles are obtained. By analyzing the signals of these light intensity signals I 0 and I 45 , the two unknowns regarding the sample S, the axial orientation θ and the phase difference Δ, can be calculated reliably.

また、PEM42によって直線偏光の偏光状態が周期的に変調するので、その変調周波数(f)を参照して、光強度信号I,I45から等しい周波数の信号成分(f信号)、および、2倍の周波数の信号成分(2f信号)を容易に抽出することができ、試料Sの軸方位θおよび位相差Δを短時間で算出することができる。
その際、抽出された信号成分I ,I 2fおよびI45 2fに基づき、数14を用いて試料Sの軸方位θおよび位相差Δを迅速かつ簡単に算出することができる。
Further, since the polarization state of the linearly polarized light is periodically modulated by the PEM 42, the signal components (f signal) having the same frequency from the light intensity signals I 0 and I 45 and 2 are referred to with reference to the modulation frequency (f). A signal component having a double frequency (2f signal) can be easily extracted, and the axial orientation θ and the phase difference Δ of the sample S can be calculated in a short time.
At that time, based on the extracted signal components I 0 f , I 0 2f and I 45 2f , the axial orientation θ and the phase difference Δ of the sample S can be quickly and easily calculated using Equation 14.

[第2実施形態]
次に、本発明の第2実施形態に係る位相差測定装置について図3および図4に基づいて説明する。
図3は、位相差測定装置1Aの概略構成を示す図である。
位相差測定装置1Aは、前述の実施形態の測定装置と比較して、変調部4の回転機構5に代えて偏光子41を回転させる回転機構5Aを備えている構成が相違する。その他の構成は前述の実施形態と略同様である。すなわち、位相差測定装置1Aは、偏光子41を360°回転させて回転角度に応じた検出光を検出する回転偏光子法によって、試料Sの位相差および軸方位を算出する場合に使用できるものである。なお、本実施形態は、前述のPEMを備えていない構成であるが、本実施形態においても、偏光子41と試料Sとの間に変調部としてPEMを設けてもよい。
[Second Embodiment]
Next, a phase difference measuring apparatus according to a second embodiment of the present invention will be described with reference to FIGS.
FIG. 3 is a diagram showing a schematic configuration of the phase difference measuring apparatus 1A.
The phase difference measuring apparatus 1A is different from the measuring apparatus of the above-described embodiment in that a configuration including a rotating mechanism 5A that rotates the polarizer 41 instead of the rotating mechanism 5 of the modulation unit 4 is different. Other configurations are substantially the same as those of the above-described embodiment. That is, the phase difference measuring apparatus 1A can be used when calculating the phase difference and the axial direction of the sample S by the rotating polarizer method in which the polarizer 41 is rotated 360 ° to detect the detection light according to the rotation angle. It is. In addition, although this embodiment is a structure which is not provided with the above-mentioned PEM, you may provide PEM as a modulation | alteration part between the polarizer 41 and the sample S also in this embodiment.

測定原理について図4も参照して説明する。図4は、各光学素子の偏光の軸方位の関係を示す説明図である。
偏光子41の透過軸の方位角をφとすると、偏光子41を表すミューラー行列Pφは下記数15で示される。

Figure 0005289989
The measurement principle will be described with reference to FIG. FIG. 4 is an explanatory diagram showing the relationship of the polarization axis orientation of each optical element.
When the azimuth angle of the transmission axis of the polarizer 41 is φ, the Mueller matrix P φ representing the polarizer 41 is expressed by the following formula 15.
Figure 0005289989

偏光子41を透過する照射光のストークスベクトルSφは、係数の1/2を除いて下記数16で示される。

Figure 0005289989
Stokes vector S phi of the irradiated light transmitted through the polarizer 41, with the exception of the 1/2 of the coefficient represented by the following Expression 16.
Figure 0005289989

軸方位θ、位相差Δの試料Sのミューラー行列Rθは、前述の数3で示されるが、ここでは、試料Sの2色性をゼロ(Ψ=45°)として、下記数17で示される。

Figure 0005289989
The Mueller matrix R θ of the sample S having the axial azimuth θ and the phase difference Δ is expressed by the above-described formula 3. Here, the dichroism of the sample S is set to zero (Ψ = 45 °), and is expressed by the following formula 17. It is.
Figure 0005289989

試料Sの透過光のストークスベクトルSφは、数16のベクトルを数17の行列に右から掛けることで得られ、下記数18で示される。

Figure 0005289989
The Stokes vector S phi of light transmitted through the sample S, obtained by multiplying the right vector of numbers 16 to a matrix of Equation 17, indicated by the following Expression 18.
Figure 0005289989

透過軸の方位角が45°である偏光プローブ2を表すミューラー行列A45は前述の数4で示される。
照明光により試料Sの測定面に発生する近接場光のうち、偏光プローブ2で集光され検出器6で検波される検出光のストークスベクトルをSφ’とすると、ストークスベクトルSφ’の第1成分、つまり検出光の光強度信号Iφを表す式は、数18を数4に右から掛けた結果の第1成分であり、下記の数19となる。

Figure 0005289989
A Mueller matrix A 45 representing the polarization probe 2 whose transmission axis has an azimuth angle of 45 ° is expressed by the above-described equation (4).
Of the near-field light generated on the measurement surface of the sample S by the illumination light, if the Stokes vector of the detection light collected by the polarization probe 2 and detected by the detector 6 is S φ ′, the Stokes vector S φ ′ An expression representing one component, that is, the light intensity signal of the detection light is a first component obtained by multiplying Equation 18 from Equation 4 from the right, and is represented by Equation 19 below.
Figure 0005289989

数19中、cos2φおよびsin2φの係数をそれぞれA,Bとすると、光強度信号Iφは、下記の数20で表わされる。

Figure 0005289989
In Equation 19, if the coefficients of cos2φ and sin2φ are A and B, respectively, the light intensity signal is expressed by the following Equation 20.
Figure 0005289989

係数A,Bは、前述の実施形態の偏光子41とPEM42とを一体で45°回転させる方法における、0°方位および45°方位の2f信号(数12)と一致し、下記数21としても示される。

Figure 0005289989
The coefficients A and B coincide with the 2f signal (Equation 12) of 0 ° azimuth and 45 ° azimuth in the method of rotating the polarizer 41 and the PEM 42 of the above-described embodiment by 45 ° integrally. Indicated.
Figure 0005289989

つまり、偏光子41の方位角φの2倍の方位角の検出信号をsin2φおよびcos2φの関数にあてはめ(データフィッテング)、係数A,Bを取得して、下記数22によって、試料の軸方位θおよび位相差Δを算出することができる。

Figure 0005289989
That is, a detection signal having an azimuth angle twice as large as the azimuth angle φ of the polarizer 41 is applied to a function of sin 2φ and cos 2φ (data fitting), and the coefficients A and B are obtained. And the phase difference Δ can be calculated.
Figure 0005289989

以上の測定原理に基づくことにより、偏光子41を回転させて、回転角φに応じて偏光プローブ2で集光される検出光が検出器6で検出されれば、演算部8において検出信号から係数A,Bが取得され、これによって試料の軸方位θおよび位相差Δが算出される。   Based on the above measurement principle, if the detector 41 rotates the polarizer 41 and the detection light collected by the polarization probe 2 according to the rotation angle φ is detected by the detector 6, the calculation unit 8 detects the detection signal. The coefficients A and B are acquired, and thereby the axial direction θ and the phase difference Δ of the sample are calculated.

このような本実施形態によれば、以下の効果を奏することができる。
試料Sの前段の偏光子41を回転させる回転機構5Aを設け、試料Sの後段に設けられる偏光プローブ2の透過軸に対して、偏光子41の透過軸の方位角φに応じて偏光プローブ2で集光される近接場光の光強度信号Iφを取得するので、偏光プローブ2に対して試料Sを回転させることも、試料Sに対して偏光プローブ2を回転させることも不要となる。
さらには、偏光プローブ2を用いて近接場光を集光することで、試料Sの測定面に生じる近接場光を光の波長以下の空間分解で測定することができ、光の回折限界を超えて試料Sの軸方位および位相差を高い空間分解能で測定することができる。
According to this embodiment, the following effects can be achieved.
A rotation mechanism 5A for rotating the polarizer 41 in the front stage of the sample S is provided, and the polarization probe 2 is set in accordance with the azimuth angle φ of the transmission axis of the polarizer 41 with respect to the transmission axis of the polarization probe 2 provided in the rear stage of the sample S. in so it is the obtaining the light intensity signal I phi of the near-field light condensing, also rotate the sample S with respect to the polarization probe 2, it becomes unnecessary to rotate the polarization probe 2 with respect to the sample S.
Furthermore, by collecting the near-field light using the polarization probe 2, the near-field light generated on the measurement surface of the sample S can be measured with spatial resolution below the wavelength of the light, exceeding the light diffraction limit. Thus, the axial orientation and phase difference of the sample S can be measured with high spatial resolution.

また、偏光子41の透過軸の方位角φ毎に、光強度信号Iφを取得するので、光強度信号Iφを余弦関数cos2φおよび正弦関数sin2φでフィッティングして、Iφ=1+Acos2φ+Bsin2φで示される係数A,Bを容易に算出することができ、数22に基づいて試料の軸方位θおよび位相差Δを短時間で算出することができる。 Also, for each azimuth angle phi of the transmission axis of the polarizer 41, because to obtain the light intensity signal I phi, and the light intensity signal I phi fitted by a cosine function cos2φ and sine functions Sin2fai, with I φ = 1 + Acos2φ + Bsin2φ The coefficients A and B shown can be easily calculated, and the axial orientation θ and the phase difference Δ of the sample can be calculated in a short time based on the equation (22).

なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.

本発明は、複屈折試料の軸方位および位相差を測定する位相差測定装置に利用できる他、測定された軸方位または位相差を用いて他の特性等を測定する装置などにも広く利用することができる。   The present invention can be used not only for a phase difference measuring apparatus that measures the axial direction and phase difference of a birefringent sample, but also widely used for an apparatus that measures other characteristics using the measured axial direction or phase difference. be able to.

1,1A 位相差測定装置
2 偏光プローブ(近接場プローブ)
3 照射部
4 変調部
5,5A 回転機構
6 検出器(検出部)
8 演算部
41 偏光子
42 PEM(変調子)
S 試料
1,1A Phase difference measuring device 2 Polarization probe (near field probe)
3 Irradiation unit 4 Modulation unit 5, 5A Rotation mechanism 6 Detector (detection unit)
8 Calculation unit
41 Polarizer 42 PEM (Modulator)
S sample

Claims (7)

照射部からの光を直線偏光にして透過する偏光子と、
前記偏光子と試料との間に設けられ前記偏光子からの直線偏光の偏光状態を変調する変調子と、
前記変調子からの偏光が照射されることによって試料の測定面に発生する近接場光のうち、所定の振動方向の直線偏光を透過する楕円形状またはスリット形状の開口を有した偏光プローブと、
前記偏光子の透過軸の方位角と前記変調子の変調軸の方位角との差が常に45°となるように、前記偏光子および前記変調子を一体として回転させ、かつ、前記偏光プローブの透過軸の方位角を基準として前記偏光子の透過軸の方位角を0°および45°の2通りの方位角に設定する回転機構と、
前記偏光プローブによって集光された近接場光を検出して光強度信号を生じる検出部と、
前記光強度信号に基づいて、試料に照射される偏光によって生じる進相軸方位の偏光成分と遅相軸方位の偏光成分との位相差、および、試料の軸方位を算出する演算部と、
を備え、前記回転機構が前記偏光子の透過軸を0°および45°の2通りの方位角に設定して、前記検出部が設定された前記方位角における近接場光を検出することによって、試料の軸方位および位相差を測定することを特徴とする位相差測定装置。
A polarizer that transmits light from the irradiation unit into linearly polarized light, and
A modulator that is provided between the polarizer and the sample and modulates a polarization state of linearly polarized light from the polarizer;
Among the near-field light, wherein the polarized light from varying tone is generated in the measurement surface of the sample by being irradiated with polarized light probe having an aperture of elliptical or slit-shaped to transmit predetermined vibration direction of the linearly polarized light,
The polarizer and the modulator are rotated together so that the difference between the azimuth angle of the transmission axis of the polarizer and the azimuth angle of the modulation axis of the modulator is always 45 °, and the polarization probe a rotating mechanism to set the azimuth angle of the transmission axis of the polarizer azimuth of the transmission axis relative to the azimuth angle of the two types of 0 ° and 45 °,
A detector that detects near-field light collected by the polarization probe and generates a light intensity signal;
Based on the light intensity signal, the phase difference between the polarization component of the fast axis direction and the polarization component of the slow axis direction generated by the polarized light irradiated to the sample, and an arithmetic unit that calculates the axis direction of the sample;
The rotation mechanism sets the transmission axis of the polarizer to two azimuth angles of 0 ° and 45 °, and the detection unit detects near-field light at the set azimuth angle, A phase difference measuring apparatus for measuring an axial direction and a phase difference of a sample.
請求項に記載の位相差測定装置において、
前記光強度信号から、前記変調子が偏光状態を変調する際の変調周波数と同じ周波数の信号、および、前記変調周波数の2倍の周波数の信号を抽出する抽出部を備え、
前記演算部は、前記抽出部が抽出する信号の大きさに基づいて試料の軸方位および位相差を算出することを特徴とする位相差測定装置。
The phase difference measuring apparatus according to claim 1 ,
An extraction unit for extracting from the light intensity signal a signal having the same frequency as the modulation frequency when the modulator modulates the polarization state, and a signal having a frequency twice the modulation frequency;
The phase difference measuring apparatus characterized in that the calculation unit calculates an axial direction and a phase difference of a sample based on a magnitude of a signal extracted by the extraction unit.
請求項に記載の位相差測定装置において、
前記抽出部が抽出する信号は、
前記偏光子の透過軸の方位角が0°である場合に前記光強度信号から抽出される前記変調周波数fと同じ周波数の信号成分I および2倍の周波数の信号I 2fと、
前記偏光子の透過軸の方位角が45°である場合に前記光強度信号から抽出される前記変調周波数の2倍の周波数の信号成分I45 2fであり、
前記演算部は、試料の軸方位θおよび位相差Δを以下の数1に基づいて算出することを特徴とする位相差測定装置。
Figure 0005289989
The phase difference measuring apparatus according to claim 2 ,
The signal extracted by the extraction unit is:
A signal component I 0 f having the same frequency as the modulation frequency f extracted from the light intensity signal when the azimuth angle of the transmission axis of the polarizer is 0 °, and a signal I 0 2f having a double frequency,
A signal component I 45 2f having a frequency twice the modulation frequency extracted from the light intensity signal when the azimuth of the transmission axis of the polarizer is 45 °,
The arithmetic unit calculates the axial direction θ and the phase difference Δ of the sample based on the following Equation 1;
Figure 0005289989
請求項に記載の位相差測定装置において、
前記偏光子の透過軸の回転範囲が−45°から90°であることを特徴とする位相差測定装置。
The phase difference measuring apparatus according to claim 1 ,
A phase difference measuring apparatus, wherein a rotation range of a transmission axis of the polarizer is −45 ° to 90 °.
請求項に記載の位相差測定装置において、
前記偏光子の透過軸の回転範囲が0°から135°であり、
前記演算部は、
前記偏光子の透過軸の方位角が0°および90°である場合の前記光強度信号から抽出される前記変調子の変調周波数の2倍の周波数の各信号成分I 2f,I90 2fの和と、
前記偏光子の透過軸の方位角が45°および135°である場合の前記光強度信号から抽出される前記変調周波数の2倍の周波数の各信号成分I45 2f,I135 2fの和と、
を算出して、前記偏光プローブの透過軸の方位角のゼロ点を補正することを特徴とする位相差測定装置。
The phase difference measuring apparatus according to claim 1 ,
The rotation range of the transmission axis of the polarizer is 0 ° to 135 °,
The computing unit is
Of each signal component I 0 2f , I 90 2f having a frequency twice the modulation frequency of the modulator extracted from the light intensity signal when the azimuth angle of the transmission axis of the polarizer is 0 ° and 90 ° Sum and
A sum of signal components I 45 2f and I 135 2f having a frequency twice the modulation frequency extracted from the light intensity signal when the azimuth of the transmission axis of the polarizer is 45 ° and 135 °;
The phase difference measuring device is calculated by correcting the zero point of the azimuth angle of the transmission axis of the polarizing probe.
請求項に記載の位相差測定装置において、
前記偏光子の透過軸の回転範囲が−45°から180°であることを特徴とする位相差測定装置。
In the phase difference measuring apparatus according to claim 5 ,
A phase difference measuring apparatus, wherein a rotation range of a transmission axis of the polarizer is −45 ° to 180 °.
照射部からの光を直線偏光にして透過する偏光子と、
前記偏光子からの偏光が照射されることによって試料の測定面に発生する近接場光のうち、所定の振動方向の直線偏光を透過する楕円形状またはスリット形状の開口を有した偏光プローブと、
前記偏光子の透過軸の方位角を前記偏光プローブの透過軸の方位角に対して変更するために前記偏光子を回転させる回転機構と、
前記偏光プローブによって集光された近接場光を検出して光強度信号を生じる検出部と、
前記光強度信号に基づいて、試料に照射される偏光によって生じる進相軸方位の偏光成分と遅相軸方位の偏光成分との位相差、および、試料の軸方位を算出する演算部と、
を備え、前記回転機構が前記偏光子の透過軸を回転させると同時に、前記検出部が前記偏光子の透過軸の方位角に応じて前記偏光プローブにより集光される近接場光を検出
前記演算部は、前記偏光子の透過軸の方位角φに応じた前記光強度信号I φ を、前記方位角φの2倍の方位角の余弦関数cos2φおよび正弦関数sin2φを用いてフィッティングして、I φ =1+Acos2φ+Bsin2φで示される係数A,Bを取得し、試料の軸方位θおよび位相差Δを以下の数2に基づいて算出することを特徴とする位相差測定装置。
Figure 0005289989
A polarizer that transmits light from the irradiation unit into linearly polarized light, and
A polarizing probe having an elliptical or slit-shaped opening that transmits linearly polarized light in a predetermined vibration direction out of the near-field light generated on the measurement surface of the sample by being irradiated with polarized light from the polarizer;
A rotation mechanism for rotating the polarizer to change the azimuth angle of the transmission axis of the polarizer with respect to the azimuth angle of the transmission axis of the polarizing probe;
A detector that detects near-field light collected by the polarization probe and generates a light intensity signal;
Based on the light intensity signal, the phase difference between the polarization component of the fast axis direction and the polarization component of the slow axis direction generated by the polarized light irradiated to the sample, and an arithmetic unit that calculates the axis direction of the sample;
The equipped, at the same time when the rotation mechanism rotates the transmission axis of the polarizer, the detector is the polarization probe by detecting the near-field light that will be focused in accordance with the azimuth angle of the transmission axis of the polarizer,
The arithmetic unit fits the light intensity signal I φ corresponding to the azimuth angle φ of the transmission axis of the polarizer using a cosine function cos 2 φ and a sine function sin 2 φ having an azimuth angle twice the azimuth angle φ. , I φ = 1 + A cos 2φ + B sin 2φ, the coefficients A and B are obtained, and the axial orientation θ and the phase difference Δ of the sample are calculated based on the following equation (2) .
Figure 0005289989
JP2009015196A 2009-01-27 2009-01-27 Phase difference measuring device Expired - Fee Related JP5289989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009015196A JP5289989B2 (en) 2009-01-27 2009-01-27 Phase difference measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009015196A JP5289989B2 (en) 2009-01-27 2009-01-27 Phase difference measuring device

Publications (2)

Publication Number Publication Date
JP2010175266A JP2010175266A (en) 2010-08-12
JP5289989B2 true JP5289989B2 (en) 2013-09-11

Family

ID=42706398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009015196A Expired - Fee Related JP5289989B2 (en) 2009-01-27 2009-01-27 Phase difference measuring device

Country Status (1)

Country Link
JP (1) JP5289989B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150126981A1 (en) * 2012-04-24 2015-05-07 Koninklijke Philips N.V. Hair treatment device with light-based hair detector
WO2017119237A1 (en) * 2016-01-08 2017-07-13 国立大学法人東北大学 Magneto-optical measurement method and magneto-optical measurement device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2822280B2 (en) * 1991-02-26 1998-11-11 株式会社ニコン Near-field scanning microscope for magnetic domain observation
JPH10267831A (en) * 1997-03-25 1998-10-09 Unie Opt:Kk Birefringence measuring optical system and high space resolution polarization analyzer
JPH10325840A (en) * 1997-05-23 1998-12-08 Seiko Instr Inc Scanning near-field microscope utilizing polarization
JP3866849B2 (en) * 1998-01-27 2007-01-10 大塚電子株式会社 Ellipsometer
EP1248869A2 (en) * 2000-01-07 2002-10-16 Transform Pharmaceuticals, Inc. High-throughput formation, identification, and analysis of diverse solid-forms
JP2004184225A (en) * 2002-12-03 2004-07-02 Jasco Corp Double refraction measuring instrument, method for detecting axial orientation of double refraction sample and method for calibrating the instrument
JP4791752B2 (en) * 2005-04-20 2011-10-12 日本分光株式会社 Near-field polarimeter
JP4832187B2 (en) * 2006-07-03 2011-12-07 富士フイルム株式会社 High-speed polarizing device, high-speed birefringence measuring device using the same, and stereoscopic image display device

Also Published As

Publication number Publication date
JP2010175266A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
CN105492889B (en) The Muller matrix ellipsometer test of optical element rotation type and the method for using the Muller matrix of its measurement sample
JP4629869B2 (en) Birefringence characteristic measuring method and apparatus
WO2010025672A1 (en) Method for ellipsometric measurement and device thereof
CN101231238A (en) A method and device for adjusting light intensity in ellipsometry
US10054423B2 (en) Optical method and system for critical dimensions and thickness characterization
JP2010530074A (en) Single polarizer focus ellipsometer
TW200809170A (en) Focused-beam ellipsometer
CN111366536A (en) Measuring device and method for vertical single optical element rotating Mueller matrix imaging
EP1397651B1 (en) Birefringence measurement at deep-ultraviolet wavelengths
CN102621072A (en) Polarization and birefringence measurement system
US7586606B2 (en) Near-field polarized-light measurement apparatus
CN103424363B (en) Non-rotating optically-active solution measuring instrument and adopt this measuring instrument to measure the method for optically-active solution specific rotation
JP2009103598A (en) Spectroscopic ellipsometer and polarization analysis method
JP5289989B2 (en) Phase difference measuring device
CN201000428Y (en) Spectroscopic ellipsometry imaging device with variable incident angle for nanometer film surface measurement
JP2014035254A (en) Back focal plane microscopic ellipsometer
CN105424617A (en) Microimaging measuring method and device for single one-dimensional nano material scattering spectrum
Tan et al. Development of a tomographic Mueller-matrix scatterometer for nanostructure metrology
CN201004124Y (en) A kind of adjustment device used in photometric measurement
CN108398386B (en) Method and apparatus for in-plane anisotropic crystal axis orientation
TW200819706A (en) Interferometer angle sensitivity calibration method
JP4095932B2 (en) Refractive index measuring device and refractive index measuring method
JP5469590B2 (en) Magneto-optical spectrum spectrometer, magneto-optical spectrum measuring method and program
JP5361843B2 (en) Optical anisotropy evaluation method and evaluation apparatus
TW200928348A (en) Device for synchronous measurement of optical rotation angle and phase delay and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130605

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees