[go: up one dir, main page]

JP4735540B2 - カーボンナノチューブ含有体の製造方法 - Google Patents

カーボンナノチューブ含有体の製造方法 Download PDF

Info

Publication number
JP4735540B2
JP4735540B2 JP2006528975A JP2006528975A JP4735540B2 JP 4735540 B2 JP4735540 B2 JP 4735540B2 JP 2006528975 A JP2006528975 A JP 2006528975A JP 2006528975 A JP2006528975 A JP 2006528975A JP 4735540 B2 JP4735540 B2 JP 4735540B2
Authority
JP
Japan
Prior art keywords
carbon nanotube
coating
containing body
film
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006528975A
Other languages
English (en)
Other versions
JPWO2006008978A1 (ja
Inventor
慶和 近藤
篤志 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2006528975A priority Critical patent/JP4735540B2/ja
Publication of JPWO2006008978A1 publication Critical patent/JPWO2006008978A1/ja
Application granted granted Critical
Publication of JP4735540B2 publication Critical patent/JP4735540B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Paints Or Removers (AREA)

Description

本発明はカーボンナノチューブ含有体の製造方法に関する。
20世紀終盤になってC60やカーボンナノチューブがこれまでの炭素材料に加わり、第IVb属元素「炭素」は周期律表中で最も多様な物質群を構成するようになっている。そして21世紀の基盤技術と目されるナノテクノロジーを先導する物質として、炭素の筒、すなわち「カーボンナノチューブ」に今、大きな期待がかけられている。炭素材料の構造や機能の多様性は炭素原子がsp,sp2,sp3の結合方式を取ることによるが、これは炭素の卓越した個性であって同じ第IVb属元素のケイ素やゲルマニウムと大きく異なる点であり、この結合の多様性が類稀な炭素種の多様性の根源となっている。
カーボンナノチューブは単一の炭素原子で構成されているにもかかわらず、構造によって半導体、金属と電子物性が大きく変化するが、これは炭素六角網平面がナノサイズの筒状を呈することによって炭素結合の多様性が相加的に反映されたためである。すなわちカーボンナノチューブ自体も、豊かな多様性を有した物質であり、広範な範囲での応用が期待される所以となっている。同じsp2の炭素であっても、グラファイト、カーボンナノチューブ、C60等のフラーレンはその幾何学構造の違い(結合の広がりの次元が2次元、擬1次元、擬0次元と変化すること)によって、電子の波動関数に対する境界条件が変化し、電子の状態密度関数が、固体としてのバンド構造、バンホーブ発散をもつバンド構造、分子としての離散的な電子レベルとそれぞれ変化し全く異なる物性を示す。
上記カーボンナノチューブを含有した薄膜の一例が特許文献1に開示されている。特許文献1に記載の薄膜は、カーボンナノチューブを含有した芳香族ポリアミドフィルムとなっており、当該カーボンナノチューブを含有することで、剛性等が向上している。
特開2003−138040号公報
上記の通り、カーボンナノチューブは構造によって電子物性が変化したり、膜中に含有されることでその膜の剛性を向上させたりするといった優れた特性を有しており、産業上の利用可能性に大きな期待が寄せられてはいるが、現在においてもなお未知の部分が多い。
本発明の目的は、カーボンナノチューブを含有するカーボンナノチューブ含有体であって光学的に優れた機能を発揮するカーボンナノチューブ含有体の製造方法を提供する。
上記課題を解決するため本願発明のカーボンナノチューブ含有体の製造方法は、
カーボンナノチューブ及びバインダを含む分散液を所定の搬送される支持体上に塗布する塗布工程を備え、
前記分散液を第1の塗布液として、前記第1の塗布液に対して、支持体の搬送方向に剪断応力をかけながら、前記第1の塗布液を前記支持体上に塗布して塗布膜を形成し、該塗布膜をゲル化工程でゲル化した後、乾燥工程で乾燥し、互いに独立に分散し支持体搬送方向に配向したカーボンナノチューブ、を含有した乾燥膜を得ることを特徴としている。
本願発明の1態様は、
前記記載のカーボンナノチューブ含有体の製造方法において、
前記第1の塗布液に対して、バー方式の塗布方式により、支持体の搬送方向に剪断応力
をかけることを特徴としている。
本願発明の1態様は、
前記記載のカーボンナノチューブ含有体の製造方法において、
前記第1の塗布液に対して、ストライプ塗布方式により、支持体の搬送方向に剪断応力
をかけることを特徴としている。
本願発明の1態様は、
前記記載のカーボンナノチューブ含有体の製造方法において、
前記塗布工程が複数回繰り返されることを特徴としている。
本願発明の1態様は、
前記記載のカーボンナノチューブ含有体の製造方法において、
前記塗布工程の後に、バインダを含有するバインダ含有液を第2の塗布液として、前記第2の塗布液を塗布済みの前記第1の塗布液上に塗布する第2の塗布工程を備えることを特徴としている。
本願発明の1態様は、
前記記載のカーボンナノチューブ含有体の製造方法において、
前記第2の塗布工程における塗布処理がアプリケーター方式、押出し方式、スライドビード方式、カーテン方式、グラビア方式、スプレー方式、エアドクター方式、ディップ方式、ブレード方式のいずれか一の処理でおこなわれることを特徴としている。
本願発明の1態様は、
前記記載のカーボンナノチューブ含有体の製造方法において、
前記第2の塗布工程が複数回繰り返されることを特徴としている。
本願発明の1態様は、
前記記載のカーボンナノチューブ含有体の製造方法において、
前記カーボンナノチューブが単層カーボンナノチューブであることを特徴としている。
本願発明の1態様は、
前記記載のカーボンナノチューブ含有体の製造方法において、
前記バインダが水溶性であることを特徴としている。
本願発明の1態様は、
前記記載のカーボンナノチューブ含有体の製造方法において、
前記バインダが光学異方性を有しないことを特徴としている。
本願発明の1態様は、
前記記載のカーボンナノチューブ含有体の製造方法において、
前記バインダがゼラチンであることを特徴としている。
本願発明の1態様は、
前記記載のカーボンナノチューブ含有体の製造方法において、
前記第1の塗布液が硬膜剤を含有していることを特徴としている。
本願発明の1態様は、
前記記載のカーボンナノチューブ含有体の製造方法において、
前記塗布工程の後に塗布済みの前記第1の塗布液中のカーボンナノチューブを配向させる配向工程を有することを特徴としている。
本願発明の1態様は、
前記記載のカーボンナノチューブ含有体の製造方法において、
前記配向工程では電場を利用することを特徴としている。
本願発明では、第1の塗布液に対して、支持体の搬送方向に剪断応力をかけながら、前記第1の塗布液を前記支持体上に塗布して塗布膜を形成するため、カーボンナノチューブを剪断応力の作用する支持体の搬送方向に引き延ばしながら第1の塗布液を支持体上に塗布することができる。そのため、第1の塗布液で構成されるカーボンナノチューブ含有膜中で、カーボンナノチューブを剪断応力に応じて、支持体搬送方向に配向させ、カーボンナノチューブ含有膜に対し光学的に優れた機能を発揮させることができる。
又、本願発明では、カーボンナノチューブの配向を乱さないようにカーボンナノチューブ含有膜をゲル化・乾燥させることができる。
本願発明の1態様では、複数層にわたるカーボンナノチューブ含有膜を支持体上に成膜することができ、多量のカーボンナノチューブを含有したカーボンナノチューブ含有膜を提供することができる。
本願発明の1態様では、カーボンナノチューブ含有膜の表面を平滑化することができ、表面に凹凸のない光学機能を提供することができる。
本願発明の1態様では、特定波長の光を吸収して特定波長の光を発光することができる。
本願発明の1態様では、第1,第2の塗布液が水溶液である場合に、当該第1,第2の塗布液との溶解性を高めることができる。
本願発明の1態様では、第1の塗布液中でカーボンナノチューブの凝集を抑制して安定的に分散させた状態に保持することができる。
本願発明の1態様では、カーボンナノチューブ含有膜中に水分が侵入して当該カーボンナノチューブ含有膜が破壊されるのを防止することができ、ひいてはカーボンナノチューブの配向が乱れるのを確実に防止することができる。
カーボンナノチューブ含有膜1の概略構成を示す斜視図である。 成膜装置10の概略構成を示す側面図である。 ワイヤーバー14の概略構成を示す断面図である。 試料Aの偏光吸収スペクトルを示す図面である。 試料Aの蛍光スペクトルを示す図面である。 図1の変形例を示す図面である。 塗布装置30の概略構成を示す側面図である。 電場配向装置40の概略構成を示す側面図である。
符号の説明
1 カーボンナノチューブ含有体
2 基板
3 カーボンナノチューブ
4 カーボンナノチューブ含有膜
5 オーバーコート膜
以下、図面を参照しながら本発明を実施するための最良の形態について説明する。ただし、発明の範囲は図示例に限定されない。
図1はカーボンナノチューブ含有体1の概略構成を示す斜視図である。
図1に示す通り、カーボンナノチューブ含有体1は支持体2を備えており、支持体2上に、多数のカーボンナノチューブ3,3,…を含有したカーボンナノチューブ含有膜4と、カーボンナノチューブ含有膜4を被覆するオーバーコート膜5が成膜されている。ただし、図1では、カーボンナノチューブ含有膜4とオーバーコート膜5との膜構成を分かり易く説明するために、支持体2の一部を切断して図示しているが、支持体2は長尺でかつフィルム状を呈している。
支持体2はプラスチックフィルムで構成されている。プラスチックフィルムの材質としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリ酢酸ビニル、ポリ塩化ビニル、ポリスチレン等のビニル重合体、6,6−ナイロン、6−ナイロン等のポリアミド、ポリエチレンテレフタレート(以下「PET」という。)、ポリエチレン−2,6−ナフタレンジカルボキシレート(以下「PEN」という。)等のポリエステル、ポリカーボネート、セルローストリアセテート(以下「TAC」という。)、セルロースジアセテート等のセルロースエステル等が挙げられる。
上記プラスチックフィルムの材質の中でも、写真用ポリエステルとして使用されるPET、PEN、TACを適用するのが好ましい。
なお、支持体2には特開平9−108613号に記載されているような各種表面処理が施されていてもよい。
また支持体2は、絶縁性、導電性及び半導体性のいずれの性質を具備したものでも適用可能であり、例えば単結晶シリコン、石英、ガラス、石英ガラス、セラミックス、金属、シリコン等の材質のものが使用できる。ガラスで支持体2を構成する場合は、ソーダライムガラス、低ソーダガラス、鉛アルカリケイ酸ガラス、ホウケイ酸ガラス等の透明ガラスを用いることが望ましく、特に高歪点低ソーダガラス、低ソーダガラスで支持体2を構成するのが好適である。セラミックで支持体2を構成する場合は、アルミナ、ジルコニア、チタニア、窒化珪素、炭化珪素等を用いることができる。
また支持体2として、アルミ、ステンレス、銅、銀、チタン、ニッケル、コバルト、マンガン、鉄、金、白金等の金属板を適用してもよく、これら金属板上にプラスチック製やセラミック製の薄膜を形成したものを適用してもよい。
カーボンナノチューブ含有膜4は、各カーボンナノチューブ3が互いに独立に分散した(アイソレートした)膜であり、各カーボンナノチューブ3がカーボンナノチューブ含有膜4中で一定方向に配向している。
「カーボンナノチューブ3,3,…」とは、繊維直径(D)が1〜1,000nm程度で長さ(L)が0.1〜1,000μm程度のものであって、L/Dが100〜10,000程度の大きなアスペクト比を有しかつチューブ状を呈した炭素の集合体である。当該カーボンナノチューブ3,3,…は、アーク放電法、レーザー蒸着法、触媒化学気相成長法等の製法で製造可能であり、斎藤弥八、板東俊治著「カーボンナノチューブの基礎」(コロナ社)等にその製造方法が開示されている。
通常のカーボンナノチューブには、「単層カーボンナノチューブ」と「多層カーボンナノチューブ」の2種類がある。単層カーボンナノチューブは1枚のグラフェン(単原子層の炭素六角網面)が円筒状に閉じた単原子層厚さのチューブである。カーボンナノチューブ3,3,…としては、このような所謂カーボンナノチューブと称されるものであれば、単層及び多層いずれのタイプのものでも適用可能である。
実用に供されるカーボンナノチューブ3,3,…として、HiPco(High Pressure CO)法によって生成される単層カーボンナノチューブ(Carbon Nanotechnologies社から入手可能である。)をはじめとして、ACCVD(Alcohol Catalytic Chemical Vapor Deposition)法によって生成される単層カーボンナノチューブ等を好適に用いることができ、更にはHyperion社Graphite fibril(登録商標)、昭和電工品、ASISH社Pyrograf III(登録商標)等を用いることもできる。カーボンナノチューブ3は、勿論、これらに限定されない。
カーボンナノチューブ3,3,…は炭素生成物に限らず、例えばその炭素の一部をホウ素と窒素で置換したBN(窒化ホウ素)ナノチューブ等の他のものであってもよい。
なお、上記の通り、カーボンナノチューブ3,3,…はカーボンナノチューブ含有膜4中で配向しているが、「各カーボンナノチューブ3が配向する」とは、カーボンナノチューブ含有膜4の偏光吸収スペクトルを、同一条件で測定した場合に、入射させる偏光の角度により吸収の差が生じることをいう。すなわち、配向していないカーボンナノチューブ含有膜の偏光吸収スペクトルは偏光入射角によらず、特定波長の吸収ピーク強度が一定なのに対し、配向しているカーボンナノチューブ含有膜4の偏光吸収スペクトルではその吸収ピークに対応する特定波長に吸収ピークが存在しない(又はその吸収ピークより弱い吸収ピークが存在する)偏光入射角が存在する。
また、「各カーボンナノチューブ3が互いに独立に分散する」とは、カーボンナノチューブ含有膜4に、特定波長の光を照射したときに、発光することをいう。
カーボンナノチューブ含有膜4は、上記した多数のカーボンナノチューブ3,3,…、界面活性剤、溶媒と透明バインダとを分散・攪拌・混合してその分散液が支持体2上に塗布されたものであり、当該塗布液には硬膜剤といった添加剤が添加されてもよい。
以下、適用可能な界面活性剤、溶媒、透明バインダ及び硬膜剤についてそれぞれ詳細に説明する。
(界面活性剤)
界面活性剤としては、アニオン性界面活性剤、ノニオン界面活性剤、カチオン界面活性剤及び両性界面活性剤のいずれも使用できるが、好ましくは、例えば、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキル硫酸エステル類、スルホ琥珀酸エステル類、スルホアルキルポリオキシエチレンアルキルフェニルエーテル類、N−アシル−N−アルキルタウリン類等のアニオン性界面活性剤や、サポニン、アルキレンオキサイド誘導体、糖のアルキルエステル類等のノニオン界面活性剤を用いるのがよい。
界面活性剤として、フッ素含有界面活性剤も好ましく使用できる。その一例として、含フッ素アルキル系アニオン系界面活性剤、含フッ素アルキル系カチオン系界面活性剤、フッ素置換のアルキレンオキサイド系界面活性剤、パーフルオロシクロアルカン系界面活性剤等が挙げられる。
(溶媒)
溶媒は、例えば、重水等の水をはじめとして、ヘプタン、石油ベンジン、シクロヘキサン等の脂肪族炭化水素、ベンゼン、キシレン、エチルベンゼン等の芳香族炭化水素、塩化メチレン、四塩化炭素、トリクロルエタン等のハロゲン系炭化水素、メタノール、エタノール、n−プロパノール等のアルコール、エチルエーテル、テトラヒドロフラン等のエーテル、メチルエチルケトン、シクロヘキサノン等のケトン、蟻酸メチル、酢酸−n−プロピル等のエステル、エチレングリコールモノエチルエーテル等の多価アルコール誘導体、酢酸等の脂肪酸やフェノール、その他窒素や硫黄を含む化合物が使用可能である。これら溶媒は単独で使用されてもよいし、2種類以上が混合されて使用されてもよい。
また、溶媒としてイオン性液体を用いることもできる。「イオン性液体(ionic liquid)」とは、よく知られているように、常温溶融塩又は単に溶融塩等とも称されるものであり、常温(室温)を含む幅広い温度域で溶融状態を呈する塩である。溶媒としては、従来より知られた各種のイオン性液体を使用することができるが、常温(室温)又は可及的に常温に近い温度において液体を呈し安定なものが好ましい。
(透明バインダ)
透明バインダとしては水溶性及び/又は光学異方性を有するものを適用するのがよい。具体的に透明バインダとしてはゼラチンを好適に用いることができる。そのようなゼラチンとしては、一般に牛骨、牛皮、豚皮等を原料として製造され、コラーゲンからの製造工程において、石灰等による処理を伴うアルカリ処理ゼラチンや塩酸等による処理を伴う酸処理ゼラチンがあり、塗布液の一成分として適用されるゼラチンはいずれでもよい。
これらのゼラチンの製法、性質等の詳細については、例えば、ArthurVeis著,「The Macromolecular Chemistry of Gelatin」,187〜217頁,(1964),(Academic Press)、T.H.James著,「The Theory of the photographic Process」,4th.ed.,55頁,(1977),(Macmillan)、「にかわとゼラチン」,日本にかわゼラチン工業組合発行,(1987)、「写真工学の基礎 銀塩写真編」,119〜124頁,(コロナ社)等に記載されている。
ゼラチンは、ゼリー強度(PAGI法による)が250g以上であることが好ましい。ゼラチンは、カルシウム含量(PAGI法による)が4000ppm以下であることが好ましく、3000ppm以下であることが特に好ましい。
ゼラチンとしては、通常分子量10万程度のアルカリ処理ゼラチン、酸処理ゼラチン、酸化処理したゼラチン、Bull.Soc.Sci.Photo.Japan.No.16.P30(1966)に記載されたような酵素処理ゼラチンを好ましく用いることができ、化学修飾ゼラチンを用いることも好ましい。当該化学修飾ゼラチンとしては、例えば、特開平5−72658号、特開平9−197595号、特開平9−251193号等の各公報に記載のアミノ基を置換したゼラチンを挙げることができる。
ゼラチンは、メチオニン含有量が30μmol/g未満であることが好ましく、20μmol/g未満であることがより好ましく、0.1〜10μmol/gであることが更に好ましい。ゼラチン中のメチオニン含有量を30μmol/g未満に低減するには、アルカリ処理ゼラチンの酸化剤による酸化処理が有効である。ゼラチンの酸化処理に用いることのできる酸化剤としては、例えば、過酸化水素、オゾン、ペルオキシ酸、ハロゲン、チオスルホン酸化合物、キノン類、有機過酸を挙げることができるが、過酸化水素を用いるのが最も好ましい。ゼラチンのメチオニン含有量測定法については多くの文献がある。例えば、ジャーナル・オブ・フォトグラフィック・サイエンス第28巻111頁、同40巻149頁、同41巻172頁、同42巻117頁、ジャーナル・オブ・イメージング・サイエンス第33巻10頁、ジャーナル・オブ・イメージング・サイエンス・アンド・テクノロジー第39巻367頁等が参考になる。これら文献を参考することで、アミノ酸分析法、HPLC(High Performance Liquid Chromatograpy)法、ガスクロマトグラフィー法、銀イオン滴定法等でゼラチンのメチオニン含有量を測定することができる。
また、透明バインダとして、上記ゼラチン以外にも、例えばゼラチン誘導体、ゼラチンと他の高分子とのグラフトポリマー、アルブミン、カゼイン等の蛋白質;ヒドロキシエチルセルロース、カルボキシメチルセルロース、セルロース硫酸エステル等のセルロース誘導体;アルギン酸ナトリウム、澱粉誘導体等の糖誘導体;ポリビニルアルコール、ポリビニルアルコール部分アセタール、ポリビニルピロリドン、ポリアクリル酸、ポリアクリルアミド、ポリメタアクリル酸、ポリビニルイミダゾール、ポリビニルピラゾール等の単一又は共重合体のような多種の合成又は半合成親水性高分子物質を適用することができる。
(硬膜剤)
硬膜剤は、上記ゼラチンを中心として透明バインダを硬膜させ、塗布膜の吸湿性、膜強度等をその量によって調整可能なものである。硬膜剤としては、例えば、アルデヒド類(ホルムアルデヒド、グリオキザール、グルタールアルデヒド等)、ムコハロゲノ酸(ムコクロル酸、ムコフェノキシクロル酸等)、エポキシ化合物、活性ハロゲン化合物(2,4−ジクロロ−6−ヒドロキシ−s−トリアジン等)、活性ビニル誘導体(1,3,5−トリアクリロイルヘキサヒドロ−s−トリアジン、ビス(ビニルスルホニル)メチルエーテル、N,N’−メチレンビス(β−(ビニルスルホニル(プロピオンアミド)等)エチレンイミン類、カルボジイミド類、メタンスルホン酸エステル類、イソオキサゾール類等の有機硬膜剤、クロム明ばん等の無機硬膜剤、米国特許第3,057,723号、同3,396,029号、同4,161,407号等に記載されている高分子硬膜剤等を用いることができる。これら硬膜剤は単独で用いられてもよいし、2以上組み合わせられて用いられてもよい。
硬膜剤の具体例を下記化学式(H−1)〜(H−16)に示す。ただし、化学式(H−10)〜(H−16)に関しては2つの化合物の混合物を示している。これら化学式(H−1)〜(H−16)の化合物の中でも、化学式(H−3)〜(H−7),(H−10)〜(H−16)の化合物(混合物)を硬膜剤として適用するのが好ましい。
Figure 0004735540
Figure 0004735540
Figure 0004735540
なお、カーボンナノチューブ含有膜4は1層で構成されてもよいし、2層以上で構成されてもよい。
オーバーコート膜5は、カーボンナノチューブ含有膜4の表面を平滑化する目的で成膜されたものであり、カーボンナノチューブ含有膜4上に成膜されている。当該オーバーコート膜5は周知の塗布法で成膜されるのがよく、その塗布液は、カーボンナノチューブ含有膜4を構成する塗布液からカーボンナノチューブ3,3,…を除いたもので構成するのがよい。
オーバーコート膜5はゼラチンで構成するのが好ましいが、樹脂で構成されてもよい。オーバーコート膜5を樹脂で構成する場合には硬化性樹脂を用いることができる。硬化性樹脂で構成されたオーバーコート膜5は、オーバーコート以外の種々の機能を有していてもよい。硬化性樹脂で構成されたオーバーコート膜5はエチレン性不飽和結合を有するモノマーを1種以上含む成分を重合させて形成した膜であってもよい。エチレン性不飽和結合を有するモノマーを含む成分を重合させて形成した膜としては、活性線硬化樹脂又は熱硬化樹脂を硬化させて形成された膜が好ましく用いられるが、特に好ましく用いられるのは活性線硬化樹脂膜である。「活性線硬化樹脂膜」とは、紫外線や電子線のような活性線照射により架橋反応等を経て硬化する樹脂を主たる成分とする膜をいう。
活性線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線や電子線以外の活性線照射によって硬化する樹脂でもよい。
紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂または紫外線硬化型エポキシ樹脂等を挙げることができる。
具体例としては、例えば、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
紫外線硬化型アクリルウレタン系樹脂としては、一般にポリエステルポリオールにイソシアネートモノマー、もしくはプレポリマーを反応させて得られた生成物に更に2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2−ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させる容易に形成されるものを挙げることができ、特開昭59−151110号に記載のものを用いることができる。
紫外線硬化型ポリエステルアクリレート系樹脂としては、一般にポリエステルポリオールに2−ヒドロキシエチルアクリレート、2−ヒドロキシアクリレート系のモノマーを反応させる容易に形成されるものを挙げることができ、特開昭59−151112号に記載のものを用いることができる。
紫外線硬化型エポキシアクリレート系樹脂としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させて生成するものを挙げることができ、特開平1−105738号に記載のものを用いることができる。
これらの光反応開始剤としては、具体的には、ベンゾイン及び誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。光増感剤と共に使用してもよい。
上記光反応開始剤も光増感剤としても使用できる。また、エポキシアクリレート系の光反応開始剤を使用する際、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の増感剤を用いることができる。
樹脂モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、酢酸ビニル、スチレン等の一般的なモノマーを挙げることができる。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4−シクロヘキサンジアクリレート、1,4−シクロヘキシルジメチルアジアクリレート、前出のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることができる。
これらの活性線硬化樹脂膜は公知の方法で塗設することができる。紫外線硬化性樹脂を光硬化反応により硬化させるための光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる
また、オーバーコート膜5を構成する樹脂としては、例えば塩化ビニル/酢酸ビニル共重合体、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニルとビニルアルコールの共重合体、部分加水分解した塩化ビニル/酢酸ビニルコポリマー、塩化ビニル/塩化ビニリデンコポリマー、塩化ビニル/アクリロニトリルコポリマー、エチレン/ビニルアルコールコポリマー、塩素化ポリ塩化ビニル、エチレン/塩化ビニルコポリマー、エチレン/酢酸ビニルコポリマー等のビニル系ホモポリマーあるいはコポリマー、セルロースニトラート、セルロースアセテートプロピオネート、セルロースジアセテート、セルローストリアセテート、セルロースアセテートフタレート、セルロースアセテートブチレート樹脂等のセルロースエステル系樹脂、マレイン酸及び/又はアクリル酸のコポリマー、アクリル酸エステルコポリマー、アクリロニトリル/スチレンコポリマー、塩素化ポリエチレン、アクリロニトリル/塩素化ポリエチレン/スチレンコポリマー、メチルメタクリレート/ブタジエン/スチレンコポリマー、アクリル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、アミノ樹脂、スチレン/ブタジエン樹脂、ブタジエン/アクリロニトリル樹脂等のゴム系樹脂、シリコーン系樹脂、フッ素系樹脂、ポリメチルメタクリレート、ポリメチルメタクリレートとポリメチルアクリレートの共重合体等を挙げることができるが、これらに限定されるものではない。特に、オーバーコート膜5を構成する樹脂としては、セルロースジアセテート、セルロースアセテートプロピオネートのようなセルロース系樹脂を用いるのが好ましい。
なお、オーバーコート膜5は上記カーボンナノチューブ含有膜4と同様に1層で構成されてもよいし、2層以上で構成されてもよい。
続いて、基板2上にカーボンナノチューブ含有膜4を成膜するための成膜装置10について説明する。
図2は成膜装置10の概略構成を示す側面図である。
図2に示す通り、成膜装置10は、長尺な支持体2が巻回された元巻きローラ11を有している。元巻きローラ11の下方には支持体2を支持しながら搬送する搬送ローラ12が配されている。搬送ローラ12は図2中半時計回り方向に回転して支持体2をその回転方向に搬送するようになっている。
搬送ローラ12の下方には、塗布液を支持体2に塗布する塗布装置13が配されている。塗布装置13は搬送ローラ12の下方で当該搬送ローラ12に対向・配置されている。塗布装置13は一定量の塗布液を貯留可能な構成を有しており、搬送ローラ12に支持された支持体2に向けて貯留した塗布液を塗布するようになっている。
搬送ローラ12の右斜め上方には支持体2に塗布された塗布液を掻き落とすワイヤーバー14が配されている。図3はワイヤーバー14の概略構成を示す断面図である。図3に示す通り、ワイヤーバー14は長尺で円柱状を呈したロッド14aを有しており、当該ロッド14aに対しステンレス線,ピアノ線等のワイヤー14bが巻き付けられた構成を備えている。図1に示す通り、ワイヤーバー14は支持体2の搬送速度よりやや遅い速度で図2中時計回り方向に回転して、ワイヤーバー14の近傍を通過する支持体2と同期するように回転しながら、当該支持体2上の塗布液を掻き落とすようになっている。
ワイヤーバー14はホルダ15で所定位置に保持されており、ワイヤーバー14と支持体2との間隔が一定に保たれている。成膜装置10では、ワイヤーバー14と支持体2との間隔を一定に保つことで、支持体2に塗布された塗布液を均一に掻き落とすことができるようになっている。
なお、ワイヤーバー14に代えて、ロッド14aに相当するロッドに一定間隔で溝を形成したワイヤレスバーを適用してもよい。
ワイヤーバー14の近傍であって支持体2の搬送方向のワイヤーバー14より下流には、ワイヤーバー14で掻き落とした塗布液を受けるレシーバ16が配されている。レシーバ16にはチューブ17を介してタンク18が接続されている。タンク18はレシーバ16で受けた塗布液を一時的に貯留するものであり、レシーバ16で受けた塗布液がチューブ17を通じてタンク18に一時的に貯留されるようになっている。
タンク18と上記塗布装置13は互いにポンプ19を介してチューブ20で接続されている。成膜装置20では、ポンプ19が作動すると、タンク18に貯留された塗布液が当該ポンプ19及びチューブ20を通じて塗布装置13に供給されるようになっており、塗布液が順次塗布装置13とレシーバ16との間で循環するような構成となっている。
ワイヤーバー14の上方には支持体2を支持しながら搬送する2つの第2搬送ローラ21,22が配されている。各第2搬送ローラ21,22には交流電源23が接続されており、各第2搬送ローラ21,22間には電場が形成されるようになっている。
第2搬送ローラ22の左方には、支持体2に塗布された塗布液の膜を冷却・ゲル化する冷却室24と、支持体2に塗布された塗布液の膜を乾燥させる乾燥室25と、支持体2を巻き取る巻取りローラ26と、がそれぞれ配されている。冷却室24は室内が一定温度以下の低温雰囲気に保たれており、当該冷却室24中を通過する支持体2上の膜を冷却してゲル化させるような構成を有している。乾燥室25は室内において一定温度の風を循環させた室となっており、支持体2上の膜に風を吹き付けて当該膜を乾燥させるような構成を有している。繰出しローラ26は図2中半時計回り方向に回転するようになっており、冷却室24と乾燥室25とを通過した支持体2を巻き取るようになっている。
続いて、カーボンナノチューブ含有体1の製造方法について説明する。
始めに、支持体2上にカーボンナノチューブ含有膜4を成膜する第1の成膜方法について説明する。
まず、上記したカーボンナノチューブ3,3,…、界面活性剤等の添加剤を溶媒中に加えてカーボンナノチューブ含有液を調製する(調製工程)。例えば、カーボンナノチューブ3,3,…としてHiPco法によって生成した単層カーボンナノチューブを、界面活性剤としてSDS(Sodium Dodecyl Sulfate)を、溶媒として重水を適用する場合には、多数のカーボンナノチューブ3,3,…と界面活性剤とを溶媒中に加えてカーボンナノチューブ含有液を作製する。
カーボンナノチューブ含有液を作製したら、そのカーボンナノチューブ含有液に対し分散処理及び超遠心分離処理を順次おこない(分散工程、分離工程)、超遠心分離後のカーボンナノチューブ含有液から上澄みを回収し(抽出工程)、各カーボンナノチューブ3が溶媒中で分散したカーボンナノチューブ分散液を得る。
分散工程における分散処理には周知の攪拌処理や超音波処理等があり、その分散工程の処理の用に供する分散機としては、大きな剪断力を有する高速攪拌型分散機、高強度の超音波エネルギーを与える分散機等がある。当該分散機は具体的にはコロイドミル、ホモジナイザー、毛細管式乳化装置、液体サイレン、電磁歪式超音波発生機、ポールマン笛を有する乳化装置等である。分散工程で使用するのに好ましい高速攪拌型分散機は、ディゾルバー、ポリトロン、ホモミキサー、ホモブレンダー、ケディミル、ジェットアジター等、分散作用する要部が液中で高速回転(500〜15,000rpm、好ましくは2,000〜4,000rpm)するタイプの分散機である。当該高速攪拌型分散機は、ディゾルバー又は高速インペラー分散機とも呼ばれ、特開昭55−129136号にも記載されているような、高速で回転する軸に鋸歯状のブレードを交互に上下方向に折り曲げたインペラーを装着したものも高速攪拌型分散機として好ましい一例である。
分散、分離、抽出工程後、カーボンナノチューブ分散液と透明バインダとを混合して各カーボンナノチューブ3を透明バインダ中で攪拌する(攪拌工程)。
攪拌工程において、例えば、透明バインダとしてゼラチンを適用した場合には、カーボンナノチューブ分散液にゼラチン(又はゼラチン溶液)を添加する。ゼラチン溶解は、常温で一定時間放置し膨潤させ、その後加温するか、もしくは添加直後に加温溶解させる。また必要に応じて再度前記分散工程の分散処理を行ってもよい。
以上のようにして、透明バインダをカーボンナノチューブ分散液中に溶解させ、後述の塗布工程の処理の用に供する、第1の塗布液としてのカーボンナノチューブ分散塗布液を得る。
なお、当該カーボンナノチューブ分散塗布液はその後の処理でカーボンナノチューブ分散膜4を構成するものであるが、当該カーボンナノチューブ分散塗布液には、カーボンナノチューブ分散膜4を硬化させるという目的で塗布前に上記硬膜剤が添加されてもよい。
攪拌工程後、支持体2上にカーボンナノチューブ分散塗布液をワイヤーバー方式で塗布し(塗布工程)、カーボンナノチューブ分散塗布液で構成されたカーボンナノチューブ含有膜4を支持体2上に成膜する。
以下の工程では、図2に示す成膜装置10を参照しながら各工程における処理を説明する。
支持体2が元巻きローラ11と巻取りローラ26との間に巻回され(図2に示す状態)、かつ、塗布装置13にカーボンナノチューブ分散塗布液が貯留された状態において、搬送ローラ12、各第2搬送ローラ21,22及び巻取りローラ26が回転して、支持体2は元巻きローラ11から搬送ローラ12に搬送され、搬送ローラ12に支持されながら当該搬送ローラ12を通過する。このとき、塗布装置13が支持体2に向けて過剰量のカーボンナノチューブ分散塗布液を塗布する。
支持体12が搬送ローラ12を通過したら、その支持体12はワイヤーバー14の近傍を通過する。このとき、支持体12上に塗布されたカーボンナノチューブ分散塗布液はワイヤーバー14で余分な分が掻き落とされ、支持体12上に膜厚が均一のカーボンナノチューブ分散膜4が形成される。
ここで、支持体2上に塗布されたカーボンナノチューブ分散塗布液は支持体2の搬送に伴うが、その搬送方向の作用とワイヤーバー14の存在とにより、支持体2の搬送方向に大きく引き延ばされながら搬送される。このとき、カーボンナノチューブ分散塗布液には剪断応力がかかり、当該カーボンナノチューブ分散塗布液はその剪断応力を受けながら支持体2上に塗布される。その結果、カーボンナノチューブ分散塗布液中の各カーボンナノチューブ3が当該カーボンナノチューブ分散塗布液中で互いに独立に分散された(アイソレート状態の)まま、支持体2の搬送方向に沿う一定の方向に配列して配向した状態となる。各カーボンナノチューブ3の最も好ましい配向状態は一軸方向の配向である。
塗布工程においては、ワイヤーバー14に対する支持体2の搬送速度(引き延ばし速度)は大きければ大きいほど好ましく、その速度は好ましくは5倍以上、より好ましくは10倍、更に好ましくは50倍以上とするのがよい。また、塗布工程では、支持体2の搬送方向のみならず、支持体2の搬送方向と直交する方向に対しても剪断応力をかけることになるため、各カーボンナノチューブ3は支持体2の搬送方向及び膜面内へ配向することになる。
なお、支持体2上に塗布されたカーボンナノチューブ分散塗布液でワイヤーバー14により掻き落とされた余分なカーボンナノチューブ分散塗布液は、レシーバ16に落下し、その後、チューブ17、タンク18、ポンプ19及びチューブ20を経て塗布装置13に供給され、塗布用の塗布液として再度支持体2に向けて塗布される。
塗布工程後、ワイヤーバー14の近傍を通過した支持体2は2つの第2搬送ローラ21,22に支持されながらその第2搬送ローラ21,22間を通過する。このとき、2つの第2搬送ローラ21,22間には交流電源23により電場が形成されており、各第2搬送ローラ21,22間に配置されたカーボンナノチューブ含有膜4に電場がかけられるようになっている(電場配向工程)。
電場配向工程では、カーボンナノチューブ含有膜4中の各カーボンナノチューブ3を、静電配向によって端部同士で引き合わせて直線状に配列して上記塗布工程における一定方向の配向性をより確実なものとすることができる。すなわち、カーボンナノチューブ3,3,…は、電圧が印加されることにより、その一端が一方の電極(第2搬送ローラ21又は第2搬送ローラ22)側に、他端が他方の電極(第2搬送ローラ22又は第2搬送ローラ21)側に向いた状態に静電配向され、電荷が偏ったカーボンナノチューブ3,3,…の両端で、正電荷と負電荷とが引き合って直線上に配向させることができる。
そこで、図2に示す通り、電圧源として交流電源3を適用して各第2搬送ローラ21,22間に印加する電圧を交流電圧とすることにより、電荷が移動する前に第2搬送ローラ21と第2搬送ローラ22とで正極と負極とを逆転させて、配向した状態のカーボンナノチューブ3同士が離れるのを防ぐことができると考えられる。
そのため、成膜装置10では、交流電源23から各第2搬送ローラ21,22間に交流電圧が印加され、各搬送ローラ21,22間に印加する電圧として直流電圧を適用した場合に比べて、各カーボンナノチューブ3をより確実に配向させることができる。
各搬送ローラ21,22間に印加する印加電圧は1〜15kV/cmで設定するのが好ましいが、この範囲には限られない。印加電圧が1kV/cmより小さいと、各カーボンナノチューブ3を充分に配向させることができない虞があり、印加電圧が15kV/cmより大きいと、誘電液体が攪乱され、各カーボンナノチューブ3の配向が阻害される虞があるため、印加電圧を1〜15kV/cmで設定するのが好ましい。印加電圧は、カーボンナノチューブ含有膜4の流動性、粘度、膜厚、カーボンナノチューブ3,3,…の密度によって適宜調整できる。
なお、交流電源23を直流電源に代えて、各搬送ローラ21,22間に印加する電圧を直流電圧としてもよい。当該直流電源の印加電圧は上記と同じ範囲で設定してもよいし、適宜変更してもよい。この場合でも、例えば積極的に各カーボンナノチューブの表面に導電性を付与したり、誘電液体を変えたり、界面活性剤を使用することにより、各カーボンナノチューブ3の配向性を交流電圧の場合より増すことができる。
電場配向工程後、各搬送ローラ21,22間を通過した支持体2は冷却室24に搬入される。冷却室24は一定温度以下の低温雰囲気下に保持されており、支持体2上のカーボンナノチューブ含有膜4は冷却室24を通過する途中で冷却されながらゲル化する(ゲル化工程)。
ゲル化工程では、支持体2上のカーボンナノチューブ含有膜4を速やかにゲル化させることが好ましい。カーボンナノチューブ含有膜4が液体の状態で保持される時間が長い場合、液だれ、レベリング等の流動現象により、各カーボンナノチューブ3の配向が乱れるばかりか、塗布膜としての均一性を維持できなくなる。そのため、カーボンナノチューブ分散塗布液を塗布した直後は、カーボンナノチューブ含有膜4の流動性を速やかに小さくするか、又はなくすことが必要である。カーボンナノチューブ含有膜4を構成する透明バインダとしてゼラチンを使用した場合には、カーボンナノチューブ含有膜4を冷却してその膜温度を下げることで容易にゲル化させることができる。
なお、冷却室24の内部は、20℃以下、好ましくは15℃以下、より好ましくは10℃以下の低温雰囲気下に保持しておくのが好ましい。
ゲル化工程では、カーボンナノチューブ含有膜4の温度やゲル化工程前のカーボンナノチューブ含有膜4の湿潤状態の膜厚、支持体2の厚み等により変化するが、冷却室24に搬入される直前のカーボンナノチューブ含有膜4の温度が通常の塗布液温度(35〜50℃)であれば、カーボンナノチューブ含有膜4が冷却室24の内部に滞在させる時間(カーボンナノチューブ含有膜4が冷却室24の内部を通過するのにかかる時間)を、通常1〜100秒、好ましくは5〜50秒の範囲で設定するのがよい。これにより、カーボンナノチューブ含有膜4の塗布膜の流動性を速やかに小さくすることでき、各カーボンナノチューブ3の配向が乱れず、カーボンナノチューブ含有膜4を塗布膜として均一にすることができる。
なお、ゲル化工程によるカーボンナノチューブ含有膜4の硬化は、カーボンナノチューブ分散塗布液の塗布直後にカーボンナノチューブ含有膜4を速やかに硬化させられる方法であれば何でも適用することができる。例えば、周知のUV(Ultra Violet)硬化性樹脂、熱硬化性樹脂等の様々な硬化性樹脂を用いて硬化させる方法も適用できる。また、ゲル化工程による処理は、カーボンナノチューブ含有膜4を充分にゲル化させないまでも、その粘性を向上させて当該カーボンナノチューブ含有膜4の流動を必要最低限に抑えるためのものとしてもよい。
ゲル化工程後、冷却室24から搬出された支持体2は乾燥室25に搬入される。乾燥室25は室内において一定温度の風を循環させた室となっており、支持体2上のカーボンナノチューブ含有膜4は乾燥室25を通過する途中で循環中の風を受けながら乾燥する(乾燥工程)。
乾燥工程は、カーボンナノチューブ含有膜4から溶媒を除去する工程であり、配向した各カーボンナノチューブ3の配列を乱さないようカーボンナノチューブ含有膜4を乾燥させる必要がある。そのため、透明バインダとしてゼラチンを使用した場合は、当該ゼラチンが低温でゲル化した状態を保つように、カーボンナノチューブ含有膜4を低温下で乾燥させることが好ましい。また、ゲル化工程でカーボンナノチューブ含有膜4の流動性を小さくしただけの場合は、その流動性が向上しないように、カーボンナノチューブ含有膜4を低温下で乾燥させることが好ましい。
乾燥工程では、カーボンナノチューブ含有膜4に対し20〜70℃の風を吹き付けて当該カーボンナノチューブ含有膜4を乾燥するのが好ましい。この場合、カーボンナノチューブ含有膜4の冷却した領域を直ぐに高温で乾燥させると、いったん形成されたカーボンナノチューブ含有膜4の3次元構造が破壊されて当該カーボンナノチューブ含有膜4の流動性が上がり、各カーボンナノチューブ3の配向が乱れるばかりか、カーボンナノチューブ含有膜4も塗布膜として均一なもので無くなるため、乾燥室25における乾燥用の風の温度は50℃以下に設定するのが好ましい。また、乾燥工程における風の湿度は通常10〜50%の範囲で設定するのがよく、カーボンナノチューブ含有膜4が完全に乾燥した後は、30〜70%の相対湿度で一定時間(例えば20〜180秒間)調湿するのが好ましい。
乾燥工程後、乾燥室25から搬出された支持体2は巻取りローラ26に巻き取られる。以上の第1の成膜方法により、支持体2上にカーボンナノチューブ含有膜4を成膜することができる。
なお、上記第1の成膜方法では、塗布工程においてワイヤーバー14によるバー方式を適用した塗布処理をおこなったが、これに代えて、周知のストライプ塗布方式を適用した塗布処理をおこなってもよい。また上記第1の成膜方法では電場配向工程を設けたが、当該電場配向工程はなくてもよい。また、上記塗布工程、ゲル化工程及び乾燥工程を複数回繰り返して支持体2上に複数層のカーボンナノチューブ含有膜4を成膜するようにしてもよい。
次に、カーボンナノチューブ含有膜4上にオーバーコート膜を成膜する第2の成膜方法について説明する。
上記第1の成膜方法において、カーボンナノチューブ3,3,…を省略してそれ以外は上記第1の成膜方法の調製工程、分散工程、分離工程、抽出工程及び攪拌工程と同様にして、第2の塗布液としてのオーバーコート塗布液を得る。
オーバーコート塗布液を得たら、当該オーバーコート塗布液を周知の塗布処理に従ってカーボンナノチューブ含有膜4上に塗布し(第2の塗布工程)、オーバーコート膜5をカーボンナノチューブ含有膜4上に形成する。ここでの塗布処理では、例えば、アプリケーター方式、押出し方式、スライドビード方式、カーテン方式、グラビア方式、スプレー方式、エアドクター方式、ディップ方式、ブレード方式、バーコーティング方式、スロット方式、スライド方式、ウェブテンション方式等の塗布処理を適用することができる。
オーバーコート膜5を成膜したら、上記第1の成膜方法のゲル化工程及び乾燥工程と同様にして、オーバーコート膜5に対し、図2の冷却室24に相当する室を通過させ(第2のゲル化工程)、その後図2の乾燥室25に相当する室を通過させる(第2の乾燥工程)。以上の第2の成膜方法により、カーボンナノチューブ含有膜4上にオーバーコート膜5を成膜することができる。
なお、上記第2の成膜方法では、上記第2の塗布工程、第2のゲル化工程及び第2の乾燥工程を複数回繰り返してカーボンナノチューブ含有膜4上に複数層のオーバーコート膜5を成膜するようにしてもよい。
また、以上では、支持体2として長尺でかつフィルム状を呈したものを適用した例を示したが、支持体2として、図6に示す通り、矩形状を呈した基板を適用してもよい。この場合の支持体2は上記と同様の材質で構成してよい。
支持体2として基板を適用した場合、上記第1の成膜方法に関し、塗布工程及び電場配向工程においては図7,8に示す塗布装置30及び電場配向装置40を適用する。
図7に示す通り、塗布装置30はカーボンナノチューブ分散塗布液を貯留するタンク31を有しており、タンク31には塗布ローラ32が配されている。塗布ローラ32は図7中半時計回り方向に回転して、支持体2を支持しながらカーボンナノチューブ分散塗布液を支持体2に転写・塗布するようになっている。塗布ローラ32の左方にはワイヤーバー33が配されており、ワイヤーバー33はホルダ34で所定位置に保持されている。ワイヤーバー33は図2のワイヤーバー14と同様のものであり、ホルダ34も図2のホルダ15と同様のものである。
そして塗布装置30を適用した塗布工程では、支持体2は塗布ローラ32及びワイヤーバー33が回転してそれらに支持された状態で搬送されるが、その搬送途中で、塗布ローラ32が支持体2にカーボンナノチューブ分散塗布液を転写・塗布し、ワイヤーバー33が塗布済みの余分なカーボンナノチューブ分散塗布液を掻き落とし、支持体2上にカーボンナノチューブ含有膜4を成膜する。
また図8(a)に示す通り、電場配向装置40は、支持体2を支持しながら搬送する4つの搬送ローラ41〜44を有している。各搬送ローラ42,43には交流電源45が配されており、各搬送ローラ42,43間に電場が形成されるようになっている。交流電源45は図2の交流電源23と同様のものであり、直流電源で代用されてもよい。
なお、図8(b)に示す通り、各搬送ローラ41,42間と各搬送ローラ43,44間とにそれぞれ導電性の無端ベルト46,47が巻回されてもよい。
そして電場配向装置40を適用した電場配向工程では、支持体2は4つの搬送ローラ41〜44に支持されながら各搬送ローラ42,43間を通過し、その通過中に、カーボンナノチューブ分散膜4に電場がかかり、各カーボンナノチューブ3が配向する。
(1)試料Aの作製(1.1)カーボンナノチューブ分散塗布液の作製
純水1000ccにSDS(Sodium Dodecyl Sulfate)を10g溶解させ、1%SDS水溶液を作製した。SDS水溶液を作製したら、当該SDS水溶液に対し、HiPco法によって生成された周知の単層カーボンナノチューブを1.5gを添加し、三田村理研工業株式会社製のジェットストリーム・インダクターミキサーTDSを用いて室温で吸引・分散した。吸引・分散したら、その分散液を500cc×2に分割して各分散液に対し、遠心分離器(Jouan社KR25i)を用いて15,000rpmで8時間遠心分離を行った。遠心分離を行ったら、その遠心分離後の各分散液から上澄みを採取し、カーボンナノチューブ分散液800ccを得た。
カーボンナノチューブ分散液を得たら、そのカーボンナノチューブ分散液に対し市販の生化学用ゼラチン(WAKO社、074-02761)を80g添加し、当該ゼラチンを常温で15分間放置して膨潤させ、カーボンナノチューブ分散液とゼラチンとの混合液を恒温槽で50℃に加熱してゼラチンをカーボンナノチューブ分散液に溶解させた。その後、加熱後のカーボンナノチューブ分散液とゼラチンとの混合液をフィルター東洋濾紙株式会社製TCP10で2段加圧濾過し、塗布用のカーボンナノチューブ分散塗布液800ccを得た。以下、当該カーボンナノチューブ分散塗布液を「塗布液A」とした。
(1.2)オーバーコート塗布液の作製
純水1000ccにSDSを10g溶解させ、1%SDS水溶液を作製した。SDS水溶液を作製したら、当該SDS水溶液に対し市販の生化学用ゼラチン(WAKO社、074-02761)を80g添加し、当該ゼラチンを常温で15分間放置して膨潤させ、SDS水溶液とゼラチンとの混合液を恒温槽で50℃に加熱しながら攪拌し、ゼラチンをSDS水溶液に溶解させた。その後、加熱後のSDS水溶液とゼラチンとの混合液をフィルター東洋濾紙株式会社製TCP10で2段加圧濾過し、塗布用のオーバーコート塗布液を約800cc得た。以下、当該オーバーコート塗布液を「塗布液B」とした。
(1.3)カーボンナノチューブ含有膜の成膜
塗布液A50ccに対しビニルスルホン型硬膜剤(上記実施形態中化学式(H−6)の化合物)を添加し、その後3分以内に、当該塗布液Aを50℃に保ちながら、上記実施形態における支持体2を想定した市販の石英ガラス基板(100mm×100mm×0.5mm,テクノクォーツ社製)上に過剰量の塗布液Aをエクストルージョン型塗布にて塗布した。塗布液Aを塗布したら、径0.2mmのステンレス製ワイヤーを8mmのステンレス製ロッドに巻付けたワイヤーバーで過剰量の塗布液Aを掻き落とし、塗布液Aから構成されるカーボンナノチューブ含有膜を石英ガラス基板上に成膜した。ただし、ここでの塗布処理は塗布速度を2m/secとし、石英ガラス基板を20℃に保ちながら実施した。
その後、カーボンナノチューブ含有膜が成膜された石英ガラス基板を0℃で20秒間冷却した。20秒間経過したら、カーボンナノチューブ含有膜に対し25℃の風(相対湿度15%)を60秒間、45℃の風(相対湿度25%)を60秒間、50℃の風(相対湿度25%)を60秒間順次あててカーボンナノチューブ含有膜を乾燥させ、乾燥後のカーボンナノチューブ含有膜が成膜された石英ガラス基板を、温度30℃,相対湿度60%の雰囲気下で1時間放置した。以上の塗布・冷却・乾燥工程を4度繰り返し、4層のカーボンナノチューブ含有膜を石英ガラス基板上に成膜した。
(1.4)オーバーコート膜の成膜
塗布液Bに対しビニルスルホン型硬膜剤(上記実施形態中化学式(H−6)の化合物)を添加し、その後3分以内に、当該塗布液Bを40℃に保ちながら、塗布膜厚80μm用のアプリケーター塗布装置を用いてカーボンナノチューブ含有膜上に塗布液Bを塗布し、塗布液Bから構成されるオーバーコート膜をカーボンナノチューブ含有膜上に成膜した。
その後、オーバーコート膜が成膜された石英ガラス基板を0℃で20秒間冷却した。20秒間経過したら、オーバーコート膜に対し25℃の風(相対湿度15%)を60秒間、45℃の風(相対湿度25%)を60秒間、50℃の風(相対湿度が25%)を60秒間順次あててオーバーコート膜を乾燥させ、測定用の「試料A」を得た。
(2)試料Aの偏光吸収スペクトルの測定
シマズ社製UV−3150の分光器を用い、光源と試料Aとの間に偏光子を介在させた状態で試料Aの偏光吸収スペクトルを測定した。ただし、当該偏光吸収スペクトルの測定は、試料Aの各カーボンナノチューブの配向方向(ワイヤーバーの移動方向に相当する方向)に沿う方向に直線偏光させた場合と、その配向方向に直交する方向に直線偏光させた場合との2つの場合でおこなった。
試料Aの偏光吸収スペクトルの測定結果を図4に示す。図4中、上部の実線は、試料Aの各カーボンナノチューブの配向方向に沿う方向に直線偏光させた場合の偏光吸収スペクトルを示し、下部の実線は、試料Aの各カーボンナノチューブの配向方向に直交する方向に直線偏光させた場合の偏光吸収スペクトルを示す。
図4に示す2つの偏光吸収スペクトルにおいて、波長500〜900nm,1000〜1500nm周辺の各ピークは、カーボンナノチューブ含有膜中の各カーボンナノチューブに対応するものであり、上部の偏光吸収スペクトルの各ピークと下部の偏光吸収スペクトルの各ピークとで、同一波長において顕著な吸収の差が認められることから、各カーボンナノチューブは確かにワイヤーバーの移動方向に沿う一方向に配向しているのがわかる。
(3)試料Aの蛍光スペクトルの測定
ホリバ製作所製ジョバイイボンの分光器を用い、入光側と出光側とにそれぞれスリット幅13nmのスリット板を配置した状態で試料Aの蛍光スペクトルを測定した。ただし、当該蛍光スペクトルの測定では、励起光として波長650nmの光を試料Aに照射した場合と、励起光として波長720nmの光を試料Aに照射した場合との2つの場合でおこなった。
試料Aの蛍光スペクトルの測定結果を図5に示す。図5中、上部の実線は、650nmの励起光を試料Aに照射した場合の蛍光スペクトルを示し、下部の実線は、720nmの励起光を試料Aに照射した場合の蛍光スペクトルを示す。
図5中上部に示す蛍光スペクトルにおいて、発光波長1050nm近傍のピークはカイラルベクトルが(7,5)のカーボンナノチューブに、発光波長1150nm近傍のピークはカイラルベクトルが(7,6)のカーボンナノチューブに対応するものであり、それら発光波長1050nm,1150nm近傍における各ピークの存在から、試料Aで想定したカーボンナノチューブ含有膜に対し、励起光として波長650nmの可視光を照射すると、波長1050nm,1150nmの近赤外線を発光することがわかる。
図5中下部に示す蛍光スペクトルにおいては、発光波長1120nm近傍のピークはカイラルベクトルが(9,4)のカーボンナノチューブに、発光波長1200nm近傍のピークはカイラルベクトルが(8,6)のカーボンナノチューブに対応するものであり、それら発光波長1120nm,1200nm近傍における各ピークの存在から、試料Aで想定したカーボンナノチューブ含有膜に対し、励起光として波長720nmの可視光を照射すると、波長1120nm,1200nmの近赤外線を発光することがわかる。これより、含有膜中の各カーボンナノチューブが互いに独立に(アイソレート状態で)分散していることがわかる。
(1)試料Bの作製(1.1)カーボンナノチューブ分散塗布液及びオーバーコート塗布液の作製
上記実施例1(1.1),(1.2)と同様にしてカーボンナノチューブ分散塗布液及びオーバーコート塗布液をそれぞれ作製し、これらを上記と同様、「塗布液A」,「塗布液B」とした。
(1.2)カーボンナノチューブ含有膜の成膜
塗布液A50ccに対しビニルスルホン型硬膜剤(上記実施形態中化学式(H−6)の化合物)を添加し、その後3分以内に、当該塗布液Aを、40℃に保たれた市販の石英ガラス基板(100mm×300mm×0.5m,テクノクォーツ社製)上に押し出し塗布し、石英ガラス基板上にカーボンナノチューブ含有膜を成膜した。ここで用いた石英ガラス基板は上記実施形態における支持体2を想定したものである。
なお、ここでの塗布処理は塗布速度を1m/secとして実施し、最終的な塗布膜の膜厚は60μmであった。
カーボンナノチューブ含有膜を成膜したら、石英ガラス基板を40℃に保ちながら直流電圧が印加された2つの搬送ローラ(φ20)間を通過させ、カーボンナノチューブ含有膜(中の各カーボンナノチューブ)に電場をかけて各カーボンナノチューブを一定の方向に配向させた。ただし、各搬送ローラ間の間隔を30mm、石英ガラス基板の搬送速度を1m/sec、各搬送ローラ間に印加した電圧を6kV/cmとした。
その後、電場による配向処理が行われたカーボンナノチューブ含有膜が成膜された石英ガラス基板を0℃で20秒間冷却した。20秒間経過したら、カーボンナノチューブ含有膜に対し25℃の風(相対湿度15%)を60秒間、45℃の風(相対湿度25%)を60秒間、50℃の風(相対湿度25%)を60秒間順次あててカーボンナノチューブ含有膜を乾燥させ、乾燥後のカーボンナノチューブ含有膜が成膜された石英ガラス基板を、温度0℃,相対湿度60%の雰囲気下で1時間放置した。以上の塗布・冷却・乾燥工程を4度繰り返し、4層のカーボンナノチューブ含有膜を石英ガラス基板上に成膜した。
(1.3)オーバーコート膜の成膜
塗布液Bに対しビニルスルホン型硬膜剤(上記実施形態中化学式(H−6)の化合物)を添加し、その後3分以内に、当該塗布液Bを40℃に保ちながら、塗布膜厚80μm用のアプリケーター塗布装置を用いてカーボンナノチューブ含有膜上に塗布液Bを塗布し、塗布液Bから構成されるオーバーコート膜をカーボンナノチューブ含有膜上に成膜した。
その後、オーバーコート膜が成膜された石英ガラス基板を0℃で20秒間冷却した。20秒間経過したら、オーバーコート膜に対し25℃の風(相対湿度15%)を60秒間、45℃の風(相対湿度25%)を60秒間、50℃の風(相対湿度が25%)を60秒間順次あててオーバーコート膜を乾燥させ、測定用の「試料B」を得た。
(2)試料Bの偏光吸収スペクトル及び蛍光スペクトルの測定
上記第1の実施例の(2),(3)の項目と同様の内容で、試料Bの偏光吸収スペクトル及び蛍光スペクトルを測定した。その測定結果は図示しないが、偏光吸収スペクトルにおいては2つの偏光吸収スペクトルの各ピークに図4に示す以上の吸収の差が認められ、蛍光スペクトルにおいても各ピークの発光強度が図5に示す以上に大きかった。これらのことから、カーボンナノチューブ含有膜の成膜工程において電場配向工程を設けると、各カーボンナノチューブを確実に配向させることができ、高強度の近赤外線を発光するという光学的な機能を充分に発揮させることができた。
以上のように、本発明に関わるカーボンナノチューブ含有体の製造方法は、光学的に優れた機能を発揮するカーボンナノチューブ含有体の製造方法を提供することが可能である。

Claims (14)

  1. カーボンナノチューブ及びバインダを含む分散液を所定の搬送される支持体上に塗布する塗布工程を備え、
    前記塗布工程では、前記分散液を第1の塗布液として、前記第1の塗布液に対して、支持体の搬送方向に剪断応力をかけながら、前記第1の塗布液を前記支持体上に塗布して塗布膜を形成し、該塗布膜をゲル化工程でゲル化した後、乾燥工程で乾燥し、互いに独立に分散し支持体搬送方向に配向したカーボンナノチューブ、を含有した乾燥膜を得ることを特徴とするカーボンナノチューブ含有体の製造方法。
  2. 請求項1に記載のカーボンナノチューブ含有体の製造方法において、
    前記第1の塗布液に対して、バー方式の塗布方式により、支持体の搬送方向に剪断応力をかけることを特徴とするカーボンナノチューブ含有体の製造方法。
  3. 請求項1に記載のカーボンナノチューブ含有体の製造方法において、
    前記第1の塗布液に対して、ストライプ塗布方式により、支持体の搬送方向に剪断応力をかけることを特徴とするカーボンナノチューブ含有体の製造方法。
  4. 請求項1に記載のカーボンナノチューブ含有体の製造方法において、
    前記塗布工程が複数回繰り返されることを特徴とするカーボンナノチューブ含有体の製造方法。
  5. 請求項1に記載のカーボンナノチューブ含有体の製造方法において、
    前記塗布工程の後に、バインダを含有するバインダ含有液を第2の塗布液として、前記第2の塗布液を塗布済みの前記第1の塗布液上に塗布する第2の塗布工程を備えることを特徴とするカーボンナノチューブ含有体の製造方法。
  6. 請求項に記載のカーボンナノチューブ含有体の製造方法において、
    前記第2の塗布工程における塗布処理がアプリケーター方式、押出し方式、スライドビード方式、カーテン方式、グラビア方式、スプレー方式、エアドクター方式、ディップ方式、ブレード方式のいずれか一の処理でおこなわれることを特徴とするカーボンナノチューブ含有体の製造方法。
  7. 請求項に記載のカーボンナノチューブ含有体の製造方法において、
    前記第2の塗布工程が複数回繰り返されることを特徴とするカーボンナノチューブ含有体の製造方法。
  8. 請求項1に記載のカーボンナノチューブ含有体の製造方法において、
    前記カーボンナノチューブが単層カーボンナノチューブであることを特徴とするカーボンナノチューブ含有体の製造方法。
  9. 請求項1に記載のカーボンナノチューブ含有体の製造方法において、
    前記バインダが水溶性であることを特徴とするカーボンナノチューブ含有体の製造方法。
  10. 請求項1に記載のカーボンナノチューブ含有体の製造方法において、
    前記バインダが光学異方性を有しないことを特徴とするカーボンナノチューブ含有体の製造方法。
  11. 請求項1に記載のカーボンナノチューブ含有体の製造方法において、
    前記バインダがゼラチンであることを特徴とするカーボンナノチューブ含有体の製造方法。
  12. 請求項1に記載のカーボンナノチューブ含有体の製造方法において、
    前記第1の塗布液が硬膜剤を含有していることを特徴とするカーボンナノチューブ含有体の製造方法。
  13. 請求項1に記載のカーボンナノチューブ含有体の製造方法において、
    前記塗布工程の後に塗布済みの前記第1の塗布液中のカーボンナノチューブを配向させる配向工程を有することを特徴とするカーボンナノチューブ含有体の製造方法。
  14. 請求項13に記載のカーボンナノチューブ含有体の製造方法において、
    前記配向工程では電場を利用することを特徴とするカーボンナノチューブ含有体の製造方法。
JP2006528975A 2004-07-16 2005-07-07 カーボンナノチューブ含有体の製造方法 Expired - Fee Related JP4735540B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006528975A JP4735540B2 (ja) 2004-07-16 2005-07-07 カーボンナノチューブ含有体の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004210341 2004-07-16
JP2004210341 2004-07-16
PCT/JP2005/012586 WO2006008978A1 (ja) 2004-07-16 2005-07-07 カーボンナノチューブ含有体の製造方法
JP2006528975A JP4735540B2 (ja) 2004-07-16 2005-07-07 カーボンナノチューブ含有体の製造方法

Publications (2)

Publication Number Publication Date
JPWO2006008978A1 JPWO2006008978A1 (ja) 2008-05-01
JP4735540B2 true JP4735540B2 (ja) 2011-07-27

Family

ID=35785097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006528975A Expired - Fee Related JP4735540B2 (ja) 2004-07-16 2005-07-07 カーボンナノチューブ含有体の製造方法

Country Status (2)

Country Link
JP (1) JP4735540B2 (ja)
WO (1) WO2006008978A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100166870A1 (en) * 2006-12-21 2010-07-01 The University Of Western Australia Method for Coating Nanoparticles
JP2008159812A (ja) * 2006-12-22 2008-07-10 Sharp Corp 半導体層形成装置および半導体層形成方法
JP5320564B2 (ja) * 2007-02-21 2013-10-23 国立大学法人北海道大学 微小カーボン単分子膜の形成方法及び表面コーティング方法並びにコーティング体
JP5570686B2 (ja) * 2007-05-07 2014-08-13 国立大学法人北海道大学 微細炭素繊維分散皮膜およびその製造方法
GB0715990D0 (en) * 2007-08-16 2007-09-26 Airbus Uk Ltd Method and apparatus for manufacturing a component from a composite material
JP2009067932A (ja) * 2007-09-14 2009-04-02 Toyo Ink Mfg Co Ltd カーボンナノチューブを含むコーティング用組成物
JP5526534B2 (ja) * 2008-12-05 2014-06-18 日本電気株式会社 カーボンナノチューブインク組成物及びカーボンナノチューブインク組成物の噴霧方法
JP2013514193A (ja) * 2009-12-17 2013-04-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング ナノ粒子の堆積
JP6130787B2 (ja) * 2010-03-30 2017-05-17 ナンテロ,インク. ネットワーク、ファブリック及びフィルム内にナノスケール要素を配列させるための方法
JP2013523591A (ja) * 2010-04-06 2013-06-17 ウィリアム・マーシュ・ライス・ユニバーシティ 高導電性のカーボンナノチューブ−ポリマー複合材の製造
JP5628768B2 (ja) * 2011-09-07 2014-11-19 富士フイルム株式会社 紐状フィラー含有塗布物の製造方法
JP6164587B2 (ja) * 2013-09-06 2017-07-19 国立大学法人 千葉大学 可溶化剤及びこれを用いたカーボンナノ材料層の形成方法
EP3174705B1 (en) 2014-07-30 2019-11-27 General Nano LLC Carbon nanotube sheet structure and method for its making
JPWO2016182018A1 (ja) * 2015-05-13 2018-03-01 昭和電工株式会社 カーボンナノチューブ複合シートの製造方法
US10758936B2 (en) 2015-12-08 2020-09-01 The Boeing Company Carbon nanomaterial composite sheet and method for making the same
US20190185632A1 (en) * 2016-08-04 2019-06-20 General Nano Llc Carbon nanotube film structure and method for making
CN111542140B (zh) * 2020-06-08 2022-09-09 大连工业大学 一种基于碳纳米管膜的便携式电热元件的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090809A (ja) * 1998-09-09 2000-03-31 Toshiba Corp 電界放出陰極、電子放出素子および電界放出陰極の製造方法
WO2002076724A1 (en) * 2001-03-26 2002-10-03 Eikos, Inc. Coatings containing carbon nanotubes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090809A (ja) * 1998-09-09 2000-03-31 Toshiba Corp 電界放出陰極、電子放出素子および電界放出陰極の製造方法
WO2002076724A1 (en) * 2001-03-26 2002-10-03 Eikos, Inc. Coatings containing carbon nanotubes

Also Published As

Publication number Publication date
JPWO2006008978A1 (ja) 2008-05-01
WO2006008978A1 (ja) 2006-01-26

Similar Documents

Publication Publication Date Title
JP4735540B2 (ja) カーボンナノチューブ含有体の製造方法
JP3751016B2 (ja) カーボンナノチューブ分散膜及び発光体
CN102448621B (zh) 可减少涂层缺陷的涂布方法和设备
JPWO2007066524A1 (ja) 製造方法、搬送装置及びハードコート層を有する機能性フィルムと反射防止層を有する機能性フィルム
US20040038556A1 (en) Method for providing nano-structures of uniform length
JP2009502726A (ja) 溶剤を含有するカーボンナノチューブ水性分散体
JP2007501110A5 (ja)
CN111489864A (zh) 交叉有序化银纳米线薄膜及其图案化的方法
JP5222333B2 (ja) 塗布膜の乾燥方法および装置
JP2006255661A (ja) 塗膜硬化方法及び装置
CN107446577A (zh) 制备光刻胶‑石墨烯量子点的发光复合体系的方法
JP5752475B2 (ja) 塗工膜の乾燥方法及び積層体製造システム
WO2008140505A2 (en) Method for producing carbon nanotubes, method for producing liquid dispersion thereof and optical product
JP4631242B2 (ja) 塗布膜の乾燥方法および装置
JPS5953530B2 (ja) 写真感光材料の製造装置
Gigot et al. Photolatent base catalyzed Michael-addition and concomitant in situ graphene oxide reduction to obtain electrically and thermally conductive UV-cured composite
JP2002082223A (ja) 偏光板用保護フィルム、光学用フィルムおよび画像表示材料
JP4034662B2 (ja) 液状塗着組成物の乾燥方法
JP4699660B2 (ja) 塗布膜の乾燥方法および装置
JP5599980B2 (ja) 導電膜とその製造方法、並びに有機エレクトロルミネッセンス素子
JP2004290776A (ja) 塗布膜の乾燥方法及び装置
US10026584B2 (en) Method for making carbon nanotube slurry
WO2019124135A1 (ja) 成膜方法
WO2005082775A1 (ja) カーボンナノチューブ含有薄膜
JP5233343B2 (ja) 防眩性積層体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

R150 Certificate of patent or registration of utility model

Ref document number: 4735540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees