JP4998694B2 - Ceramic fired body and method for producing the same - Google Patents
Ceramic fired body and method for producing the same Download PDFInfo
- Publication number
- JP4998694B2 JP4998694B2 JP2006315979A JP2006315979A JP4998694B2 JP 4998694 B2 JP4998694 B2 JP 4998694B2 JP 2006315979 A JP2006315979 A JP 2006315979A JP 2006315979 A JP2006315979 A JP 2006315979A JP 4998694 B2 JP4998694 B2 JP 4998694B2
- Authority
- JP
- Japan
- Prior art keywords
- synthetic zeolite
- clay
- porous
- coal ash
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/60—Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes
Landscapes
- Processing Of Solid Wastes (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Description
本発明は、石炭灰、アルミドロス、および粘土を出発原料とする、たとえば瓦、壁材といったセラミック焼成体及びその製造方法に関する。 The present invention relates to a ceramic fired body such as roof tile and wall material using coal ash, aluminum dross, and clay as starting materials, and a method for producing the same.
世界規模での石油需給の長期的展望から、石炭火力発電の重要性が増すことは必至である。現在、約1000万トン/年の石炭灰が石炭火力発電所から排出されており、今後この排出量は増大するものと思われる。この石炭灰(主としてフライアッシュ)の約40%はセメント原料として活用されているものの多くは埋め立てられており、埋立用地が逼迫している状況からも石炭灰を資源として活用することの重要性が増してきている。 From the long-term perspective of global oil supply and demand, the importance of coal-fired power generation is inevitable. Currently, about 10 million tons / year of coal ash is discharged from coal-fired power plants, and this amount is expected to increase in the future. Although about 40% of this coal ash (mainly fly ash) is used as a raw material for cement, most of it is landfilled, and the importance of using coal ash as a resource is also seen from the situation where landfill sites are tight. It is increasing.
一方、アルミニウムやアルミニウム合金を溶解する工程で発生するスラグ状のアルミドロス(アルミニウム残灰)には、金属アルミニウム、酸化アルミニウム以外に窒化アルミニウム、金属酸化物、フラックス成分、硫化物等が含まれている。而して、アルミドロスを産業廃棄物として処理すると、雨水と反応して水酸化物を形成するときに水素を発生して危険でありまた、アンモニアガスを発生して異臭を生じたりする問題もある。従って、アルミドロスを資源として活用することもまた、望まれている。 On the other hand, slag-like aluminum dross (aluminum residue ash) generated in the process of melting aluminum or aluminum alloy contains aluminum nitride, metal oxide, flux component, sulfide, etc. in addition to metal aluminum and aluminum oxide. Yes. Thus, when aluminum dross is treated as industrial waste, it is dangerous to generate hydrogen when it reacts with rainwater to form hydroxide, and there is also a problem of generating off-flavor by generating ammonia gas. is there. Therefore, it is also desired to utilize aluminum dross as a resource.
他方、瓦製造業界にあっては瓦用粘土が枯渇してきており、その確保が問題となりつつある。 On the other hand, in the tile manufacturing industry, the clay for tiles has been depleted, and securing it is becoming a problem.
処で、石炭灰とアルミドロスを原料として合成ゼオライトを製造する方法は、既知である(たとえば、特許文献1参照)。
石炭灰とアルミドロスを原料として得られる合成ゼオライトは土地改良材或いは路盤改良材等として利用されるが、石炭灰の成分組成に鑑み、資源リサイクルの観点からさらなる高付加価値化の可能性がありながら、それを可能にする技術的手段は提案されていない。 Synthetic zeolite obtained using coal ash and aluminum dross as raw materials is used as land improvement material or roadbed improvement material. However, in view of the composition of coal ash, there is a possibility of further added value from the viewpoint of resource recycling. However, no technical means to make it possible have been proposed.
本発明は、石炭灰およびアルミドロスを原料の一部とし、瓦、壁材、路盤材等として利用可能なセラミック焼成体及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a ceramic fired body that uses coal ash and aluminum dross as a part of raw materials and can be used as a tile, a wall material, a roadbed material, and the like, and a method for manufacturing the ceramic fired body.
上記課題を解決するための、請求項1に記載の発明は、アルミドロスをアルカリ水溶液中で反応させたアルカリ処理液に石炭灰を加え加熱、反応させて合成ゼオライトを含む多孔質体を得、該合成ゼオライトを含む多孔質粒粉体を粘土に加えて混練、乾燥した後、焼成して得られたセラミック焼成体である。 In order to solve the above problems, the invention according to claim 1 is to obtain a porous body containing synthetic zeolite by adding coal ash to an alkali treatment liquid obtained by reacting aluminum dross in an alkaline aqueous solution and heating and reacting. This is a ceramic fired body obtained by adding the porous granular powder containing the synthetic zeolite to clay, kneading, drying, and firing.
請求項2に記載の発明は、アルミドロスをアルカリ水溶液中で反応させたアルカリ処理液に石炭灰を加え加熱、反応させて合成ゼオライトを含む多孔質体を得、該合成ゼオライトを含む多孔質粒粉体を40重量%以下の割合で瓦用粘土に加えて混練、乾燥した後、焼成して得られた瓦用セラミック焼成体である。 The invention according to claim 2 is to obtain a porous body containing synthetic zeolite by adding coal ash to an alkali treatment liquid obtained by reacting aluminum dross in an alkaline aqueous solution, and heating and reacting the resulting mixture. It is a ceramic fired body for roof tiles obtained by adding the body to the clay for tiles in a proportion of 40% by weight or less, kneading and drying, and firing.
請求項3に記載の発明は、アルミドロスに苛性ソーダ溶液を加えて可溶性アルミン酸ソーダを得、該可溶性アルミン酸ソーダを含む溶液に石炭灰を加え、80℃〜120℃の温度域で5時間以上反応させて合成ゼオライトを含む多孔質体とし、該合成ゼオライトを含む多孔質粒粉体と粘土を混練、成型、乾燥後、1100℃〜1400℃の温度域で20時間以上の焼成を行うことを特徴とするセラミック焼成体の製造方法である。 The invention according to claim 3 adds a caustic soda solution to aluminum dross to obtain a soluble sodium aluminate, and adds coal ash to the solution containing the soluble sodium aluminate, and a temperature range of 80 ° C. to 120 ° C. for 5 hours or more. A porous body containing synthetic zeolite is made to react, and the porous granular powder containing the synthetic zeolite and clay are kneaded, molded, dried, and then fired at a temperature range of 1100 ° C. to 1400 ° C. for 20 hours or more. This is a method for producing a ceramic fired body.
請求項4に記載の発明は、アルミドロスに苛性ソーダ溶液を加えて可溶性アルミン酸ソーダを得、該可溶性アルミン酸ソーダを含む溶液に石炭灰を加え、80℃〜120℃の温度域で5時間以上反応させて合成ゼオライトを含む多孔質体とし、該合成ゼオライトを含む多孔質粒粉体を40重量%以下となる範囲内で瓦用粘土に加えて混練、成型、乾燥した後、1100℃〜1400℃の温度域で20時間以上の焼成を行うことを特徴とする瓦として用いられるセラミック焼成体の製造方法である。 In the invention according to claim 4, a caustic soda solution is added to aluminum dross to obtain soluble sodium aluminate, coal ash is added to the solution containing the soluble sodium aluminate, and a temperature range of 80 ° C. to 120 ° C. for 5 hours or more. A porous body containing synthetic zeolite is allowed to react, and the porous granular powder containing the synthetic zeolite is added to the clay for clay within a range of 40% by weight or less, kneaded, molded, dried, and then 1100 ° C. to 1400 ° C. It is the manufacturing method of the ceramic sintered body used as a roof tile characterized by performing baking for 20 hours or more in the temperature range.
本発明によれば、産業廃棄物である石炭灰、アルミドロスを原料の一部として軽量で、瓦、壁材、ビル屋上の緑化用路盤材等として利用できる安価なセラミック焼成体及びその製造方法を提供することができる。而して、資源のリサイクルの点でまた、粘土の代替化によって瓦用粘土の資源保護の点で効果がある。 According to the present invention, an inexpensive ceramic fired body that can be used as a roofing material for roofing, roofing materials, etc., which is lightweight as a part of raw materials such as coal ash and aluminum dross, which are industrial wastes, and a method for producing the same Can be provided. Thus, in terms of resource recycling, the replacement of clay is also effective in protecting resources of clay for tiles.
本発明のセラミック焼成体を瓦として用いるときは、粘土瓦と同等以上の強度を有せしめて瓦を軽量化することができ、瓦葺き施工を容易にする効果を奏する。また、本発明のセラミック焼成体は保水性に富むから、粘土と混練、成型するに際し、成型性に優れる効果がある。 When the ceramic fired body of the present invention is used as a roof tile, the roof tile can be reduced in weight by having strength equal to or higher than that of a clay roof tile, and an effect of facilitating roof tile construction can be achieved. In addition, since the ceramic fired body of the present invention is rich in water retention, it has an effect of being excellent in moldability when kneaded and molded with clay.
石炭灰から合成ゼオライトを得るに際しては石炭灰中のアルミナ成分が不足する処から、溶解性のアルミナ成分を加える必要がある。表1に、石炭灰の組成の一例を示す。本発明においては、石炭灰とアルミニウムやアルミニウム合金を溶解する工程で発生するアルミドロスを原料として合成ゼオライトを含む多孔質体を得る。 When obtaining synthetic zeolite from coal ash, it is necessary to add a soluble alumina component because the alumina component in the coal ash is insufficient. Table 1 shows an example of the composition of coal ash. In the present invention, a porous body containing synthetic zeolite is obtained using aluminum dross generated in the process of melting coal ash and aluminum or an aluminum alloy as a raw material.
一方、たとえばアルミニウム再生メーカーから発生するアルミドロスは、一例として、金属アルミニウム:35.7重量%、アルミナ(Al2O3):27.8重量%を含んでいる。而して、このアルミドロスを苛性ソーダ(NaOH)溶液に加えてアルミン酸ソーダ(NaAlO2)に変化せしめる。次いで、石炭灰を、アルミン酸ソーダを含むアルミドロスのアルカリ処理溶液に加えて80℃〜120℃、好ましくは90℃〜100℃の温度域で5時間以上好ましくは6時間〜8時間反応させて合成ゼオライトを得る。このときのアルミドロスのアルカリ処理溶液と石炭灰の配合比率は、重量で、2.3〜2.4の範囲が好ましい。 2.3未満であると、Al不足で未反応のSiO2が残り、2.4を超えると、Al過剰で、未反応のAl2O3が多量に残存する。 On the other hand, for example, aluminum dross generated from an aluminum recycling manufacturer includes, as an example, metal aluminum: 35.7 wt% and alumina (Al 2 O 3 ): 27.8 wt%. Thus, the aluminum dross is added to the sodium hydroxide (NaOH) solution to change to sodium aluminate (NaAlO 2 ). Next, coal ash is added to an alkali treatment solution of aluminum dross containing sodium aluminate and reacted at a temperature of 80 ° C. to 120 ° C., preferably 90 ° C. to 100 ° C. for 5 hours or more, preferably 6 hours to 8 hours. A synthetic zeolite is obtained. The blending ratio of the aluminum dross alkali treatment solution and coal ash at this time is preferably in the range of 2.3 to 2.4 by weight. If it is less than 2.3, unreacted SiO 2 remains due to lack of Al, and if it exceeds 2.4, a large amount of unreacted Al 2 O 3 remains due to excess Al.
得られた合成ゼオライト粒粉体を、重量で40%以下となる範囲内で粘土に加えて混練、成型した後、1100℃〜1400℃の温度域で20時間以上の焼成を行って、セラミック焼成体を得る。 The obtained synthetic zeolite granular powder is added to clay within a range of 40% or less by weight, kneaded and molded, and then fired at a temperature range of 1100 ° C. to 1400 ° C. for 20 hours or more, thereby firing the ceramic. Get the body.
石炭火力発電所(F県B市)から排出された、表−1に示す組成を有するフライアッシュとアルミニウム再生メーカー(Y県S市)から発生したアルミドロス(金属アルミニウム:35.7重量%、アルミナ(Al2O3):27.8重量%を含む)を出発原料とした。このアルミドロスを室温で、1mol〜3molの苛性ソーダ(NaOH)溶液に加えた。アルカリ水溶液処理したアルミドロスのX線解析を行った結果、金属Alが消失しており、Alと苛性ソーダ(NaOH)が反応してアルミン酸ソーダ(NaAlO2)に変化していることが分かった。 Fly ash having the composition shown in Table 1 discharged from a coal-fired power plant (F city B city) and aluminum dross generated from an aluminum recycling manufacturer (Y city S city) (metal aluminum: 35.7% by weight, Alumina (Al 2 O 3 ): 27.8% by weight was used as a starting material. The aluminum dross was added at room temperature to 1 mol to 3 mol of caustic soda (NaOH) solution. As a result of X-ray analysis of aluminum dross treated with an alkaline aqueous solution, it was found that metal Al disappeared, and Al and caustic soda (NaOH) reacted to change to sodium aluminate (NaAlO 2 ).
次いで、石炭灰を、前記アルミドロスのアルカリ処理溶液中に、石炭灰中のシリカ(SiO2)を余すことなくゼオライトに変化させるに足る量加えて90℃〜100℃の温度域で7時間反応させてX型ゼオライトを得た。 Next, the coal ash is added to the alkali treatment solution of aluminum dross in an amount sufficient to change the silica (SiO 2 ) in the coal ash to zeolite, and reacted in a temperature range of 90 ° C. to 100 ° C. for 7 hours. To obtain X-type zeolite.
然る後、島根県石見地方より産出する粘土(石州瓦用粘土)に、前記得られたX型ゼオライト粒粉体を、重量比で0%〜70%となる配合比率で加えて混練、成型(厚さ:15mm、直径:30mmの円盤状)し、これを1週間天日干しした。この天日干し成型体を1200℃で24時間加熱、焼成を行った。 Thereafter, the X-type zeolite granular powder obtained above is added to the clay (Ishizu clay for clay) produced from the Iwami district of Shimane Prefecture, and added at a blending ratio of 0% to 70% by weight, and kneaded. Molded (thickness: 15 mm, diameter: 30 mm disk shape) and dried in the sun for one week. This sun-dried molded body was heated and fired at 1200 ° C. for 24 hours.
得られたセラミック焼成体の、X型ゼオライトの配合比率0%、10%、20%、30%、50%、60%、および70%のものについて、焼成前後の重量減少率、焼成前後の体積減少率、嵩密度、強度を測定した。その結果の平均値を表2に、強度の測定結果を表3に、焼成前後の重量減少率、体積減少率の測定結果を表4、表5に、嵩密度の測定を表6に示す。 For the obtained ceramic fired bodies with a X-type zeolite blending ratio of 0%, 10%, 20%, 30%, 50%, 60%, and 70%, the weight reduction rate before and after firing, the volume before and after firing. The reduction rate, bulk density, and strength were measured. The average value of the results is shown in Table 2, the measurement results of strength are shown in Table 3, the measurement results of weight reduction rate and volume reduction rate before and after firing are shown in Tables 4 and 5, and the measurement of bulk density is shown in Table 6.
表1から明らかなように、合成ゼオライトの配合比率(重量%)が30%までは、強度は瓦用粘土:100%の場合とほぼ変わらない。また、合成ゼオライトの配合比率(重量%):70%までは強度が極端に低下することがない。さらに、合成ゼオライトを配合することによって、瓦用粘土:100%の場合に比し7%〜9%の軽量化を図ることができる。 As is clear from Table 1, the strength is almost the same as that of the clay for clay: 100% when the blending ratio (% by weight) of the synthetic zeolite is up to 30%. Further, the blending ratio (wt%) of the synthetic zeolite: 70% strength does not extremely decrease. Further, by blending synthetic zeolite, the weight can be reduced by 7% to 9% compared to the case of clay for tiles: 100%.
本発明は、瓦、壁材、ビル屋上の緑化用路盤材等として用いることができるほか、多孔性を活かした排水層形成材料、土管用材料等として広い用途を有する。
INDUSTRIAL APPLICABILITY The present invention can be used as a roof tile, a wall material, a roadbed material for greening a building roof, etc., and has a wide range of uses as a drainage layer forming material, a material for earthen pipe, etc. utilizing the porosity.
Claims (4)
Porous containing synthetic zeolite by adding caustic soda solution to Almidros to obtain soluble sodium aluminate, adding coal ash to the solution containing soluble sodium aluminate and reacting at 80 ° C to 120 ° C for 5 hours or more And then the porous granule powder containing the synthetic zeolite is added to the clay for clay within a range of 40% by weight or less, kneaded, molded and dried, and then fired at a temperature range of 1100 ° C. to 1400 ° C. for 20 hours or more. A method for producing a ceramic fired body used as a roof tile.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006315979A JP4998694B2 (en) | 2006-11-22 | 2006-11-22 | Ceramic fired body and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006315979A JP4998694B2 (en) | 2006-11-22 | 2006-11-22 | Ceramic fired body and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008127259A JP2008127259A (en) | 2008-06-05 |
JP4998694B2 true JP4998694B2 (en) | 2012-08-15 |
Family
ID=39553466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006315979A Expired - Fee Related JP4998694B2 (en) | 2006-11-22 | 2006-11-22 | Ceramic fired body and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4998694B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201012287D0 (en) * | 2010-07-22 | 2010-09-08 | Ibr Consult B V | Production of fired ceramic articles |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004300005A (en) * | 2003-04-01 | 2004-10-28 | Zeotec:Kk | Method for producing artificial zeolite |
JP2005015276A (en) * | 2003-06-26 | 2005-01-20 | Azumagumi:Kk | Ceramic fired body and antibacterial ceramic and microorganism immobilization support using the same |
-
2006
- 2006-11-22 JP JP2006315979A patent/JP4998694B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008127259A (en) | 2008-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5091519B2 (en) | Geopolymer composition and method for producing the same | |
JP2011525885A (en) | Binder composition | |
KR101852037B1 (en) | Manufacturing method of light weight geopolymer by using slag from waste spent catalyst and silicon sludge | |
KR101659257B1 (en) | A Composite of Hauyne cement by using fly ash of fluidize-bed boiler and Waste Aluminium Powder and manufacturing method thereof | |
Eliche-Quesada et al. | Dust filter of secondary aluminium industry as raw material of geopolymer foams | |
CN101337684A (en) | A method for recovering sulfur and co-producing calcium carbonate from desulfurized gypsum | |
KR101790172B1 (en) | Environmental friendly mortar composition | |
Souza et al. | Using scheelite residue and rice husk ash to manufacture lightweight aggregates | |
KR101263227B1 (en) | Geopolymer Composition having high strength and manufacturing method thereof | |
KR100690009B1 (en) | Multifunctional inorganic binder composition using industrial byproducts | |
JP4998694B2 (en) | Ceramic fired body and method for producing the same | |
JP6207423B2 (en) | Lightweight alkali-proof fireproof insulation brick and method for producing the same | |
KR101535275B1 (en) | Composition for the preparation of geopolymer using waste coal ash and the preparation method of the same | |
JP4129695B2 (en) | Method for producing porous water-absorbing ceramics | |
JP2007261901A (en) | Ceramic formed by using waste as main material, and its manufacturing method | |
Borg et al. | PRELIMINARY INVESTIGATION OF GEOPOLYMER BINDER FROM WASTE MATERIALS. | |
Najar et al. | Development of Light weight foamed bricks from red mud | |
Poowancum et al. | Utilisation of low-reactivity fly ash for fabricating geopolymer materials | |
Ewais et al. | Cement kiln dust–quartz derived wollastonite ceramics | |
JP3931171B2 (en) | Firing cured body and manufacturing method thereof | |
JPH06166579A (en) | Manufacturing method of lightweight foam building material mainly made of coal ash | |
WO2021033193A1 (en) | Red brick and process for preparation thereof | |
KR20150121277A (en) | Desulfurization material composite | |
CN101445346A (en) | Compact light acid resistant pouring material for chimneys and preparation method thereof | |
KR101382248B1 (en) | Composition for construction marerials using red mud and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120406 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120501 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150525 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150525 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |