JP4723049B1 - 直流駆動の無機エレクトロルミネッセンス素子と発光方法 - Google Patents
直流駆動の無機エレクトロルミネッセンス素子と発光方法 Download PDFInfo
- Publication number
- JP4723049B1 JP4723049B1 JP2010536262A JP2010536262A JP4723049B1 JP 4723049 B1 JP4723049 B1 JP 4723049B1 JP 2010536262 A JP2010536262 A JP 2010536262A JP 2010536262 A JP2010536262 A JP 2010536262A JP 4723049 B1 JP4723049 B1 JP 4723049B1
- Authority
- JP
- Japan
- Prior art keywords
- inorganic
- type semiconductor
- layer
- type
- direct
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/22—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/57—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
- C09K11/572—Chalcogenides
- C09K11/574—Chalcogenides with zinc or cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/0805—Chalcogenides
- C09K11/0822—Chalcogenides with rare earth metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7743—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing terbium
- C09K11/7744—Chalcogenides
- C09K11/7745—Chalcogenides with zinc or cadmium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/813—Bodies having a plurality of light-emitting regions, e.g. multi-junction LEDs or light-emitting devices having photoluminescent regions within the bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/851—Wavelength conversion means
- H10H20/8511—Wavelength conversion means characterised by their material, e.g. binder
- H10H20/8512—Wavelength conversion materials
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
- Luminescent Compositions (AREA)
Abstract
直流駆動発光素子の内部に半導体でNPN型の構造を形成し、それに隣接して蛍光体物質を蒸着した後、第1の電極と第2の電極で挟んだ構造の無機エレクトロルミネッセンス素子を作る。この構造を利用して、陰極側のPN接合に順方向電圧を加えP型半導体層内へ電子を注入する。さらにP型半導体層とN型半導体の加速層によって形成されているPN接合部を、逆バイアスすることにより加速層内部に広がる空乏層の電場を利用して、電子を加速し、発光中心または蛍光体に衝突させ、発光を得る方法である。
【選択図】図1
Description
有機EL素子は有機物中に電流を流すために、寿命が短いことと、高い温度に対して弱いことが問題となっている。
その反面、無機EL素子は広い範囲の温度で動作することや、寿命が永いことなど多くの有利な特徴を有しており、実用化に向けて数多く研究がなされてきたが、しかしながらこれらの研究の多くは交流電源で励起発光するものである。そのため交流励起EL素子のデメリットを回避するため、直流駆動で発光が得られる素子が切望されている。
印加電圧の最初の半サイクルで蛍光体の内部で電子を加速して、発光中心に衝突させ発光し、次の反転した半サイクルで反対の方向へ電子を加速、衝突させ再び発光させるものである。このように交流での発光は1サイクル中で2回の発光を起こし、連続したものではない。
このELの現象を連続して起こさせることができれば、発光の効率も高くなり、より強い発光が得られる可能性がある。そこで、定常的な発光を得るためには、発光素子を直流の電源で駆動し、常時、電子を供給し続ける必要がある。
従来からの直流駆動EL素子の基本的な構造は、透明電極と背面の金属電極との間に、直接蛍光体を挟んだものである。これは直流電流を蛍光体内部に流すため、電極から電荷を直接蛍光体に注入する必要があり、蛍光体と電極を直接接触させている。ところがこの構造では、流れる電流が不安定で、ある一定の電圧以上になると急激に電流が流れ、素子の破壊を招きやすい性質がある。
ところが、この構造では電流を適度にしぼるために、膜厚を数μm〜数十μm程度にする必要がある。このため製造中に薄膜の剥離などの問題が起こり、使用できる材料に関して制限が生じる。
そこで、Ta2O5やSiO2、などの絶縁物を数十nm〜数μmの厚さの薄膜に蒸着して形成し、この膜を通して電流を流すことが検討された。(非特許文献2,3)
このようにして、かなり高輝度に発光する直流EL素子が作れるようになったのであるが、素子の安定性と寿命の点について、まだ実用的なレベルまでは到達していない。
これはBaTiO3の誘電体絶縁物中にイットリウム(Y)を分散混入させ抵抗体として利用している。
しかしながら、安定性と寿命に問題がある。
これらの発明の素子は直流の電源で駆動でき、蛍光体層の内部に、正電極から電荷輸送層を通して正孔を注入し、負電極からは電子注入層を通して電子を注入する。ここで使用する蛍光体は再結合型のものを用い、蛍光体内部の不純物準位を介して発光層内で正孔と電子を再結合させることによって発光を得ている。
これらの特許文献2,3,4に開示される素子は、直流の電源で駆動することのできる無機EL素子であり、電荷注入型のEL素子である。電子と正孔を蛍光体内部に注入することによって再結合させ発光を得ている。蛍光体として再結合型の蛍光体を使用し、蛍光体内部の不純物レベルを介しての再結合発光を利用している。ところが、まだ発光効率と寿命に課題が残されている。
この特許文献5に開示される素子は電極から蛍光体の粉末に直接電荷を注入する素子で、基本的には従来から存在する分散型EL素子である。
このELの現象を連続して起こさせることができれば、より強い発光が得られる可能性を秘めている。そこで定常的な発光を得るためには、EL発光素子を直流の電源で駆動し、常時、蛍光体内に電子を供給し続ける必要がある。
絶縁性のガラス基板上に形成され陰極となる第1の電極と、この第1の電極に対向して配置され陽極となる第2電極との間に無機物からなる蛍光体層を挟んだ構造の無機エレクトロルミネッセンス素子であって、前記第1の電極である陰極と前記蛍光体層との間に、無機物の半導体材料で構成されたN型半導体とP型半導体をNPN型に接合した半導体構造を有し、前記第1の電極に前記NPN型に接合した半導体構造、前記蛍光体層、第2の電極の順に接合することを特徴とするものである。
上記構成の直流駆動の無機エレクトロルミネッセンス素子においては、陰極側のN型半導体とP型半導体のいわゆるPN接合に順方向電圧を加え、P型半導体の内部に電子を注入する作用を有する。また、蛍光体層側のN型半導体と前記P型半導体によって構成されるPN接合を逆バイアスとすることで空乏層を形成させて電子を加速させる作用を有する。蛍光体層は、この加速された電子の衝突を受けて励起され発光する作用を有する。
このように構成される直流駆動の無機エレクトロルミネッセンス素子においては、請求項1に記載の発明と同様の作用を有する。
このように構成される直流駆動の無機エレクトロルミネッセンス素子においても請求項1と同様の作用を有する。
このように構成される直流駆動の無機エレクトロルミネッセンス素子においても請求項1と同様の作用を有する。
このように構成される直流駆動の無機エレクトロルミネッセンス素子においても請求項1と同様の作用を有する。
このように構成される直流駆動の無機エレクトロルミネッセンス素子は、第1の電極と第2の電極の間で分散抵抗層が電流を分散させる作用と無機エレクトロルミネッセンス素子の面に均一に電界を与える作用を有する。
このように構成される直流駆動の無機エレクトロルミネッセンス素子の発光方法においては、請求項1、2に記載される発明と同様の作用を有する。
図1は、本実施の形態に係る直流駆動の無機エレクトロルミネッセンス素子の構成図である。図1において、無機エレクトロルミネッセンス発光装置2aは、ガラス基板3上に設けられた無機エレクトロルミネッセンス素子1aとこれに接続される直流電源10を備えている。
直流駆動の無機エレクトロルミネッセンス素子1aは、ガラス基板3上に設けられる下部陽極13と、この下部陽極13の上面に設置される蛍光体層5と、この蛍光体層5の上面に構成される加速層7(N型半導体層)、P型半導体層8及びN型半導体層9及びこのN型半導体層9の上面に形成される上部陰極12からなっている。
さらに、無機エレクトロルミネッセンス素子1aの下部陽極13と上部陰極12には直流電源10が接続されており、下部陽極13、上部背面電極6に直流電源10の陽極、陰極がそれぞれ接続されている。
本願発明は蛍光体物質へ電子の注入の方法と、電子の加速の方法を検討することによって、新しい構造を有する発光素子を提供することができた。
次に、P型半導体物質を10nm〜1μmに蒸着してP型半導体層8を形成し、加速層7の母体材料との間でPN接合を構成させる。さらに、この上にN型半導体物質を100nm〜10μmに蒸着してN型半導体層9として、加速層7、P型半導体層8及びN型半導体層9でNPN型の構造とする。最後に上部陰極12を真空蒸着して無機エレクトロルミネッセンス素子1aは完成する。これが本願発明に係る実施の形態の基本的な形である。
このPN接合の部分を逆バイアスすると、この加速層7とP型半導体層8の部分に空乏層が広がる。この状態の所に電子を注入し、内部電場である空乏層を利用して電子を加速、蛍光体層5内に含まれる発光中心に衝突させることによって発光11が得られる。
そこで、空乏層への電子の注入の方法は、前述のP型半導体層8とその上にあるN型半導体層9とで形成されたPN接合の部分に、順方向の電圧を印加すると順方向電流が流れ、P型半導体層8内に電子を注入できる。この電子はP型半導体層8内を拡散し、その結果、逆バイアス空乏層の内部電場内に電子を注入することができる。そして、電子は内部電場で加速され、蛍光体層5の発光中心に衝突し励起することによって、発光に到る。上部陰極12に負電位を、下部陽極13に正電位の電圧を印加すると発光が得られる。
PN接合については、従来から数多くの研究がなされてきた。PN接合の特性を積極的に直流EL素子に利用し、定常的に動作するようにしたものが、本発明の本質である。
この発明によって、安定した、寿命の永い発光が得られるようになり、さらに発光の効率を従来の方法より一桁以上向上させることができ、安定した明るい発光を得ることができる。
また、次に存在するPN接合の部分(P型半導体層8及び加速層7)は外部電圧に対して逆バイアスとなり、この部分に外部電圧VBの大部分が加わることになる。その結果、この接合の部分に空乏層が広がる。P型半導体層8を通して注入された電子14は、この空乏層内で加速されホットエレクトロンとして生成される。この高いエネルギーを得た電子14が蛍光体層5内にある発光中心15に衝突し、励起し、発光11が得られる。これが直流発光のメカニズムである。
図3のVNPはN型半導体層9とP型半導体層8との間に外部電圧が分配される電圧を概念的に表したもので、また、VPNはP型半導体層8とN型半導体である加速層7との間に分配される電圧を表している。
本実施の形態に係る直流駆動の無機エレクトロルミネッセンス素子は、ブラウン管の発光の機構を半導体の固体物質中で実現したもので、電子14の注入と加速、衝突、そして発光中心の励起、発光という工程を行うものである。
図4において、本実施の形態に係る直流駆動の無機エレクトロルミネッセンス素子1b及び無機エレクトロルミネッセンス発光装置2bでは、まずガラス基板3上に下部透明電極4を作る。これは導電性のあるもので、光を外部に取り出すため、上部か下部のいずれか一方の電極を透明にする必要があるのである。この下部透明電極4を構成する材料としては、ITO,ZnO,AZO,TiO2,SnO2,In2O3,ZnSnO3,AgInO2,Zn2In2O5,Zn2Ga2O4などの材料が考えられる。これらの材料自体は既に知られている材料であり、いずれも透明な電極を構成する際の材料としては本願の出願時に広く一般的に知られているものであるので、特に本願実施の形態において、それぞれを作成してその作用、効果に関する実証は不要と考えられ、実施していない。
ここで、無機エレクトロルミネッセンス素子1b全体を透明に仕上げる場合には、上部背面電極6を金属の代わりに、透明物質ITO,ZnO,AZO,Zn2In2O5,In2O3,TiO2,SnO2などにすればよく、高コントラストの素子に仕上げる場合にはMo、Ta、Tiなどの酸化物を蒸着して、上部背面電極6を黒色の電極に仕上げればよい。
このようにして作られた無機エレクトロルミネッセンス素子1bの上部背面電極6に正の電位を、そして下部透明電極4に負電位を加えると蛍光体層5からの発光が得られる。
また、無機エレクトロルミネッセンス素子全体が固体で構成されており、機械的な外力に対して強い。さらに、この無機エレクトロルミネッセンス素子はすべて無機物で構成されているため有機EL素子に比べ、周囲の温度が高くても正常に動作する。
高価な材料が使用されていないため材料費が安くおさえられ、無機エレクトロルミネッセンス素子の製造においても特殊な装置や特別な技術は必要なく、製造設備が安価であり、既知の製造技術で作成できる。
この自発光型の無機エレクトロルミネッセンス素子は全体の厚さが数十μmしかなく、薄い表示装置が作れるうえに、表示装置として利用する場合は、液晶のようにバックライト、偏光板などが必要なく、構造が簡単で価格的に有利である。
発光の原理が衝突励起型の無機EL素子のため、発光中心や蛍光体の物質を検討することによって、発光色を適当に調整することができる。
以上のように本発明の無機エレクトロルミネッセンス素子は数多くの利点を有しており、将来はディスプレー装置だけでなく、照明などに、特に平面の光源として活用できる可能性を秘めている。
以上説明したとおり、本実施の形態に係る無機エレクトロルミネッセンス素子においては、無機エレクトロルミネッセンス素子の内部に半導体のNPN構造を導入することで直流電源で駆動できる発光効率のよい自発光素子を提供することができる。
また、現在、数多く存在する自明の蛍光体を発光材料に利用することができ、希望する発光色を自由にコントロールすることが可能となる。
陰極側から供給された電子が内部電界によって陽極側に加速される。発光に必要なエネルギーを得て発光中心に衝突し、励起することにより光を放出する。
このように無機エレクトロルミネッセンス素子は内部に加わる電界によって電子が加速され発光中心に衝突する。より大きい電圧をかける程、電子のエネルギーは大きくなり、外部に放出される発光も強くなる。このため、より大きい印加電圧が必要となる訳である。
ところが、この無機エレクトロルミネッセンス素子は蛍光体層に半導体材料を使用し、NPN型の内部構造をなしているため、印加する電圧を高めていくと、ある電圧から急激に電流が流れ始め、印加電圧の増加に対して電流が大きく増加する。つまり電圧の変動に対して敏感で、内部を流れる電流は大きく変化する。
また、無機エレクトロルミネッセンス素子を作る際に、スパッタリング装置、蒸着装置などを使い、薄膜化した素子の構造を構成する。このため、製造上の過程で薄膜中に膜厚の差や不純物等の欠陥ができる可能性が高く、さらには局所的に尖った部分ができることもある。このような状態のところに電極を付け高い電圧を印加すると、電気的に弱い部分から先に破壊され、この部分から連鎖的に破壊の部分が広がっていく。特に、電圧駆動型の無機EL素子の場合この傾向が強い。
これらの現象は電圧駆動型の素子にとっては不利な現象であり、発光の輝度ムラとなって表れる。これは物理的に基本的な問題で、避けることのできない現象であり、また印加電圧の増加によって、この部分から破壊が起こりやすい。
最初の膜厚の問題は製造装置によってある程度は改良もできるが、どうしても第2の問題は物理の基本的な現象であり、これを取り除くことは極めて難しい。
このような状態のところに電極を付けて高い電圧を印加すると、電気的に弱い部分から先に破壊され、この部分から連鎖的に破壊の部分が広がっていく。
さらには、これら不純物や尖った部分の欠陥には外部からの電界が集中しやすくなり、局所的には高電界部分ができる。このため局所的な明るい部分と暗い部分が発生する。輝度のムラは面光源として好ましくない。また同時にこの部分は電気的に弱い部分となりやすく、素子の破壊電圧の低下を招く。
無機エレクトロルミネッセンス素子の場合、広い面積で発光させようとして電圧が加えられると、膜厚の薄い部分や、不純物などの欠陥のある部分が他の部分より早く破壊を起こし、その部分の破壊が他の部分へ伝搬する。
このように弱い所で局部的に破壊が発生し始めると、連鎖的に他の部分へと破壊が広がる傾向があり、一旦破壊が始まると、素子全体の壊滅的な破壊へと繋がり再起不能な状態となる。
つまり、素子全体の破壊電圧は、この局部的な部分の最低破壊電圧によって決定されることになる。
これはツェナーダイオードが一列に並んだ状態と同じである。この状態でどこか一部のツェナー電圧Vzが低い場合、その部分に電流が集中し、素子の破壊へとつながる。
並列に並ぶ無機エレクトロルミネッセンス素子は局所的な部分で比較すると、必ずしも全ての部分で均一とはいい難い。ところが外部からの印加電圧は、どの部分にも等しく加わるため、印加電圧の増加に伴って、ツェナー電圧の比較的低い所(図5に示したVz3に相当する。)に、集中的に電流が流れ始める。その結果、この弱い部分は加熱され、半導体の性質上、さらに電流が多く流れるようになる。最終的には、この部分から破壊が始まる。
この分散抵抗層30は、もし局所的に大きい電流が流れた場合、この場合での電圧降下分が大きくなり、この部分のエレクトロルミネッセンスセル部への外部からの印加電圧が軽減される。この結果広い面積の無機エレクトロルミネッセンス素子の内部に存在する不均一な部分への電圧集中が軽減され、素子全体に均一な電圧が印加されるようになる。
概念的に等価回路で説明すると図6のように、エレクトロルミネッセンスセル部に直列につながる抵抗群によって、電源から印加される電圧を、それぞれの特性のバラツキに応じて分配するようにした。この抵抗群が分散抵抗層30に相当し、本実施の形態に係る直流駆動の無機エレクトロルミネッセンス素子の分散抵抗層30の目的である。
本願の実施の形態に係る直流駆動の無機エレクトロルミネッセンス素子は、スパッタリング装置、EB蒸着装置などを利用して、薄膜の素子として作るが、全くバラツキのない電気的特性が均一な素子の製造は技術的に不可能に近い。
このバラツキがあるダイオードを並列に駆動する場合、局部的な偏りを生じ、半導体の場合には、一部分に電流の集中が起こる。この結果この部分が加熱され、熱暴走を起こし、破壊へとつながる。無機エレクトロルミネッセンス素子の場合には局部的な破壊が全体に広がり、素子としての機能が果たせなくなる。
そこで前述の図11のように分散抵抗層30を直列に挿入するように構成した。この分散抵抗層30により、電流の集中を防ぐことができ、無機エレクトロルミネッセンス素子を安定して駆動することができる。
もし局部的に大きな電流が流れた場合、この分散抵抗層での電圧降下分が大きくなり、この部分のエレクトロルミネッセンスセル部への印加電圧が軽減され、保護される。このため分散抵抗層は、大きい抵抗値が望ましいが、薄膜で構成するため蒸着の条件などによって、一定の条件が伴う。あまり厚くし過ぎると薄膜が剥離しやすくなり膜自体が不安定になる。
使用できる材料は、抵抗素子としての性質を有する物質ならば利用が可能で、Ta,Hf,Ti,Nd,Mo,Zn,Sn,Si,Al,Bの酸化物、窒化物又はこれらの混合物が利用できる。例えば、TaN,SiO2:Pd,Al2O3:Zn,AlN,BN,BO,MoO,Hf2O5,Ti2O3または、Ta2O5の陽極酸化膜、厚膜型の抵抗材料などもこの分散抵抗層30として利用が可能である。
これらの物質を分散抵抗層30に導入することによって、素子からの発熱による発光への影響は少ないものとなり、また同時に発光は安定した均一なものが得られる。
無機エレクトロルミネッセンス素子の場合において、発光強度は蛍光体層を流れる電流に比例するため、分散抵抗層30によって流れる電流は適当に分散され、素子からの発光も均一に調整されることになる。
以下、本願発明者が実際に試作した無機エレクトロルミネッセンス素子とそれを採用した発光装置と発光方法について実施例1乃至実施例4として説明する。
図4に示すように、無機エレクトロルミネッセンス素子1bの下部透明電極4のITO付ガラス基板3上にN型半導体層9として、ZnOの層を形成する。この層はZnの金属を用いてアクティブスパッタリング法を利用しアルゴンと微量の酸素雰囲気中で作ったものである。
次のP型半導体層8は、CuとAlの金属ターゲットを利用し、アルゴンと酸素雰囲気中においてアクティブスパッタリング法でCuAlO2を形成した。
加速層7としてのN型半導体層は、純粋なZnSの焼結ペレットを電子ビーム蒸着法(以下EB法という)で蒸着する。そして、この途中から発光中心としてTbF3のペレットを別のソース源から同時蒸着した。ZnS層の一部に発光中心であるTbF3を分散混在させて、この部分を蛍光体層5として使用する。そして、最上部にAl金属を真空蒸着して上部背面電極6とした。
このように作られた無機エレクトロルミネッセンス素子1bを採用する無機エレクトロルミネッセンス発光装置2bは、Al電極(上部背面電極6)に正電圧を、下部のITO電極(下部透明電極4)に負電圧を印加すると30V程度で緑色の発光が得られた。
実施例1に係る直流駆動の無機エレクトロルミネッセンス素子1bから得られた直流印加電圧と発光強度(発光輝度)の特性を図7に示す。
この特性は、本発明の実施例に係る直流駆動の無機エレクトロルミネッセンス素子に安定化電源で直流電圧を印加し、株式会社トプコンテクノハウス社製の輝度計(SR−3)で発光を測定した。
無機エレクトロルミネッセンス素子を構成する材料や組成、各層の膜厚によって発光開始電圧や最大発光強度は変化するが、この図7では本発明の実施例1に係る無機エレクトロルミネッセンスの代表的な特性を示した。
また、図8はその発光スペクトルのグラフである。この無機エレクトロルミネッセンス素子1bの蛍光体層5を形成する母体材料はZnSであり、この中に分散混入したTbF3からの発光で540〜550nm付近に特徴的な強いピークをもつ発光を示す。
図9に示されるように、本実施例における直流駆動の無機エレクトロルミネッセンス素子1dは、石英のガラス基板3上に、Tiの金属ターゲットを用い下部金属電極16をDCスパッタリング法で作った。
ここでは、蛍光体の高温での熱処理が必要なため、高融点物質Tiを使用したが、他にW,Mo,Ta,Pt,Ir,Pdなども利用できる。
次にZnの金属ターゲットを用い、アルゴンと微量の酸素ガス雰囲気中でアクティブスパッタリング法を利用してZnOのN型半導体層9を形成する。
この上にP型半導体層8として、NiOとLi2Oの焼結ターゲットを用い、アルゴンと微量の酸素の混合ガス中RFマグネトロンスパッタリング法でNiO:Liの薄膜を作製した。
N型の半導体の加速層7と蛍光体層5は、ZnSとZnS:TbF3の焼結ペレットを2種類用意し、まずEB法を利用してZnSのペレットを用い純粋なZnSの薄膜を加速層7として蒸着する。この工程の後、ZnS:TbF3のペレットに切り換え蛍光体層5を作った。蒸着が終了した時点で真空槽内を高真空に引き、400℃で10分間熱処理を行った。
最後にZnOとAl2O3の焼結ターゲットを用い、微量の酸素雰囲気中、上部透明電極17として、ZnO:Alの薄膜の形成をRFマグネトロンスパッタリング法で行い、トップエミッション型の無機EL素子1dは完成する。
このように作られた無機エレクトロルミネッセンス素子1dを採用する無機エレクトロルミネッセンス発光装置2dの場合は、上部に光を取り出すために背面電極(上部透明電極17)は透明である。40V程度の直流電圧を下部金属電極16にマイナス、上部透明電極17にプラスを印加するとTbF3に起因する緑色の発光が得られた。
両方の電極が金属の場合では、内部の発光を外部に取り出すため、図10のように横型の無機エレクトロルミネッセンス素子1cに仕上げる必要がある。
まず、ガラス基板3上に、Znの金属ターゲットを使用し、ArとO2の混合ガス雰囲気中でRFマグネトロンスパッタリングを行い、ZnOの薄膜を形成してN型半導体層9とする。
次にP型半導体層8はSrOとCu2Oの2種類の焼結ターゲットを用い、EB蒸着法でSrCu2O2の膜を作った。注入層(上部背面電極6bと接している部分(符号29)を特に注入層と呼ぶ)と加速層7の部分は純粋なZnSのペレットを使いEB法で形成した。蛍光体層5は金属製のマスクで一部被い、ZnS:Mnのペレットを用いて局部的にEB法で蒸着して成膜した。
この上に上部背面電極6a,6bとして、Alを抵抗加熱蒸着法で2カ所蒸着する。この無機エレクトロルミネッセンス素子1cの場合、ZnS:Mn蛍光体層5の膜が存在する側が正電極で、純粋なZnSの膜と接する側が負電極となる。無機エレクトロルミネッセンス素子1cを採用する無機エレクトロルミネッセンス発光装置2cに対して直流電圧を100V程度印加すると、この素子から橙色の発光が得られた。
本実施例に係る無機エレクトロルミネッセンス素子1eは、実施例2の無機エレクトロルミネッセンス素子1dと同様にトップエミッション型の素子であるが、内部に分散抵抗層30を設けた構造をしている。
まず、ガラス基板にTaの金属ターゲットを使用し、アルゴンガス雰囲気中でスパッタリング法を用いて、下部金属電極16を形成する。
そしてこの工程の途中から窒素ガスを導入して、Ta電極の表面にTaNの薄膜を形成した。この膜が分散抵抗層30として機能することになる。
次にZnの金属ターゲットを用い、アルゴンと微量の酸素ガス雰囲気中でアクティブスパッタ法を利用してZnOのN型半導体9を薄膜に形成する。
そしてこの薄膜の上面にP型半導体8として、実施例1と同様にCuとAlの金属ターゲットを用いアルゴンと微量の酸素雰囲気中でアクティブスパッタリング法を利用しCuAlO2を形成した。
N型半導体の加速層7と蛍光体層5の形成は、ZnSとZnS:Mnのペレットを2種類用意し、まずZnSのペレットを用いて加速層7としてEB法で蒸着する。この工程の後、ZnS:Mnのペレットに切り換え蛍光体層5を作った。
最後に上部透明電極17としてAuの半透明膜を抵抗加熱蒸着法で形成し、トップエミッション型の無機エレクトロルミネッセンス素子1eは完成する。
この素子の上部透明電極17にプラス、下部金属電極16にマイナスを印加すると図12のような印加電圧と発光強度の関係が得られた。
この時の発光色はMnからの発光で、図13のように570〜600nm付近にピークを持つ橙色の色調が得られた。
2a〜2e…無機エレクトロルミネッセンス発光装置
3…ガラス基板
4…下部透明電極
5…蛍光体層
6,6a,6b…上部背面電極
7…加速層(N型半導体層)
8…P型半導体層
9…N型半導体層
10…直流電源
11…発光
12…陰極(カソード)
13…陽極(アノード)
14…電子
15…発光中心
16…下部金属電極
17…上部透明電極
21…ガラス基板
22…下部透明電極
23…蛍光体層
24…上部背面電極
25…絶縁層
26…交流電源
27…安定化層
28…直流電源
29…注入層
30…分散抵抗層
Claims (7)
- 絶縁性のガラス基板上に形成され陰極となる第1の電極(4,6b,12,16)と、この第1の電極(4,6b,12,16)に対向して配置され陽極となる第2電極(6,6a,13,17)との間に無機物からなる蛍光体層(5)を挟んだ構造の無機エレクトロルミネッセンス素子(1a〜1e)であって、前記第1の電極(4,6b,12,16)である陰極と前記蛍光体層(5)との間に、無機物の半導体材料で構成されたN型半導体(7,9)とP型半導体(8)をNPN型に接合した半導体構造(7〜9)を有し、前記第1の電極(4,6b,12,16)に前記NPN型に接合した半導体構造(7〜9)、前記蛍光体層(5)、第2の電極(6,6a,13,17)の順に接合することを特徴とする直流駆動の無機エレクトロルミネッセンス素子(1a〜1e)。
- 前記蛍光体層(5)は、前記N型半導体材料中に発光中心又は蛍光物質を分散、混在させた膜によって形成されることを特徴とする請求項1記載の直流駆動の無機エレクトロルミネッセンス素子(1a〜1e)。
- 前記NPN型に接合した半導体構造(7〜9)における陰極側のN型半導体(9)の材料がZn,Ba,Sr,Cd,Ga,Sn,In,Ti,Al,Mg,Gdの酸化物、硫化物、リン化物、窒化物、セレン化物もしくはこれらの混合物のいずれかから構成されることを特徴とする請求項1又は請求項2に記載の直流駆動の無機エレクトロルミネッセンス素子(1a〜1e)。
- 前記NPN型に接合した半導体構造(7〜9)において中間に存在するP型半導体(8)の材料がNi,Mn,Cr,Co,Cu,Ag,La,Pr,Al,Sr,Ga,Ba,Snの酸化物、硫化物、セレン化物もしくはこれらの混合物のいずれかから構成されることを特徴とする請求項1乃至請求項3のいずれか1項に記載の直流駆動の無機エレクトロルミネッセンス素子(1a〜1e)。
- 前記NPN型に接合した半導体構造(7〜9)における前記蛍光体層(5)と隣接するN型半導体(7)の材料がZn,Ba,Sr、Cd,Ga,Sn,In,Ti,Al,Mg,Gdの酸化物、硫化物、リン化物、窒化物、セレン化物もしくはこれらの混合物であることを特徴とする請求項1乃至請求項4のいずれか1項に記載の直流駆動の無機エレクトロルミネッセンス素子(1a〜1e)。
- 前記第1の電極(16)と前記第2の電極(17)の間にTa,Hf,Ti,Nd,Mo,Sn,Zn,Si,Al,Bのうち、少なくとも1種からなる無機化合物を含む抵抗体物質を薄膜とした分散抵抗層(30)を備えることを特徴とする請求項1乃至請求項5のいずれか1項に記載の直流駆動の無機エレクトロルミネッセンス素子(1e)。
- 直流駆動の無機エレクトロルミネッセンス素子(1a〜1e)の発光方法であって、前記直流駆動の無機エレクトロルミネッセンス素子(1a〜1e)の内部に、第1及び第2のN型半導体(7,9)とP型半導体(8)を用いてNPN型の三層構造(7〜9)を作成し、このNPN型の三層構造(7〜9)において陰極側の前記第1のN型半導体(9)とP型半導体(8)から構成されるPN接合部に順方向電圧を印加することで前記P型半導体(8)内に電子を注入し、さらに前記P型半導体(8)と前記第2のN型半導体(7)とで構成されるPN接合部を逆バイアスすることで、このPN接合部に空乏層を形成させ、この空乏層の部分の電場を利用し、前記P型半導体(8)を通し注入された電子を加速して、前記第2のN型半導体(7)に隣接する蛍光体層(5)に分散、混在させた発光中心又は蛍光物質に衝突、発光させることを特徴とする直流駆動の無機エレクトロルミネッセンス素子(1a〜1e)の発光方法。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/060330 WO2011158368A1 (ja) | 2010-06-18 | 2010-06-18 | 直流駆動の無機エレクトロルミネッセンス素子と発光方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4723049B1 true JP4723049B1 (ja) | 2011-07-13 |
JPWO2011158368A1 JPWO2011158368A1 (ja) | 2013-08-15 |
Family
ID=44350524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010536262A Expired - Fee Related JP4723049B1 (ja) | 2010-06-18 | 2010-06-18 | 直流駆動の無機エレクトロルミネッセンス素子と発光方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8810123B2 (ja) |
EP (1) | EP2437577A4 (ja) |
JP (1) | JP4723049B1 (ja) |
KR (1) | KR101431476B1 (ja) |
CN (1) | CN102440072B (ja) |
TW (1) | TWI362895B (ja) |
WO (1) | WO2011158368A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013112298A1 (en) * | 2012-01-27 | 2013-08-01 | Wake Forest University | Electroluminescent devices and applications thereof |
US9261730B2 (en) | 2013-01-03 | 2016-02-16 | Empire Technology Development Llc | Display devices including inorganic components and methods of making and using the same |
WO2016043231A1 (ja) * | 2014-09-18 | 2016-03-24 | 国立大学法人東京工業大学 | 発光素子、表示装置および照明装置 |
CN113783471B (zh) * | 2021-07-16 | 2023-12-08 | 浙江大学 | 一种薄膜动态半导体-聚合物半导体异质结直流发电机及其制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60134278A (ja) * | 1983-12-23 | 1985-07-17 | 横河電機株式会社 | El表示装置 |
JPH10214044A (ja) * | 1997-01-31 | 1998-08-11 | Sanyo Electric Co Ltd | 表示装置 |
JP2005285401A (ja) * | 2004-03-29 | 2005-10-13 | Sanyo Electric Co Ltd | 発光素子 |
JP2007194194A (ja) * | 2005-12-22 | 2007-08-02 | Matsushita Electric Ind Co Ltd | エレクトロルミネッセンス素子およびこれを用いた表示装置、露光装置、照明装置 |
JP2008244387A (ja) * | 2007-03-29 | 2008-10-09 | Shimane Univ | 酸化亜鉛系発光素子 |
JP2009224136A (ja) * | 2008-03-14 | 2009-10-01 | Tdk Corp | 発光素子 |
JP2009266551A (ja) * | 2008-04-24 | 2009-11-12 | Panasonic Corp | 発光素子及び表示装置 |
JP2010135259A (ja) * | 2008-12-08 | 2010-06-17 | Sharp Corp | 発光素子 |
JP2010219078A (ja) * | 2009-03-12 | 2010-09-30 | Kobundo Insatsu Kk | 無機エレクトロルミネッセンス素子とその素子を利用した発光装置と発光方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0574572A (ja) | 1991-09-12 | 1993-03-26 | Nikon Corp | 薄膜el素子 |
JP3622031B2 (ja) * | 2000-04-25 | 2005-02-23 | 日本電信電話株式会社 | 発光素子 |
KR100459898B1 (ko) * | 2002-03-07 | 2004-12-04 | 삼성전자주식회사 | 실리콘 발광소자 및 이를 채용한 디스플레이 장치 |
CN100551187C (zh) * | 2003-12-26 | 2009-10-14 | 株式会社半导体能源研究所 | 发光元件 |
JP4378230B2 (ja) | 2004-06-15 | 2009-12-02 | キヤノン株式会社 | 発光素子及びその製造方法 |
EP1624502B1 (en) * | 2004-08-04 | 2015-11-18 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting element, display device, and electronic appliance |
JP4848181B2 (ja) | 2005-10-28 | 2011-12-28 | 学校法人金沢工業大学 | 正孔注入型el装置 |
JP2008007755A (ja) | 2006-06-02 | 2008-01-17 | Semiconductor Energy Lab Co Ltd | 発光材料、発光素子及び発光装置 |
KR101154758B1 (ko) * | 2008-11-18 | 2012-06-08 | 엘지이노텍 주식회사 | 반도체 발광소자 및 이를 구비한 발광소자 패키지 |
-
2010
- 2010-06-18 CN CN201080016370.4A patent/CN102440072B/zh not_active Expired - Fee Related
- 2010-06-18 KR KR1020127024336A patent/KR101431476B1/ko not_active Expired - Fee Related
- 2010-06-18 EP EP10773525.0A patent/EP2437577A4/en not_active Withdrawn
- 2010-06-18 WO PCT/JP2010/060330 patent/WO2011158368A1/ja active Application Filing
- 2010-06-18 JP JP2010536262A patent/JP4723049B1/ja not_active Expired - Fee Related
-
2011
- 2011-04-28 TW TW100114865A patent/TWI362895B/zh not_active IP Right Cessation
- 2011-09-22 US US13/240,627 patent/US8810123B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60134278A (ja) * | 1983-12-23 | 1985-07-17 | 横河電機株式会社 | El表示装置 |
JPH10214044A (ja) * | 1997-01-31 | 1998-08-11 | Sanyo Electric Co Ltd | 表示装置 |
JP2005285401A (ja) * | 2004-03-29 | 2005-10-13 | Sanyo Electric Co Ltd | 発光素子 |
JP2007194194A (ja) * | 2005-12-22 | 2007-08-02 | Matsushita Electric Ind Co Ltd | エレクトロルミネッセンス素子およびこれを用いた表示装置、露光装置、照明装置 |
JP2008244387A (ja) * | 2007-03-29 | 2008-10-09 | Shimane Univ | 酸化亜鉛系発光素子 |
JP2009224136A (ja) * | 2008-03-14 | 2009-10-01 | Tdk Corp | 発光素子 |
JP2009266551A (ja) * | 2008-04-24 | 2009-11-12 | Panasonic Corp | 発光素子及び表示装置 |
JP2010135259A (ja) * | 2008-12-08 | 2010-06-17 | Sharp Corp | 発光素子 |
JP2010219078A (ja) * | 2009-03-12 | 2010-09-30 | Kobundo Insatsu Kk | 無機エレクトロルミネッセンス素子とその素子を利用した発光装置と発光方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201141308A (en) | 2011-11-16 |
US8810123B2 (en) | 2014-08-19 |
CN102440072A (zh) | 2012-05-02 |
EP2437577A4 (en) | 2013-05-29 |
JPWO2011158368A1 (ja) | 2013-08-15 |
TWI362895B (en) | 2012-04-21 |
WO2011158368A1 (ja) | 2011-12-22 |
KR101431476B1 (ko) | 2014-08-20 |
CN102440072B (zh) | 2015-05-06 |
EP2437577A1 (en) | 2012-04-04 |
US20120068620A1 (en) | 2012-03-22 |
KR20120127506A (ko) | 2012-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005038634A (ja) | 電流注入型発光素子 | |
JP3613792B2 (ja) | 固体自発光表示装置及びその製造方法 | |
JP4723049B1 (ja) | 直流駆動の無機エレクトロルミネッセンス素子と発光方法 | |
JP5014347B2 (ja) | 表示装置 | |
Heikenfeld et al. | Low-voltage GaN: Er green electroluminescent devices | |
JP4378230B2 (ja) | 発光素子及びその製造方法 | |
JPWO2005004546A1 (ja) | 電界発光素子及び表示装置 | |
JP2010219078A (ja) | 無機エレクトロルミネッセンス素子とその素子を利用した発光装置と発光方法 | |
WO2008023620A1 (en) | Light-emitting device and display | |
Heikenfeld et al. | Rare-earth-doped GaN switchable color electroluminescent devices | |
US20020125495A1 (en) | Thin film alternating current electroluminescent displays | |
JPWO2008072520A1 (ja) | 線状発光装置 | |
US20060065943A1 (en) | Thin film alternating current solid-state lighting | |
JPH04363892A (ja) | 直流エレクトロルミネッセンス素子 | |
JP2006120328A (ja) | 分散型el素子 | |
WO2008069174A1 (ja) | 面状発光装置 | |
KR100799591B1 (ko) | 금속-절연체 전이층을 포함하는 전계발광소자 | |
Kitai | Alternating Current Thin Film and Powder Electroluminescence | |
JP5062882B2 (ja) | 無機エレクトロルミネッセンス素子 | |
JP5046637B2 (ja) | 無機エレクトロルミネッセント素子 | |
Chen et al. | AC powder electroluminescence | |
JP5276360B2 (ja) | 表示素子 | |
JP2009230967A (ja) | 直流型薄膜エレクトロルミネッセンス素子 | |
Nakajima et al. | A solid‐state light‐emitting device based on ballistic electron excitation using an inorganic material as a fluorescent film | |
Heikenfeld | Rare earth-doped gallium nitride flat panel display devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110329 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110406 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140415 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4723049 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |