[go: up one dir, main page]

JP4804391B2 - チルト補正制御装置 - Google Patents

チルト補正制御装置 Download PDF

Info

Publication number
JP4804391B2
JP4804391B2 JP2007075699A JP2007075699A JP4804391B2 JP 4804391 B2 JP4804391 B2 JP 4804391B2 JP 2007075699 A JP2007075699 A JP 2007075699A JP 2007075699 A JP2007075699 A JP 2007075699A JP 4804391 B2 JP4804391 B2 JP 4804391B2
Authority
JP
Japan
Prior art keywords
signal
amplitude
signal amplitude
capa1
capa2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007075699A
Other languages
English (en)
Other versions
JP2008234788A (ja
JP2008234788A5 (ja
Inventor
英樹 白根
和子 上原
清 正木
和彦 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007075699A priority Critical patent/JP4804391B2/ja
Publication of JP2008234788A publication Critical patent/JP2008234788A/ja
Publication of JP2008234788A5 publication Critical patent/JP2008234788A5/ja
Application granted granted Critical
Publication of JP4804391B2 publication Critical patent/JP4804391B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Recording Or Reproduction (AREA)

Description

本発明は、例えばDVD−RAM等の光ディスク上にランドトラック・グルーブトラック記録方式で情報を記録再生する光ディスク装置において、光ディスクと光ビームとのラジアルチルトずれに対する補正を制御する技術に関するものである。
近年の光ディスクに対する高容量化要求に応えるために、種々の高密度光ディスクフォーマットが提唱されている中、ランドトラック/グルーブトラックフォーマット(例えば、DVD−RAMディスク)がある。このフォーマットは、光ディスクの半径方向にトラッキング制御の極性が互いに反転する凸構造のランドトラックと、凹構造のグルーブトラックとを有する。これらのトラックは、光ディスク上にスパイラル状に形成されており、これらトラックに情報が記録された上で再生がなされる。
ランドトラックやグルーブトラックのセクタの先頭にはヘッダ領域が設けられる。ヘッダ領域は、CAPA(Complementary Allocated Pit Adress:相補的に配置されたピットアドレス)と呼ばれるアドレス情報が形成されている領域である。ヘッダ領域は、読出し光ヘッドがグルーブトラックの位置にいてもランドトラックの位置にいてもアドレス情報を抽出できることを目的として、プリピットから構成される。光ディスクにおいては、ヘッダ領域としてCAPA1領域とCAPA2領域とを有する。
光ディスクに情報を記録再生する光ディスク装置(光学式記録再生装置など)では、光ビームが材料膜上で常に所定の集束状態となるように制御するフォーカス制御、及び光ビームが常に所定のトラック上を正しく走査するように制御するトラッキング制御が、並行して行なわれる。
上記のようなフォーカス制御およびトラッキング制御が行われた上で光ビームのスポットがディスク面に垂直に入射されている(ラジアルチルトが無い)状態では、光検出器の両出力の間で左右対称な反射回折分布が得られ、それ以外のジアルチルトが有る状態では、光検出器の両出力の間で光強度がずれる。その結果、ランドトラックやグルーブトラックの中心にビームスポットが位置している状態では、CAPA1領域とCAPA2領域の振幅は等しくなる。
光ディスクに対してラジアルチルトが生じた場合には、従来技術(例えば、特許文献1、2を参照)として、CAPA1領域を光ビームが通過する際の反射光とCAPA2領域を光ビームが通過する際の反射光とに基づいて第2のRF信号を生成し、生成した第2のRF信号に基づいて、上述したラジアルチルトを補正することで、光ビームとトラックとの間のラジアルチルトずれ補正のためのチルト制御の精度をさらに高めた構成が提案されている。
特開2000−293868号公報 特開2000−149296号公報
しかしながら、上記のような従来の光ディスク装置では、上述のようなランドトラックとグルーブトラックとを有する光ディスクに対しては、ラジアルチルトの要因で記録・再生品位が極端に悪くなる。
その場合、CAPA1領域から得られるRF成分の信号と、CAPA2領域から得られるRF成分の信号との振幅に差が生じるが、その差分を補正するようにラジアルチルトを制御するには、それ相応の処理時間を要する。
このような光ディスク装置に対して、昨今、記録・再生速度やランダムアクセスを速めることが要求されているが、上述したラジアルチルトずれの補正処理速度に関する問題は、記録再生速度の高速化要求に応えるうえで重大な課題となっている。
本発明は、上記従来の問題点を解決するもので、光ディスクに対して記録・再生速度やランダムアクセスを確実に速めることができ、記録再生速度の高速化という市場要求に十分に応えることが可能な光ディスク装置を実現することができるチルト補正制御装置を提供する。
上記の課題を解決するために、本発明の請求項1記載のチルト補正制御装置は、円形状ディスク体で、ディスク周方向に沿って設けられたランドトラックおよびグルーブトラックの中心からディスク径方向の一方側にずれて設けられた第1のピット列と、前記ランドトラックおよびグルーブトラックの中心からディスク径方向の他方側にずれて設けられた第2のピット列とを有する光ディスクに対して、前記ランドトラックおよびグルーブトラックに沿って光ビームを走査照射する光ヘッド部と、前記光ヘッド部による前記光ビームの走査照射により得られた前記光ディスクに記録されている情報を再生信号として検出する再生信号検出器と、前記再生信号検出器が検出した前記再生信号を基にRF信号を検出するRF信号検出器と、前記RF信号検出器が検出した前記RF信号を基に、前記光ビームと前記ランドトラックおよびグルーブトラックとの位置ずれを示す信号として、前記第1のピット列に基づくCAPA1の信号振幅と前記第2のピット列に基づくCAPA2の信号振幅との差分量を検出するCAPA部信号検出器とを備え、前記光ヘッド部に任意の第1のラジアルチルトを設定して、前記CAPA部信号検出器により、前記ランドトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出するとともに、前記グルーブトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出し、前記第1のラジアルチルトとは異なる第2のラジアルチルトを前記光ヘッド部に設定して、前記CAPA部信号検出器により、前記ランドトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出するとともに、前記グルーブトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出し、前記第1のラジアルチルトおよび前記第2のラジアルチルトとは異なる第3、・・・、第m(m=4、5、・・・)互いに異なるラジアルチルトを前記光ヘッド部に設定して、前記CAPA部信号検出器により、前記第3〜第mのラジアルチルトごとに、前記ランドトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出するとともに、前記グルーブトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出することにより、前記第1〜第mのラジアルチルトのぞれぞれにおいて検出した前記ランドトラック上のCAPA1の信号振幅とCAPA2の信号振幅との差分量のm個のデータら1次関数近似式を求るとともに、前記第1〜第mのラジアルチルトのぞれぞれにおいて検出した前記グルーブトラック上のCAPA1の信号振幅とCAPA2の信号振幅との差分量のm個のデータから1次関数近似式を求めて、その2つの1次関数近似式の交点におけるラジアルチルトを、最適なラジアルチルト値として検出し、そのラジアルチルト値を設定することを特徴とする。
また、本発明の請求項記載のチルト補正制御装置は、円形状ディスク体で、ディスク周方向に沿って設けられたランドトラックおよびグルーブトラックの中心からディスク径方向の一方側にずれて設けられた第1のピット列と、前記ランドトラックおよびグルーブトラックの中心からディスク径方向の他方側にずれて設けられた第2のピット列とを有する光ディスクに対して、前記ランドトラックおよびグルーブトラックに沿って光ビームを走査照射する光ヘッド部と、前記光ヘッド部による前記光ビームの走査照射により得られた前記光ディスクに記録されている情報を再生信号として検出する再生信号検出器と、前記再生信号検出器が検出した前記再生信号を基にRF信号を検出するRF信号検出器と、前記再生信号検出器が検出した前記再生信号を基にウォブル信号を検出するウォブル信号検出器と、前記RF信号検出器が検出した前記RF信号または前記ウォブル信号検出器が検出した前記ウォブル信号を基に、前記光ビームと前記ランドトラックおよびグルーブトラックとの位置ずれを示す信号として、前記第1のピット列に基づくCAPA1の信号振幅と前記第2のピット列に基づくCAPA2の信号振幅との差分量を検出するCAPA部信号検出器とを備え、前記光ヘッド部に任意の第1のラジアルチルトを設定して、前記CAPA部信号検出器により、前記ランドトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出するとともに、前記グルーブトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出し、前記第1のラジアルチルトとは異なる第2のラジアルチルトを前記光ヘッド部に設定して、前記CAPA部信号検出器により、前記ランドトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出するとともに、前記グルーブトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出し、前記第1のラジアルチルトおよび前記第2のラジアルチルトとは異なる第3、・・・、第m(m=4、5、・・・)互いに異なるラジアルチルトを前記光ヘッド部に設定して、前記CAPA部信号検出器により、前記第3〜第mのラジアルチルトごとに、前記ランドトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出するとともに、前記グルーブトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出することにより、前記第1〜第mのラジアルチルトのぞれぞれにおいて検出した前記ランドトラック上のCAPA1の信号振幅とCAPA2の信号振幅との差分量のm個のデータら1次関数近似式を求るとともに、前記第1〜第mのラジアルチルトのぞれぞれにおいて検出した前記グルーブトラック上のCAPA1の信号振幅とCAPA2の信号振幅との差分量のm個のデータから1次関数近似式を求めて、その2つの1次関数近似式の交点におけるラジアルチルトを、最適なラジアルチルト値として検出し、そのラジアルチルト値を設定することを特徴とする。
また、本発明の請求項記載のチルト補正制御装置は、請求項1または請求項に記載のチルト補正制御装置であって、前記CAPA部信号検出器は、前記光ディスクと前記光ビームとのラジアルチルトずれ量を計測する際に、検出するRF信号として、前記光ディスクの情報を読み出すのに用いられるRF出力を用いるか、フォーカス及びトラッキング誤差信号を生成するために前記光ピックアップから出力される信号を加算したAS信号を用いるかを選択可能に構成されていることを特徴とする。
以上のように、光ヘッド部に任意の第1のラジアルチルト(t1)を設定して、ランドトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分であるL1を検出し、同様にグルーブトラック上でもCAPA1の信号振幅とCAPA2の信号振幅の差分であるG1を検出する。
次に、前述に設定したラジアルチルトとは異なる第2のラジアルチルト(t2)を光ヘッド部に設定して、ランドトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分であるL2を検出し、同様にグルーブトラック上でもCAPA1の信号振幅とCAPA2の信号振幅の差分であるG2を検出する。
次に、前述に設定したラジアルチルトとは異なる第nのラジアルチルト(tn)を光ヘッド部に設定して、ランドトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分であるLnを検出し、同様にグルーブトラック上でもCAPA1の信号振幅とCAPA2の信号振幅の差分であるGnを検出する。
ここで、ラジアルチルトに対するCAPA1とCAPA2の信号振幅差分が、ある傾きを有した1次関数に近似される。つまり、

RFu・L=a*t+b・・・(式1)
RFu・G=c*t+d・・・(式2)

の式に置換できる。なお、式1と式2において、L及びGはランドトラック及びグルーブトラックのCAPA1とCAPA2の信号振幅差分で、tはラジアルチルトで、a、b、c、dは一次近似式によって求められた数を表す。
前述のようにDVD−RAMのようなランドトラック/グルーブトラックフォーマットの光ディスクは、ディスク半径方向にトラッキングエラー信号の極性が互いに反転する凸構造のランドトラックと凹構造のグルーブトラックとを有する構造であるから、ランドトラックとグルーブトラックとで極性を切り替えて検出することが可能になるため、上式1、2の傾きも極性が逆になる。
このことを利用し、式1と式2の交点t=(d−b)/(a−c)を適正なラジアルチルトとして検出することができる。
また、光ディスク上の任意の半径位置にて前述のように検出したラジアルチルト値を求めて、半径位置に対するラジアルチルトとして補間することで、再生・記録及びアクセス時に必要な情報の取得率を向上させることが可能になる。
以上のように本発明によれば、ラジアルチルトに対するCAPA1とCAPA2との信号振幅差分量の関係から求めた1次関数近似式をランドトラックとグルーブトラックで各々求めて最適なラジアルチルト値を検出し、そのラジアルチルト値を設定することにより、アクセス時におけるラジアルチルトを安定させるために要する時間を短縮化し、迅速にラジアルチルト値を補正することを可能にすることができる。
以上により、光ディスクに対して記録・再生速度やランダムアクセスを確実に速めることができ、記録再生速度の高速化という市場要求に十分に応えることが可能な光ディスク装置を実現することができる。
以下、本発明の実施の形態を示すチルト補正制御装置およびチルト補正制御方法について、図面を参照しながら具体的に説明する。
まず、本実施の形態のチルト補正制御装置の構成を説明する前に、チルト補正制御装置が組み込まれた光ディスク装置において、光ディスクのヘッダ領域αについて説明する。
図8に示すように、光ディスクのランドトラックLやグルーブトラックGのセクタの先頭にはヘッダ領域αが設けられる。ヘッダ領域αは、CAPA(Complementary Allocated Pit Address:相補的に配置されたピットアドレス)と呼ばれるアドレス情報が形成される領域である。ヘッダ領域αは、読出し光ヘッドがグルーブトラックの位置にいてもランドトラックの位置にいてもアドレス情報を抽出できることを目的として、プリピットから構成される。
ヘッダ領域αは、第1のピット列に該当するCAPA1領域と、第2のピット列に該当するCAPA2領域とを有する。CAPA1領域は、各セクタのグルーブトラックGに対応してその先頭に配置される。CAPA2領域は、各セクタのランドトラックLに対応してその先頭に配置される。CAPA1領域とCAPA2領域とは、各セクタの先頭において隣接するランドトラックLとグルーブトラックGとの間に配置されているものの、光ディスクの同一径位置に設けられておらず、ランドトラックLとグルーブトラックGとの間で交互に径方向位置を違えて配置される。
CAPA1,2領域は、Variable Frequency Osillator1,2(以下、VFO1,2と称す)とセクタアドレス1,2とから構成される。VFO1,2は、単一の周波数で記録されており、Phase Locked Loop(以下、PLLと称す)を引き込むために使用される。CAPA1領域に設けられるセクタアドレス1は、対応するグルーブトラックGのセクタのアドレスを示し、CAPA2領域に設けられるセクタアドレス2は、対応するランドトラックLのセクタのアドレスを示す。
(実施の形態)
図1は本実施の形態のチルト補正制御装置を組み込んだ光ディスク装置の構成を示すブロック図である。
この光ディスク装置は、構成要素を2つのブロックに分けることができる。すなわち、この光ディスク装置は、光ディスク3に光ビームを照射するため、および光ディスク3からの反射光を受けるためのディスク・光ヘッド部100と、チルト制御部200とを備える。チルト制御部200は、チルト補正をディジタル制御で実現するための回路とアドレス読み取りのための回路とで構成される。
以下、ディスク・光ヘッド部100とチルト制御部200について、その構成および動作を説明する。
(ディスク・光ヘッド部100)
ディスク・光ヘッド部100は、図2に示すように、情報記録媒体である光ディスク3を回転させるため、例えばスピンドルモータからなるディスクモータ4、光ディスク3に光ビームを照射するための光ヘッド部101、及び光ヘッド部101を移動させるための移送手段の一例である移送モータ13を備える。
光ヘッド部101は、光ビームを光ディスク3のディスク半径方向に移動させる移動手段を構成することができるもので、この光ヘッド部101の位置から光ビームが位置するゾーンを求めることができる。
光ヘッド部101は、半導体レーザー等の光源5、光源5より発生した光ビームが順に入射されるカップリングレンズ6、偏光ビームスプリッタ7、1/4波長板8、及び対物レンズ10、チルトアクチュエータ11、ならびに光ディスク3からの光ビームが入射される2分割光検出器12を備える。光ヘッド部101は上記構成要素を必ずしも必須とするものではなく一例としてその構成を示す。本実施の形態では、チルトアクチュエータ11と移送モータ13とから走査器が構成され、2分割光検出器12から再生信号検出器が構成される。
チルトアクチュエータ11は、例えばラジアルチルト用のコイルを有する可動部と、永久磁石を有する固定部とにより構成される。チルトアクチュエータ11の可動部に、対物レンズ10は取り付けられる。2分割光検出器12は、2つに分割された受光領域を有し、その分割線の方向は受光面上におけるトラック方向と対応する。
このような構成のディスク・光ヘッド部100の動作を説明する。
光ディスク3は、ディスクモータ4によって所定の回転数(回転速度)で回転される。光源5より発生する光ビームは、カップリングレンズ6で平行光にされ、偏光ビームスプリッタ7及び1/4波長板8をこの順に通過し、対物レンズ10により光ディスク3上に集束して照射される。
光ディスク3に照射された光ビームの反射光は、対物レンズ10および1/4波長板8をこの順に通過し、偏光ビームスプリッタ7で反射された後に2分割光検出器12上に照射される。2分割光検出器12の2つの受光領域はそれぞれ照射光を電気信号TEP、TEN及び2分割光検出器の加算信号であるRFに変換して、チルト制御部200に出力する。
光ディスク3に対する光ビームの照射位置は、移送モータ13およびチルトアクチュエータ11により調整する。移送モータ13は、光ヘッド部101全体を光ディスク3のディスク半径方向に移動させる場合に用いられる。チルトアクチュエータ11は、可動部のコイルに流れる電流に応じて生じる電気磁気力を利用して、固定部の永久磁石に対する相対位置を変化させることにより、光ディスク3のそり(ラジアルチルト)に合わせて光ビームを可動させる。
(チルト制御部200)
チルト制御部200は、TE信号検出回路21と、RF信号検出回路22と、ウォブル信号検出回路23と、ランド・グルーブ極性検出スイッチ(SW)24と、ドライバ25と、CAPA部信号検出回路26と、マイクロコンピュータ(マイコン)27と、メモリ部28と、チルトずれ検出回路29とを備える。
TE信号検出回路21は、トラッキングエラー検出器を構成するもので、図3に示すように、差動回路15、低域通過フィルタ(以下、LPFと言う)16、ランド・グルーブ極性検出スイッチ24を備える。差動回路15は、2分割光検出器12から出力される電気信号TEP、TENの差分を算出して、その差分をLPF16に通過させて、TE信号として出力する。ランド・グルーブ極性検出スイッチ24は、マイクロコンピュータ27から供給されるTRPOL信号に基づいて、トラッキング誤差(TE)信号として出力する。
ここで、TRPOL信号は、ランドトラックからの出力とグルーブトラックからの出力とを判別する信号であって、マイクロコンピュータ27で生成される。
ランド・グルーブ極性検出スイッチ24は、TRPOL信号に基づいて出力を切り替える。すなわち、ランド・グルーブ極性検出スイッチ24は、グルーブトラックGに対応する差動回路15の出力(差分)を反転アンプ17に出力し、ランドトラックLに対応する差動回路15の出力(差分)を反転アンプ17に経ることなく、そのままTE信号として出力する。
ウォブル信号検出回路23は、ウォブル信号検出器を構成するもので、図4に示すように、差動回路18、BPF19を備える。差動回路18は、2分割光検出器12から出力される電気信号TEP、TENの差分を出力し、その差分は、BPF19を通過してウォブル(WBL)信号として出力される。
RF信号検出回路22は、RF信号検出器を構成するもので、図5に示すように、加算回路20を備える。加算回路20は、2分割光検出器12から出力される電気信号TEP、TENを加算して、AS信号として出力する。また、光ヘッド部101内部にて加算されて出力されるRF信号は、RF信号検出回路22を通じてRF0信号として出力される。
CAPA部信号検出回路26は、ラジアルチルトを補正するための構成であって、図6に示すように、RF0・AS・ウォブル信号選択スイッチ(SW)47と、高域通過フィルタ(以下、HPFと言う)40と、打ち抜き回路41と、VFO振幅検出回路42と、第1のサンプルホールド回路43と、第2のサンプルホールド回路44と、差動回路45とを備える。
RF0・AS・ウォブル信号選択SW47は、2分割光検出器12からRF信号検出回路22を通じて供給される電気信号RF(RF0、AS)、あるいはウォブル信号検出回路23から出力されるウォブル信号WBLのいずれかを選択して、HPF40へ出力する。
HPF40は、RF0・AS・ウォブル信号選択SW47から選択された一つの信号の直流成分を除去して打ち抜き回路41に出力する。
打ち抜き回路41は、マイクロコンピュータ27から供給されるCAPA検出信号(CAPA)に基づいて、電気信号RF0あるいはASにおいてヘッダ領域α(図8参照)に対応する領域の信号RFcを抽出してVFO振幅検出回路42に出力する。ここで、CAPA検出信号(CAPA)とは、RF信号におけるヘッダ領域α(図8参照)を判別する信号であって、マイクロコンピュータ27で生成される。
VFO振幅検出回路42は、信号RFcからその振幅RFc’を検出して、第1、第2のサンプルホールド回路43,44に出力する。
第1のサンプルホールド回路43は、マイクロコンピュータ27から供給されるVFO1検出信号(VFO1)に基づいて、振幅RFc’からVFO1に対応する信号領域の振幅RFc’1を抽出して差動回路45に出力する。ここで、VFO1検出信号(VFO1)とは、電気信号RF0あるいはASにおいてVFO1(図8参照)に対応する信号領域を判別する信号であって、マイクロコンピュータ27で生成される。
第2のサンプルホールド回路44は、マイクロコンピュータ27から供給されるVFO2検出信号(VFO2)に基づいて、振幅RFc’からVFO2に対応する信号領域の振幅RFc’2を抽出して差動回路45に出力する。ここで、VFO2検出信号(VFO2)とは、電気信号RF0あるいはASにおいてVFO2(図8参照)に対応する信号領域を判別する信号であって、マイクロコンピュータ27で生成される。
差動回路45は、振幅RFc’1と振幅RFc’2との差分を生成して、その差分をRFsとして出力する。ここで、RFsは、ラジアルチルトずれ量に該当する。
チルトずれ検出回路29は、図7に示すように、ランド・グルーブ極性検出スイッチ24と、反転アンプ50と、ゲインアンプ51と、LPF52とを備える。
ランド・グルーブ極性検出スイッチ24は、マイクロコンピュータ27から供給されるTRPOL信号に基づいて、上記の差分信号RFsを切り替えて出力する。すなわち、ランド・グルーブ極性検出スイッチ24は、グルーブトラックGに対応するRFs信号を反転アンプ50に出力し、ランドトラックLに対応するRFs信号を、反転アンプ50を経ることなくそのままゲインアンプ51に出力する。
反転アンプ50は、ランド・グルーブ極性検出スイッチ24を介して供給されるグルーブトラックGに対応するRFs信号に反転処理を施したうえで、ゲインアンプ51に出力する。
ゲインアンプ51は、ランド・グルーブ極性検出スイッチ24ないし反転アンプ50から供給されるRFsのゲイン調整を行ってLPF52に出力する。LPF52は、ゲインアンプ51の出力(ゲイン調整されたRFs)から高周波成分を除去したうえでラジアルチルトずれ量RFuとして出力する。
次に、ラジアルチルトの変化に対する電気信号RF及びウォブル信号WBLの信号波形の変動について、図8〜図10および図12〜図14を用いて説明する。ここで説明を簡単にするために、ヘッダ領域αを除くランドトラックLおよびグルーブトラックGには記録マークは形成されていない、即ち未記録状態であることと仮定する。この信号波形の変動は、対物レンズ10を通じて出力される光ビームのスポット(SP)とトラックL,Gとの間の位置整合性(チルト)に基づいて生じる。
スポット(SP)が各トラックL,Gのトラックセンタに位置し、図12のように光ディスク3にそりが無くラジアルチルトが無い状態では、図8に示すように、電気信号RFのVFO1における振幅RFc’1と、VFO2における振幅RFc’2とほぼ等しくなる(RFc’1−RFc’2=0)。このような振幅差は、ウォブル信号においても同様に生じる。
スポット(SP)が各トラックL,Gのトラックセンタに位置していても、図13のように外周に向かって光ディスク3が光ヘッド部101に近づく方向にそっている状態では、図9に示すように、電気信号RFのVFO1における振幅RFc’1は、VFO2における振幅RFc’2より大きくなる(RFc’1−RFc’2>0)。このような振幅差は、ウォブル信号においても同様に生じる。
スポット(SP)が各トラックL,Gのトラックセンタに位置していても、図14のように外周に向かって光ディスク3が光ヘッド部101から遠ざかる方向にそっている状態では、図10に示すように、電気信号RFのVFO1における振幅RFc’1は、VFO2における振幅RFc’2より小さくなる(RFc’1−RFc’2<0)。このような振幅差は、ウォブル信号においても同様に生じる。
次に、CAPA部信号検出回路26の動作の詳細を、図11、図15〜図17および図22の波形図を参照して説明する。ここで説明を簡単にするために、ヘッダ領域αを除くランドトラックLおよびグルーブトラックGには記録マークは形成されていない、即ち未記録状態であることと仮定する。
図11に示すように、マイクロコンピュータ27は、スポット(SP)がヘッダ領域αを通過する期間中の全期間においてHigh(以下、Hと称す)となるCAPA検出信号(CAPA)を、打ち抜き回路41に出力する。打ち抜き回路41は、供給されるCAPA検出信号(CAPA)がHの期間の間、CAPAを抽出し、その抽出結果として信号RFcをVFO振幅検出回路42に出力する。VFO振幅検出回路42は、供給されるCAPAの抽出結果である信号RFcの振幅RFc’を算出し、その算出結果(振幅RFc’)を第1のサンプルホールド回路43と第2のサンプルホールド回路44とに出力する。
また図11に示すように、マイクロコンピュータ27は、VFO1の出力が完了した直後のタイミングで立ち上がるVFO1検出信号(VFO1)を生成して、第1のサンプルホールド回路43に出力し、VFO2の出力が完了した直後のタイミングで立ち上がるVFO2検出信号(VFO2)を生成して、第2のサンプルホールド回路44に出力する。
第1のサンプルホールド回路43は、供給されるVFO1検出信号(VFO1)が立ち上がる時点での振幅RFc’を抽出することで、結果的にVFO1に対応する振幅RFc’1を抽出する。
第2のサンプルホールド回路44は、供給されるVFO2検出信号(VFO2)が立ち上がる時点での振幅RFc’を抽出することで、結果的にVFO2に対応する振幅RFc’2を抽出する。
差動回路45は、第1のサンプルホールド回路43から出力されるVFO1に対応する振幅RFc’1と、第2のサンプルホールド回路44から出力されるVFO2に対応する振幅RFc’2との差分を算出し、算出した差分をRFsとしてチルトずれ検出回路29に出力する。すなわち、RFc’1=RFc’2の場合、差動回路45は、図15に示すように、零レベルのRFsを出力する。またRFc’1>RFc’2の場合、差動回路45は、図16に示すように、一方極性(例えば、+極性)であって振幅RFc’1と振幅RFc’2との間の差分に応じたレベルを有するRFsを出力する。またRFc’1<RFc’2の場合、差動回路45は、図17に示すように、他方極性(例えば、−極性)であって振幅RFc’1と振幅RFc’2との間の差分に応じたレベルを有するRFsを出力する。
図22はラジアルチルトが発生しているときに、スポット(SP)がグルーブトラックGとランドトラックLを各1本ずつ連続して通過したときに出力されるRF信号波形とウォブル信号波形を示し、その特徴が、グルーブトラックGとランドトラックLとで特徴が現れていることを示す。
以下、本実施の形態の光ディスク装置におけるチルト補正制御方法について、その詳細を、図18のフローチャートを参照しながら説明する。
以下のチルト補正制御方法は、基本的にマイクロコンピュータ27の指示に基づいて、各回路で実行される。
まず、ディスクモータ4、光源(レーザー)5、および光ヘッド部101のフォーカス動作を駆動させる(S101)。次に、光ヘッド部101のトラッキング動作を駆動させる(S102)。次に、ランド・グルーブ極性検出スイッチ24を動作させる(S103)。これにより、RFuの出力が可能になる。
次に、第1のラジアルチルトを設定するために、マイクロコンピュータ27からドライバ25へ任意のラジアルチルトを設定させる命令を発行し、ドライバ25からチルトアクチュエータ11をマイクロコンピュータ27から命令された量だけ可動させる(S104)。
次に、スチルジャンプを開始して、対物レンズ10を通じて出力された光ビームをグルーブトラックGに保持させる(S105)。具体的には、マイクロコンピュータ27から光ヘッド部101に出力されるスチルジャンプ命令(以下、JMPと称す)を1回転毎にHレベルにすることで、対物レンズ10を通じて出力された光ビームをグルーブトラックGにスチルジャンプさせて保持する。そして、スチルジャンプ(グルーブ)を実行しながら、チルトずれ検出回路29をクリアしたうえで、その測定操作を実行する。すなわち、マイクロコンピュータ27は、チルトずれ検出回路29にクリア命令(以下、CLRと称す)と、測定命令STARTとを出力する。チルトずれ検出回路29は、その命令を受けて測定を実行する。
次に、対物レンズ10を通じて出力された光ビームが単一のグルーブトラックG上をトレースし、チルトずれ検出回路29は、差動回路45からの出力であるRFsを測定して、結果的にRFuとしてメモリ部28に出力し記憶させる(S106)。
次に、スチルジャンプ位置を、ランドトラックLに位置するように、対物レンズ10を通じて出力された光ビームをランドトラックLに保持させる(S107)。具体的には、マイクロコンピュータ27から光ヘッド部101に出力されるJMP命令を1回転毎にHレベルにすることで、対物レンズ10を通じて出力された光ビームを、ランドトラックLにスチルジャンプさせて保持する。そして、スチルジャンプ(ランド)を実行しながら、チルトずれ検出回路29をクリアしたうえで、その測定操作を実行する。すなわち、マイクロコンピュータ27は、チルトずれ検出回路29にCLR命令と測定命令STARTとを出力する。チルトずれ検出回路29は、その命令を受けて測定を実行する。
次に、対物レンズ10を通じて出力された光ビームが単一のグルーブトラックL上をトレースし、チルトずれ検出回路29は、差動回路45からの出力であるRFsを測定して、結果的にRFuとしてメモリ部28に出力し記憶させる(S108)。
次に、RFuを計測するラジアルチルトの設定ポイント数を決定し、その設定したチルト時のRFu振幅を計測し、当該計測回数が設定したポイント数に満たない場は、S104に戻す動作を繰り返す(S109)。例えば、S104で測定ポイントを10箇所(m=10)と設定した時のモデルを図19に示す。S104からS108の動作が10回(k=1〜10)繰り返され、各々の設定したラジアルチルトとチルトずれ検出回路29から出力であるRFuの値がメモリ部28に記憶される。
次に、メモリ部28に蓄積された結果を基に得られる一次近似直線として、グルーブトラックからはRFu・G=c*t+d(式2)を導出し、ランドトラックからはRFu・L=a*t+b(式1)を導出し、それらの二式からRFu・G=RFu・Lとなるラジアルチルトt=(d−b)/(a―c)を求めて、マイクロコンピュータ27に格納する(S110)。
最後に、S104からS110までの計測・演算処理で求められたラジアルチルト値を、計測された光ディスク3の半径位置にて設定する(S111)。マイクロコンピュータ27による目標ラジアルチルトの設定方法として、光ディスク3の任意のトラック位置(半径位置)の複数個所のランドトラックとグルーブトラックそれぞれで、チルトずれ検出回路29からRFuを求め、最適なラジアルチルトを検出(算出)する。
なお、チルト値測定箇所により光ディスク3の記録領域を領域(ゾーン)毎に区分けする必要がある。図20では、光ディスク3に、その半径位置に応じて、7箇所(0半径位置、6半径位置、11半径位置、17半径位置、23半径位置、30半径位置、および34半径位置)で目標ラジアルチルト値を測定して設定している。
なお、設定した複数個所(図20では7箇所)の間の領域は、その両端のどちらに位置するラジアルチルト値を用いてもよいし、両端に位置するラジアルチルト値を線形補間することにより別途算出してもよいが、制御精度を高めるためには、線形補間するのが好ましく、この方法は、前述した図18のフローチャートを改良した図21のフローチャートに基づいて処理を行う必要がある。
図21のフローチャートの処理を説明する。この処理は、図18のフローチャートにおいて、S103の処理とS104の処理との間にS201の処理を加入し、さらにS110の処理とS111の処理との間にS202の処理を加入している。
S201では、移送モータ13によって、光ヘッド部101を光ディスク3の半径位置としてその目標半径位置に移動する。
S202では、光ディスク3の区分け(ゾーン化)した領域であり、区分けされた領域分に光ヘッド部101が移動する。ゾーンをp個に設定した場合はp箇所でラジアルチルト値を設定するまでS104からS110までを繰り返す。
以上のように本実施の形態によれば、ラジアルチルトに対するCAPA1とCAPA2との信号振幅差分量の関係から求めた1次関数近似式を、ランドトラックとグルーブトラックで各々求めて最適なラジアルチルト値を検出し、そのラジアルチルト値を設定することにより、アクセス時におけるラジアルチルトを安定させるために要する時間を短縮化し、迅速にラジアルチルト値を補正することを可能にすることができる。
その結果、光ディスクに対して記録・再生速度やランダムアクセスを確実に速めることができ、記録再生速度の高速化という市場要求に十分に応えることが可能な光ディスク装置を実現することができる。
本発明のチルト補正制御装置は、光ディスクに対して記録・再生速度やランダムアクセスを確実に速めることができ、記録再生速度の高速化という市場要求に十分に応えることが可能な光ディスク装置を実現することができるもので、例えばDVD−RAMなどの光ディスク上にランドトラック・グルーブトラック記録方式で情報を記録再生する光ディスク装置等に適用できる。
本発明の実施の形態のチルト補正制御装置を用いた光ディスク装置の構成を示すブロック図 同実施の形態のチルト補正制御装置を用いた光ディスク装置におけるディスク・光ヘッド部の構成を示すブロック図 同実施の形態のチルト補正制御装置を用いた光ディスク装置におけるTE信号検出回路の構成を示すブロック図 同実施の形態のチルト補正制御装置を用いた光ディスク装置におけるウォブル信号検出回路の構成を示すブロック図 同実施の形態のチルト補正制御装置を用いた光ディスク装置におけるRF信号検出回路の構成を示すブロック図 同実施の形態のチルト補正制御装置を用いた光ディスク装置におけるCAPA部信号検出回路の構成を示すブロック図 同実施の形態のチルト補正制御装置を用いた光ディスク装置におけるチルトずれ検出回路の構成を示すブロック図 同実施の形態のチルト補正制御装置を用いた光ディスク装置においてラジアルチルトが無い場合のRF信号とウォブル信号の状態説明図 同実施の形態のチルト補正制御装置を用いた光ディスク装置においてラジアルチルトが有る場合のRF信号とウォブル信号の状態説明図 同実施の形態のチルト補正制御装置を用いた光ディスク装置においてラジアルチルトが有る場合のRF信号とウォブル信号の他の状態説明図 同実施の形態のチルト補正制御装置を用いた光ディスク装置においてラジアルチルトが無い場合のRF信号とVFO信号とCAPA信号の状態説明図 同実施の形態のチルト補正制御装置を用いた光ディスク装置において光ディスクに反りが無い場合の光ヘッド部の状態説明図 同実施の形態のチルト補正制御装置を用いた光ディスク装置において光ディスクに反りが有る場合の光ヘッド部の状態説明図 同実施の形態のチルト補正制御装置を用いた光ディスク装置において光ディスクに反りが有る場合の光ヘッド部の他の状態説明図 同実施の形態のチルト補正制御装置を用いた光ディスク装置においてラジアルチルトが無い場合のRF信号とRFc’信号とRF信号の状態説明図 同実施の形態のチルト補正制御装置を用いた光ディスク装置においてラジアルチルトが有る場合のRF信号とRFc’信号とRF信号の状態説明図 同実施の形態のチルト補正制御装置を用いた光ディスク装置においてラジアルチルトが有る場合のRF信号とRFc’信号とRF信号の他の状態説明図 同実施の形態のチルト補正制御装置を用いた光ディスク装置におけるチルト補正制御方法の行程を示すフローチャート 同実施の形態のチルト補正制御装置を用いた光ディスク装置におけるRFu信号とTilt(t)との関係説明図 同実施の形態のチルト補正制御装置を用いた光ディスク装置におけるTilt(t)とディスク半径位置との関係説明図 同実施の形態のチルト補正制御装置を用いた光ディスク装置におけるチルト補正制御方法の他の行程を示すフローチャート 同実施の形態のチルト補正制御装置を用いた光ディスク装置においてラジアルチルトが有る場合のRF信号とウォブル信号とTRPOL信号の状態説明図
符号の説明
3 光ディスク
4 ディスクモータ
5 光源
6 カップリングレンズ
7 偏光ビームスプリッタ
8 1/4波長板
10 対物レンズ
11 チルトアクチュエータ
12 2分割光検出器
13 移送モータ
15 差動回路
16 LPF
17 反転アンプ
18 差動回路
19 BPF
20 加算回路
21 TE信号検出回路
22 RF信号検出回路
23 ウォブル信号検出回路
24 ランド・グルーブ極性検出SW(スイッチ)
25 ドライバ
26 CAPA部信号検出回路
27 マイクロコンピュータ(マイコン)
28 メモリ部
29 チルトずれ検出回路
30 レーザー制御部
40 HPF
41 打ち抜き回路
42 VFO振幅検出回路
43 第1のサンプルホールド回路
44 第2のサンプルホールド回路
45 差動回路
47 RF0・AS・ウォブル信号選択スイッチ(SW)
50 反転アンプ
51 ゲインアンプ
52 LPF
100 ディスク・光ヘッド部
101 光ヘッド部
200 チルト制御部

Claims (3)

  1. 円形状ディスク体で、ディスク周方向に沿って設けられたランドトラックおよびグルーブトラックの中心からディスク径方向の一方側にずれて設けられた第1のピット列と、前記ランドトラックおよびグルーブトラックの中心からディスク径方向の他方側にずれて設けられた第2のピット列とを有する光ディスクに対して、前記ランドトラックおよびグルーブトラックに沿って光ビームを走査照射する光ヘッド部と、
    前記光ヘッド部による前記光ビームの走査照射により得られた前記光ディスクに記録されている情報を再生信号として検出する再生信号検出器と
    前記再生信号検出器が検出した前記再生信号を基にRF信号を検出するRF信号検出器と、
    前記RF信号検出器が検出した前記RF信号を基に、前記光ビームと前記ランドトラックおよびグルーブトラックとの位置ずれを示す信号として、前記第1のピット列に基づくCAPA1の信号振幅と前記第2のピット列に基づくCAPA2の信号振幅との差分量を検出するCAPA部信号検出器と
    を備え、前記光ヘッド部に任意の第1のラジアルチルトを設定して、前記CAPA部信号検出器により、前記ランドトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出するとともに、前記グルーブトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出し、
    前記第1のラジアルチルトとは異なる第2のラジアルチルトを前記光ヘッド部に設定して、前記CAPA部信号検出器により、前記ランドトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出するとともに、前記グルーブトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出し、
    前記第1のラジアルチルトおよび前記第2のラジアルチルトとは異なる第3、・・・、第m(m=4、5、・・・)互いに異なるラジアルチルトを前記光ヘッド部に設定して、前記CAPA部信号検出器により、前記第3〜第mのラジアルチルトごとに、前記ランドトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出するとともに、前記グルーブトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出することにより、
    前記第1〜第mのラジアルチルトのぞれぞれにおいて検出した前記ランドトラック上のCAPA1の信号振幅とCAPA2の信号振幅との差分量のm個のデータら1次関数近似式を求るとともに、前記第1〜第mのラジアルチルトのぞれぞれにおいて検出した前記グルーブトラック上のCAPA1の信号振幅とCAPA2の信号振幅との差分量のm個のデータから1次関数近似式を求めて、その2つの1次関数近似式の交点におけるラジアルチルトを、最適なラジアルチルト値として検出し、そのラジアルチルト値を設定する
    ことを特徴とするチルト補正制御装置。
  2. 円形状ディスク体で、ディスク周方向に沿って設けられたランドトラックおよびグルーブトラックの中心からディスク径方向の一方側にずれて設けられた第1のピット列と、前記ランドトラックおよびグルーブトラックの中心からディスク径方向の他方側にずれて設けられた第2のピット列とを有する光ディスクに対して、前記ランドトラックおよびグルーブトラックに沿って光ビームを走査照射する光ヘッド部と、
    前記光ヘッド部による前記光ビームの走査照射により得られた前記光ディスクに記録されている情報を再生信号として検出する再生信号検出器と
    前記再生信号検出器が検出した前記再生信号を基にRF信号を検出するRF信号検出器と、
    前記再生信号検出器が検出した前記再生信号を基にウォブル信号を検出するウォブル信号検出器と、
    前記RF信号検出器が検出した前記RF信号または前記ウォブル信号検出器が検出した前記ウォブル信号を基に、前記光ビームと前記ランドトラックおよびグルーブトラックとの位置ずれを示す信号として、前記第1のピット列に基づくCAPA1の信号振幅と前記第2のピット列に基づくCAPA2の信号振幅との差分量を検出するCAPA部信号検出器と
    を備え、前記光ヘッド部に任意の第1のラジアルチルトを設定して、前記CAPA部信号検出器により、前記ランドトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出するとともに、前記グルーブトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出し、
    前記第1のラジアルチルトとは異なる第2のラジアルチルトを前記光ヘッド部に設定して、前記CAPA部信号検出器により、前記ランドトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出するとともに、前記グルーブトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出し、
    前記第1のラジアルチルトおよび前記第2のラジアルチルトとは異なる第3、・・・、第m(m=4、5、・・・)互いに異なるラジアルチルトを前記光ヘッド部に設定して、前記CAPA部信号検出器により、前記第3〜第mのラジアルチルトごとに、前記ランドトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出するとともに、前記グルーブトラック上のCAPA1の信号振幅とCAPA2の信号振幅の差分量を検出することにより、
    前記第1〜第mのラジアルチルトのぞれぞれにおいて検出した前記ランドトラック上のCAPA1の信号振幅とCAPA2の信号振幅との差分量のm個のデータら1次関数近似式を求るとともに、前記第1〜第mのラジアルチルトのぞれぞれにおいて検出した前記グルーブトラック上のCAPA1の信号振幅とCAPA2の信号振幅との差分量のm個のデータから1次関数近似式を求め、その2つの1次関数近似式の交点におけるラジアルチルトを、最適なラジアルチルト値として検出し、そのラジアルチルト値を設定す
    とを特徴とするチルト補正制御装置。
  3. 前記CAPA部信号検出器は、前記光ディスクと前記光ビームとのラジアルチルトずれ量を計測する際に、検出するRF信号として、前記光ディスクの情報を読み出すのに用いられるRF出力を用いるか、フォーカス及びトラッキング誤差信号を生成するために前記光ピックアップから出力される信号を加算したAS信号を用いるかを選択可能に構成されていることを特徴とする請求項1または請求項に記載のチルト補正制御装置。
JP2007075699A 2007-03-23 2007-03-23 チルト補正制御装置 Expired - Fee Related JP4804391B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007075699A JP4804391B2 (ja) 2007-03-23 2007-03-23 チルト補正制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007075699A JP4804391B2 (ja) 2007-03-23 2007-03-23 チルト補正制御装置

Publications (3)

Publication Number Publication Date
JP2008234788A JP2008234788A (ja) 2008-10-02
JP2008234788A5 JP2008234788A5 (ja) 2010-03-25
JP4804391B2 true JP4804391B2 (ja) 2011-11-02

Family

ID=39907386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007075699A Expired - Fee Related JP4804391B2 (ja) 2007-03-23 2007-03-23 チルト補正制御装置

Country Status (1)

Country Link
JP (1) JP4804391B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113804111B (zh) * 2021-10-29 2023-05-26 中国工程物理研究院机械制造工艺研究所 一种适用于精密装配的变径空间姿态测量装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4153621B2 (ja) * 1998-09-14 2008-09-24 松下電器産業株式会社 チルト検出装置
JP2002150587A (ja) * 2000-11-06 2002-05-24 Matsushita Electric Ind Co Ltd 光ディスク装置
JP3921435B2 (ja) * 2002-10-09 2007-05-30 株式会社日立製作所 光ディスク装置、最適ラジアルチルトまたは最適トラックオフセット量算出方法
JP2007200381A (ja) * 2006-01-24 2007-08-09 Matsushita Electric Ind Co Ltd 光ディスク装置運転方法および光ディスク装置

Also Published As

Publication number Publication date
JP2008234788A (ja) 2008-10-02

Similar Documents

Publication Publication Date Title
KR20070053114A (ko) 재생 장치, 구면수차 보정치 및 포커스 바이어스 조정 방법
US20030099171A1 (en) Optical disk apparatus and method for adjusting tilt therefor
JP2000311368A (ja) ディスク装置
KR20030005380A (ko) 디스크드라이브장치와 정보독출방법
JP4804391B2 (ja) チルト補正制御装置
US7719931B2 (en) Optical disk device, loop gain setting method, and loop gain setting program
JP5623948B2 (ja) 推奨記録条件の決定方法及び記録調整方法
JP3064860B2 (ja) フォーカス制御装置および記録媒体
JP4728102B2 (ja) トラッキングエラー制御装置、トラッキングエラー制御回路、およびトラッキングエラー制御方法
US20070217317A1 (en) Optical disk device, playback method of the optical disk device, and reproduction signal generating circuit
JP2005071545A (ja) 光ディスク装置及びトラッキングバランス調整方法
JP4339814B2 (ja) 光ディスク装置、ループゲイン設定方法およびループゲイン設定プログラム
JP3855274B2 (ja) 光ディスク再生装置
JP2003173549A (ja) 光ディスク装置及びフォーカスオフセット調整方法
JP2006179037A (ja) 光ディスク装置および光ディスクのチルト補正方法
JP2008135086A (ja) 信号処理装置及び光ディスク再生装置
JP3401458B2 (ja) チルト検出装置
JP3401460B2 (ja) チルト検出装置および光ディスク装置、チルト制御方法
KR100595248B1 (ko) 상 변화형 광 디스크의 기록 제어 방법
US8634281B2 (en) Optical disc device
JP4396707B2 (ja) 光ディスク装置
JP2005129185A (ja) 光ディスク装置および光ディスクのチルト補正方法
JP3401459B2 (ja) チルト検出装置および光ディスク装置、チルト制御方法
JP2013157045A (ja) 光ディスク装置
WO2013111382A1 (ja) 光ディスク装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees