KR101852037B1 - Manufacturing method of light weight geopolymer by using slag from waste spent catalyst and silicon sludge - Google Patents
Manufacturing method of light weight geopolymer by using slag from waste spent catalyst and silicon sludge Download PDFInfo
- Publication number
- KR101852037B1 KR101852037B1 KR1020160028821A KR20160028821A KR101852037B1 KR 101852037 B1 KR101852037 B1 KR 101852037B1 KR 1020160028821 A KR1020160028821 A KR 1020160028821A KR 20160028821 A KR20160028821 A KR 20160028821A KR 101852037 B1 KR101852037 B1 KR 101852037B1
- Authority
- KR
- South Korea
- Prior art keywords
- silicon sludge
- geopolymer
- slag
- lightweight
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 65
- 239000010703 silicon Substances 0.000 title claims abstract description 64
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 63
- 239000010802 sludge Substances 0.000 title claims abstract description 62
- 229920000876 geopolymer Polymers 0.000 title claims abstract description 52
- 239000002893 slag Substances 0.000 title claims abstract description 39
- 239000002699 waste material Substances 0.000 title claims abstract description 39
- 239000003054 catalyst Substances 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title abstract description 20
- 239000012190 activator Substances 0.000 claims abstract description 44
- 239000003513 alkali Substances 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000002156 mixing Methods 0.000 claims abstract description 15
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 6
- 235000019353 potassium silicate Nutrition 0.000 claims description 18
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 18
- 230000005484 gravity Effects 0.000 claims description 9
- 230000005587 bubbling Effects 0.000 claims description 7
- 229920000642 polymer Polymers 0.000 claims description 6
- 239000000292 calcium oxide Substances 0.000 claims description 4
- 235000012255 calcium oxide Nutrition 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 3
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 14
- 230000008569 process Effects 0.000 abstract description 10
- 239000011381 foam concrete Substances 0.000 abstract description 8
- 239000004568 cement Substances 0.000 abstract description 6
- 239000004065 semiconductor Substances 0.000 abstract description 4
- 239000004604 Blowing Agent Substances 0.000 abstract description 2
- 239000006260 foam Substances 0.000 abstract description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 abstract description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 33
- 239000004567 concrete Substances 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000002994 raw material Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000013585 weight reducing agent Substances 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000011083 cement mortar Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000004035 construction material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 239000000383 hazardous chemical Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000004876 x-ray fluorescence Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012615 aggregate Substances 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B12/00—Cements not provided for in groups C04B7/00 - C04B11/00
- C04B12/005—Geopolymer cements, e.g. reaction products of aluminosilicates with alkali metal hydroxides or silicates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/045—Alkali-metal containing silicates, e.g. petalite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/06—Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
- C04B18/062—Purification products of smoke, fume or exhaust-gases
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/30—Mixed waste; Waste of undefined composition
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/10—Accelerators; Activators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Civil Engineering (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
기존의 시멘트를 이용한 경량 기포 콘크리트를 대체하기 위한 친환경 무기계 경량 기포 지오폴리머의 제조에 관한 것으로서 기존의 고로슬래그나 메타카올린과 제품을 사용하지 않고 산업체에서 발생되는 폐기물인 폐촉매 슬래그만을 100% 사용하고 경량화를 위한 발포제 역시 반도체 웨이퍼 공정에서 발생되는 실리콘 슬러지를 사용함으로써, 대량의 CO2가 발생하지 않고 경제적인 경량 기포 지오폴리머를 제조할 수 있는 방법이 개시된다. 본 발명은 실리카(SiO2), 알루미나(Al2O3) 및 칼시아(CaO)를 포함하는 폐촉매 슬래그, 실리콘 슬러지 및 알칼리 활성화제 용액을 혼합, 경화 및 양생하는 단계를 포함하여 경량 기포 지오폴리머를 제조하는 방법으로, 상기 혼합되는 알칼리 활성화제 용액은, 농도가 5~15M이고, 상기 폐촉매 슬래그 및 상기 실리콘 슬러지 총 중량에 대한 물 함량비가 0.20~0.32인 것을 특징으로 하는 경량 기포 지오폴리머 제조방법을 제공한다.The present invention relates to the production of an environmentally friendly lightweight bubble geopolymer for replacing lightweight foamed concrete using existing cement, wherein 100% of waste catalyst slag, which is a waste generated in industry, is used without using conventional blast furnace slag or meta kaolin A blowing agent for lighter weight also uses a silicon sludge generated in a semiconductor wafer process, thereby disclosing a method for producing economical lightweight bubble geopolymers without generating a large amount of CO 2 . The present invention is silica (SiO 2), alumina (Al 2 O 3) and calcia (CaO) a waste catalyst slag, silicon sludge and alkaline activator solution comprising, including the step of mixing, curing, and curing the light-weight foam Geo Wherein the mixed alkali activator solution has a concentration of 5 to 15 M and a water content ratio of the waste catalyst slag to the total weight of the silicon sludge is from 0.20 to 0.32. And a manufacturing method thereof.
Description
본 발명은 지오폴리머 제조방법에 관한 것으로, 보다 상세하게는 지오폴리머 합성 공정에 있어 특정 폐자원을 이용하여 경량 지오폴리머를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a geopolymer, and more particularly, to a method for producing a lightweight geopolymer using specific waste resources in a geopolymer synthesis process.
종래 콘크리트 구조재료는 강도에 비해 비중이 높기 때문에 구조물의 자중을 증대시키는 단점이 있어, 이런 단점들을 개선함과 동시에 다른 우수한 성능을 부여할 목적으로 경량 콘크리트가 개발되어 여러 분야에 활용되고 있다. 경량 콘크리트는 비구조용뿐만 아니라 구조용으로 폭넓게 활용되고 있으나, 현재 국내에서는 자중 감소의 직접효과에 의한 구조용 콘크리트로의 이용보다는 단열 및 방음 등의 간접효과를 위한 비구조용 콘크리트로서 이용도가 높은 실정이다. 경량 콘크리트는 제조 방법에 따라 일반적으로 비중이 낮은 다공질의 경량 골재를 사용한 경량 골재 콘크리트, 콘크리트 내부에 무수한 기포를 골고루 형성시킨 경량 기포 콘크리트, 그리고 ALC(Autoclaved Lightweight Concrete)의 3가지가 존재한다.Since the conventional concrete structural material has a higher specific gravity than the strength thereof, there is a disadvantage that it increases the self weight of the structure. Therefore, lightweight concrete has been developed and used in various fields in order to improve these shortcomings and to give other excellent performance. Lightweight concrete is widely used not only for non-structural use but also for structural use. However, it is currently used as non-structural concrete for indirect effects such as insulation and sound insulation, rather than using structural concrete due to direct effect of reduction of weight. There are three types of lightweight concrete: lightweight aggregate concrete using porous lightweight aggregate with low specific gravity, lightweight foamed concrete with numerous air bubbles inside the concrete, and Autoclaved Lightweight Concrete (ALC).
경량 기포 콘크리트는 그 재료가 갖는 특성인 단열성으로 인해 유럽 각국에서는 일부 단열 및 방음용 재료로서의 활용에 관한 연구가 진행되고 있으나 대부분의 경량 콘크리트는 경량 골재 콘크리트나 ALC(Autoclaved Lightweight Concrete)에 관한 연구에 편중되어 있는 실정이다. 그러나 최근에 들어 현장 타설 경량 기포 콘크리트가 단열성, 상하층간의 차음성능, 구조물의 경량화 및 온돌 배관작업이 용이하고 비교적 좁은 면적에서도 제조 및 시공이 가능한 장점 등으로 인하여 주로 공동주택의 단열 및 채움재의 용도로 적용이 증가되고 있다(한국콘크리트학회, 최신콘크리트공학, pp. 659-695 (2004)).Lightweight foamed concrete has been studied for its use as a part of insulation and soundproofing materials in European countries due to its thermal insulation properties. However, most of the lightweight concrete is a lightweight aggregate concrete or ALC (Autoclaved Lightweight Concrete) It is a fact that it is concentrated. In recent years, however, due to the fact that the lightweight foamed concrete in the field is insulated, the sound insulation performance between the upper and lower floors, the weight reduction of the structure and the construction of the ondol pipe are easy and the manufacturing and construction are possible in a relatively small area, (Korea Concrete Institute, The Latest Concrete Engineering, pp. 659-695 (2004)).
전통적으로 콘크리트는 시멘트, 물, 골재 및 혼화제를 혼합하여 만든 건설재료로서, 시멘트 제조 산업은 에너지 소비량이 많으며 주원료인 석회석(CaCO3)과 연료가 연소될 때 대량의 CO2 가스를 발생시키는 문제점이 있다. 시멘트 제조과정에서 발생하는 CO2의 양은 전 세계 온실가스 배출량의 7%를 차지하고 있으며 이는 매년 증가하고 있는 추세이다(G.S. Ryu, Y.B. Lee, K.T. Koh, and Y.S. Chung, Construction and Building Materials, 47, 409-418 (2013)).Traditionally, concrete is a construction material made by mixing cement, water, aggregate and admixture. The cement manufacturing industry consumes a large amount of energy and has the problem of producing limestone (CaCO 3 ) and a large amount of CO 2 gas when the fuel is burned have. The amount of CO 2 generated in the cement manufacturing process accounts for 7% of global greenhouse gas emissions, which is increasing every year (GS Ryu, YB Lee, KT Koh, and YS Chung, Construction and Building Materials, 47, 409 -418 (2013)).
지오폴리머는 기존 시멘트를 대체할 친환경 무기계 바인더로서, 고로 슬래그, 석탄회, 메타카올린 같은 포졸란 물질을 알칼리 활성화제와 반응을 시키면, 우수한 물리적, 역학적 성질을 갖는 것으로 보고되고 있다(Davidovits J., Comrie D.C., Paterson J.H., and Ritcey D.J., ACI Concrete International, Vol. 12, No.7, pp. 30~40 (1990); J.SJ. van Deventer, J.L. Provis, P.Duxson, G.C. Lukey, Journal of Hazardous Materials, A139, pp. 506-513 (2007)). 또한 지오폴리머는 알루미노 실리케이트(alumino silicate)로 구성된 비정질 3차원 망목구조를 가지며 화학적 내구성과 기계적 특성이 우수하고 산업폐기물이나 저급재료로부터 제조 가능성이 있는 장점들을 갖고 있다(Davidovits J., Comrie D.C., Paterson J.H., and Ritcey D.J., ACI Concrete International, Vol. 12, No.7, pp. 30~40 (1990); J.SJ. van Deventer, J.L. Provis, P.Duxson, G.C. Lukey, Journal of Hazardous Materials, A139, pp. 506-513 (2007)). 지오폴리머의 반응 기구는 알루미노 실리케이트 성분의 원료에 알칼리성 환경이 제공되면 Si, Al 이온들이 용출됨과 동시에 빠르게 중합(Polymerization) 반응이 진행되며, Si-O-Al-O 결합형태의 3차원 중합 쇄 구조(three-dimensional polymeric chain structure)를 갖는 지오폴리머를 형성한다(S. V. Joshi and M. S. Kadu, Int. J. Environmental Science and Development, Vol. 3, No. 5 (2012); J. Davidovits, Concrete Technology Past Present and Future, Vol. 144, 383-398 (1994)).Geopolymers are eco-friendly inorganic binders that replace conventional cements and have been reported to have excellent physical and mechanical properties when reacted with pozzolans such as blast furnace slag, fly ash, and meta-kaolin (Davidovits J., Comrie DC Jr. Provis, P. Duxson, GC Lukey, Journal of Hazardous Materials, Vol. 12, No. 7, pp. 30-40 (1990), Paterson JH, and Ritcey DJ, ACI Concrete International, , A139, pp. 506-513 (2007)). Geopolymers also have amorphous three-dimensional network structures composed of alumino silicates, have excellent chemical durability and mechanical properties, and have the potential to be manufactured from industrial wastes or low-grade materials (Davidovits J., Comrie DC, J., J. Van Deventer, JL Provis, P. Duxson, GC Lukey, Journal of Hazardous Materials, Vol. 12, No. 7, pp. A139, pp. 506-513 (2007)). In the reaction mechanism of the geopolymer, when the alkaline environment is provided to the raw material of the aluminosilicate component, the Si and Al ions are eluted and the polymerization reaction proceeds rapidly, and a three-dimensional polymerization chain of Si-O-Al- (J. J. ≪ / RTI > Joshi and MS Kadu, Int. J. Environmental Science and Development, Vol. 3, No. 5 (2012); J. Davidovits, Concrete Technology Past Present and Future, Vol.144, 383-398 (1994)).
특히 기포 지오폴리머는 중량 경감을 목적으로 만들어진 비중 2.0 이하인 다공체를 말하며, 일반적으로 Al, Si 분말 등을 혼합시켜 화학반응에 의해 기포를 발생시켜 동일한 체적의 다공체나 콘크리트보다 가볍게 만든 다공질의 물질을 말한다. 경량 기포 지오폴리머는 경량화를 위해서 기포를 혼합하여 구조용, 철근콘크리트 피복용, 열 차단용 등 다양한 분야에 사용되고 있다. 친환경 무기계 바인더인 지오폴리머의 활용도를 높이기 위해서는 기존 시멘트계 기포 콘크리트의 KS F 4039 규격에 따라 압축강도가 1.5MPa 이상이며 겉보기 비중이 0.5~0.7를 만족하는 경량 기포 지오폴리머의 개발이 필요하다.In particular, a bubble geopolymer refers to a porous material having a specific gravity of 2.0 or less, which is made for the purpose of weight reduction, and generally refers to a porous material produced by mixing bubbles by chemical reaction by mixing Al, Si powder or the like to make it lighter than porous bodies or concrete of the same volume . Lightweight bubble geopolymers are used in various fields such as structural, reinforced concrete coating, heat shielding, etc. by mixing bubbles in order to lighten the weight. It is necessary to develop a lightweight bubble geopolymer with a compressive strength of 1.5 MPa or more and an apparent specific gravity of 0.5 to 0.7 according to the KS F 4039 standard of cement mortar concrete in order to increase the utilization of the environmentally friendly inorganic binder.
폐자원을 이용한 지오폴리머 제조방법에 관해서는 다양한 연구가 진행되어 왔으며, 예컨대, 폐유리(등록특허 제1078336호), 건축물 폐재(등록특허 제1120062호), 플라이 애쉬(등록특허 제1315371), 석탄재 및 고로슬래그(등록특허 제1218654호) 등을 이용한 지오폴리머 제조방법이 개시되고 있다.Various studies have been made on a method for producing a geopolymer using waste resources. For example, waste glass (registered patent No. 1078336), building waste (registered patent No. 1120062), fly ash (registered patent No. 1315371) And a blast furnace slag (Patent No. 1218654).
본 발명은 상술한 바와 같은 문제점을 해결하기 위한 것으로, 기존의 시멘트를 이용한 경량 기포 콘크리트를 대체하기 위한 친환경 무기계 경량 기포 지오폴리머의 제조에 관한 것으로서 기존의 고로슬래그나 메타카올린과 제품을 사용하지 않고 산업체에서 발생되는 폐기물인 폐촉매 슬래그만을 100% 사용하고 경량화를 위한 발포제 역시 반도체 웨이퍼 공정에서 발생되는 실리콘 슬러지를 사용함으로써, 대량의 CO2가 발생하지 않고 경제적인 경량 기포 지오폴리머를 제조할 수 있는 방법을 제공하고자 한다.Disclosure of the Invention The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide an environmentally friendly lightweight bubble-free geopolymer for replacing lightweight foamed concrete using conventional cement. The use of 100% waste catalytic slag, which is the waste generated in industry, and the blowing agent for lighter weight also make use of the silicon sludge generated in the semiconductor wafer process, which can produce economical lightweight bubble geopolymers without generating a large amount of CO 2 Method.
상기 과제를 해결하기 위하여 본 발명은, 실리카(SiO2), 알루미나(Al2O3) 및 칼시아(CaO)를 포함하는 폐촉매 슬래그, 실리콘 슬러지 및 알칼리 활성화제 용액을 혼합, 경화 및 양생하는 단계를 포함하여 경량 기포 지오폴리머를 제조하는 방법으로, 상기 혼합되는 알칼리 활성화제 용액은, 농도가 5~15M이고, 상기 폐촉매 슬래그 및 상기 실리콘 슬러지 총 중량에 대한 물 함량비가 0.20~0.32인 것을 특징으로 하는 경량 기포 지오폴리머 제조방법을 제공한다.SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a method for mixing, curing and curing a waste catalyst slag, a silicon sludge and an alkali activator solution containing silica (SiO 2 ), alumina (Al 2 O 3 ) and calcia (CaO) Wherein the mixed alkali activator solution has a concentration of from 5 to 15 M and a water content ratio of the spent catalyst slag to the total weight of the silicon sludge is from 0.20 to 0.32 And a method for manufacturing a lightweight bubble geopolymer.
또한 상기 폐촉매 슬래그 및 실리콘 슬러지 함량은 상기 폐촉매 슬래그 85~91중량% 및 상기 실리콘 슬러지 9~15중량%인 것을 특징으로 하는 경량 기포 지오폴리머 제조방법을 제공한다.The amount of the waste catalyst slag and the amount of the silicon sludge is 85 to 91 wt% of the waste catalyst slag and 9 to 15 wt% of the silicon sludge.
또한 상기 폐촉매 슬래그 및 실리콘 슬러지 함량은 상기 폐촉매 슬래그 97~99중량% 및 상기 실리콘 슬러지 1~3중량%이고, 물유리를 더 혼합하되 상기 알칼리 활성화제 용액의 액상 중량에 대한 물유리의 물 함량비가 0.5~1.5인 것을 특징으로 하는 경량 기포 지오폴리머 제조방법을 제공한다.The waste catalyst slag and the silicon sludge content are 97 to 99% by weight of the waste catalyst slag and 1 to 3% by weight of the silicon sludge, and further water glass is mixed so that the water content ratio of the water glass to the liquid weight of the alkali activator solution 0.5 to 1.5. ≪ / RTI >
본 발명에 따르면, 폐촉매 슬래그에 실리콘 슬러지를 첨가하여 밀도 1 이하의 경량 기포 지오폴리머를 제조할 수 있으며, 기존의 시멘트나 고로슬래그 및 메타카올린을 사용하지 않고 100% 폐기물을 이용하여 기존의 비구조용 경량 기포 콘크리트에 비해 경제적이고 동등한 물성의 친환경 무기계 바인더 제조를 가능하게 한다.According to the present invention, a lightweight bubble-type geopolymer having a density of 1 or less can be produced by adding silicon sludge to waste catalyst slag, and 100% This makes it possible to manufacture eco-friendly inorganic binders that are economical and comparable to structural lightweight foamed concrete.
도 1은 본 발명에 따른 경량 기포 지오폴리머 제조과정을 예시적으로 나타낸 공정도,
도 2는 본 발명의 실시예에서 실리콘 슬러지의 결정상 분석을 위한 XRD 측정 결과를 나타낸 그래프,
도 3 및 도 4는 각각 본 발명의 실시예에서 W/S 비와 실리콘 슬러지 첨가량 변화에 따른 경량 기포 지오폴리머의 밀도 및 압축강도를 측정한 결과를 나타낸 그래프,
도 5는 본 발명의 실시예에서 복합 활성화제 사용과 실리콘 슬러지 첨가량 변화에 따른 경량 기포 지오폴리머의 밀도 및 압축강도를 측정한 결과를 나타낸 그래프,
도 6은 본 발명의 실시예에서 복합 활성화제의 물유리 첨가량 변화에 따른 경량 기포 지오폴리머의 밀도 및 압축강도를 측정한 결과를 나타낸 그래프.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process diagram illustrating a process for producing a lightweight bubble-generating polymer according to the present invention,
FIG. 2 is a graph showing XRD measurement results for the crystal phase analysis of silicon sludge in the embodiment of the present invention,
3 and 4 are graphs showing the results of measurement of the density and compressive strength of the lightweight bubbling geopolymer according to the variation of the W / S ratio and the amount of the added silicon sludge,
FIG. 5 is a graph showing the results of measurement of density and compressive strength of a lightweight bubbling geopolymer according to the use of a complex activator and a change in addition amount of a silicon sludge in an embodiment of the present invention,
FIG. 6 is a graph showing the results of measurement of density and compressive strength of a lightweight bubbling geopolymer according to changes in addition amount of a water activator of a complex activator in an embodiment of the present invention. FIG.
이하에서는 본 발명의 바람직한 실시예를 첨부한 도면을 참고하여 상세하게 설명한다. 도면에서 본 발명을 명확하게 설명하기 위하여 설명과 관계없는 부분은 생략하였고, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 부여하였다. 또한 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In order to clearly illustrate the present invention, parts not related to the description are omitted, and similar parts are denoted by similar reference numerals throughout the specification. Also, throughout the specification, when an element is referred to as "including " an element, it means that it may include other elements, not excluding other elements, unless specifically stated otherwise.
본 발명은 실리카(SiO2), 알루미나(Al2O3) 및 칼시아(CaO)를 포함하는 폐촉매 슬래그, 실리콘 슬러지 및 알칼리 활성화제 용액을 혼합, 경화 및 양생하는 단계를 포함하여 경량 기포 지오폴리머를 제조하는 방법으로, 상기 혼합되는 알칼리 활성화제 용액은, 농도가 5~15M이고, 상기 폐촉매 슬래그 및 상기 실리콘 슬러지 총 중량에 대한 물 함량비가 0.20~0.32인 것을 특징으로 하는 경량 기포 지오폴리머 제조방법을 개시한다.The present invention is silica (SiO 2), alumina (Al 2 O 3) and calcia (CaO) a waste catalyst slag, silicon sludge and alkaline activator solution comprising, including the step of mixing, curing, and curing the light-weight foam Geo Wherein the mixed alkali activator solution has a concentration of 5 to 15 M and a water content ratio of the waste catalyst slag to the total weight of the silicon sludge is from 0.20 to 0.32. A manufacturing method is disclosed.
경량 기포 지오폴리머를 제조하기 위해 본 발명에서는 배기가스 정화 후 발생하는 폐촉매를 고온에서 용융한 폐촉매 슬래그 100%를 지오폴리머 원료로 사용하였으며, 기포 형성을 통한 경량화를 위하여 반도체 웨이퍼 공정에서 발생되는 실리콘 슬러지를 첨가하는 것을 특징으로 한다. 또한 폐촉매 슬래그의 수화 및 중/축합 반응을 통한 지오폴리머 반응을 위한 활성화제로 NaOH 수용액과 같은 알칼리 활성화제 용액을 단독 사용하거나, 바람직하게는 후술하는 바와 같이 알칼리 활성화제 용액과 물유리를 혼합 사용하는 것을 특징으로 한다.In order to manufacture a lightweight bubble geopolymer, 100% waste catalyst slag, which is produced by melting the waste catalyst at high temperature after exhaust gas purification, is used as a raw material of the geopolymer. In order to reduce the weight through bubble formation, Characterized in that a silicon sludge is added. In addition, an alkali activator solution such as an aqueous NaOH solution may be used alone as an activator for the geopolymer reaction through the hydration and heavy / condensation reaction of the waste catalyst slag, or a mixture of an alkali activator solution and water glass .
도 1은 본 발명에 따른 경량 기포 지오폴리머 제조과정을 예시적으로 나타낸 공정도이다.BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a process diagram illustrating a process for producing a lightweight bubble-generating polymer according to the present invention.
도 1을 참조하면, 본 발명에 따른 경량 기포 지오폴리머는 예컨대, 배합비에 따라 먼저 폐촉매 슬래그와 실리콘 슬러지를 건식 혼합 후, 혼합된 원료에 알칼리 활성화제 용액을 첨가하여 몰드에 성형하고 비닐백에 밀봉하여 60~80℃ 및 12~36시간 조건에서 양생한 후, 양생이 완료되면 시편을 탈형 후 2~4일간 재령하여 제조될 수 있다.Referring to FIG. 1, the lightweight bubbling geopolymer according to the present invention can be produced by, for example, dry mixing the waste catalyst slag and the silicon sludge according to the blending ratio, adding the alkali activator solution to the mixed raw material, Sealing, curing at 60 to 80 ° C and 12 to 36 hours, and after completion of curing, the specimen can be manufactured by demolding for 2 to 4 days.
본 발명에서 사용되는 폐촉매 슬래그는 실리카(SiO2), 알루미나(Al2O3) 및 칼시아(CaO)를 주성분으로 하며, 산화마그네슘(MgO), 산화철(Fe2O3) 등이 소량 포함될 수 있다. 이때 실리카는 28~32중량%, 알루미나는 34~38중량%, 칼시아는 21~25중량% 함량으로 함유된 것이 바람직하며, 자동차 배기가스 정화용 장치에서 발생되는 폐촉매에서 유가금속을 회수하고 남은 것을 고온에서 용융시켜 만들어질 수 있다. 이러한 폐촉매 슬래그는 후술하는 알칼리 활성화제 용액과의 혼합 전에 건조하여 사용될 수 있으며, 예컨대 100~120℃에서 12~36시간 정도 건조하여 사용될 수 있다.The waste catalyst slag used in the present invention is mainly composed of silica (SiO 2 ), alumina (Al 2 O 3 ) and calcia (CaO), and contains a small amount of magnesium oxide (MgO), iron oxide (Fe 2 O 3 ) . Preferably, the silica is contained in an amount of 28 to 32 wt%, alumina is contained in an amount of 34 to 38 wt%, and calcia is contained in an amount of 21 to 25 wt%. In the waste catalytic converter, Can be made by melting at high temperature. Such waste catalyst slag may be used by drying before mixing with an alkali activator solution described later, and may be used by drying at 100 to 120 ° C for about 12 to 36 hours.
또한 본 발명에서 사용되는 실리콘 슬러지는 반도체 소자를 제조하기 위해 사용되는 실리콘 웨이퍼 제조 과정 중에 발생되는 것으로, 실리콘 웨이퍼는 실리콘 잉곳을 절단하여 생산되며 그 과정 중 실리콘이 첨가된 슬러지가 발생하게 된다.Further, the silicon sludge used in the present invention is generated during a process of manufacturing a silicon wafer used for manufacturing a semiconductor device. A silicon wafer is produced by cutting a silicon ingot, and sludge containing silicon is produced during the process.
상기 폐촉매 슬래그는 자체적으로 지오폴리머 반응을 할 수 없기 때문에 유리질 피막을 깨고 지오폴리머 반응에 관여하는 Si4 +, Al3 + 이온을 용출시켜 반응을 일으킬 수 있는 강알칼리 활성화제를 사용하는데, OH-의 농도가 높을수록 SiO2-Al2O3 유리질 결합을 빨리 분해시키고 많은 양의 반응 이온들을 생성하게 된다. 따라서 알칼리 이온 농도가 높으면 폐촉매 슬래그 활성화에 중요한 결정요소로서 알칼리 활성화제 가 폐촉매 슬래그의 반응물질 분해를 촉진시켜 높은 강도를 갖는 지오폴리머를 제조할 수 있게 된다.The spent catalyst slag uses a strong alkali activator can cause the reaction to elute the Si 4 +, Al 3 + ion which is involved in breaking the glass film geo-polymer reaction because it is not possible to geo-polymer reaction by itself, OH - the more the concentration of the decomposition is the coupling 2 -Al 2 O 3 glass quickly SiO and produce large quantities of a reactive ion. Therefore, when the alkali ion concentration is high, the alkali activator as an important factor for the activation of the waste catalyst slag accelerates the decomposition of the reactant of the waste catalyst slag, and thus a geopolymer having high strength can be produced.
이러한 알칼리 활성화제로서 폐촉매 슬래그와 반응(포졸란 반응)하여 수경성을 갖는 실리케이트나 알루미네이트 등의 성분을 생성하도록 하는 수용성 알칼리수산화물이라면 특별히 한정되는 것은 아니다. 예컨대, 증류수에 수산화나트륨(NaOH)이나 수산화칼륨(KOH) 등이 혼합된 용액으로 농도 5~15M, 바람직하게는 7~11M, 더욱 바람직하게는 8~10M의 알칼리 활성화제 용액이 사용될 수 있다. 알칼리 활성화제 용액은 예컨대, 증류수에 수산화나트륨을 적정 농도로 혼합하고, 이를 25~90℃ 온도로 가열하면서 혼합시켜 준비할 수 있다.The alkaline activator is not particularly limited as long as it is a water-soluble alkaline hydroxide capable of reacting with the waste catalyst slag (pozzolanic reaction) to produce components such as silicates or aluminates having hydraulic properties. For example, an alkali activator solution having a concentration of 5 to 15M, preferably 7 to 11M, and more preferably 8 to 10M may be used as a solution in which distilled water is mixed with sodium hydroxide (NaOH) or potassium hydroxide (KOH). The alkali activator solution can be prepared, for example, by mixing sodium hydroxide at a proper concentration in distilled water and heating it to a temperature of 25 to 90 ° C and mixing.
상기 실리콘 슬러지는 상기 알칼리 활성화제 용액과 만나면 하기 반응식 1과 같은 화학반응을 통해 수소 가스를 형성하며, 이 기체가 지오폴리머 내부에서 포집 및 팽창하면서 경량 발포 지오폴리머 제조가 가능해진다.The silicon sludge forms a hydrogen gas through a chemical reaction as shown in
[반응식 1][Reaction Scheme 1]
Si + 2NaOH + H2O → Na2SiO3 + 2H2 Si + 2NaOH + H 2 O → Na 2
이때, 실리콘 슬러지 첨가량과 전체 고체 원료 중량에 대한 물의 중량비, 즉 폐촉매 슬래그 및 실리콘 슬러지 총 중량에 대한 알칼리 활성화제 용액 중 물 함량비는 경량 기포 지오폴리머의 밀도와 압축강도에 영향을 미치며, 최적의 실리콘 슬러지의 함량과 최적의 알칼리 활성화제 용액의 물 함량 비율이 존재할 수 있으며, 본 발명에 따르면 알칼리 활성화제 용액의 농도 5~15M 기준으로, 폐촉매 슬래그 및 실리콘 슬러지 총 중량에 대한 알칼리 활성화제 용액 중 물 함량비(이하, 'W/S(물/원료) 비' 라고도 함)는 0.20~0.32이고, 바람직하게는 0.23~0.31이고, 더욱 바람직하게는 0.26~0.30이고, 더욱 더 바람직하게는 0.28~0.30이다. 또한 상기 물 함량비를 기준으로 알칼리 활성화제 용액이 단독으로 사용될 경우에는 상기 실리콘 슬러지의 최적 함량은 9~15중량%(폐촉매 슬래그 85~91중량%)일 수 있고, 바람직하게는 12~15중량%(폐촉매 슬래그 85~88중량%)일 수 있다.At this time, the water content ratio of the alkali activator solution to the weight ratio of the silicon sludge addition amount to the total solid raw material weight, that is, the total weight of the waste catalyst slag and the silicon sludge influences the density and compressive strength of the lightweight bubbling geopolymer, The amount of the silicon sludge in the alkaline activator solution and the water content of the optimal alkaline activator solution may be present. According to the present invention, the concentration of the alkaline activator solution is 5 to 15M, The water content ratio in the solution (hereinafter, also referred to as 'W / S (water / raw material) ratio') is 0.20 to 0.32, preferably 0.23 to 0.31, more preferably 0.26 to 0.30, 0.28 to 0.30. When the alkaline activator solution is used alone, the optimal content of the silicon sludge may be 9 to 15 wt% (waste catalyst slag 85 to 91 wt%), preferably 12 to 15 wt% Wt% (waste catalyst slag 85 to 88 wt%).
한편, 본 발명에서는 실리콘 슬러지 함량을 최소화시키면서도 기존 시멘트계 기포 콘크리트의 KS F 4039 규격에 따라 압축강도가 1.5MPa 이상이며 겉보기 비중이 0.5~0.7를 만족하는 경량 기포 지오폴리머를 제조할 수 있는 방안이 강구된다.In the present invention, a method for manufacturing a lightweight bubble geopolymer having a compressive strength of 1.5 MPa or more and an apparent specific gravity of 0.5 to 0.7 according to the KS F 4039 standard of the existing cement mortar concrete while minimizing the silicon sludge content is proposed do.
즉, 상기 실리콘 슬러지를 1~3중량%(폐촉매 슬래그 97~99중량%) 포함하여 상기 알칼리 활성화제 용액과 함께 물유리를 더 혼합하되, 상기 알칼리 활성화제 용액의 액상 중량에 대한 물유리의 물 함량비가 0.5~1.5 범위로 혼합되도록 함으로써 상기 압축강도 및 비중 기준을 만족시키도록 한다. 이때 상기 물유리의 물 함량비는 0.8~1.2 범위인 것이 더욱 바람직하고, 0.9~1.1 범위인 것이 가장 바람직하다.That is, the water sludge is further mixed with the alkali activator solution containing 1 to 3 wt% of the silicon sludge (97 to 99 wt% of waste catalyst slag), the water content of the water glass to the liquid weight of the alkali activator solution Ratio is in the range of 0.5 to 1.5 so as to satisfy the compressive strength and specific gravity standard. In this case, the water content ratio of the water glass is more preferably 0.8 to 1.2, most preferably 0.9 to 1.1.
이하, 실시예를 들어 본 발명을 더욱 상세히 설명한다.
Hereinafter, the present invention will be described in more detail by way of examples.
폐촉매Spent catalyst 슬래그Slag 및 실리콘 And silicon 슬러지의Sludge 기초 물성 Basic properties
본 실시예에 사용된 폐촉매 슬래그는 자동차 배기가스 정화용 장치에서 발생되는 폐촉매에서 유가금속을 회수하고 남은 것을 고온에서 용융시켜 만들어진다. 하기 표 1은 폐촉매 슬래그의 화학조성을 XRF(X-ray Fluorescence)을 이용해 분석한 결과(단위: 중량%)이다. 주성분으로는 SiO2와 Al2O3, CaO가 각각 29.7, 35.8, 22.7중량%로 많이 존재하여 pH가 높은 활성화제에 의해 Si-O-Al-O 형성을 통한 경량 기포 지오폴리머 원료로의 가능성이 높을 것으로 판단된다.The spent catalyst slag used in this embodiment is made by recovering valuable metals from waste catalysts generated in an apparatus for purifying exhaust gas of automobiles and melting the remaining metals at high temperatures. Table 1 below shows the results (unit: wt%) of the chemical composition of the waste catalyst slag using X-ray fluorescence (XRF). As a main component, SiO 2 , Al 2 O 3 and CaO are present in a large amount of 29.7, 35.8, and 22.7 wt%, respectively. Thus, the possibility of a lightweight bubbly geopolymer raw material through formation of Si-O- .
또한 본 실시예에 사용된 실리콘 슬러지는 반도체 소자를 제조하기 위해 사용되는 실리콘 웨이퍼 제조 과정 중에 발생된 것으로, 실리콘 웨이퍼는 실리콘 잉곳을 절단하여 생산되며 그 과정 중 실리콘이 첨가된 슬러지가 발생하게 된다. 이러한 실리콘 슬러지를 XRF(X-ray Fluorescence)를 이용하여 화학조성을 분석하였으며 그 결과를 하기 표 2(단위: 중량%)에 나타내었다. 화학조성 분석 결과 SiO2가 97.8중량%로 주성분을 이루고 있는 것을 확인할 수 있었다. 실리콘 슬러지의 결정상 분석을 위한 XRD 측정 결과는 도 2에 나타내었으며, 분석 결과 주성분이 SiO2와 같은 산화물이 아닌 실리콘으로 존재함을 확인할 수 있었다.In addition, the silicon sludge used in this embodiment is generated during a silicon wafer manufacturing process used for manufacturing a semiconductor device. The silicon wafer is produced by cutting a silicon ingot, and sludge containing silicon is produced during the process. The chemical composition of this silicon sludge was analyzed by using X-ray fluorescence (XRF). The results are shown in Table 2 (unit: wt%). As a result of the chemical composition analysis, it was confirmed that SiO 2 was the main component at 97.8 wt%. The results of the XRD measurement for the crystal phase analysis of the silicon sludge are shown in FIG. 2, and it was confirmed that the main component was silicon rather than oxide such as SiO 2 .
W/S 비와 실리콘 W / S ratio and silicon 슬러지Sludge 첨가량 변화에 따른 경량 기포 Lightweight bubbles 지오폴리머Geopolymer 분석 analysis
실시예 1 내지 10에서는 알칼리 활성화제로서 NaOH를 9M 농도로 고정 후, 실리콘 슬러지 첨가량 변화(3, 6, 9, 12, 15중량%)와 W/S 비 변화(0.23, 0.29)에 따라 경량 기포 지오폴리머를 제조하였으며(하기 표 3 참조, 단위: 중량부), 제조된 경량 기포 지오폴리머의 밀도 및 압축강도를 측정한 결과를 도 3 및 도 4에 나타내었다. 경량 기포 지오폴리머 제조는 배합비에 따라 먼저 폐촉매 슬래그와 실리콘 슬러지를 건식 혼합 후, 혼합된 원료에 알칼리 활성화제 용액을 첨가하여 큐빅형 몰드(5×5×5cm)에 성형하고 비닐백에 밀봉하여 70℃ 및 24시간 조건에서 양생한 후, 양생이 완료되면 시편을 탈형 후 72시간 재령하여 수행되었다.In Examples 1 to 10, NaOH was fixed at a concentration of 9M as an alkali activator, and lightweight bubbles were formed according to changes in silicon sludge addition amounts (3, 6, 9, 12, and 15 wt%) and W / S ratio changes (0.23, 3 and 4 show the results of measuring the density and compressive strength of the light-weight bubble-generating polymer prepared. The results are shown in Table 3 below. The lightweight bubble geopolymer was prepared by dry blending the waste catalyst slag and the silicon sludge according to the blending ratio, molding the cubic type mold (5 × 5 × 5 cm) by adding the alkali activator solution to the mixed raw material, After curing at 70 ° C and 24 hours, after the curing was completed, the specimens were aged for 72 hours after demolding.
도 3을 참조하면, 밀도 측정 결과 실리콘 슬러지의 첨가량이 증가할수록 W/S 비에 상관없이 지오폴리머의 밀도가 감소하는 경향을 나타내었다. 실리콘 슬러지는 NaOH 활성화제와 만나면, 상기 반응식 1과 같은 화학반응을 통해 H2(g)를 형성하며, 이 기체가 지오폴리머 내부에서 포집 및 팽창하면서 경량 기포 지오폴리머 형성이 가능하다.Referring to FIG. 3, density of the geopolymer tends to decrease as the amount of silicon sludge added increases, regardless of the W / S ratio. The silicon sludge forms H 2 (g) through a chemical reaction as in the
W/S 비가 0.29인 지오폴리머의 경우 W/S비가 0.23인 지오폴리머에 비해 실리콘 슬러지 첨가량에 따른 급격한 밀도 감소를 나타내어 실리콘 슬러지 첨가량이 12중량%부터 더 낮은 밀도를 나타내는데 이는 알칼리 활성화제 첨가량의 증가에 따른 지오폴리머의 밀도 감소가 시편의 점도 감소에 의한 작업성 향상에 의한 것으로 판단된다. 또한 실리콘 슬러지의 반응(반응식 1 참조)이 폐촉매 슬래그의 지오폴리머화 반응보다도 반응속도가 빠르게 때문에 W/S 비 증가에 따른 Na+ 이온의 증가가 실리콘 슬러지의 H2(g) 형성을 촉진시켜 지오폴리머의 경량화에 기여한 것으로 판단된다.In the case of a geopolymer having a W / S ratio of 0.29, the density of silicon sludge was decreased from 12 wt% due to the increase in the amount of silicon sludge added compared with the geopolymer having a W / S ratio of 0.23. The decrease of the density of the geopolymer is considered to be due to the improvement of the workability due to the decrease of the viscosity of the specimen. In addition, since the reaction of silicon sludge (see Scheme 1) is faster than the geopolymerization of spent catalyst slag, the increase of Na + ion with increasing W / S ratio promotes the formation of H 2 (g) of silicon sludge Which is believed to have contributed to the weight reduction of geopolymers.
도 4를 참조하면, 압축강도 측정 결과 W/S 비가 0.23과 0.29의 경우 모두 실리콘 슬러지 첨가량이 3중량%일 때 가장 높은 압축강도(4.5MPa, 10MPa)를 나타냈으며, 실리콘 슬러지 첨가량이 증가할수록 압축강도가 감소하는 경향을 나타내었다. 실리콘 슬러지 첨가량 증가에 따른 압축강도 감소는 실리콘 슬러지의 H2(g) 반응에 의한 발포로 지오폴리머 내부에 형성된 거대기공에 의한 것으로, 지오폴리머 매트릭스(matrix)의 약화에 의한 것으로 판단되며, 이는 실리콘 슬러지 첨가량 증가에 따른 지오폴리머의 밀도감소 결과와 일치하는 결과를 나타낸다.As shown in FIG. 4, when the W / S ratio was 0.23 and 0.29, the highest compressive strength (4.5 MPa, 10 MPa) was obtained when the amount of silicone sludge was 3 wt% And the strength tended to decrease. The decrease in compressive strength with increasing amount of silicon sludge is attributed to the weakening of the geopolymer matrix due to the macropores formed inside the geopolymer by foaming by the H 2 (g) reaction of the silicon sludge. This result is consistent with the decrease in the density of the geopolymer as the sludge addition amount increases.
NaOH 단독 활성화제 사용 시 실리콘 슬러지를 12중량% 및 15wt% 함량으로 혼합한 실시예 9 및 10에서 압축강도 1.5MPa 및 밀도 0.6~08의 값을 얻어 KS F 4309의 비구조용 기포 콘크리트의 비중 및 압축강도 기준을 만족시킨 것을 알 수 있다.
In Examples 9 and 10, in which NaOH alone activator was mixed with 12 wt% and 15 wt% of silicon sludge, the compressive strength was 1.5 MPa and the density was 0.6 ~ 08, and the specific gravity and compression of non-structural cellular concrete of KS F 4309 It is understood that the strength standard is satisfied.
복합 활성화제 사용과 실리콘 Use of complex activators and silicone 슬러지Sludge 첨가량 변화에 따른 경량 기포 Lightweight bubbles 지오폴리머Geopolymer 분석 analysis
실시예 11 내지 16에서는 W/S 비를 0.29로 고정하고, 활성화제 NaOH 9M 수용액에 물유리를 50중량% 혼합(물 기준)하여 제조된 복합 활성화제를 적용 후, 실리콘 슬러지 첨가량 변화(0.1, 0.5, 1.0, 2.0, 3.0, 6.0중량%)에 따라 경량 기포 지오폴리머를 제조하였으며(하기 표 4 참조, 단위: 중량부), 제조된 경량 기포 지오폴리머의 밀도 및 압축강도를 측정한 결과를 도 5에 나타내었다. In Examples 11 to 16, the W / S ratio was fixed to 0.29, and the composite activator prepared by mixing 50 wt% of water glass with 9M aqueous NaOH solution (based on water) was applied. The change in the addition amount of silicon sludge ), 1.0, 2.0, 3.0, 6.0% by weight) (see Table 4 below, unit: parts by weight), and the density and compressive strength of the lightweight bubble- Respectively.
도 5를 참조하면, 복합 활성화제로 제조된 지오폴리머의 밀도는 실리콘 슬러지의 첨가량이 증가할수록 감소하는 경향을 나타내었으며, 실리콘 슬러지 0.1중량% 첨가 시 1.6의 밀도를 나타내던 지오폴리머는 6중량% 첨가 시 밀도가 0.42로 급격히 감소하였다. 압축강도 역시 실리콘 슬러지 첨가량이 증가할수록 급격히 감소함을 확인할 수 있었으며, 실리콘 슬러지가 2중량% 이상 첨가되면 2MPa의 낮은 압축강도를 나타내었다. 도 3의 결과에서 물유리를 첨가하지 않고 실리콘 슬러지를 3중량% 및 6중량% 첨가한 지오폴리머의 경우 밀도가 각각 1.64 및 1.38을 나타내었으나, 물유리를 혼합한 복합 활성화제를 사용한 결과 같은 실리콘 슬러지 첨가량 3중량% 및 6중량%의 지오폴리머에서 각각 0.62 및 0.44의 낮은 밀도를 얻을 수 있었다.Referring to FIG. 5, the density of the geopolymer prepared with the complex activator showed a tendency to decrease as the amount of the silicon sludge was increased. When the silicon sludge was added at 0.1 wt%, the geopolymer exhibited a density of 1.6, The density decreased rapidly to 0.42. Compressive strength also decreased sharply as the amount of silicon sludge was increased. When the amount of silicon sludge was more than 2 wt%, the compressive strength was low as 2 MPa. In the results of FIG. 3, the density of the geopolymers added with 3 wt.% And 6 wt.% Of silicon sludge without addition of water glass showed a density of 1.64 and 1.38, respectively. However, when using a complex activator mixed with water glass, Low densities of 0.62 and 0.44 were obtained at 3 wt.% And 6 wt.% Of the geopolymer, respectively.
NaOH와 물유리가 혼합된 복합 활성화제 사용 시 실리콘 슬러지를 2중량% 혼합한 실시예 14에서는 압축강도 1.5MPa, 밀도 0.64의 값을 얻어 KS F 4309의 비구조용 기포 콘크리트의 비중 및 압축강도 기준을 만족한 것으로부터, 복합 활성화제 사용 시 경량을 위해 필요한 실리콘 슬러지 첨가량이 크게 감소됨을 확인할 수 있다.
In Example 14, in which 2 wt% of silicon sludge was mixed with NaOH and water glass, a compressive strength of 1.5 MPa and a density of 0.64 were obtained to satisfy the specific gravity and compressive strength of KS F 4309 non-structural cellular concrete , It can be confirmed that the addition amount of the silicon sludge required for the light weight is greatly reduced when the complex activator is used.
복합 활성화제의 물유리 첨가량 변화에 따른 경량 기포 Lightweight bubbles with varying amounts of water activator 지오폴리머Geopolymer 분석 analysis
실시예 17 내지 27에서는 W/S 비를 0.29, 실리콘 슬러지 첨가량을 1중량%로 고정 후 복합 활성화제에서 NaOH 9M 용액과 혼합되는 물유리의 첨가량 변화(0~50중량%, 물 기준)에 따라 경량 기포 지오폴리머를 제조하였으며(하기 표 5 참조, 단위: 중량부), 제조된 경량 기포 지오폴리머의 밀도 및 압축강도를 측정한 결과를 도 6에 나타내었다. In Examples 17 to 27, the W / S ratio was fixed to 0.29 and the amount of added silicon sludge was set to 1% by weight. In the composite activator, light weight was changed according to the addition amount of water glass mixed with
도 6을 참조하면, 복합 활성화제에서 물유리 첨가량이 증가함에 따라 지오폴리머의 밀도는 서서히 감소하는 경향을 나타내었으며, 물유리를 혼합하지 않은 NaOH 수용액의 단독 활성화제일 때 2.0의 밀도를 나타내던 지오폴리머는 물유리 첨가량이 35중량%부터 밀도가 급격히 감소하여 물유리 첨가량 50중량%에서 1.0의 낮은 밀도를 나타내었다. 압축강도의 경우 물유리의 첨가량이 증가함에 따라서 같이 증가하다가 15중량%일 때 가장 높은 18MPa을 나타내었다. 그러나 물유리 첨가량이 15중량% 이상의 경우에 물유리 첨가량이 증가할수록 압축강도가 감소하는 경향을 나타내었다.
Referring to FIG. 6, the density of the geopolymer tends to decrease gradually as the amount of water glass added in the composite activator increases. When the aqueous activator of the aqueous NaOH solution is not mixed with water, The density of water glass decreased sharply from 35 wt%, and the density of water glass added was lower than 1.0 at 50 wt%. Compressive strength increased with increasing amount of water glass, but showed the highest value at 18 wt% at 15 wt%. However, when the amount of water glass added was more than 15 wt%, the compressive strength tended to decrease as the amount of water glass added increased.
이상으로 본 발명의 바람직한 실시예를 도면을 참고하여 상세하게 설명하였다. 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다.The preferred embodiments of the present invention have been described in detail with reference to the drawings. It will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the appended claims.
따라서, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미, 범위 및 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Accordingly, the scope of the present invention is defined by the appended claims rather than the foregoing detailed description, and all changes or modifications derived from the meaning, range, and equivalence of the claims are included in the scope of the present invention Should be interpreted.
Claims (3)
상기 혼합되는 알칼리 활성화제 용액은, 농도가 5~15M이고, 상기 폐촉매 슬래그 및 상기 실리콘 슬러지 총 중량에 대한 물 함량비가 0.23~0.31이고,
상기 폐촉매 슬래그 및 실리콘 슬러지 함량은 상기 폐촉매 슬래그 97~99중량% 및 상기 실리콘 슬러지 1~3중량%이고, 물유리를 더 혼합하되 상기 알칼리 활성화제 용액의 액상 중량에 대한 물유리의 물 함량비가 0.8~1.2이고,
상기 경량 기포 지오폴리머는 압축강도가 1.5MPa 이상이며 겉보기 비중이 0.5~0.7인 것을 특징으로 하는 경량 기포 지오폴리머 제조방법.Silica (SiO 2), alumina (Al 2 O 3) and calcia producing a lightweight foamed geo-polymer including (CaO) Catalyst slag, mixing, curing, and curing the silicone sludge and alkaline activator solution comprising In this way,
Wherein the mixed alkaline activator solution has a concentration of 5 to 15 M and a water content ratio of the waste catalyst slag to the total weight of the silicon sludge is 0.23 to 0.31,
Wherein the waste catalyst slag and the silicon sludge content are 97 to 99% by weight of the waste catalyst slag and 1 to 3% by weight of the silicon sludge, and further water glass is mixed so that the water content ratio of the water glass to the liquid weight of the alkali activator solution is 0.8 ~ 1.2,
Wherein the lightweight bubbling geopolymer has a compressive strength of 1.5 MPa or more and an apparent specific gravity of 0.5 to 0.7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160028821A KR101852037B1 (en) | 2016-03-10 | 2016-03-10 | Manufacturing method of light weight geopolymer by using slag from waste spent catalyst and silicon sludge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160028821A KR101852037B1 (en) | 2016-03-10 | 2016-03-10 | Manufacturing method of light weight geopolymer by using slag from waste spent catalyst and silicon sludge |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170105766A KR20170105766A (en) | 2017-09-20 |
KR101852037B1 true KR101852037B1 (en) | 2018-04-25 |
Family
ID=60033726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160028821A Active KR101852037B1 (en) | 2016-03-10 | 2016-03-10 | Manufacturing method of light weight geopolymer by using slag from waste spent catalyst and silicon sludge |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101852037B1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101854127B1 (en) * | 2017-10-13 | 2018-05-03 | 고등기술연구원연구조합 | Porous filter media composition for water treatment using molten slag and method for manufacturing the same |
ES2909189T3 (en) | 2017-12-22 | 2022-05-05 | Lvmh Rech | Oil-in-water emulsion cosmetic |
KR102184380B1 (en) * | 2018-06-27 | 2020-11-30 | 고등기술연구원연구조합 | Geopolymer block composition using molten slag and method for manufacturing the same |
CN109336456B (en) * | 2018-10-25 | 2020-04-24 | 山东大学 | Red mud-based asphalt mixture warm-mixing agent and preparation method thereof |
CN109734339B (en) * | 2019-03-19 | 2021-06-25 | 安徽理工大学 | A kind of organic base excited geopolymer and preparation method thereof |
CN112479618A (en) * | 2020-12-11 | 2021-03-12 | 安徽浩悦环境科技有限责任公司 | Industrial waste salt slag curing agent and curing method |
CN114835440B (en) * | 2022-03-17 | 2023-03-28 | 一天蓝(山东)新材料科技有限责任公司 | Carbon-fixing slag foam concrete wall material and preparation method thereof |
WO2024187337A1 (en) * | 2023-03-13 | 2024-09-19 | 深圳市元子能科技有限公司 | Sludge-based cementitious material and preparation method therefor, and application |
CN117303935A (en) * | 2023-10-17 | 2023-12-29 | 潞安化工集团有限公司 | A waste wax foam geopolymer and its preparation method and application |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101205506B1 (en) * | 2012-01-20 | 2012-11-27 | (주)에이엠에스 엔지니어링 | Composites of eco-friendly inorganic binder using by-products |
-
2016
- 2016-03-10 KR KR1020160028821A patent/KR101852037B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101205506B1 (en) * | 2012-01-20 | 2012-11-27 | (주)에이엠에스 엔지니어링 | Composites of eco-friendly inorganic binder using by-products |
Also Published As
Publication number | Publication date |
---|---|
KR20170105766A (en) | 2017-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101852037B1 (en) | Manufacturing method of light weight geopolymer by using slag from waste spent catalyst and silicon sludge | |
Phoo-ngernkham et al. | Properties of high calcium fly ash geopolymer pastes with Portland cement as an additive | |
Aguilar et al. | Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates | |
EP2970003B1 (en) | High-strength geopolymer composite cellular concrete | |
Acar et al. | Production of perlite-based-aerated geopolymer using hydrogen peroxide as eco-friendly material for energy-efficient buildings | |
Živica et al. | Geopolymer cements and their properties: a review | |
Zaidi et al. | Synthesis & characterization of natural soil based inorganic polymer foam for thermal insulations | |
CN109942235B (en) | Geopolymer concrete with high strength and high carbonation resistance cured at room temperature and preparation method thereof | |
KR101410056B1 (en) | A Concrete Using Non-sintering Binder Having Bottom Ash | |
Nemaleu et al. | Investigation of groundnut shell powder on development of lightweight metakaolin based geopolymer composite: mechanical and microstructural properties | |
Perumal et al. | Porous alkali-activated materials | |
Ridtirud et al. | Properties of lightweight aerated geopolymer synthesis from high-calcium fly ash and aluminium powder | |
Detphan et al. | Strength development and thermal conductivity of POFA lightweight geopolymer concrete incorporating FA and PC | |
Rashad et al. | Insulation efficiency of alkali-activated lightweight mortars containing different ratios of binder/expanded perlite fine aggregate | |
Beghoura et al. | Feasibility of alkali-activated mining waste foamed materials incorporating expanded granulated cork | |
Owaid et al. | Use of waste paper ash or wood ash as substitution to fly ash in production of geopolymer concrete | |
Nanthini et al. | Studies on Alkaline Activator, Manufacturing Methods and Mechanical Properties of Geopolymer Concrete-A | |
Harmaji et al. | Utilization of fly ash, red mud, and electric arc furnace dust slag for geopolymer | |
Jabar et al. | A comprehensive review on geopolymer materials: Preparation, properties, applications, and challenges | |
Yerramsetty et al. | Studies on lightweight geopolymer concrete | |
Paunescu et al. | Porous fly ash-based geopolymer usable as an unconventional construction material | |
Paunescu et al. | Geopolymer foam based on coal fly ash and metakaolin as an economic and environment friendly porous construction material | |
KR20220148994A (en) | Non-bearing wall composition for partitions | |
Yang et al. | The performance of geopolymer based on recycled concrete sludge | |
Sagane et al. | Feasibility study on fly ash based geopolymer concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20160310 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20170804 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20180118 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20180419 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20180420 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20220414 Start annual number: 5 End annual number: 5 |