JP4812116B2 - Dissolution system and dissolution method using the same - Google Patents
Dissolution system and dissolution method using the same Download PDFInfo
- Publication number
- JP4812116B2 JP4812116B2 JP2007065829A JP2007065829A JP4812116B2 JP 4812116 B2 JP4812116 B2 JP 4812116B2 JP 2007065829 A JP2007065829 A JP 2007065829A JP 2007065829 A JP2007065829 A JP 2007065829A JP 4812116 B2 JP4812116 B2 JP 4812116B2
- Authority
- JP
- Japan
- Prior art keywords
- dialysis
- stock solution
- dialysate
- storage tank
- dissolution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004090 dissolution Methods 0.000 title claims description 133
- 238000011978 dissolution method Methods 0.000 title claims description 10
- 238000000502 dialysis Methods 0.000 claims description 358
- 239000011550 stock solution Substances 0.000 claims description 301
- 230000007423 decrease Effects 0.000 claims description 94
- 239000000385 dialysis solution Substances 0.000 claims description 47
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 47
- 230000008859 change Effects 0.000 claims description 46
- 239000000843 powder Substances 0.000 claims description 43
- 239000003814 drug Substances 0.000 claims description 36
- 229940079593 drug Drugs 0.000 claims description 34
- 238000001514 detection method Methods 0.000 claims description 31
- 238000011282 treatment Methods 0.000 claims description 31
- 238000004364 calculation method Methods 0.000 claims description 26
- 238000002844 melting Methods 0.000 claims description 17
- 230000008018 melting Effects 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 16
- 230000007704 transition Effects 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 10
- 239000000155 melt Substances 0.000 claims description 9
- 230000002123 temporal effect Effects 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 5
- 230000009467 reduction Effects 0.000 description 24
- 239000007788 liquid Substances 0.000 description 21
- 239000003795 chemical substances by application Substances 0.000 description 17
- 238000012546 transfer Methods 0.000 description 12
- 230000003247 decreasing effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000012806 monitoring device Methods 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 230000036962 time dependent Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 230000004308 accommodation Effects 0.000 description 4
- 230000009089 cytolysis Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 3
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Landscapes
- External Artificial Organs (AREA)
Description
本発明は、透析用粉末薬剤を所定濃度に溶解して透析用原液を得るための溶解装置を具備した溶解システム及びそれによる溶解方法に関する。 The present invention relates to a dissolution system including a dissolution apparatus for dissolving a powder drug for dialysis at a predetermined concentration to obtain a dialysis stock solution, and a dissolution method using the dissolution system.
病院等で腎不全患者の治療に使用される透析液は、一般に重炭酸塩系と酢酸系とに区分され、このうち重炭酸塩系の透析液は、重炭酸ナトリウムを含まないもの(以下、A剤という。)と重炭酸ナトリウム(以下、B剤という。)の2種類の薬剤に水を混合して調整されるものである。近年、運搬性向上の観点から、これらA剤及びB剤を粉末化したもの(以下、透析用粉末薬剤という。)を透析の前に溶解する試みがなされているが、溶解後の溶液(特にB剤)については経時的に濃度の低下が生じやすく、透析後に翌日の分を作り置きしておくことが難しかった。 Dialysis fluids used for the treatment of patients with renal failure in hospitals are generally divided into bicarbonate and acetic acid. Of these, bicarbonate-based dialysate does not contain sodium bicarbonate (hereinafter referred to as “bicarbonate”). It is prepared by mixing water with two types of drugs, called A agent and sodium bicarbonate (hereinafter referred to as B agent). In recent years, from the viewpoint of improving transportability, attempts have been made to dissolve these A agent and B agent powdered powder (hereinafter referred to as dialysis powder drug) before dialysis. With regard to B agent), the concentration tends to decrease over time, and it was difficult to prepare the next day after dialysis.
このため、透析毎に溶解作業が必要となり、従来から溶解のための溶解装置が各種提案されている。例えば特許文献1には、透析用粉末薬剤を溶解する溶解槽(希釈タンク)と、該溶解槽にて生成した透析用原液を一時的に収容する貯槽(貯蔵タンク)とを具備し、当該貯槽で収容された透析用原液を人工透析液供給装置に逐次送液する溶解装置が開示されている。
しかしながら、上記従来の溶解装置を具備した溶解システムにおいては、以下の如き問題があった。
病院等医療機関における溶解装置で溶解生成する透析用原液は、極めて多量であるとともに患者数が一定でない故使用量が日毎に変動し、且つ、原液組成の時間的変化を回避する理由から、通常、複数回に分けて生成される。即ち、貯槽内の透析用原液が少なくなった時点で追加の透析用原液を溶解槽で生成し、当該透析用原液が不足する事態を回避しているのである。
However, the melting system provided with the conventional melting apparatus has the following problems.
Because the dialysis stock solution that is dissolved and generated by a dissolution apparatus in a hospital or other medical institution is extremely large in volume and the number of patients is not constant, the amount used varies from day to day, and the reason is to avoid changes in the composition of the stock solution over time. , Generated in multiple batches. That is, when the stock solution for dialysis in the storage tank is reduced, an additional stock solution for dialysis is generated in the dissolution tank, and the situation where the stock solution for dialysis is insufficient is avoided.
然るに、通常の病院等医療機関においては、複数の透析装置が設置された透析室と透析用原液を生成する溶解装置(該溶解装置にて生成された透析用原液(A剤及びB剤)を混合して所定濃度の透析液を作製する透析液供給装置など含む)が設置された機械室とは別個とされており、貯槽内の透析用原液が少なくなっているか否かを判断するには、透析技士等医療従事者が透析室と機械室との両方を頻繁に監視しなければならないという問題があった。 However, in a medical institution such as a normal hospital, a dialysis chamber in which a plurality of dialysis machines are installed and a lysis device that generates a dialysis stock solution (the dialysis stock solution (agent A and agent B) generated in the lysis device) To determine whether or not the dialysis stock solution in the storage tank is low, it is separate from the machine room where the dialysate supply device that mixes to produce the dialysate of a predetermined concentration is installed. There was a problem that medical personnel such as dialysis engineers had to frequently monitor both the dialysis room and the machine room.
また、医療従事者が貯槽内の透析用原液の量を目視して、追加の生成を必要とするか否かの判断がなされるのであるが、各患者の透析治療時間が3〜5時間位の範囲で異なるため、これから使用するであろう透析用原液を予測するのは極めて困難である。従って、透析用原液の不足による透析治療の中断を避けるべく、透析治療終了間際において追加生成が不要であろうと思われる場合であっても、念のために追加生成せざるを得ず、大量の透析用原液が余ってしまう可能性が高いという問題もあった。 In addition, the medical staff visually determines the amount of the dialysis stock solution in the storage tank and determines whether or not additional generation is required. The dialysis treatment time for each patient is about 3 to 5 hours. Therefore, it is extremely difficult to predict a dialysis stock solution that will be used in the future. Therefore, in order to avoid interruption of dialysis treatment due to lack of dialysis stock solution, even if it seems that additional generation is not necessary just before the end of dialysis treatment, additional generation must be made just in case. There was also a problem that the stock solution for dialysis was highly likely to remain.
ところで、本出願人は、貯槽内の透析用原液の減少割合を求め、当該減少割合に基づき貯槽内の透析用原液が空となるまでの時間を推定するとともに、供給すべき透析用原液が不足するか否かを判定することにより、大量の透析用原液が余ってしまうのを回避することを検討するに至った。しかしながら、所謂多人数用の溶解システムに適用した場合、透析液供給装置を介在することから、貯槽内における透析用原液の減少割合をスムーズに求めることができない場合があった。 By the way, the present applicant calculates the reduction rate of the dialysis stock solution in the storage tank, estimates the time until the dialysis stock solution in the storage tank becomes empty based on the reduction rate, and lacks the dialysis stock solution to be supplied. By determining whether or not to do so, it has been considered to avoid leaving a large amount of stock solution for dialysis. However, when it is applied to a so-called dissolution system for a large number of people, a reduction rate of the dialysis stock solution in the storage tank may not be obtained smoothly because a dialysate supply device is interposed.
透析液供給装置は、溶解装置と透析装置との間に介在するとともに、溶解装置にて生成された透析用原液(A剤及びB剤)を混合して所定濃度の透析液を作製し、その透析液を透析装置に供給するためのものであり、通常、透析液の収容量が下限に達すると上限の収容量となるまで溶解装置から透析用原液が供給され、当該上限の収容量に達した時点で当該透析用原液の供給が停止される透析液貯槽を具備している。 The dialysis fluid supply device is interposed between the lysis device and the dialysis device, and mixes the dialysis stock solution (agent A and agent B) produced by the lysis device to produce a dialysis fluid of a predetermined concentration. The dialysis fluid is supplied to the dialysis machine. Normally, when the dialysate capacity reaches the lower limit, the dialysis stock solution is supplied from the dissolution apparatus until the upper limit capacity is reached, and the upper limit capacity is reached. At that time, a dialysis fluid storage tank is provided in which the supply of the dialysis stock solution is stopped.
しかして、溶解装置の貯槽内においては、透析用原液の残量が経時的に減少する減少期間(貯槽から透析液貯槽に透析用原液が供給される期間)と、当該残量が経時的に減少せず停滞した停滞期間(貯槽から透析液貯槽への透析用原液の供給が停止した期間)とが存在し、経時的に見て残量が略階段状に変化することから、貯槽内における透析用原液の減少割合を精度よく求めることができず、供給すべき透析用原液が不足するか否かの判定の信頼性を維持することができない虞がある。 Therefore, in the storage tank of the dissolution apparatus, a decrease period (a period during which the dialysis stock solution is supplied from the storage tank to the dialysate storage tank) during which the remaining amount of the dialysis stock solution decreases with time, and the remaining amount over time. There is a stagnation period (a period in which the supply of the dialysis stock solution from the storage tank to the dialysate storage tank is stopped) that has been stagnant without decreasing, and the remaining amount changes in a substantially step shape over time. There is a possibility that the reduction rate of the dialysis stock solution cannot be obtained with high accuracy, and the reliability of the determination as to whether or not the dialysis stock solution to be supplied is insufficient cannot be maintained.
本発明は、このような事情に鑑みてなされたもので、透析用原液の追加生成をすべきか否かの判断を自動的且つ正確に行わせることができるとともに、当該透析用原液が不足する事態を避けつつ透析治療終了時点で大量の透析用原液が余ってしまうという不具合を回避することができ、且つ、貯槽内における透析用原液の減少割合を精度よく求めて、供給すべき透析用原液が不足するか否かの判定の信頼性をより向上させることができる溶解システム及びそれによる溶解方法を提供することにある。 The present invention has been made in view of such circumstances, and can automatically and accurately determine whether or not to additionally produce a dialysis stock solution, and the situation where the dialysis stock solution is insufficient. The problem that a large amount of dialysis stock solution remains at the end of dialysis treatment can be avoided while accurately determining the rate of decrease of the dialysis stock solution in the storage tank, and the dialysis stock solution to be supplied is It is an object of the present invention to provide a melting system and a melting method using the melting system, which can further improve the reliability of determination of whether or not it is insufficient.
請求項1記載の発明は、所定量の透析用粉末薬剤及び水が投入され、当該透析用粉末薬剤を溶解及び攪拌して透析用原液を得る溶解槽と、前記溶解槽で得られた透析用原液を一時的に収容する貯槽と、該貯槽内に収容された透析用原液を、患者に透析治療を施すための複数の透析装置側に供給する原液供給ラインとを有した溶解装置と、前記原液供給ラインと連通して当該原液供給ラインから送液された透析用原液と所定量の水とを混合して作製された所定濃度の透析液を収容しつつ前記透析装置に供給するとともに、当該透析液の収容量が下限に達すると上限の収容量となるまで前記原液供給ラインから透析用原液が供給され、当該上限の収容量に達した時点で当該透析用原液の供給が停止される透析液貯槽を有した透析液供給装置とを具備した溶解システムであって、前記溶解装置は、前記貯槽内の透析用原液の残量を連続的且つリアルタイムで検出し得る原液量検出手段と、前記原液量検出手段にて検出された残量の経時的推移の変化点に基づいて前記透析装置による透析液の消費速度を求め、その消費速度から前記貯槽内の透析用原液の減少割合を演算する演算手段と、該演算手段で演算された透析用原液の減少割合に基づき前記貯槽内の透析用原液が空となるまでの時間を推定するとともに、供給すべき透析用原液が不足するか否かを判定する判定手段とを具備したことを特徴とする。
The invention according to
請求項2記載の発明は、請求項1記載の溶解システムにおいて、前記演算手段は、前記原液量検出手段にて検出された残量の経時的推移の変化点に基づいて前記透析液貯槽の透析液の収容量が上限から下限に達するまでの時間を推定し、その推定時間に基づき前記透析装置による透析液の消費速度を演算することを特徴とする。 According to a second aspect of the present invention, in the dissolution system according to the first aspect, the calculating means is configured to dialyze the dialysate storage tank based on a change point of the temporal transition of the remaining amount detected by the stock solution amount detecting means. It is characterized in that the time until the amount of liquid accommodated reaches the lower limit from the upper limit is estimated, and the consumption rate of the dialysate by the dialyzer is calculated based on the estimated time.
請求項3記載の発明は、請求項1記載の溶解システムにおいて、前記演算手段は、前記原液量検出手段にて検出された残量の経時的推移の変化点に基づいて前記透析液貯槽の透析液の収容量が下限から上限に達するまでの時間を推定し、その推定時間に基づき前記透析装置による透析液の消費速度を演算することを特徴とする。 According to a third aspect of the present invention, in the dissolution system according to the first aspect, the computing means is configured to dialyze the dialysate storage tank based on a change point of the temporal change of the remaining amount detected by the stock solution amount detecting means. It is characterized in that the time until the amount of liquid accommodated reaches the upper limit from the lower limit is estimated, and the consumption rate of the dialysate by the dialyzer is calculated based on the estimated time.
請求項4記載の発明は、請求項1〜請求項3の何れか1つに記載の溶解システムにおいて、前記経時的推移の変化点は、透析用原液の残量が経時的に減少する減少期間と、当該残量が経時的に減少せず停滞した停滞期間との境界点であることを特徴とする。 According to a fourth aspect of the present invention, in the dissolution system according to any one of the first to third aspects, the change point of the temporal transition is a decrease period in which the remaining amount of the dialysis stock solution decreases with time. And a stagnation period in which the remaining amount does not decrease with time and stagnates.
請求項5記載の発明は、請求項1〜請求項3の何れか1つに記載の溶解システムにおいて、前記経時的推移の変化点は、透析用原液の残量が経時的に所定割合で減少する第1減少期間と、該第1減少期間と異なる割合で残量が経時的に減少する第2減少期間との境界点であることを特徴とする。 According to a fifth aspect of the present invention, in the dissolution system according to any one of the first to third aspects, the change point of the temporal transition is that the remaining amount of the dialysis stock solution decreases at a predetermined rate with time. It is a boundary point between the first decreasing period and the second decreasing period in which the remaining amount decreases with time at a rate different from the first decreasing period.
請求項6記載の発明は、所定量の透析用粉末薬剤及び水が投入され、当該透析用粉末薬剤を溶解及び攪拌して透析用原液を得る溶解槽と、前記溶解槽で得られた透析用原液を一時的に収容する貯槽と、該貯槽内に収容された透析用原液を、患者に透析治療を施すための複数の透析装置側に供給する原液供給ラインとを有した溶解装置と、前記原液供給ラインと連通して当該原液供給ラインから送液された透析用原液と所定量の水とを混合して作製された所定濃度の透析液を収容しつつ前記透析装置に供給するとともに、当該透析液の収容量が下限に達すると上限の収容量となるまで前記原液供給ラインから透析用原液が供給され、当該上限の収容量に達した時点で当該透析用原液の供給が停止される透析液貯槽を有した透析液供給装置とを具備した溶解システムによる溶解方法であって、前記貯槽内の透析用原液の残量を連続的且つリアルタイムで検出し得る原液量検出工程と、前記原液量検出工程にて検出された残量の経時的推移の変化点に基づいて前記透析装置による透析液の消費速度を求め、その消費速度から前記貯槽内の透析用原液の減少割合を演算する演算工程と、該演算工程で演算された透析用原液の減少割合に基づき前記貯槽内の透析用原液が空となるまでの時間を推定するとともに、供給すべき透析用原液が不足するか否かを判定する判定工程とを具備したことを特徴とする。
The invention described in
請求項7記載の発明は、請求項6記載の溶解システムによる溶解方法において、前記演算工程は、前記原液量検出工程にて検出された残量の経時的推移の変化点に基づいて前記透析液貯槽の透析液の収容量が上限から下限に達するまでの時間を推定し、その推定時間に基づき前記透析装置による透析液の消費速度を演算することを特徴とする。
The invention according to
請求項8記載の発明は、請求項6記載の溶解システムによる溶解方法において、前記演算工程は、前記原液量検出工程にて検出された残量の経時的推移の変化点に基づいて前記透析液貯槽の透析液の収容量が下限から上限に達するまでの時間を推定し、その推定時間に基づき前記透析装置による透析液の消費速度を演算することを特徴とする。
The invention according to
請求項9記載の発明は、請求項6〜請求項8の何れか1つに記載の溶解システムによる溶解方法において、前記経時的推移の変化点は、透析用原液の残量が経時的に減少する減少期間と、当該残量が経時的に減少せず停滞した停滞期間との境界点であることを特徴とする。 A ninth aspect of the present invention is the dissolution method using the dissolution system according to any one of the sixth to eighth aspects, wherein the change point of the time-dependent transition is that the remaining amount of the dialysis stock solution decreases with time. And a stagnation period in which the remaining amount does not decrease with time and stagnates.
請求項10記載の発明は、請求項6〜請求項8の何れか1つに記載の溶解システムによる溶解方法において、前記経時的推移の変化点は、透析用原液の残量が経時的に所定割合で減少する第1減少期間と、該第1減少期間と異なる割合で残量が経時的に減少する第2減少期間との境界点であることを特徴とする。 A tenth aspect of the present invention is the dissolution method using the dissolution system according to any one of the sixth to eighth aspects, wherein the change point of the time-dependent transition is that the remaining amount of the dialysis stock solution is predetermined over time. It is a boundary point between a first decrease period that decreases at a rate and a second decrease period in which the remaining amount decreases with time at a rate different from the first decrease period.
請求項1又は請求項6の発明によれば、透析用原液の減少割合に基づき、貯槽内の透析用原液が空となるまでの時間を演算して推定し、供給すべき透析用原液が不足するか否かを判定するので、透析用原液の追加生成をすべきか否かの判断を自動的且つ正確に行わせることができるとともに、当該透析用原液が不足する事態を避けつつ透析治療終了時点で大量の透析用原液が余ってしまうという不具合を回避することができる。
According to the invention of
更に、当該請求項1、6(請求項2、7、又は請求項3、8も同様)によれば、貯槽内における透析用原液の残量の経時的推移の変化点に基づいて透析装置による透析液の消費速度を演算するとともに、その透析液の消費速度から貯槽内の透析用原液の減少割合を算出するので、貯槽内における透析用原液の減少割合を精度よく求めて、供給すべき透析用原液が不足するか否かの判定の信頼性をより向上させることができる。
Further, according to
請求項4又は請求項9の発明によれば、経時的推移の変化点は、透析用原液の残量が経時的に減少する減少期間と、当該残量が経時的に減少せず停滞した停滞期間との境界点であり、その変化点に基づいて透析装置による透析液の消費速度を演算するとともに、その透析液の消費速度から貯槽内の透析用原液の減少割合を算出するので、当該変化点を容易に把握でき、透析装置による透析液の消費速度、貯槽内の透析用原液の減少割合をより精度よく求めることができる。
According to the invention of
請求項5又は請求項10の発明によれば、経時的推移の変化点は、透析用原液の残量が経時的に所定割合で減少する第1減少期間と、該第1減少期間と異なる割合で残量が経時的に減少する第2減少期間との境界点であるので、透析液供給装置を介さず溶解装置から透析用原液が供給され、その透析用原液から所定濃度の透析液を作製しつつ透析治療が施される患者に供給し得る個人用透析装置を具備した溶解システムにも適用可能である。 According to the fifth or tenth aspect of the present invention, the change point of the temporal transition is that the first decrease period in which the remaining amount of the dialysis stock solution decreases at a predetermined rate with time, and a ratio different from the first decrease period. Because this is the boundary point with the second decrease period in which the remaining amount decreases with time, the dialysis stock solution is supplied from the dissolution device without going through the dialysis fluid supply device, and a dialysate with a predetermined concentration is prepared from the dialysis stock solution. However, the present invention is also applicable to a dissolution system equipped with a personal dialysis device that can be supplied to a patient who is subjected to dialysis treatment.
以下、本発明の実施形態について図面を参照しながら具体的に説明する。
第1の実施形態に係る溶解システムは、透析用粉末薬剤を所定濃度に溶解して透析用原液を得るためのもので、図1に示すように、機械室に設置された溶解装置1及び透析液供給装置2と、機械室とは隔離された透析室に設置された複数の透析装置4(透析監視装置)及び中央監視装置3とから主に構成されている。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
The dissolution system according to the first embodiment is for obtaining a dialysis stock solution by dissolving a powder drug for dialysis at a predetermined concentration. As shown in FIG. 1, the
溶解装置1で生成された透析用原液(A剤、B剤の各濃厚液)は、原液供給ラインL1(図3におけるL1a、L1b)を介して透析液供給装置2に至り、そこで所定濃度の透析液が作製されるとともに、かかる透析液は、透析液供給ラインL2〜L4を介して各透析装置4(透析監視装置)に供給されるよう構成されている。尚、各透析装置4と中央監視装置3とは、それぞれ配線D1〜D3にて電気的に接続されている。
The stock solution for dialysis (concentrated solutions of agent A and agent B) generated by the
溶解装置1は、図2に示すように、定量粉体フィーダ5と、溶解槽6と、貯槽7と、レベルセンサ8(原液量検出手段)と、演算手段10と、判定手段11と、入力手段12とから主に構成されている。尚、図示はしないが、同図と同様な構成の溶解装置が別個に配設されており、それぞれが透析用粉末薬剤としてのA剤、B剤を溶解撹拌して、各透析用原液を生成し得るようになっている。
As shown in FIG. 2, the dissolving
定量粉体フィーダ5は、所定量の透析用粉体薬剤(A剤又はB剤)を溶解槽6内に投入するためのもので、その駆動源が判定手段11と電気的に接続され、当該判定手段11からの制御信号に基づき、所定量の透析用粉体薬剤を溶解槽6内に投入し得るよう構成されている。また、溶解槽6は、水供給源Aと水供給ラインL5を介して接続されており、当該水供給ラインL5に配設された電磁バルブVwを開放することにより、溶解槽6内に溶解用の水が供給されるよう構成されている。
The fixed-
溶解槽6は、上述の定量粉体フィーダ5及び水供給源Aから所定量の透析用粉体薬剤及び水が投入され、当該透析用粉末薬剤を溶解及び撹拌して透析用原液(各薬剤の濃厚液)を得るためのもので、内部の収容空間における所定位置にフロートスイッチ9が配設されている。即ち、溶解槽6内に溶解用の水が供給され、その水位がフロートスイッチ9に達した時点で当該水の供給を停止することにより、一定量の水が当該溶解槽6内に収容され得るようになっているのである。尚、図示しない撹拌手段等により、供給された水と透析用粉末薬剤とを撹拌して略均等な濃度の透析用原液を得るようにする。
The
また、溶解槽6の下底からは移送ラインL6が延設されており、その途中に移送ポンプP1が配設されるとともに、当該移送ラインL6の先端が貯槽7に接続されている。これにより、移送ポンプP1を駆動させれば、溶解槽6にて得られた透析用原液が貯槽7内に至るようになっている。
A transfer line L6 is extended from the lower bottom of the
貯槽7は、溶解槽6で得られた透析用原液を一時的に収容するためのもので、ここから透析用原液が後述する透析液供給装置2(複数の透析装置4側)に必要量だけ順次供給されるよう構成されている。この貯槽7の下底からは、原液供給ラインL1(厳密には、2つの貯槽から延びる原液供給ラインL1a、L1b)が延設されており、その先端が透析液供給装置2に接続されている。即ち、貯槽7内の透析用原液は、透析液供給装置2に送られて所定濃度の透析液とされた後、各透析装置4に供給されるよう構成されているのである。
The
一方、貯槽7の下面には、圧力ゲージ等から成るレベルセンサ8(原液量検出手段)が配設されており、かかるレベルセンサ8にて貯槽7内の透析用原液の残量を連続的且つリアルタイムで検出し得るよう構成されている。レベルセンサ8としての圧力ゲージは、貯槽7底面に付与される圧力から換算して当該貯槽7内における透析用原液の液圧を経時的に検出し得るもので、その検出された液圧に基づき透析用原液の量(残液の量)を連続的且つリアルタイムに検出することができる。
On the other hand, a level sensor 8 (stock volume detection means) composed of a pressure gauge or the like is disposed on the lower surface of the
尚、貯槽7内の液位(又は透析用原液の残量そのものであってもよい)を連続的且つリアルタイムに検出することにより、その液位の低下割合(透析用原液の減少割合)を検出し得るものであれば、圧力ゲージに代えて他の検出手段(超音波液面センサ若しくは磁歪式リニア変位センサ等)としてもよい。 By detecting the liquid level in the storage tank 7 (or the remaining amount of the dialysis stock solution itself) continuously and in real time, the rate of decrease in the liquid level (decrease rate of the dialysis stock solution) is detected. If possible, other detection means (such as an ultrasonic liquid level sensor or a magnetostrictive linear displacement sensor) may be used instead of the pressure gauge.
かかる原液量検出手段としてのレベルセンサ8は、演算手段10と電気的に接続されている。この演算手段10は、レベルセンサ8にて連続的且つリアルタイムで検出された残量及び後述する透析液の消費速度に基づき、貯槽7内における透析用原液の減少割合を演算するものである。即ち、貯槽7内の透析用原液の液位を連続的且つリアルタイムに検出することにより、当該液位の低下割合(透析用原液の減少割合)を求めることができ、その減少割合に基づき透析用原液の消費速度を認識することができるのである。更に具体的な演算方法については後述する。
The
透析液供給装置2は、図3に示すように、水が流動するとともにその水量を計測する水計量手段13が配設された水供給ラインLwと、定量ポンプPa(ピストンポンプ)が接続されるとともにA剤を溶解して得られた透析用原液を流動させる原液ラインL1aと、定量ポンプPb(ピストンポンプ)が接続されるとともにB剤を溶解して得られた透析用原液を流動させる原液ラインL1bと、透析液貯槽14と、送液ポンプP2とを主に有して構成されている。水供給ラインLwにおける水は、水計量手段13を経た後、原液ラインL1a及びL1bからの透析用原液を混合し、所定濃度の透析液を作製した後、その透析液が透析液貯槽14内に至ることとなる。尚、同図において作製した透析液の濃度を測定する濃度測定部や透析液を加温する加温部などは省略してある。
As shown in FIG. 3, the
透析液貯槽14は、原液供給ラインL1a及びL1bと連通して当該原液供給ラインL1a及びL1bから送液された透析用原液と水供給ラインLwから送液された所定量の水とを混合して作製された所定濃度の透析液を収容しつつ透析液供給ラインL2〜L4を介して各透析装置4に供給するためのものである。かかる透析液貯槽14には、フロートスイッチSH、及びフロートスイッチSLが配設されており、当該透析液貯槽14内の透析液の液位が上限又は下限に達したことを検出することが可能とされている。
The
しかして、透析液供給装置2は、フロートスイッチSLによる液位の検出により、その透析液貯槽14内に収容された透析液の収容量が下限に達したと判断すると、定量ポンプPa、Pbが駆動して原液供給ライン(L1a、L1b)からの透析用原液の供給、水計量手段13からの水の供給、透析液の作製及び透析液貯槽14内への収容がなされるようになっている。そして、フロートスイッチSHによる液位の検出により、透析液貯槽14内の透析液の収容量が上限に達したと判断された時点で、定量ポンプPa、Pbの駆動を停止させ、透析用原液の供給を停止する。
When the
即ち、透析液貯槽14内の透析液の収容量が上限から下限の間にあるときは、原液供給ライン(L1a、L1b)からの透析用原液の供給及び水の供給が停止されるとともに、当該下限に達した時点で原液供給ライン(L1a、L1b)からの透析用原液の供給及び水の供給が開始されるよう構成されているのである。このように、原液供給ライン(L1a、L1b)からの透析用原液の供給は、断続的に行われることとなる。
That is, when the amount of dialysate stored in the
然るに、透析液が透析液貯槽14を経由することにより、透析液から発生したガス等を分離除去し得るよう構成されており、ガス等が分離除去された透析液は、送液ポンプP2の駆動により透析液供給ラインL2〜L4を介して各透析装置4に供給される。こうして、各透析装置4に供給された透析液により、患者に対して透析治療が施されることとなる。また、各透析装置4と中央監視装置3との間では、透析治療に関わるデータ(治療条件や治療時間等)が送受信されており、最適且つ安全な治療が行われるよう構成されている。
However, the dialysate passes through the
ここで、原液供給ライン(L1a、L1b)からの透析用原液の供給が断続的に行われるため、溶解装置6における貯槽7内の透析用原液の残量は、図4の如く経時的に略階段状(即ち、供給が間欠的)に推移することとなる。具体的には、溶解装置1の貯槽7内においては、透析用原液の残量が経時的に減少する減少期間T2(貯槽7から透析液貯槽14に透析用原液が供給される期間)と、当該残量が経時的に減少せず停滞した停滞期間T1(貯槽7から透析液貯槽14への透析用原液の供給が停止した期間)とが存在し、経時的に見て残量が略階段状に変化するのである。
Here, since the supply of the dialysis stock solution from the stock solution supply lines (L1a, L1b) is intermittently performed, the remaining amount of the dialysis stock solution in the
本実施形態に係る演算手段10は、レベルセンサ8(原液量検出手段)にて検出された残量の経時的推移の変化点(B1〜B6…)に基づいて透析装置4による透析液の消費速度を求め、その消費速度から貯槽7内の透析用原液の減少割合を演算し得るものである。具体的には、演算手段10は、図4で示す如き残量の経時的推移から、例えば差分演算や微分演算等の手法により傾きの変化点(即ち、残量の経時的推移の変化点(B1〜B6…))を把握することにより、停滞期間T1と減少期間T2とを判別可能とされているのである。
The computing means 10 according to the present embodiment consumes the dialysate by the
このように判別された停滞期間T1は、既述したように、貯槽7から透析液貯槽14に透析用原液が供給されないものの当該透析液貯槽14からは透析装置4に透析液が供給されることにより、透析液貯槽14における透析液の収容量が上限から下限に至るまでの時間であり、且つ、当該上限から下限に至るまでの透析液の量は透析液貯槽14の容量の大きさにより一義的に決まり既知(これを便宜上「収容量C」という)であることから、透析液の消費速度は、C/T1(即ち、既知の収容量C÷停滞期間T1)なる演算式により求められる。
As described above, the stagnation period T1 determined in this way is that the dialysate is supplied from the
更に、演算手段10は、上記の如く求められた透析液の消費速度から貯槽7内の透析用原液の減少割合(液位の低下割合)を演算し、その求められた減少割合をデータとして判定手段11に送信する。判定手段11は、演算手段10で演算された透析用原液の減少割合に基づき貯槽7内の透析用原液が空(残液が略0)となるまでの時間を推定するとともに、供給すべき透析用原液が不足するか否かを判定するためのものである。
Further, the calculating means 10 calculates the rate of reduction of the dialysis stock solution in the storage tank 7 (the rate of decrease of the liquid level) from the consumption rate of the dialysate obtained as described above, and determines the obtained rate of reduction as data. Transmit to means 11. The determination means 11 estimates the time until the dialysis stock solution in the
この判定手段11には、入力手段12が電気的に接続されており、かかる入力手段12により透析装置4による透析治療が全て終了する時刻(その日の全患者の透析治療が終了する予定時刻)を入力し得るよう構成されている。尚、入力手段12は、演算手段10とも電気的に接続されており、透析液貯槽14における透析液の収容量が上限から下限に至るまでの透析液の既知量(収容量C)を入力し得るようにもなっている。
An
しかして、判定手段11は、貯槽7内の透析用原液が空となる推定された時間(不足時間)と透析装置4による透析治療が全て終了する時刻(透析終了時刻)とを比較し、不足時間が経過した時刻が透析終了時刻を経過しているか否かを判定すれば、透析用原液が不足するか否かが判定できるのである。具体的には、不足時間経過後の時刻が透析終了時刻を超えていなければ、追加の透析用原液は不要とされる一方、超えていれば不足すると判定されて追加の透析用原液が必要と判断される。
Therefore, the determination means 11 compares the estimated time (insufficient time) when the stock solution for dialysis in the
尚、入力手段12にてその日の患者数など他のデータを入力し得るよう構成してもよく、その入力されたデータを参照して判定手段11による透析用原液の不足の判定を行わせるようにしてもよい。また、演算手段10、判定手段11及び入力手段12を中央監視装置3内に具備させれば、通常透析室にいる透析技士等医療従事者が機械室に行かなくても入力手段12による入力等が可能となる。
The
判定手段11と定量粉体フィーダ5及び電磁バルブVwとは電気的に接続されており、当該判定手段11により供給すべき透析用原液が不足すると判定されると、所定の制御信号が定量粉体フィーダ5及び電磁バルブVwの駆動源に送信されるよう構成されている。これにより、前記判定手段により供給すべき透析用原液が不足すると判定されたことを条件として、溶解槽6に所定量の透析用粉末薬剤及び水を自動的に投入して追加の透析用原液を得ることができる。
The determination means 11, the
ここで、溶解槽6で追加の透析用原液を得るためには、水及び透析用粉末薬剤の投入、及び溶解、撹拌動作のために所定時間を要する。そのため、本実施形態においては、溶解槽6で追加の透析用原液を得るのに必要な時間を予め測定しておき、その必要な時間を勘案したタイミングにて溶解槽6に所定量の透析用粉末薬剤及び水を自動的に投入するよう制御されることとなる。
Here, in order to obtain an additional undiluted dialysis solution in the
次に、本実施形態に係る溶解装置における作用について説明する。
まず、予め入力手段12にて、透析液貯槽14における透析液の収容量が上限から下限に至るまでの透析液の既知量(収容量C)、及び透析装置4による透析治療が全て終了する時刻(透析終了時刻)等を入力しておく。そして、電磁バルブVwを開放して、フロートスイッチ9が液位を検知するまで溶解槽6内に水を投入するとともに、定量粉体フィーダ5から所定量の透析用粉末薬剤を投入し、当該透析用粉体薬剤を溶解及び撹拌して透析用原液を得る。通常、本実施形態の如き溶解装置においては、溶解可能な容量はフロートスイッチ9で決まる水量に相当する量だけであり、1袋分の透析用粉体薬剤から生成される透析用原液量(例えばB原液の場合は、11.34L、A原液の場合は、9L)が得られるよう設定されている。
Next, the operation of the melting apparatus according to this embodiment will be described.
First, in the input means 12, the known amount of dialysate (accommodation amount C) from the upper limit to the lower limit of the amount of dialysate stored in the
その後、移送ポンプP1を駆動させて、溶解槽6内の透析用原液の全量を貯槽7に移送させておく。しかして、透析治療が開始されると、原液供給ラインL1を介して透析液供給装置2に透析用原液が供給され、そこで所定濃度の透析液が作製されるとともに、当該作製された透析液が透析液貯槽14に収容されつつ各透析装置4に供給されて患者に対する透析治療が施されることとなる。上記の如き溶解装置1による透析用原液の供給の過程において、貯槽7内の透析用原液の残量(液位)をレベルセンサ8にて連続的且つリアルタイムで検出し(原液量検出工程)、その検出値を演算手段10に送信する。
Thereafter, the transfer pump P <b> 1 is driven to transfer the entire amount of the dialysis stock solution in the
そして、演算手段10は、レベルセンサ8にて検出された透析用原液の残量に基づき、原液量検出工程にて検出された残量の経時的推移の変化点(B1〜B6…)を判別し、停滞期間T1を把握することにより、C/T1なる演算式(収容量Cは既述のように入力されている)にて透析液の消費速度を求め、その消費速度から貯槽7内の透析用原液の減少割合を演算する(演算工程)。
Based on the remaining amount of the dialysis stock solution detected by the
演算工程にて求められた減少割合は、判定手段11に送信され、当該減少割合から貯槽7内の透析用原液が空となるまでの時間を演算して推定するとともに、その推定した時間と入力手段12にて入力された透析終了時刻とを比較し、供給すべき透析用原液が不足するか否かが判定される(判定工程)。かかる判定手段11による追加の要否判定は、本実施形態においては、例えば追加の透析用原液を得るのに必要な時間を予め測定しておき、その必要な時間間際まで溶解作業を行うのを待ち、その後、溶解作業を行わせるよう構成されている。
The reduction rate obtained in the calculation step is transmitted to the determination means 11, and the time until the dialysis stock solution in the
判定工程にて透析用原液が不足すると判定された場合、制御信号が定量粉体フィーダ5及び電磁バルブVwの駆動源に送信され、溶解槽6に所定量の透析用粉末薬剤及び水を自動的に投入して追加の透析用原液を得る。但し、上述したように、当該制御信号は、追加の透析用原液を得るのに必要な時間間際まで待ち、その後送信されることとなる。
When it is determined in the determination step that the dialysis stock solution is insufficient, a control signal is transmitted to the drive source of the
以上のように、本実施形態において適用される溶解システムは、透析液供給装置2を有した多人数用(単独の透析液供給装置から複数の透析装置にそれぞれ作製した透析液を送液するもの)であるため、通常、透析液調整は間欠に行われ、貯槽7内の透析用原液も間欠に残量が変化することとなるが、このような場合でも、間欠に変化する透析用原液の残量から透析液の消費速度を求め、透析液用原液の減少割合を正確に求めることができる。
As described above, the dissolution system applied in the present embodiment is for a large number of people having the dialysate supply device 2 (feeding dialysate prepared respectively from a single dialysate supply device to a plurality of dialysers) Therefore, the dialysate adjustment is usually performed intermittently, and the remaining amount of the dialysis stock solution in the
また、透析治療終了に近づくに伴い、透析治療が施される患者数が順次減るので、透析用原液の減少割合も減ることとなる。従って、透析治療が行われる時間帯の遅い段階(最終段階)で判定手段11による追加の要否の判定を行うようにするのが好ましい。即ち、既述の如く1回の溶解で得られる透析用原液量は、A原液の場合において9Lであるので、1日に実際に使用されるA原液量が仮に200Lだとすると、198Lの透析用原液が作製される22回の溶解動作まで(所定時間経過まで)は判定手段11による判定を行わず、透析終了時刻間際となった時点で当該時刻を基準として追加の要否の判定するようにしてもよい。尚、実施に使用される透析用原液量(200L)を正確に把握するのは困難であるが、例えばおおまかに15袋(9L×15袋=135L)の原液を作製するまでは溶解動作を続け、それ以降は透析終了時刻を基準として追加の要否判定を行いながら溶解を続行させるようにしてもよい。
In addition, as the dialysis treatment approaches, the number of patients on whom dialysis treatment is performed decreases sequentially, so that the rate of decrease in the dialysis stock solution also decreases. Therefore, it is preferable that the
また更に、溶解槽6内に透析用原液が残存している場合、追加の透析用原液を更に生成する必要がないため、判定手段11による追加の要否の判定は、当該溶解槽6内に透析用原液が残存していない場合に限るのが好ましい。
Furthermore, when the dialysis stock solution remains in the
本実施形態によれば、透析用原液の減少割合に基づき、貯槽7内の透析用原液が空となるまでの時間を演算して推定し、供給すべき透析用原液が不足するか否かを判定するので、透析用原液の追加生成をすべきか否かの判断を自動的且つ正確に行わせることができるとともに、当該透析用原液が不足する事態を避けつつ透析治療終了時点で大量の透析用原液が余ってしまうという不具合を回避することができる。
According to the present embodiment, the time until the dialysis stock solution in the
また、貯槽7内における透析用原液の残量の経時的推移の変化点(B1〜B6…)に基づいて透析装置4による透析液の消費速度を演算するとともに、その透析液の消費速度から貯槽7内の透析用原液の減少割合を算出するので、貯槽7内における透析用原液の減少割合を精度よく求めて、供給すべき透析用原液が不足するか否かの判定の信頼性をより向上させることができる。
Further, the dialysis fluid consumption rate by the
尚、判定手段11又は判定工程により供給すべき透析用原液が不足すると判定されたことを条件として、溶解槽6に所定量の透析用粉末薬剤及び水を自動的に投入して追加の透析用原液を得るので、透析技士等医療従事者の負担を軽減し、作業性をより向上させることができる。更に、判定手段11又は判定工程が、貯槽7内の透析用原液が空となる推定された時間と透析装置4による透析治療が全て終了する時刻とを比較し、透析用原液が不足するか否かを判定するので、より精度よく、透析用原液の追加生成をすべきか否かの判断を自動的に行わせることができる。
In addition, on the condition that it is determined that the dialysis stock solution to be supplied by the determination means 11 or the determination process is insufficient, a predetermined amount of powdered drug and water for dialysis are automatically added to the
また更に、経時的推移の変化点は、透析用原液の残量が経時的に減少する減少期間T2と、当該残量が経時的に減少せず停滞した停滞期間T1との境界点(B1〜B6…)であるので、例えば何れも経時的に減少する期間の境界点を変化点とする場合に比べ、当該変化点を容易且つ正確に把握することができる。従って、その正確に把握された変化点に基づいて透析装置による透析液の消費速度を演算するとともに、その透析液の消費速度から貯槽7内の透析用原液の減少割合を算出するので、透析装置4による透析液の消費速度、貯槽内の透析用原液の減少割合をより精度よく求めることができる。
Furthermore, the changing point of the transition over time is a boundary point (B1 to B1) between a decrease period T2 in which the remaining amount of the dialysis stock solution decreases with time and a stagnation period T1 in which the remaining amount does not decrease with time. B6...), For example, the change point can be easily and accurately grasped as compared with the case where the change point is a boundary point of a period that decreases with time. Therefore, the rate of consumption of the dialysate by the dialyzer is calculated based on the accurately recognized change point, and the rate of decrease in the stock solution for dialysis in the
特に、本実施形態においては、上述の如く溶解槽6の容量が比較的小さい(B原液の場合は、11.34L、A原液の場合は、9L)ため、1回の溶解に要する時間が短くなっている。このため、追加の透析用原液を得るのに必要な時間を勘案したタイミングを遅らせることができ、判定精度をより向上させることができるとともに、1回の溶解量が少ない故、透析用原液の無駄を更に減らすことができる。尚、本実施形態によれば、透析用原液の使用量を正確に求めなくても、予想される使用量より少なめに溶解するよう動作させ、不足が生じた際に自動的に追加溶解できる。
In particular, in this embodiment, since the capacity of the
次に、本発明に係る第2の実施形態について説明する。
本実施形態に係る溶解システムは、第1の実施形態と同様、機械室に設置された溶解装置1及び透析液供給装置2と、機械室とは隔離された透析室に設置された複数の透析装置4(透析監視装置)及び中央監視装置3とから主に構成(図1参照)されたものであり、その溶解装置1は、図5に示すように、溶解槽6と、貯槽7と、レベルセンサ8(原液量検出手段)と、演算手段10と、判定手段11と、入力手段12と、報知手段16とから主に構成されている。
Next, a second embodiment according to the present invention will be described.
As in the first embodiment, the dissolution system according to the present embodiment includes a plurality of dialysis devices installed in a dialysis chamber separated from the
溶解槽6は、内部の収容空間の一部にフロートシャフトとフロートから成るフロート式センサ15が配設されており、電磁バルブVwを開放することにより供給される水の水位を検出し得るようになっている。また、本実施形態に係る溶解槽6は、第1の実施形態の定量粉体フィーダの如き自動的に透析用粉末薬剤を投入する手段を具備しておらず、ボトルや袋などに収容された透析用粉末薬剤を手作業で投入するものである。
The
報知手段16は、判定手段11により供給すべき透析用原液が不足すると判定されたことを条件として、溶解槽6にて追加の透析用原液が必要である旨の報知を行うものである。報知手段16は、例えば画面などの表示手段にて追加の透析用原液が必要である旨のメッセージを表示したり、或いはLED等による点灯又は点滅を行って報知を行うものであってもよい。また、別個にスピーカ等を設け、当該スピーカから警告音を発するよう構成してもよい。尚、報知手段16は、機械室或いは透析室の何れに設置してもよいが、透析室に設置すれば、通常透析室にいる透析技士等医療従事者に対して確実に注意を促すことができる。
The notifying
次に、本実施形態に係る溶解装置における作用について説明する。
まず、予め入力手段12にて、透析液貯槽14における透析液の収容量が上限から下限に至るまでの透析液の既知量(収容量C)、及び透析装置4による透析治療が全て終了する時刻(透析終了時刻)を入力しておく。そして、手動操作で電磁バルブVwを開放して、フロートスイッチ15が所望の液位を検知するまで溶解槽6内に水を投入するとともに、手作業にて所定量の透析用粉末薬剤を投入し、当該透析用粉体薬剤を溶解及び撹拌して透析用原液を得る。
Next, the operation of the melting apparatus according to this embodiment will be described.
First, in the input means 12, the known amount of dialysate (accommodation amount C) from the upper limit to the lower limit of the amount of dialysate stored in the
通常、本実施形態の如き溶解装置においては、透析技士等医療従事者が頻繁に機械室に行かなければならなくなるのを回避すべく溶解槽6の容量は比較的大きく(通常、100〜200L)設定される一方、装置全体の大型化を避けるべく貯槽7は比較的小さく(通常、50L程度)設定されている。
Usually, in the dissolution apparatus as in the present embodiment, the capacity of the
その後、移送ポンプP1を駆動させて、溶解槽6内の透析用原液の全量を貯槽7に移送させておく。しかして、透析治療が開始されると、原液供給ラインL1を介して透析液供給装置2に透析用原液が供給され、そこで所定濃度の透析液が作製されるとともに、当該作製された透析液が各透析装置4に供給されて患者に対する透析治療が施されることとなる。
Thereafter, the transfer pump P <b> 1 is driven to transfer the entire amount of the dialysis stock solution in the
上記の如き溶解装置1による透析用原液の供給の過程において、第1の実施形態と同様、レベルセンサ8による原液量検出工程、演算手段10による演算工程、及び判定手段11による判定工程が行われる。そして、判定工程にて透析用原液が不足すると判定された場合、報知手段16により所定の報知がなされ、これに従い、透析技士等医療従事者が手動操作で電磁バルブVwを開放させ、所望量の水を供給するとともに、手作業にて溶解槽6に所定量の透析用粉末薬剤を投入して追加の透析用原液を得る。
In the process of supplying the dialysis stock solution by the
本実施形態によっても、第1の実施形態と同様、透析用原液の減少割合に基づき、貯槽7内の透析用原液が空となるまでの時間を演算して推定し、供給すべき透析用原液が不足するか否かを判定するので、透析用原液の追加生成をすべきか否かの判断を自動的且つ正確に行わせることができるとともに、当該透析用原液が不足する事態を避けつつ透析治療終了時点で大量の透析用原液が余ってしまうという不具合を回避することができる。
Also in the present embodiment, as in the first embodiment, the time until the dialysis stock solution in the
更に、貯槽7内における透析用原液の残量の経時的推移の変化点(B1〜B6…)に基づいて透析装置4による透析液の消費速度を演算するとともに、その透析液の消費速度から貯槽7内の透析用原液の減少割合を算出するので、貯槽7内における透析用原液の減少割合を精度よく求めて、供給すべき透析用原液が不足するか否かの判定の信頼性をより向上させることができる。即ち、間欠に変化する透析用原液の残量から透析液の消費速度を求め、透析液用原液の減少割合を正確に求めることができるのである。
Further, the dialysis fluid consumption rate by the
次に、本発明に係る第3の実施形態について説明する。
本実施形態に係る溶解システムは、先の実施形態と同様、機械室に設置された溶解装置1及び透析液供給装置2と、機械室とは隔離された透析室に設置された複数の透析装置4(透析監視装置)及び中央監視装置3とから主に構成(図1参照)されたものであり、その溶解装置1は、図6に示すように、溶解槽17と、貯槽18と、レベルセンサ19(原液量検出手段)と、演算手段10と、判定手段11と、入力手段12とから主に構成されている。
Next, a third embodiment according to the present invention will be described.
As in the previous embodiment, the dissolution system according to the present embodiment includes a
尚、先の実施形態と同様の構成要素には、同一の符号を付すこととし、その詳細な説明を省略することとする。また、先の実施形態と同様、図5と同様な構成の溶解装置が別個に配設されており、それぞれが透析用粉末薬剤としてのA剤、B剤を溶解撹拌して、各透析用原液を生成し得るようになっているとともに、図1で示すように、各溶解装置から透析液供給装置2に透析用原液が供給されるようになっている。
In addition, the same code | symbol shall be attached | subjected to the component similar to previous embodiment, and the detailed description shall be abbreviate | omitted. Further, as in the previous embodiment, dissolution devices having the same configuration as in FIG. 5 are separately disposed, and each of the A and B agents as a dialysis powder drug is dissolved and stirred to prepare each dialysis stock solution. As shown in FIG. 1, a dialysis stock solution is supplied from each dissolving device to the
溶解槽17は、内部の収容空間の一部にフロートスイッチSH(上限検知用)、SL(下限検知用)を有しており、電磁バルブVwを開放することにより供給される水の水位を所定とするよう構成されている。溶解槽17と貯槽18とは上下に併設されており、両者は電磁バルブVが接続された移送ラインL8にて連結されている。即ち、電磁バルブVを開放すれば、溶解槽17内の透析用原液が重力にて貯槽18内に送液されるようになっている。
The
また、移送ラインL8の途中と溶解槽17の上部とは循環ラインL7にて接続されており、該循環ラインL7の途中に循環ポンプP3が接続されるとともに、透析用粉末薬剤を収容したボトルBが接続され得るようになっている。これにより、電磁バルブVを閉塞した状態にて循環ポンプP3を駆動させれば、溶解槽17内の水が循環ラインL7及びボトルB内を循環することとなり、溶解及び攪拌がなされて均一濃度の透析用原液を得ることができる。尚、ボトルBは、追加の溶解が必要とされると、空のものから新たな透析用粉末薬剤を収容したものに自動的に交換されるよう構成されている。
The middle of the transfer line L8 and the upper part of the
また、本実施形態に係る判定手段11は、電磁バルブVw及び循環ポンプP3の駆動源と電気的に接続されており、当該判定手段11により供給すべき透析用原液が不足すると判定されると、電磁バルブVwを開放して溶解槽17内に水を自動的に供給するとともに、循環ポンプP3を駆動させて水を循環ラインL7及びボトルB内で循環させ、当該ボトルB内の透析用粉末薬剤を攪拌しつつ溶解し得るよう構成されている。
Further, the determination means 11 according to the present embodiment is electrically connected to the drive source of the electromagnetic valve Vw and the circulation pump P3, and when the determination means 11 determines that the dialysis stock solution to be supplied is insufficient, The electromagnetic valve Vw is opened to automatically supply water into the
然るに、図6中、符号L9は、溶解槽17及び貯槽18の上部から延設された通気ラインを示しており、電磁バルブVを開放して溶解槽17内の透析用原液が貯槽18内に移送される過程で、貯槽18内に存在していた空気を排出するとともに、溶解槽17で透析用原液が減少した分だけ当該溶解槽17内に空気を導入し得るようになっている。
However, in FIG. 6, symbol L <b> 9 indicates an aeration line extending from the upper part of the
本実施形態によっても、先の実施形態と同様、溶解装置1による透析用原液の供給の過程において、レベルセンサ8による原液量検出工程、演算手段10による演算工程、及び判定手段11による判定工程が行われるので、貯槽18内における透析用原液の残量の経時的推移の変化点(B1〜B6…)に基づいて透析装置4による透析液の消費速度を演算するとともに、その透析液の消費速度から貯槽18内の透析用原液の減少割合を算出することができる。従って、貯槽18内における透析用原液の減少割合を精度よく求めて、供給すべき透析用原液が不足するか否かの判定の信頼性をより向上させることができる。
Also in the present embodiment, as in the previous embodiment, in the process of supplying the dialysis stock solution by the
以上、本実施形態について説明したが、本発明はこれらに限定されず、例えば図7に示すように、透析室に個人用透析装置20(透析装置毎に透析液供給装置の如き透析液を作製する手段を具備したもの)が配設されたものに適用してもよい。かかる溶解システムによれば、溶解装置1で作製された透析用原液は、各透析装置4(多人数用透析装置)と、個人用透析装置20との両方に供給されるよう構成されており、各透析装置4においては透析液供給装置2を介して間欠的に透析用原液が供給される一方、個人用透析装置20においては連続的に透析用原液が供給される。
Although the present embodiment has been described above, the present invention is not limited thereto. For example, as shown in FIG. 7, a personal dialysis machine 20 (a dialysis fluid such as a dialysis fluid supply device is prepared in each dialysis device). It may be applied to a device provided with a means for providing According to such a dissolution system, the dialysis stock solution prepared by the
この場合、溶解装置内における貯槽の透析用原液の経時的推移は、図8で示すように、透析用原液の残量が経時的に所定割合で減少する第1減少期間T4と(溶解装置の貯槽から透析液貯槽への透析用原液の供給が停止しているとともに、当該貯槽からの個人用透析装置への透析用原液の供給が維持されている期間)、該第1減少期間T4と異なる割合(本実施形態においては大きい割合)で残量が経時的に減少する第2減少期間T3(溶解装置の貯槽から透析液貯槽及び個人用透析装置に透析用原液が供給される期間)とが形成されることとなる。 In this case, the time-dependent transition of the dialysis stock solution in the storage tank in the dissolution apparatus is, as shown in FIG. 8, the first decrease period T4 in which the remaining amount of the dialysis stock solution decreases over time at a predetermined rate (the dissolution apparatus The period during which the supply of the dialysis stock solution from the storage tank to the dialysate storage tank is stopped and the supply of the dialysis stock solution from the storage tank to the personal dialysis device is maintained), which is different from the first decrease period T4 A second decrease period T3 (a period during which the dialysis stock solution is supplied from the dissolution apparatus storage tank to the dialysate storage tank and the personal dialysis apparatus) in which the remaining amount decreases with time at a ratio (a large ratio in the present embodiment). Will be formed.
然るに、第1減少期間T4及び第2減少期間T3の境界点が上述した実施形態の変化点(B1〜B5…)に相当し、当該変化点にて第1減少期間T4を判別すれば、上記実施形態の如き手法にて、貯槽内の透析用原液の減少割合を演算することができる。即ち、第1減少期間T4から多人数用透析装置(透析装置4)における透析液の消費速度を求めることができるとともに、その第1減少期間T4における透析用原液の減少量(V1)を求めて当該減少量V1を透析液に換算した数値を用いれば、個人用透析装置における透析液の消費速度を求めることができる。 However, the boundary point between the first decrease period T4 and the second decrease period T3 corresponds to the change points (B1 to B5...) Of the above-described embodiment, and if the first decrease period T4 is determined at the change points, The reduction ratio of the stock solution for dialysis in the storage tank can be calculated by the method as in the embodiment. That is, from the first decrease period T4, the consumption rate of the dialysate in the multi-person dialyzer (dialyzer 4) can be determined, and the decrease amount (V1) of the dialysate stock solution in the first decrease period T4 is determined. If the numerical value obtained by converting the decrease amount V1 into dialysate is used, the consumption rate of the dialysate in the personal dialyzer can be obtained.
例えば、C/T4(但し、Cは上記実施形態と同様、透析液貯槽の収容量)なる演算式を用いれば、多人数用透析装置(透析装置4)における透析液の消費速度を求めることができ、(V1を透析液に換算した量)/T4なる演算式を用いれば、個人用透析装置における透析液の消費速度を求めることができる。このようにして求められた透析液の消費速度から、溶解装置における貯槽内の透析用原液の減少割合を演算し、その透析用原液の減少割合に基づき貯槽内の透析用原液が空となるまでの時間を推定するとともに、供給すべき透析用原液が不足するか否かを判定することができる。 For example, if an arithmetic expression C / T4 (where C is the amount of the dialysate storage tank as in the above embodiment) is used, the consumption rate of the dialysate in the multi-person dialyzer (dialyzer 4) can be obtained. If the arithmetic expression of (V1 converted into dialysate) / T4 is used, the consumption rate of the dialysate in the personal dialyzer can be obtained. From the rate of dialysate consumption determined in this way, the rate of decrease of the dialysis stock solution in the storage tank in the dissolution apparatus is calculated, and the dialysis stock solution in the storage tank is emptied based on the rate of decrease of the dialysis stock solution. It is possible to determine whether or not the dialysis stock solution to be supplied is insufficient.
上記の如く、原液量検出手段にて検出された透析液の残量の経時的推移の変化点が、透析用原液の残量が経時的に所定割合で減少する第1減少期間と、該第1減少期間と異なる割合で残量が経時的に減少する第2減少期間との境界点とされるので、透析液供給装置2を介さず溶解装置1から透析用原液が供給され、その透析用原液から所定濃度の透析液を作製しつつ透析治療が施される患者に供給し得る個人用透析装置を具備した溶解システムにも適用可能である。
As described above, the change point of the time-dependent transition of the remaining amount of the dialysate detected by the stock solution amount detecting means includes the first decrease period in which the remaining amount of the dialysate stock solution decreases at a predetermined rate with time, Since it is a boundary point with the second decrease period in which the remaining amount decreases with time at a rate different from the one decrease period, the dialysis stock solution is supplied from the
更に、上記実施形態においては、停滞期間T1を把握することにより、C/T1なる演算式(収容量Cは既述のように入力されている)にて透析液の消費速度を求め、その消費速度から貯槽7内の透析用原液の減少割合を演算するよう構成されているが、これに代えて、レベルセンサ(原液量検出手段)にて検出された透析用原液の残量に基づき、検出された残量の経時的推移の変化点(B1〜B6…)を判別し、減少期間T2を把握するよう構成してもよい。
Furthermore, in the above-described embodiment, by grasping the stagnation period T1, the consumption rate of the dialysate is obtained by an arithmetic expression C / T1 (the capacity C is input as described above), and the consumption It is configured to calculate the rate of decrease of the dialysis stock solution in the
この場合、透析液の消費速度は、(「V2を透析液に換算した量」−C)/T2(C:既知の収容量)なる演算式により求めることができる。但し、V2は、図4に示すように、変化点B1とB2(B3とB4、B5とB6…も同様)の間で減少した残量から導かれるものとし、透析液に換算した量とは、例えば透析用原液が透析液貯槽にて希釈される割合(希釈割合)をV2に乗じた数値とすることができる。 In this case, the consumption rate of the dialysate can be obtained by an arithmetic expression (“amount obtained by converting V2 into dialysate” −C) / T2 (C: known accommodation amount). However, as shown in FIG. 4, V2 is derived from the remaining amount decreased between the change points B1 and B2 (the same applies to B3 and B4, B5 and B6...). For example, the ratio (dilution ratio) by which the dialysis stock solution is diluted in the dialysate storage tank can be set to a value obtained by multiplying V2.
貯槽内の透析用原液の残量を連続的且つリアルタイムで検出し得る原液量検出手段(原液量検出工程)と、原液量検出手段(原液量検出工程)にて検出された残量の経時的推移の変化点に基づいて透析装置による透析液の消費速度を求め、その消費速度から貯槽内の透析用原液の減少割合を演算する演算手段(演算工程)と、演算手段(演算工程)で演算された透析用原液の減少割合に基づき貯槽内の透析用原液が空となるまでの時間を推定するとともに、供給すべき透析用原液が不足するか否かを判定する判定手段(判定工程)とを溶解システム及びそれによる溶解方法であれば、他の機能が付加された如き形態によるもの等にも適用することができる。 Stock volume detection means (stock volume detection process) capable of detecting the remaining amount of the dialysis stock solution in the storage tank continuously and in real time, and the remaining amount detected over time by the stock volume detection means (stock volume detection process) Calculate the dialysis fluid consumption rate by the dialysis machine based on the change point of the transition, and calculate with the calculation means (calculation step) and the calculation means (calculation step) to calculate the reduction rate of the dialysis stock solution in the storage tank from the consumption rate A determination means (determination step) for estimating a time until the dialysis stock solution in the storage tank is emptied based on the reduced rate of the dialysis stock solution and determining whether or not the dialysis stock solution to be supplied is insufficient. As long as it is a melting system and a melting method using the same, it can also be applied to a mode in which other functions are added.
1 溶解装置
2 透析液供給装置
3 中央監視装置
4 透析装置(透析監視装置)
5 定量粉体フィーダ
6 溶解槽
7 貯槽
8 レベルセンサ(原液量検出手段)
9 フロートスイッチ
10 演算手段
11 判定手段
12 入力手段
13 水計量手段
14 透析液貯槽
15 フロート式センサ
16 報知手段
17 溶解槽
18 貯槽
19 レベルセンサ(原液量検出手段)
20 個人用透析装置
B1〜B6… 変化点
T1 停滞期間
T2 減少期間
T3 第2減少期間
T4 第1減少期間
L1(L1a、L1b) 原液供給ライン
L2〜L4 透析液供給ライン
L5 水供給ライン
L6 移送ライン
L7 循環ライン
L8 移送ライン
L9 通気ライン
DESCRIPTION OF
5
DESCRIPTION OF SYMBOLS 9
20 Personal dialyzer B1-B6 ... Change point T1 Stagnation period T2 Decrease period T3 Second decrease period T4 First decrease period L1 (L1a, L1b) Stock solution supply line L2-L4 Dialysate supply line L5 Water supply line L6 Transfer line L7 Circulation line L8 Transfer line L9 Ventilation line
Claims (10)
前記原液供給ラインと連通して当該原液供給ラインから送液された透析用原液と所定量の水とを混合して作製された所定濃度の透析液を収容しつつ前記透析装置に供給するとともに、当該透析液の収容量が下限に達すると上限の収容量となるまで前記原液供給ラインから透析用原液が供給され、当該上限の収容量に達した時点で当該透析用原液の供給が停止される透析液貯槽を有した透析液供給装置と、
を具備した溶解システムであって、
前記溶解装置は、
前記貯槽内の透析用原液の残量を連続的且つリアルタイムで検出し得る原液量検出手段と、
前記原液量検出手段にて検出された残量の経時的推移の変化点に基づいて前記透析装置による透析液の消費速度を求め、その消費速度から前記貯槽内の透析用原液の減少割合を演算する演算手段と、
該演算手段で演算された透析用原液の減少割合に基づき前記貯槽内の透析用原液が空となるまでの時間を推定するとともに、供給すべき透析用原液が不足するか否かを判定する判定手段と、
を具備したことを特徴とする溶解システム。 A dissolution tank in which a predetermined amount of powder drug for dialysis and water are charged, and the powder drug for dialysis is dissolved and stirred to obtain a stock solution for dialysis, and a storage tank that temporarily stores the stock solution for dialysis obtained in the dissolution tank And a dissolution apparatus having a stock solution supply line for supplying the stock solution for dialysis accommodated in the storage tank to a plurality of dialyzers for performing dialysis treatment on a patient,
While supplying a dialysis fluid having a predetermined concentration prepared by mixing a dialysis stock solution and a predetermined amount of water communicated with the stock solution supply line and fed from the stock solution supply line, When the dialysis fluid capacity reaches the lower limit, the dialysis stock solution is supplied from the stock solution supply line until the upper limit capacity is reached, and the supply of the dialysis stock solution is stopped when the upper limit capacity is reached. A dialysate supply device having a dialysate storage tank;
A melting system comprising:
The dissolution apparatus comprises:
Stock solution amount detection means capable of continuously and in real time detecting the remaining amount of the dialysis stock solution in the storage tank;
Calculate the consumption rate of the dialysate by the dialyzer based on the change point of the time course of the remaining amount detected by the stock solution amount detection means, and calculate the decrease rate of the dialysis stock solution in the storage tank from the consumption rate Computing means for
Judgment of estimating whether or not the dialysis stock solution to be supplied is insufficient while estimating the time until the dialysis stock solution in the storage tank becomes empty based on the decrease rate of the dialysis stock solution calculated by the calculation means Means,
A melting system comprising:
前記原液供給ラインと連通して当該原液供給ラインから送液された透析用原液と所定量の水とを混合して作製された所定濃度の透析液を収容しつつ前記透析装置に供給するとともに、当該透析液の収容量が下限に達すると上限の収容量となるまで前記原液供給ラインから透析用原液が供給され、当該上限の収容量に達した時点で当該透析用原液の供給が停止される透析液貯槽を有した透析液供給装置と、
を具備した溶解システムによる溶解方法であって、
前記貯槽内の透析用原液の残量を連続的且つリアルタイムで検出し得る原液量検出工程と、
前記原液量検出工程にて検出された残量の経時的推移の変化点に基づいて前記透析装置による透析液の消費速度を求め、その消費速度から前記貯槽内の透析用原液の減少割合を演算する演算工程と、
該演算工程で演算された透析用原液の減少割合に基づき前記貯槽内の透析用原液が空となるまでの時間を推定するとともに、供給すべき透析用原液が不足するか否かを判定する判定工程と、
を具備したことを特徴とする溶解システムによる溶解方法。 A dissolution tank in which a predetermined amount of powder drug for dialysis and water are charged, and the powder drug for dialysis is dissolved and stirred to obtain a stock solution for dialysis, and a storage tank that temporarily stores the stock solution for dialysis obtained in the dissolution tank And a dissolution apparatus having a stock solution supply line for supplying the stock solution for dialysis accommodated in the storage tank to a plurality of dialyzers for performing dialysis treatment on a patient,
While supplying a dialysis fluid having a predetermined concentration prepared by mixing a dialysis stock solution and a predetermined amount of water communicated with the stock solution supply line and fed from the stock solution supply line, When the dialysis fluid capacity reaches the lower limit, the dialysis stock solution is supplied from the stock solution supply line until the upper limit capacity is reached, and the supply of the dialysis stock solution is stopped when the upper limit capacity is reached. A dialysate supply device having a dialysate storage tank;
A melting method with a melting system comprising:
A stock solution amount detection step capable of continuously and in real time detecting the remaining amount of the stock solution for dialysis in the storage tank;
Calculate the consumption rate of the dialysate by the dialyzer based on the change point of the time course of the remaining amount detected in the stock solution amount detection step, and calculate the decrease rate of the dialysis stock solution in the storage tank from the consumption rate An arithmetic process to perform,
Judgment that estimates the time until the dialysis stock solution in the storage tank becomes empty based on the decrease rate of the dialysis stock solution calculated in the calculation step and determines whether or not the dialysis stock solution to be supplied is insufficient Process,
A melting method using a melting system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007065829A JP4812116B2 (en) | 2007-03-14 | 2007-03-14 | Dissolution system and dissolution method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007065829A JP4812116B2 (en) | 2007-03-14 | 2007-03-14 | Dissolution system and dissolution method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008220784A JP2008220784A (en) | 2008-09-25 |
JP4812116B2 true JP4812116B2 (en) | 2011-11-09 |
Family
ID=39840060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007065829A Active JP4812116B2 (en) | 2007-03-14 | 2007-03-14 | Dissolution system and dissolution method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4812116B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5341137B2 (en) * | 2011-06-01 | 2013-11-13 | 日機装株式会社 | Blood purification system |
JP6703257B2 (en) * | 2016-03-23 | 2020-06-03 | 東亜ディーケーケー株式会社 | Melting device |
CN114051418B (en) | 2019-06-26 | 2024-08-30 | 日机装株式会社 | Blood purification system and solution preparation determination device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2911158B2 (en) * | 1990-02-09 | 1999-06-23 | 三洋電機株式会社 | Fuel supply device |
JPH07114809B2 (en) * | 1990-07-30 | 1995-12-13 | 日機装株式会社 | Dissolution device for dialysate preparation agent |
JP4249339B2 (en) * | 1999-06-30 | 2009-04-02 | 日機装株式会社 | Dissolving device and method of using the same |
JP2002002898A (en) * | 2000-06-16 | 2002-01-09 | Oriental Yeast Co Ltd | Liquid supply management system |
JP4115355B2 (en) * | 2002-07-15 | 2008-07-09 | 東レ・メディカル株式会社 | Dialysate supply device |
-
2007
- 2007-03-14 JP JP2007065829A patent/JP4812116B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008220784A (en) | 2008-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4475466B2 (en) | Dissolving apparatus and dissolving method therefor | |
JP7093483B2 (en) | Systems and methods for peritoneal dialysis with dialysis fluid preparation at the site of use with water reservoirs and disposable sets | |
JP2012249746A (en) | Blood purification system | |
US20240269360A1 (en) | Method, Facility And Tank For The Manufacture Of A Liquid Acid Concentrate Used For Hemodialysis Machines | |
JP4812116B2 (en) | Dissolution system and dissolution method using the same | |
EP3222303A1 (en) | Dialysis-fluid supply system | |
JP6703257B2 (en) | Melting device | |
JP4975340B2 (en) | Dissolving apparatus and dissolving method therefor | |
JP4979069B2 (en) | Dissolving device and method for measuring remaining amount in storage tank | |
JP2012249748A (en) | Blood purification system | |
JP6435127B2 (en) | Melting equipment | |
JP2021000354A (en) | Dissolving apparatus | |
JP2022007398A (en) | Dialysis liquid supply system | |
JP3669737B2 (en) | Multi-use sodium bicarbonate dissolution equipment | |
JP6644857B2 (en) | Melting equipment | |
CN105311975B (en) | Dissolving device | |
JP3669738B2 (en) | Bicarbonate dialysate adjuster for multi-person | |
JP7530357B2 (en) | Blood purification system and liquid preparation determination device | |
JP4249338B2 (en) | Dissolving device and method of using the same | |
CN108057138A (en) | The monitoring device and method of blood dialysis solution use state | |
JP3696457B2 (en) | Electrolyzed water dilution generator | |
JP2018153557A (en) | Melting device | |
JP2018175285A (en) | Dissolution apparatus for powder for dialysis and method for dissolving powder for dialysis | |
JP2016106906A (en) | Blood purification system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110822 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110825 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110822 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4812116 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140902 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |