JP4758000B2 - 半導体装置の作製方法 - Google Patents
半導体装置の作製方法 Download PDFInfo
- Publication number
- JP4758000B2 JP4758000B2 JP2000362446A JP2000362446A JP4758000B2 JP 4758000 B2 JP4758000 B2 JP 4758000B2 JP 2000362446 A JP2000362446 A JP 2000362446A JP 2000362446 A JP2000362446 A JP 2000362446A JP 4758000 B2 JP4758000 B2 JP 4758000B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- crystal
- crystal growth
- thin film
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Liquid Crystal (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
Description
【発明の属する技術分野】
本発明は半導体薄膜材料と、その作成方法と、その半導体薄膜材料を用いたデバイスの作成方法に関する。特に本発明は、薄膜状の半導体材料の特性向上を目的とし、本発明による半導体材料を利用することによって特性の改善された薄膜半導体装置を作製することが可能となる。
【0002】
【従来の技術】
薄膜の性質は薄膜を用いて作製するデバイスの特性を左右する。特に薄膜の結晶性は、デバイスの電気的、又は光学的な特性に深く関与し、一般に単結晶に近い薄膜、すなわち結晶が周期的に配列し、格子欠陥がすくない薄膜を用いたデバイスほど、良い特性が得られる。従って高性能のデバイスを作製するためには結晶性の良い薄膜を用いる必要がある。結晶方位を可能な限り揃えることで結晶性は改善できる。
【0003】
薄膜の結晶方位を揃えるために次の手段がとられている。成膜時に多結晶化を行う気相成長法やレーザーアニール、ランプアニールで結晶化を行う液層成長法や熱処理で結晶化を行う固相成長法である。
【0004】
これらの方法では多数の核から結晶成長させ、多結晶を形成する。従って各結晶粒は様々な大きさ、様々な結晶方位をとり、膜中には粒界が多数存在する。従って多結晶膜を用いたデバイスでは、Siウエハ等の単結晶を用いて作製したデバイスと比べて、特性が劣る。
【0005】
絶縁基板上に形成する半導体薄膜の結晶性を改善する方法として、すなわちより単結晶に近い結晶を得る方法として、結晶核を発生させる位置を制御し、この結晶核からデバイスを作り込む領域に限定して結晶化を行う方法がある。この方法を今後、横成長法と呼ぶ。横成長法の説明を行う。
【0006】
図1において、106はガラス基板、107は酸化珪素膜でなる絶縁膜、108はSi等の半導体薄膜を示す。横成長法においては結晶核形成領域101部に結晶成長の開始点となる結晶核を発生させ、結晶核形成領域101部の外側の薄膜に向けて結晶をエピタキシャル成長させる。従ってエピタキシャル成長領域102部に結晶化された良質の薄膜を得ることが出来る。
【0007】
結晶核形成領域101部に選択的に結晶核を発生させるには、結晶化を促進させることが可能な金属を結晶核形成領域101部にのみドープする方法、液層成長法では温度勾配をつくり、結晶核形成領域101部から結晶核を発生させる方法などがある。本願発明は、結晶成長の過程を利用するものである。従って、金属を利用する方法を例にとって、結晶核形成領域101部に発生した結晶核から結晶が成長していく過程を、微視的な視点から詳しく説明する。
【0008】
結晶核から結晶成長が進行するのは、結晶核の壁面からエピタキシャル成長が起こる為である。結晶核は様々な方位の結晶面を持つが、各結晶面によってエピタキシャル成長の起こり易さは異なっている。従って最もエピタキシャル成長が起こりやすい結晶核の結晶面のエピタキシャル成長が優先的に進行しやすい。この結晶面に垂直な方向、即ち結晶が成長していく方向を今後、優先結晶成長方向と呼ぶ。
【0009】
ここで薄膜に対して平行な方向の定義を行う。図3はガラス基板306上に、酸化珪素膜からなる絶縁膜307が形成してあり、さらに絶縁膜307には図3に示すように段差が形成してあるものとする(この段差は薄膜表面の凹凸ではなく、意図的に形成するテーパー形状等を想定している)。この絶縁膜307の上にSi等の半導体薄膜308が形成してある。薄膜中の点305に於ける、薄膜に対して平行な方向とは、先ず点305から薄膜に対する法線を立て、その法線と直交する全ての方向を示すものとする。
【0010】
横成長法においては、結晶核形成領域101で、様々な方向を向いた結晶核が発生するが、図1のエピタキシャル成長領域102部において結晶成長が進行するのは、優先結晶成長方向が薄膜に対して平行となっている場合である。優先結晶成長方向が薄膜に対して平行となっていない結晶核からの結晶成長は薄膜の上下界面にぶつかり、結晶成長が抑制される為である。薄膜におけるこれらの結晶成長の機構に関してはC.Hayzelden,L.L.Batstone(J.Appl.Phys.73(12))らによって詳しい研究がなされている。
【発明が解決しようとする課題】
【0011】
しかし横成長法には次のような欠点がある。すなわち図1に示すエピタキシャル成長領域102部では薄膜に対して平行な様々な結晶方位の結晶が混在する(ただし通常の多結晶と比較すると、結晶核形成領域からエピタキシャル成長しているため成長方向に対する結晶の連続性は良い)。さらに優先結晶成長方向を軸としたときの回転方向の方位に関して、結晶方位が揃っていない。これらはX線回折、電子線回折の結果からも明らかとなっている。
【0012】
本発明が解決しようとする課題は横成長法において、薄膜に対して平行な面内における結晶成長の方向を揃えることである。また、更に結晶成長の回転方向における結晶成長をも揃え、従来よりも結晶性の優れた薄膜を作製することである。
【課題を解決するための手段】
【0013】
課題を解決するための手段を模式的な図4を用いて説明を行う。図4はガラス基板等の上に形成した、半導体薄膜を上から眺めている。まず、図4において第1の領域401に選択的に結晶核を発生させる。この領域に選択的に結晶核を発生させるには、結晶化を促進させることが可能な金属を用いることができるし、また液層成長の場合には温度勾配を利用すればよい。ここがエピタキシャル成長の出発点となる。
【0014】
次に第2の領域402において第1の領域401の結晶核からエピタキシャル成長を行う。エピタキシャル成長は熱処理によって進行させることができる。また液層成長の場合には液層の冷却過程でエピタキシャル成長が進行する。
【0015】
次に第3の領域403では、特定の成長方向にのみ結晶成長をさせる。すなわち特定の優先結晶成長方向への結晶成長を助長すればよい。結晶化を促進させることが可能な金属を用いる場合には電界をかけることが有効である。また特定の優先結晶成長以外の方向への結晶成長を抑制してもよい。微細な線状の島状半導体層を形成し、結晶成長方向を制限する方法などがある。さらに第3の領域403では、回転方向の結晶方位も揃える。この方法に関して以下に詳細に説明を行う。
【0016】
第3の領域403において、回転方向の結晶方位を揃えることを実現する為に、結晶核の優先結晶成長方向が一般的には複数個あることに着目した(図6)。図24は結晶化を促進させることが可能な金属Niを用いて横成長を行った時の光学顕微鏡写真であり、針状に結晶成長している様子が分かる。この針状結晶が所々で折り曲がっているが、この折り曲がりの角度がNiSi2結晶の異なる{111}面のなす角度と一致している。すなわち折れ曲がって結晶成長することが可能であることを示している。
【0017】
回転方向の方位を定めるには優先結晶方位を2つ固定すればよい。図2はこれを模式的に表したものであり、2515は第2の領域における優先結晶方位示すベクトルを示し、2516はその他の優先結晶成長方位がとりうるベクトルからなる円錐を示している。第3の領域403でこの円錐のいずれか一方向に結晶成長の進路を誘導すれば、回転方向の方位も揃った結晶を選択することができる。この誘導する方向、すなわち折り曲げる角度は半導体薄膜材料に固有の値であり、結晶化を促進させる金属Niを用いた場合にはNiSi2結晶の異なる{111}面のなす角度となる。従って回転方向の方位を定めるため、第3の領域403において、結晶成長の進行方向を結晶核に固有の角度で折り曲げる。結晶成長の進行方向を折り曲げるには第3の領域403に上面からみて線状の島状半導体層を形成し、途中でこの島状半導体層を折り曲げればよいし、断面から見てテーパー状の段差を形成することによって結晶成長方向を変えてもよい。また電場を加える方向を変化させることによって結晶成長方向を変えてもよい。
【0018】
最後の第4の領域404は、結晶方位が揃った結晶をエピタキシャル成長させる領域であり、この第4の領域404にトランジスタ等のデバイスを形成する。第2の領域と第3の領域と第4の領域の境界は明確に区別できないこともある(すなわち第3の領域に第2の領域が含まれてしまう場合もある)。第3の領域403は一種のフィルターとしての役割を持たせており、角度を折り曲げる回数は複数回の方が効果的である。
【0019】
【発明の実施の形態】
本願発明は、半導体薄膜デバイスの素子形成技術に対して実施することが可能である。
【0020】
本願発明は、結晶核に於ける2つ以上の優先結晶成長方位を使って結晶成長方向を規定することによって、結晶性の改善をはかることを本質とする。本願発明を実施するには、第3の領域において結晶成長の進行方向を、別の優先結晶成長方向へ誘導する方法が重要である。以下この方法の説明を行う。
【0021】
最初に第3の領域を線状の形状にして、結晶成長を別の優先結晶成長方向へ誘導する方法の説明を行う。図5において、基板506には、ガラス基板や石英基板を使用することができる。その他にもシリコン基板、金属基板またはステンレス基板の表面に絶縁膜を形成したものを基板としても良い。耐熱性が許せばプラスチック基板を用いることも可能である。そして、基板506のTFTが形成される表面には、珪素(シリコン)を含む絶縁膜からなる下地膜507を形成する。
【0022】
次に下地膜507の上に20〜100nmの厚さの、非晶質Si 半導体薄膜又は、Si以外の半導体薄膜、シリコンゲルマニウム薄膜等508を公知の成膜法で形成する。
【0023】
この半導体膜508上の第3の領域503に、公知のフォトリソ工程によってレジストマスクを形成し、ドライエッチングプロセスにより第3の領域503に半導体膜からなる上面からみて線状の島状半導体層を形成する。線状の島状半導体層の形状については後に説明を行う。
【0024】
次に第1の領域501において結晶核を発生させる。第1の領域501に結晶核を発生させる方法には液層成長による温度勾配をつける方法や、機械的なダメージを与える方法等があるが、ここでは半導体薄膜として非晶質Siを、結晶成長を促進する金属としてNiを用いる場合の説明を行う。
【0025】
まず第1の領域501にNiをドープする。Niのドープの方法としてはNiのイオン注入法、Niのスパッタによる成膜法、Ni溶液のスピンコート法などがある。
【0026】
次に500℃〜600℃の温度で1時間〜12時間熱処理を行うと、第1の領域501においてNiとSiからNiSi2が形成され、このNiSi2の結晶を核として、NiSi2の{111}面からSiのエピタキシャル成長が始まる。NiSi2の優先結晶成長方向は[111]方向である。
【0027】
図6にNiSi2の各優先結晶成長方向を模式的に示す。第1の領域のNiSi2の結晶核からエピタキシャル成長を始めた結晶が、第2の領域を6015に示す方向に結晶成長しているものとする。このときその他の優先結晶成長方向は6017と6018に示す方向である。従って第3の領域において線状の島状半導体層を、上面からみて6015と6017が為す角度または、6015と6018が為す角度に折り曲げれば、回転方向の方位が揃った結晶のみを選択的に成長させることができる。この角度はNiSi2の場合は [111]方向が為す角度70.53度または109.47度となる。
【0028】
第3の領域503における線状島状半導体層の幅は薄膜の厚さ20〜100nmと同程度にするのが望ましいが、 通常のNiをドープした非晶質Siの横成長による結晶化において、その結晶成長距離は数10μm〜100μm程度であることから、島状半導体層の幅は、その1〜2桁小さければ、結晶方位は十分に選択できるものと考えられる。また第3の領域503における線状島状半導体層の間隔は可能な限り小さくする。これは結晶方位選択後の生き残った結晶の密度をできるだけ高く保つ為である。
【0029】
第3の領域503の線状島状半導体層はドライエッチング以外の方法でも形成してもよい。たとえば第3の領域において島状半導体層形成領域以外の場所に酸素をイオンドーピングし、熱処理を加えることで、ドーピングされた領域を酸化する方法などによる。すなわち、結晶成長速度に差が生じればよい。
【0030】
以上を実行することにより、第4の領域504に結晶性方位の揃った薄膜を形成することができる。また結晶成長を促進する金属を用いる方法を用いる固相成長法に限らず通常の固相成長の場合や液相成長の場合であっても、第1の領域からエピタキシャル成長させる方法であれば、この方法が適用できる。
【0031】
次に第3の領域で、結晶成長を別の優先結晶成長方向へ誘導する他の方法の説明を行う。この方法は、第3の領域で薄膜を、薄膜に対して平行な方向から特定の角度だけ折り曲げる方法である。これを実施する方法を示す。
【0032】
図8において、基板806には、ガラス基板や石英基板を使用することができる。その他にもシリコン基板、金属基板またはステンレス基板の表面に絶縁膜を形成したものを基板としても良い。耐熱性が許せばプラスチック基板を用いることも可能である。そして、基板806のTFTが形成される表面には、珪素(シリコン)を含む絶縁膜からなる下地膜807を形成する。
【0033】
次に酸化膜若しくは高融点金属であるWやTaのマスク810を形成する。マスクの厚さはこの後の半導体薄膜の結晶化させる距離を考えて適切な膜厚、数千nm〜数百nmとする。マスクの形成はフォトリソ工程とドライエッチングプロセスによる。このドライエッチング時に、公知の方法により図8に示すテーパーを形成する。
【0034】
第3の領域803の傾斜角度は、半導体薄膜として非晶質Si薄膜、結晶成長を促進する金属としてNiを用い、固層成長法で結晶成長を行う場合には、テーパー部の斜平面と基板平面が為す角度811を優先結晶成長方位間の為す角度70.53度又は109.47度とする。また、この場合、角度は0度<角度811<70.53度若しくは,109.47度<角度811<180度である中間の値であってもよい。このときには生き残る結晶方位は2つとなる。これは図7に示すように、7016の円錐と斜平面とが交差する2方向を示している。
【0035】
次に20〜100nmの厚さの、非晶質Si 半導体薄膜808を公知の成膜法で基板全面に成膜し、第1の領域801にNiをドープし、その後拡散炉等の装置を用いて500℃〜600℃で熱処理を行うと、先ず結晶核形成領域801にてNiSi2の核が発生し、第2の領域802でエピタキシャル成長が進行し,第3の領域803で結晶成長方向の向きを変え、第4の領域には、第3の領域で選択された結晶から結晶成長が進行する。第4の領域804に結晶性の良い薄膜を形成することができる。
【0036】
このようにして得られる第4の領域を用いて公知の方法でデバイスを完成させれば良い。また結晶化後にデバイスを作製してもよいし、デバイス作製プロセスの途中工程に結晶化を組み込むこともできる。
【0037】
半導体素子を基板上に形成した電気光学装置(液晶表示装置、EL表示装置、イメージセンサ等)を作製する際に本願発明は実施できる。
【0038】
〔実施例1〕
本願発明を実施して得られる薄膜を活性層に使用したTFTの作製方法の説明を行う。本実施例では活性層となる薄膜の結晶化に関して、第3の領域を線状の形状にして、結晶成長を別の優先結晶成長方向へ誘導する方法を用いる。
【0039】
図9において、基板906には、ガラス基板や石英基板を使用する。その他にもシリコン基板、金属基板またはステンレス基板の表面に絶縁膜を形成したものを基板としても良い。耐熱性が許せばプラスチック基板を用いることも可能である。そして、基板906のTFTが形成される表面には、珪素(シリコン)を含む絶縁膜からなる下地膜907を形成する。
【0040】
次に下地膜907の上に20〜100nmの厚さの、非晶質Si 半導体薄膜908を公知の成膜法で形成する。
【0041】
この半導体膜908上の第3の領域903において、公知のフォトリソ工程によってレジストマスクを形成し、ドライエッチングプロセスにより第3の領域903に折れ曲がった線状の島状半導体層を形成する。
【0042】
次に第1の領域901にスパッタ若しくはイオンドープ若しくはスピンコート法でNiをドープし、基板を550℃の温度で4時間熱処理することで、第4の領域904に活性層として使用する半導体膜の結晶化を行うことができる。このとき第3の領域903における線状の島状半導体層の折れ曲がりの角度を、優先結晶成長方向[111]が為す角度70.53度又は109.47度とする。
【0043】
第1の領域から第4の領域までの配置はTFTの回路に合わせて、設計を行えばよい。実際の設計では結晶核を発生させる第1の領域と結晶成長の方位を選択させる第3の領域の位置を決めることによって、活性層として使いたい第4の領域の位置が決まることになる。第1の領域から第4の領域までの配置は図9に示すように複雑な形状であっても構わない。以上のプロセスにより、第4の領域904に結晶性の良い薄膜を形成することができる。
【0044】
次にこの薄膜を用いて、画素部とその周辺に設けられる駆動回路のTFTを同時に作製する方法について、図10〜図13を使って工程順に説明する。但し、説明を簡単にするために、駆動回路ではシフトレジスタ回路、バッファ回路などの基本回路であるCMOS回路と、サンプリング回路を形成するnチャネル型TFTとを図示することにする。
【0045】
図10(B)において、半導体膜203上に第4の領域が形成されている。図10(c)において、半導体膜203を島状にパターン形成して、島状半導体層204〜207を形成する。その後、プラズマCVD法またはスパッタ法により50〜100nmの厚さの酸化シリコン膜によるマスク層208を形成する。当然、第4の領域904を活性層として使用するようにしておく。また第4の領域は島状半導体層の中の、特にトランジスターのチャネルが形成されるゲート下の領域にだけ配置してもよい。
【0046】
次にしきい値電圧を制御する目的で、レジストマスク209を設け、nチャネル型TFTを形成する島状半導体層210〜212の全面に1×1016〜5×1017atoms/cm3程度の濃度でp型を付与する不純物元素としてボロン(B)を添加する。(図10(D))
【0047】
駆動回路のnチャネル型TFTのLDD領域を形成するために、n型を付与する不純物元素を島状半導体層210、211に選択的に添加する。そのために、あらかじめレジストマスク213〜216を形成した。n型を付与する不純物元素としては、リン(P)や砒素(As)を用いれば良く、ここではリン(P)を添加すべく、フォスフィン(PH3)を用いたイオンドープ法を適用する。形成された不純物領域217、218のリン(P)濃度は2×1016〜5×1019atoms/cm3の範囲とすれば良い。本明細書中では、ここで形成された不純物領域に含まれるn型を付与する不純物元素の濃度を(n-)と表す。また、不純物領域219は、画素部の保持容量を形成するための半導体層であり、この領域にも同じ濃度でリン(P)を添加する。(図10(E))
【0048】
次に、マスク層208をフッ酸などにより除去して、図10(D)と図10(E)で添加した不純物元素を活性化させる工程を行う。活性化は、窒素雰囲気中において500〜600℃で1〜4時間の熱処理を行ってもよいし、レーザー活性化やRTA法を行ってもよい。両者を併用して行ってもよい。
【0049】
次に、ゲート絶縁膜220をプラズマCVD法またはスパッタ法を用いて10〜150nmの厚さでシリコンを含む絶縁膜で形成する。例えば、120nmの厚さで酸化窒化シリコン膜を形成する。ゲート絶縁膜には、他のシリコンを含む絶縁膜を単層または積層構造として用いても良い。(図11(A))
【0050】
次に、ゲート電極およびゲート配線とする導電膜を形成する。この導電膜は単層の導電膜で形成しても良いが、必要に応じて二層あるいは三層といった積層構造とすることが好ましい。本実施例では、第1導電膜221と第2導電膜222とでなる積層膜を形成した。第1導電膜221は10〜50nm(好ましくは20〜30nm)とし、第2導電膜222は200〜400nm(好ましくは250〜350nm)とすれば良い。(図11(B))
【0051】
次に、レジストマスク223〜227を形成し、第1導電膜221と第2導電膜222とを一括でエッチングしてゲート電極228〜231、ゲート配線(ゲート電極に接続する配線)、容量配線232を形成する。この時、駆動回路に形成するゲート電極234、235は不純物領域217、218の一部と、ゲート絶縁膜220を介して重なるように形成する。この重なる部分が後にLov領域となる。(図11(C))
【0052】
そして、ゲート電極および容量配線をマスクとして、ゲート絶縁膜220をエッチングし、少なくともゲート電極の下にゲート絶縁膜233〜236を残存するようにして、島状半導体層の一部を露出させる。(このとき、容量配線の下にも絶縁膜237が形成される。)これは、後の工程でソース領域またはドレイン領域を形成するための不純物元素を添加する工程において、不純物元素を効率良く添加するために実施するものであり、この工程を省略して、ゲート絶縁膜を島状半導体層の全面に残存させておいても構わない。(図11(D))
【0053】
次いで、駆動回路のpチャネル型TFTのソース領域およびドレイン領域を形成するために、p型を付与する不純物元素を添加する工程を行う。ここでは、ゲート電極228をマスクとして、自己整合的に不純物領域を形成する。このとき、nチャネル型TFTが形成される領域はレジストマスク238で被覆しておく。そして、ジボラン(B2H6)を用いたイオンドープ法で不純物領域239を形成する。この領域のボロン(B)濃度は3×1020〜3×1021atoms/cm3となるようにする。本明細書中では、ここで形成された不純物領域239に含まれるp型を付与する不純物元素の濃度を(p+)と表す。(図12(A))
【0054】
次に、nチャネル型TFTにおいて、ソース領域またはドレイン領域として機能する不純物領域の形成を行う。ゲート電極およびpチャネル型TFTとなる領域を覆う形でレジストマスク240〜242を形成し、n型を付与する不純物元素が添加して不純物領域243〜247を形成する。これは、フォスフィン(PH3)を用いたイオンドープ法で行い、この領域のリン(P)濃度を1×1020〜1×1021atoms/cm3とする。本明細書中では、ここで形成された不純物領域217〜218に含まれるn型を付与する不純物元素の濃度を(n+)と表す。(図12(B))
【0055】
不純物領域243〜247には、既に前工程で添加されたリン(P)またはボロン(B)が含まれているが、それに比して十分に高い濃度でリン(P)が添加されるので、前工程で添加されたリン(P)またはボロン(B)の影響は考えなくても良い。また、不純物領域243に添加されたリン(P)濃度は図12(A)で添加されたボロン(B)濃度の1/2〜1/3なのでp型の導電性が確保され、TFTの特性に何ら影響を与えることはない。
【0056】
次に、レジストマスクを除去して、画素部のnチャネル型TFTのLDD領域を形成するためにn型を付与する不純物添加の工程を行う。
ここで添加するリン(P)の濃度は1×1016〜5×1018atoms/cm3であり、図10(E)および図12(A)、(B)で添加する不純物元素の濃度よりも低濃度で添加することで、不純物領域249、250が形成される。本明細書中では、ここで形成された不純物領域に含まれるn型を付与する不純物元素の濃度を(n--)と表す。(図12(C))
【0057】
そして、後に第1の層間絶縁膜の一部となる保護絶縁膜251を形成する。保護絶縁膜251は窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜またはそれらを組み合わせた積層膜で形成すれば良い。また、膜厚は100〜400nmとすれば良い。
【0058】
その後、それぞれの濃度で添加されたn型またはp型を付与する不純物元素を活性化するために熱処理工程を行う。この工程はファーネスアニール法、レーザーアニール法、またはラピッドサーマルアニール法(RTA法)で行うことができる。さらに、3〜100%の水素を含む雰囲気中で、300〜450℃で1〜12時間の熱処理を行い、島状半導体層を水素化する工程を行う。この工程は熱的に励起された水素により活性層のダングリングボンドを終端する工程である。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)を行っても良い。
【0059】
島状半導体層には第1の領域にドープした微量の金属Niが残っている。そのような状態でもTFTを完成させることが可能であるが、残留する結晶化を促進する金属を少なくともチャネル形成領域から除去する方がより好ましい。この結晶化を促進する金属を除去する手段の一つにリン(P)によるゲッタリング作用を利用する手段があるが、ゲッタリングに必要なリン(P)の濃度は図12(B)で形成した不純物領域(n+)と同程度であり、ここで実施される活性化工程の熱処理により、nチャネル型TFTおよびpチャネル型TFTのチャネル形成領域から金属Niをゲッタリングすることができる。(図12(D))
【0060】
活性化工程を終えたら、保護絶縁膜251の上に500〜1500nmの厚さの層間絶縁膜252を形成する。前記保護絶縁膜251と層間絶縁膜252とでなる積層膜を第1の層間絶縁膜とする。その後、それぞれのTFTのソース領域またはドレイン領域に達するコンタクトホールを形成し、ソース配線253〜256と、ドレイン配線257〜259を形成する。
【0061】
次に、パッシベーション膜260として、窒化シリコン膜、酸化シリコン膜、または窒化酸化シリコン膜を50〜500nm(代表的には100〜300nm)の厚さで形成する。この状態で水素化処理、あるいはプラズマ水素化を行っても良い。(図13(A))
【0062】
その後、有機樹脂からなる第2の層間絶縁膜261を1.0〜1.5μmの厚さに形成する。有機樹脂としては、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、BCB(ベンゾシクロブテン)等を使用することができる。そして、第2の層間絶縁膜261にドレイン配線259に達するコンタクトホールを形成し、画素電極262を形成する。画素電極262は、透過型液晶表示装置とする場合には透明導電膜を用いれば良く、反射型の液晶表示装置とする場合には金属膜を用いれば良い。(図13(B))
【0063】
こうして同一基板上に、駆動回路と画素部とを有したアクティブマトリクス基板が完成できる。駆動回路にはpチャネル型TFT285、第1のnチャネル型TFT286、第2のnチャネル型TFT287、画素部にはnチャネル型TFT288でなる画素TFTが形成できる。
【0064】
駆動回路のpチャネル型TFT285には、チャネル形成領域263、ソース領域264、ドレイン領域265を有している。第1のnチャネル型TFT286には、チャネル形成領域266、Lov領域267、ソース領域268、ドレイン領域269を有している。第2のnチャネル型TFT287には、チャネル形成領域270、LDD領域271,272、ソース領域273、ドレイン領域274を有している。画素部のnチャネル型TFT288には、チャネル形成領域275、276、Loff領域277〜280を有している。 Loff領域はゲート電極に対してオフセット形成され、オフセット領域の長さは0.02〜0.2μmである。さらに、ゲート電極と同時に形成される容量配線232と、ゲート絶縁膜と同じ材料から成る絶縁膜と、nチャネル型TFT288のドレイン領域283に接続するn型を付与する不純物元素が添加された半導体層284とから保持容量289が形成されている。図13(B)では画素部のnチャネル型TFT287をダブルゲート構造としたが、シングルゲート構造でも良いし、複数のゲート電極を設けたマルチゲート構造としても差し支えない。
【0065】
[実施例2]
本実例では、アクティブマトリクス基板から、アクティブマトリクス型液晶表示装置を作製する工程を説明する。図14に示すように、実施例1で作製した図13(B)の状態のアクティブマトリクス基板に対し、配向膜601を形成する。通常液晶表示素子の配向膜にはポリイミド樹脂が多く用いられている。対向側の対向基板602には、遮光膜603、透明導電膜604および配向膜605を形成した。配向膜を形成した後、ラビング処理を施して液晶分子がある一定のプレチルト角を持って配向するようにする。そして、画素部と、CMOS回路が形成されたアクティブマトリクス基板と対向基板とを、公知のセル組み工程によってシール材やスペーサ(共に図示せず)などを介して貼りあわせる。その後、両基板の間に液晶材料606を注入し、封止剤(図示せず)によって完全に封止する。液晶材料には公知の液晶材料を用いれば良い。このようにして図7に示すアクティブマトリクス型液晶表示装置が完成する。
【0066】
次にこのアクティブマトリクス型液晶表示装置の構成を、図15の斜視図および図16の上面図を用いて説明する。尚、図15と図16は、図10〜図13と図14の断面構造図と対応付けるため、共通の符号を用いている。また、図16で示すA―A’に沿った断面構造は、図13(B)に示す画素部の断面図に対応している。
【0067】
アクティブマトリクス基板は、ガラス基板201上に形成された、画素部701と、走査信号側駆動回路702と、画像信号側駆動回路703で構成される。画素部にはnチャネル型TFT288が設けられ、周辺に設けられるドライバー回路はCMOS回路を基本として構成されている。走査信号側駆動回路702と、画像信号側駆動回路703はそれぞれゲート配線231(ゲート電極に接続し、延在して形成される意味で同じ符号を用いて表す)とソース配線256で画素部のnチャネル型TFT288に接続している。また、FPC731が外部入出力端子734に接続される。
【0068】
図16は画素部701の一部分(ほぼ一画素分)を示す上面図である。ゲート配線231は、図示されていないゲート絶縁膜を介してその下の活性層と交差している。図示はしていないが、活性層には、ソース領域、ドレイン領域、n--領域でなるLoff領域が形成されている。また、290はソース配線256とソース領域281とのコンタクト部、292はドレイン配線259とドレイン領域283とのコンタクト部、292はドレイン配線259と画素電極262のコンタクト部である。保持容量289は、nチャネル型TFT288のドレイン領域から延在する半導体層284とゲート絶縁膜を介して容量配線232が重なる領域で形成される。
【0069】
なお、本実施例のアクティブマトリクス型液晶表示装置は、以下の実施例におけるいずれの構成とも自由に組み合わせてアクティブマトリクス型液晶表示装置を作製することができる。
【0070】
〔実施例3〕
実施例3では第1の領域における結晶核の位置制御の方法として、温度勾配を利用した例を取り上げる。図17において、基板1706には、ガラス基板や石英基板を使用することができる。基板1706のTFTが形成される表面には、珪素(シリコン)を含む絶縁膜からなる下地膜1707を形成する。本実施例では、下地膜1707として、200nm厚の窒化酸化珪素膜を形成する。
【0071】
次に高融点金属であるWやTa層を成膜し、フォトリソ工程、ドライエッチング工程を経て、金属マスク1710を形成する。ドライエッチング時に、金属マスクにテーパーを形成する。テーパーの角度1711は異なる2つの優先結晶成長方向が為す角度にする。
【0072】
次にシリコンを含むゲート絶縁膜1709をプラズマCVD法またはスパッタ法を用いて10〜150nmの厚さに形成し、さらにプラズマCVDを用いて20〜100nmの厚さの、非晶質Si薄膜1708を成膜する。
【0073】
次に、非晶質Si薄膜1708に対してレーザーから発する光(レーザー光)を照射する。レーザーとしては、パルス発振型または連続発振型のエキシマレーザーを用いれば良いが、連続発振型のアルゴンレーザーでも良い。またはNd:YAGレーザーの第2高調波、第3高調波または第4高調波を用いても良い。さらに、レーザー光のビーム形状は線状(長方形状も含む)であっても矩形状であっても構わない。
【0074】
また、レーザー光の代わりにランプから発する光(ランプ光)を照射(以下、ランプアニールという)しても良い。ランプ光としては、ハロゲンランプ、赤外ランプ等から発するランプ光を用いることができる。
【0075】
これらの光を照射することにより金属マスク1710上とその周囲の非晶質Si薄膜1708は液化するが、金属マスク1710が熱溜となり、金属マスク下の非晶質Si薄膜に温度勾配が生じ、固化は金属マスク1710の周囲の非晶質Si薄膜から始まる。つまりこの場合、第1の領域1701から結晶核が発生し、第2の領域1702でエピタキシャル成長し、第3の領域1703で結晶成長方向が折り曲げられ、第4の領域1704で結晶性の良い薄膜が得られることになる。そして更に別の第3の領域1713でフィルターにかけられ、金属マスク真上の第4の領域1714で良い結晶が得られる。これは金属マスク1710の両端から起こる。
【0076】
このようにして得られた薄膜を用いて高性能なデバイスを形成することができる。また、液層成長における横成長法と線状の島状半導体層を形成する方法や、電場を加える方法を組み合わせてもよい。
【0077】
〔実施例4〕
実施例4では第3の領域で結晶成長を別の優先結晶成長方向へ誘導する方法として電場を加える方法の説明を行う。これは電場の方向へ結晶成長が促進又は抑制されることを利用するものである。結晶成長を促進する金属としてNiを使用したときの、電場を印加したときの、結晶化促進に関してはSang-Hyun Parkらによって報告されている。(Jpn.J.Appl.Phys. Vol.38(1999) Pt.2,No.2A)
【0078】
図18において、基板1806には、ガラス基板や石英基板を使用することができる。基板1806のTFTが形成される表面には、珪素(シリコン)を含む絶縁膜からなる下地膜1807を形成する。本実施例では、下地膜1807として、200nm厚の窒化酸化珪素膜を形成する。さらにプラズマCVDを用いて20〜100nmの厚さの、非晶質Si薄膜1808を成膜する。
【0079】
次に第1の領域1801に結晶化を促進させる金属Niのドープを行い、550℃の温度で熱処理を行う。この時基板外部若しくは内部に作り込んだ電極(図示はしていない)から、非晶質Si薄膜に平行に電場を加える。このとき最初の1時間は方向1818から電場を加え、続けて次の3時間は方向1819から電場を加える。電場を加える方向は、角度1811がNiSi2の優先結晶成長方向[111]が為す70.53度又は109.47度となるようにする。電場を加える方向を変えたために結晶成長の進行方向が変化した領域が第3の領域1803となる。電場の向きを変える周期を短くし、何回も変化させると更に効果的である。周期は分単位や秒単位であってもよいし、秒単位以下であってもよい。このように結晶成長時にフィルターを通すことによって第4の領域1804において単結晶に近い結晶を作ることができる。第4の領域1804を使って様々なデバイスが形成でき、このデバイスを用いることで高性能な製品を作ることが可能となる。
【0080】
〔実施例5〕
第3の領域で、結晶成長を別の優先結晶成長方向へ誘導する方法として、マスクの段差を用いる方法を、発明実施の形態で説明したが、実施例5では溝を使った方法を示す。図19において、基板1906には、ガラス基板や石英基板を使用することができる。その他にもシリコン基板、金属基板またはステンレス基板の表面に絶縁膜を形成したものを基板としても良い。耐熱性が許せばプラスチック基板を用いることも可能である。そして、基板1906のTFTが形成される表面には、珪素(シリコン)を含む絶縁膜からなる下地膜1907を形成する。本実施例では、下地膜1907として、200nm厚の窒化酸化珪素膜を形成する。
【0081】
次に酸化膜若しくは高融点金属であるWやTa層1910を形成する。この層の厚さはこの後成膜を行う半導体膜の厚さ20〜100nmに対して1桁〜2桁大きいものとする。更にこの時、ドライエッチングプロセスを用いて、図Hに示す溝を形成する。溝の斜面部分の斜平面と基板平面が為す角度1911が重要である。以下この角度に関して説明を行う。
【0082】
溝の斜面部分の斜平面と基板平面が為す角度1911を70.53度または109.47度とする。この角度はNiSi2の異なる優先結晶成長方向[111]が為す角度である。テーパー部の斜平面と基板平面が為す角度1911が70.53度より小さくてもよい。
【0083】
次に20〜100nmの厚さの、非晶質Si 半導体薄膜1908を公知の成膜法で基板全面に成膜する。
【0084】
そして第1の領域1901にNiをドープし、その後拡散炉等の装置を用いて550℃で熱処理を行う。非晶質Si 半導体薄膜1908の斜面部分における第2の領域1902でエピタキシャル成長が進行し、第3の領域1903で薄膜が折れ曲がり、結晶成長方向にふるいがかけられる。第4の領域1904で結晶成長を行う。
【0085】
こうして結晶化を行った第4の領域1904を使用したデバイスを作製すれば、高性能の製品を作ることができる。
【0086】
〔実施例6〕
図20は、活性層となる薄膜の結晶化に関して、第3の領域を線状の形状にして、結晶成長を別の優先結晶成長方向へ誘導する方法を用いる場合に、第3の領域を複数個使用したものである。
【0087】
図20において、基板2006には、ガラス基板や石英基板等を使用する。基板2006のTFTが形成される表面には、珪素(シリコン)を含む絶縁膜からなる下地膜2007を形成する。本実施例では、下地膜2007として、200nm厚の窒化酸化珪素膜を形成する。さらに20〜100nmの厚さの、非晶質Si 半導体薄膜2008を公知の成膜法で基板全面に成膜する。次に第3の領域2003に線状の島状半導体層を形成する。この島状半導体層は複数回折れ曲がったものとし、その折れ曲がりの角度は結晶の優先結晶成長方向に基づいた角度とする。
【0088】
次に第1の領域に結晶化を促進させる金属Niを添加し、550℃で4時間の熱処理第を行うことにより、第1の領域2001から核発生させ、第2の領域2002でエピタキシャル成長させ、第3の領域2003で結晶成長の進行方向を選択し、第4の領域2004に結晶性のよい薄膜を形成することができる。第4の領域をデバイス形成に使用する。
【0089】
〔実施例7〕
本実施例では第3の領域で薄膜を、薄膜に対して平行な方向から特定の角度だけ折り曲げる方法を複数回使った方法を説明する。
【0090】
図21において、基板2106には、ガラス基板や石英基板等を使用する。基板2106のTFTが形成される表面には、珪素(シリコン)を含む絶縁膜からなる下地膜2107を形成する。本実施例では、下地膜2107として、200nm厚の窒化酸化珪素膜を形成する。
【0091】
次にパターニングとドライエッチングプロセスを用いて、図21に示す溝を形成する。このとき溝の斜面部分における各斜平面が為す角度を結晶の優先結晶成長方向に基づいた角度とする。この後、20〜100nmの厚さの、非晶質Si 半導体薄膜2108を公知の成膜法で基板全面に成膜する。
【0092】
第1の領域2101に結晶化を促進させる金属Niを添加した後、550℃で4時間の熱処理を行うことにより、第1の領域2101で核発生させ、第2の領域2102でエピタキシャル成長させ、第3の領域2103で結晶成長の進行方向を選択し、第4の領域2104に結晶性のよい薄膜を形成できる。この第4の領域2104をデバイス形成に使用する。
【0093】
[実施例8]
本発明はアクティブマトリクス型EL表示装置に適用することが可能である。図22はアクティブマトリクス型EL表示装置の回路図である。画素部11の周辺にはX方向駆動回路12、Y方向駆動回路13が設けられている。画素部11の各画素は、スイッチ用TFT14、コンデンサ15、電流駆動用TFT7016、有機EL素子17を有し、スイッチ用TFT14にX方向信号線18a、Y方向信号線20aが接続され、電流駆動用TFTには電源線19aが接続される。
【0094】
本発明のアクティブマトリクス型EL表示装置では、X方向駆動回路12、Y方向駆動回路13または電流駆動用TFT17に用いられるTFTを図13(B)のpチャネル型TFT285、nチャネル型TFT286、またはnチャネル型TFT287を組み合わせて形成する。また、スイッチ用TFT14を図13(B)のnチャネル型TFT288で形成する。
【0095】
尚、本実施例のアクティブマトリクス型EL表示装置に対して、実施例1〜実施例7のいずれの構成を組み合わせても良い。
【0096】
[実施例9]
本発明を実施して作製された画素部や駆動回路を同一の基板上に一体形成したアクティブマトリクス基板は、さまざまな電気光学装置(アクティブマトリクス型液晶表示装置、アクティブマトリクス型EL表示装置、アクティブマトリクス型EC表示装置)に用いることができる。即ち、これらの電気光学装置を表示部として組み込んだ電子機器全てに本発明を実施できる。
【0097】
そのような電子機器としては、ビデオカメラ、デジタルカメラ、プロジェクター(リア型またはフロント型)、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、カーナビゲーション、パーソナルコンピュータ、携帯電話または電子書籍など)が上げられる。それらの一例を図23に示す。
【0098】
図23(A)は携帯電話であり、本体9001、音声出力部9002、音声入力部9003、表示部9004、操作スイッチ9005、アンテナ9006から構成されている。本願発明はアクティブマトリクス基板を備えた表示部9004に適用することができる。
【0099】
図23(B)はビデオカメラであり、本体9101、表示部9102、音声入力部9103、操作スイッチ9104、バッテリー9105、受像部9106から成っている。本願発明はアクティブマトリクス基板を備えた表示部9102に適用することができる。
【0100】
図23(C)はモバイルコンピュータであり、本体9201、カメラ部9202、受像部9203、操作スイッチ9204、表示部9205で構成されている。本願発明はアクティブマトリクス基板を備えた表示部9205に適用することができる。
【0101】
図23(D)はゴーグル型ディスプレイであり、本体9301、表示部9302、アーム部9303で構成される。本願発明は表示部9302に適用することができる。また、表示されていないが、その他の駆動回路に使用することもできる。
【0102】
図23(E)はリア型プロジェクターであり、本体9401、光源9402、表示装置9403、偏光ビームスプリッタ9404、リフレクター9405、9406、スクリーン9407で構成される。本発明は表示装置9403に適用することができる。
【0103】
図23(F)は携帯書籍であり、本体9501、表示部9502、9503、記憶媒体9504、操作スイッチ9505、アンテナ9506から構成されており、ミニディスク(MD)やDVDに記憶されたデータや、アンテナで受信したデータを表示するものである。本発明は、表示部9502、9503は直視型の表示装置に適用することができる。
【0104】
また、ここでは図示しなかったが、本発明はその他にも、カーナビゲーションシステムやイメージセンサパーソナルコンピュータの表示部に適用することも可能である。このように、本願発明の適用範囲はきわめて広く、あらゆる分野の電子機器に適用することが可能である。また、本実施例の電子機器は実施例1〜8のどのような組み合わせから成る構成を用いても実現することができる。
【発明の効果】
本願発明を用いることで、結晶性の良い薄膜を形成することが可能となり、半導体装置(ここでは具体的に電気光学装置)の動作性能や信頼性を大幅に向上させることができる。
【図面の簡単な説明】
【図1】 従来技術を示す図。
【図2】 優先結晶成長方向を示す図。
【図3】 薄膜に対して平行な方向を示す図。
【図4】 発明を解決する方法を示す模式的な図。
【図5】 線状の島状半導体層を用いる方法を示す図。
【図6】 NiSi2の優先結晶成長方向を示す図。
【図7】 テーパーの角度を示す図。
【図8】 折り曲がった半導体薄膜を用いる方法を示す図。
【図9】 線状の島状半導体層を用いる方法を示す図。
【図10】 画素部、駆動回路の作製工程を示す断面図。
【図11】 画素部、駆動回路の作製工程を示す断面図。
【図12】 画素部、駆動回路の作製工程を示す断面図。
【図13】 画素部、駆動回路の作製工程を示す断面図。
【図14】 アクティブマトリクス型液晶表示装置の断面構造図。
【図15】 アクティブマトリクス型液晶表示装置の斜視図。
【図16】 画素部の上面図。
【図17】 温度勾配を利用して結晶核発生位置を制御した場合を示す図。
【図18】 電場を加えて結晶方位を選択させる方法を示す図。
【図19】 折り曲がった半導体薄膜を用いる方法を示す図。
【図20】 結晶方位の選択を複数回利用する方法を示す図。
【図21】 結晶方位の選択を複数回利用する方法を示す図。
【図22】 アクティブマトリクス型EL表示装置を示す図。
【図23】 半導体装置の一例を示す図。
【図24】 結晶成長の折れ曲がりを示す図。
Claims (5)
- 半導体薄膜のうち第1の領域に結晶核を発生させ、
前記結晶核から、前記半導体薄膜のうち前記第1の領域と接する第2の領域へ向けて複数の優先結晶成長方向に結晶成長を行い、
前記半導体薄膜のうち前記第2の領域と接する第3の領域において、前記複数の優先結晶成長方向のうち、前記半導体薄膜に対して平行な面内における1つの優先結晶成長方向のみに結晶成長が起こるように結晶成長の方向を変え、
前記第3の領域から、前記半導体薄膜のうち前記第3の領域と接する第4の領域に向けて結晶成長を行うことを特徴とする半導体装置の作製方法。 - 前記第3の領域を上面からみて線状の島状半導体層に加工することを特徴とする請求項1に記載の半導体装置の作製方法。
- 前記第3の領域を断面からみてテーパー形状をもつ半導体層に加工することを特徴とする請求項1に記載の半導体装置の作製方法。
- 前記第3の領域に電場をかけて、結晶成長の方向を変えることを特徴とする請求項1に記載の半導体装置の作製方法。
- 前記第1の領域に、イオン注入法、スパッタによる成膜法、又はスピンコート法によって結晶化を促進させる金属をドープし前記結晶核を発生させることを特徴とする請求項1に記載の半導体装置の作製方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000362446A JP4758000B2 (ja) | 1999-11-30 | 2000-11-29 | 半導体装置の作製方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11-338929 | 1999-11-30 | ||
JP33892999 | 1999-11-30 | ||
JP1999338929 | 1999-11-30 | ||
JP2000362446A JP4758000B2 (ja) | 1999-11-30 | 2000-11-29 | 半導体装置の作製方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2001223166A JP2001223166A (ja) | 2001-08-17 |
JP2001223166A5 JP2001223166A5 (ja) | 2008-01-24 |
JP4758000B2 true JP4758000B2 (ja) | 2011-08-24 |
Family
ID=26576262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000362446A Expired - Fee Related JP4758000B2 (ja) | 1999-11-30 | 2000-11-29 | 半導体装置の作製方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4758000B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4149168B2 (ja) | 2001-11-09 | 2008-09-10 | 株式会社半導体エネルギー研究所 | 発光装置 |
KR101050467B1 (ko) * | 2010-04-14 | 2011-07-20 | 삼성모바일디스플레이주식회사 | 다결정 실리콘층, 그 제조방법, 상기 다결정 실리층을 이용한 박막 트랜지스터 및 상기 박막 트랜지스터를 구비한 유기발광표시장치 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02140915A (ja) * | 1988-11-22 | 1990-05-30 | Seiko Epson Corp | 半導体装置の製造方法 |
JPH03110825A (ja) * | 1989-09-26 | 1991-05-10 | Fujitsu Ltd | 半導体製造方法 |
JPH05190570A (ja) * | 1992-01-17 | 1993-07-30 | Sanyo Electric Co Ltd | 薄膜トランジスタ及びその製造方法 |
JP3919838B2 (ja) * | 1994-09-16 | 2007-05-30 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
-
2000
- 2000-11-29 JP JP2000362446A patent/JP4758000B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001223166A (ja) | 2001-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6587713B2 (ja) | 液晶表示装置 | |
JP4307635B2 (ja) | 半導体装置の作製方法 | |
JP5025057B2 (ja) | 半導体装置の作製方法 | |
US6337235B1 (en) | Semiconductor device and manufacturing method thereof | |
US6777713B2 (en) | Irregular semiconductor film, having ridges of convex portion | |
US20010015441A1 (en) | Semiconductor device and a method of manufacturing the same | |
JP4376331B2 (ja) | 半導体装置の作製方法 | |
JP2000133594A (ja) | 半導体装置の作製方法 | |
JP4758000B2 (ja) | 半導体装置の作製方法 | |
JP3942878B2 (ja) | 半導体装置の作製方法 | |
JP3998888B2 (ja) | 薄膜トランジスタの作製方法 | |
JP2001028338A (ja) | 半導体装置 | |
JP4853845B2 (ja) | 半導体装置の作製方法 | |
JP4105211B2 (ja) | 薄膜トランジスタの作製方法 | |
JP4514867B2 (ja) | 薄膜トランジスタ及びその作製方法、半導体装置 | |
JP4493749B2 (ja) | 半導体装置の作製方法 | |
JP4493751B2 (ja) | 半導体装置の作製方法 | |
JP2011187609A (ja) | 半導体装置の製造方法、電気光学装置、電子機器 | |
JP4198703B2 (ja) | 半導体装置 | |
JP2000349025A (ja) | 半導体装置の作製方法 | |
JP2002222960A (ja) | 電気光学装置およびその作製方法 | |
JP2000332249A (ja) | 半導体装置の作製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071122 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110315 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110524 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110602 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140610 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140610 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |