[go: up one dir, main page]

JP4708623B2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP4708623B2
JP4708623B2 JP2001251025A JP2001251025A JP4708623B2 JP 4708623 B2 JP4708623 B2 JP 4708623B2 JP 2001251025 A JP2001251025 A JP 2001251025A JP 2001251025 A JP2001251025 A JP 2001251025A JP 4708623 B2 JP4708623 B2 JP 4708623B2
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
moisture
zone
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001251025A
Other languages
Japanese (ja)
Other versions
JP2003059516A (en
Inventor
浩志 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP2001251025A priority Critical patent/JP4708623B2/en
Publication of JP2003059516A publication Critical patent/JP2003059516A/en
Application granted granted Critical
Publication of JP4708623B2 publication Critical patent/JP4708623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば自動車や非常用電源あるいは分散電源などに用いられる燃料電池に関するものである。
【0002】
【従来の技術】
燃料電池は運転に伴う環境負荷が小さいため近年注目を集めており、有害な排気ガス を殆ど排出しないため市街地へも設置が可能であるため分散電源や自動車のエネルギー源としても用いられている。
【0003】
そして燃料電池の普及のためには発電効率をいかに高めるかが重要なポイントの一つである。このために電極やセパレーターの改良など種々の改良がなされている。また燃料電池の効率を高めるために供給空気を加湿すると発電効果が上がることが一般に知られている。そして供給空気や燃料を加湿するために水蒸気浸透膜用い、排気と供給空気との間で湿気の交換をしたものとして例えば特開平6−132038号などが見られる。
【0004】
このような水蒸気浸透膜を用いたものは、大きな面積の水蒸気浸透膜が必要となり、燃料電池の小型化が困難である。このために水を加熱して水蒸気を発生させ、その水蒸気で供給空気を加湿するものも開発された。
【0005】
【発明が解決しようとする課題】
しかしながら加湿器を設けると、加湿器自身が消費するエネルギーが大きく結果として効率向上の成果が得られないという問題がある。
【0006】
本発明は小型でありながら燃料電池に送られる空気を排出される蒸気を用いて加湿することによって効率を改善した燃料電池を提供しようとするものである。さらに燃料電池の起動時にも十分な蒸気を供給することができ、起動時の効率を高めて起動を速くすることができる燃料電池を提供しようとするものである。
【0007】
【課題を解決するための手段】
本件発明は以上のような課題を解決するため、空気取り入れ管路と空気系排気管路との間及び燃料取り入れ管路と前記電池セルからの燃料系排気管路との間で顕熱とともに潜熱を交換する回転式湿気・熱交換器を有し、大気及び燃料を回転式湿気・熱交換器の加湿通路に通す前に加熱するヒーターを設け、運転開始時にヒーターを動作させるとともに回転式湿気・熱交換器の回転を通常運転時より遅くするようにした。
【0008】
【発明の実施の形態】
本発明の請求項1に記載の発明は、空気取り入れ管路と空気系排気管路との間及び燃料取り入れ管路と前記電池セルからの燃料系排気管路との間で顕熱とともに潜熱を交換する回転式湿気・熱交換器を有し、大気あるいは燃料を回転式湿気・熱交換器の加湿通路に通して空気あるいは燃料取り入れ管路に送るようにするとともに排気を回転式湿気・熱交換器の脱湿通路に通して大気へ放出するようにし、大気あるいは燃料を回転式湿気・熱交換器の加湿通路に通す前に加熱するヒーターを設け、運転開始時にヒーターを動作させるとともに回転式湿気・熱交換器の回転を通常運転時より遅くしたものであり、運転開始時に回転式湿気・熱交換器の加湿通路内に残留した水分を取り入れ空気あるいは燃料に供給し、運転開始時点から十分な湿分を供給するという作用を有する。
【0009】
【実施例】
以下本発明の燃料電池の実施例1について図に沿って詳細に説明する。図1は本発明の燃料電池のシステム図である。1は電池セルであり、この中に電解液や電極が設けられており、水素と空気を供給することによって水素と空気中の酸素とが反応し、電気を起こすものである。燃料電池の電池セルは一般的であるので、詳細な説明は省略する。
【0010】
2は水素ボンベ(図示せず)やメタノールなどの燃料改質装置(図示せず)から送られる燃料(水素)を入れる燃料取入れ口であり、3は空気を入れる空気取入れ口である。4は排気口であり、ここから酸素の減少した空気と蒸気とが排出される。
【0011】
5は回転式湿気・熱交換器であり例えばアルミ箔をハニカム状に形成し、そのアルミ箔の表面にシリカゲル等の湿気吸着剤を担持したもので、Fタームの3L059−BA01に分類されるようなものである。
【0012】
回転式湿気・熱交換器5は図1の矢印方向にモーター(図示せず)によって回転駆動される。また回転式湿気・熱交換器5は吸熱ゾーン6と放熱ゾーン7とに分割されている。吸熱ゾーン6ではこの部分を通過する空気系排気から潜熱と顕熱を回収し奪い、放熱ゾーン7ではこの部分を通過する空気へ潜熱と顕熱を与える。
【0013】
この潜熱と顕熱を交換するプロセスについては、上記Fタームに分類される多くの出願で公知であるので、ここでの説明は省略する。
【0014】
8はヒーターであり放熱ゾーン7へ入る通路内に設けられ、放熱ゾーンへ送られる空気を加熱するものである。9はドレンパンであり、吸熱ゾーン6の下に設けられ吸熱ゾーン6内で結露した水を受けるものである。10は湿度センサーであり、空気取り入れ口3に入る前の空気の湿度を測定するものである。なお12は燃料系排気口である。
【0015】
図2は本発明の燃料電池の運転状態を示すフローチャートである。この動作は市販のシーケンサーやマイクロコンピューターを用いて簡単に実現することができる。先ず電池セル1の動作を開始すると、ステップ1で回転式湿気・熱交換器5を低速で回転させるとともにヒーター8に通電する。
【0016】
次にステップ2で電池セル1の動作開始から所定時間T経過したか否か判断する。そして所定時間T経過していないとステップ1へ戻り、回転式湿気・熱交換器5の低速運転とヒーター8への通電を維持する。
【0017】
これによってヒーター8で加熱された外気が放熱ゾーン7を通過し、湿気吸着剤に吸着された水分を放出する。従って外気は加湿され多湿空気となって電池セル1の空気取り入れ口3に入る。このようにして所定時間Tの間、多湿空気が電池セル1に供給され、電池セル1の立ち上がり時に水分を供給する。ここで所定時間Tを、電池セル1が十分に機能を発揮する状態になるまでの時間であるように設定する。
【0018】
電池セル1の動作開始から所定時間T経過したらステップ3に進み、回転式湿気・熱交換器5を高速で回転させるとともにヒーター8への通電を停止する。この時つまり所定時間T経過後には電池セル1は十分に機能を発揮しており、電池セル1の排気口4から酸素の減少した高温の空気と蒸気とが排出される。
【0019】
この高温の空気と蒸気が回転式湿気・熱交換器5の吸熱ゾーン6を通過する間に、回転式湿気・熱交換器5に熱と水分を与える。回転式湿気・熱交換器5は高速で回転しており、放熱ゾーン7へ短時間で移行する。そして放熱ゾーン7で外気に熱と蒸気とを与え、高温・多湿になった外気が空気取り入れ口3へ供給される。高温・多湿になった外気が電池セル1に供給されることによって電池セル1の発電効率が高くなる。
【0020】
次にステップ4に進み、湿度センサー10の出力wが所定値Wより大きいか否かチェックする。つまり空気取り入れ口3に入る空気の湿度があまり高いと逆に電池セル1の発電効率を低下させるため、空気の湿度を所定値W以下にする必要がある。
【0021】
つまり電池セル1の電気的負荷が大きく発電量が多い時には供給空気の量が増加し、放熱ゾーン7を出た空気の湿度が低くなり、反対に発電量が少ない時には供給空気の量が少ないため放熱ゾーン7を出た空気の湿度が高くなる。
【0022】
湿度センサー10の出力wが所定値以上の場合はステップ5に進み、回転式湿気・熱交換器5の回転を減速し電池セル1の排気からの水蒸気の回収を低下させる。反対に湿度センサー10の出力wが所定値以下の場合はステップ6に進み、回転式湿気・熱交換器5の回転を増速し電池セル1の排気からの水蒸気の回収を増加させる。これによって電池セル1の運転状況に応じた湿気と熱の供給を行うことができる。
【0023】
ステップ5あるいはステップ6で回転式湿気・熱交換器5の回転を調整した後にステップ7へ進み、電池セル1の運転を終了するか否か判断し、運転を終了しない場合はステップ4へ戻り、終了する場合は終了操作へ進む。
【0024】
以上の操作によって電池セル1に供給される空気は始動時から十分に加湿され、また回転式湿気・熱交換器5を湿気と熱の交換に用いているため、湿気や熱の媒体自身が移動し、湿気や熱の交換効率が高いため小型の回転式湿気・熱交換器5であっても十分な湿気と熱の交換を行うことができる。
【0025】
以上説明の実施例1は空気と空気系排気との間で湿気・熱交換を行う例を示したが、図3に示す実施例2のように燃料である水素と燃料系排気との間で湿気・熱交換を行う回転式湿気・熱交換器5’を設けてもよい。ここで6’は吸熱ゾーン、7’は放熱ゾーンであり上記の実施例1の吸熱ゾーン6、放熱ゾーン7とそれぞれ実質的に同一である。8’はヒーターであり、燃料の水素を加熱するものである。
【0026】
9’はドレンパンでこれも上記実施例1のドレンパン9と同一のものであり、湿度センサー10’は実施例1の湿度センサー10と、ポンプ11’も実施例1のポンプ11と実質的に同一である。またこの実施例2のものの動作は上記実施例1のものと同一であり、説明を省略する。
【0027】
この実施例2のものは燃料である水素が始動時から十分に加湿され、電池セル1の効率が向上する。また回転式湿気・熱交換器5’を湿気と熱の交換に用いているため、湿気や熱の媒体自身が移動し、湿気や熱の交換効率が高いため小型の回転式湿気・熱交換器5’であっても十分な湿気と熱の交換を行うことができる。
【0028】
以上説明の実施例1は空気と空気系排気との間で湿気・熱交換を行い、実施例2は燃料と燃料系排気との間で湿気・熱交換を行う例を示したが、図4に示す実施例3のように空気と空気系排気及び燃料である水素と燃料系排気との間で湿気・熱交換を行う回転式湿気・熱交換器5及び5’を設けてもよい。
【0029】
以上の各実施例では回転式湿気・熱交換器5,5’の回転を遅くする手段として、単純に回転速度を落とし回転を速くする手段として単純に回転速度を速めるようにしたが、回転式湿気・熱交換器5,5’の回転を間歇的に回転させ、停止時間を長短調整することによって回転速度を速くしたり、落としたりした場合と同様の効果を得ることができる。
【0030】
以上の各実施例のものでも始動時の湿気の供給が不足する場合には、ドレンパン9,9’に受けた水を圧送するポンプ11,11’を設け、ドレンパン9,9’の水を回転式湿気・熱交換器5,5’の放熱ゾーン7,7’の上から滴下する構成にし、ステップ1とステップ2との間でポンプ11,11’を動作させるようにすると、始動時の湿気の供給量を増加させることができる。
【0031】
【発明の効果】
本発明の燃料電池は上記の如く構成したので、湿気の透過膜を用いて排気中の湿気を供給空気に与えるものと比べて格段に小型化することができ、水を熱によって気化させて供給空気を加湿するものと比較して格段にエネルギー消費を小さくすることができる。
【0032】
つまり、湿気や熱の媒体を移動しながら湿気と熱とを排気から供給空気へ移動させるため、小型の装置であっても十分な湿気と熱との交換を行うことができる。また運転開始から所定時間経過した後は、排気の湿気や熱をそのまま供給空気の加湿・加熱に用いるため消費エネルギーが小さいものである。
【0033】
さらに本発明の燃料電池は運転開始時には、それ以前に運転したときに発生した水分を用いるようにしているため、始動時に外部から水を供給する必要がなく、維持管理が容易である。
【0034】
しかも電池セルの始動時や負荷の状態など、運転状況に応じて湿気の供給を制御することができ、最適な加湿量とすることによって電池セルの発電効率を最適にすることができる。
【図面の簡単な説明】
【図1】本発明の燃料電池の実施例1を示す説明図である。
【図2】本発明の燃料電池の動作を示すフローチャートである。
【図3】本発明の燃料電池の実施例2を示す説明図である。
【図4】本発明の燃料電池の実施例3を示す説明図である。
【符号の説明】
1 電池セル
2 水素取入れ口
3 空気取入れ口
4 空気系排気口
5、5’ 回転式湿気・熱交換器
6、6’ 吸熱ゾーン
7、7’ 放熱ゾーン
8、8’ ヒーター
9、9’ ドレンパン
10、10’‘湿度センサー
11、11’ ポンプ
12 燃料系排気口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell used for, for example, an automobile, an emergency power supply, or a distributed power supply.
[0002]
[Prior art]
Fuel cells have been attracting attention in recent years because they have a low environmental impact during operation, and they are used as distributed power sources and automobile energy sources because they emit little harmful exhaust gas and can be installed in urban areas.
[0003]
One important point is how to increase power generation efficiency for the spread of fuel cells. For this reason, various improvements such as improvements of electrodes and separators have been made. In addition, it is generally known that when the supply air is humidified to increase the efficiency of the fuel cell, the power generation effect is improved. For example, Japanese Patent Laid-Open No. 6-132038 shows that a water vapor permeable membrane is used to humidify supply air and fuel, and moisture is exchanged between exhaust and supply air.
[0004]
Those using such a water vapor permeable membrane require a water vapor permeable membrane having a large area, and it is difficult to reduce the size of the fuel cell. For this purpose, there has been developed a method in which water is heated to generate water vapor and the supply air is humidified with the water vapor.
[0005]
[Problems to be solved by the invention]
However, when a humidifier is provided, there is a problem that the energy consumed by the humidifier itself is large, and as a result, the efficiency improvement result cannot be obtained.
[0006]
The present invention seeks to provide a fuel cell that is small in size and has improved efficiency by humidifying the air sent to the fuel cell with the discharged steam. Furthermore, it is an object of the present invention to provide a fuel cell that can supply a sufficient amount of steam even when the fuel cell is activated, and can increase the efficiency at the time of activation and speed up the activation.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention solves the latent heat as well as the sensible heat between the air intake pipe and the air exhaust pipe and between the fuel intake pipe and the fuel exhaust pipe from the battery cell. Has a rotary moisture / heat exchanger that replaces the air, and a heater that heats the air and fuel before passing it through the humidification passage of the rotary moisture / heat exchanger is installed. The rotation of the heat exchanger was made slower than during normal operation.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, latent heat is generated along with sensible heat between the air intake pipe and the air exhaust pipe and between the fuel intake pipe and the fuel exhaust pipe from the battery cell. It has a rotary humidity / heat exchanger to be exchanged, and the air or fuel is sent to the air or fuel intake pipe through the humidification passage of the rotary humidity / heat exchanger, and the exhaust is rotary humidity / heat exchange. A heater that heats the atmosphere or fuel before passing it through the humidifying passage of the rotary humidity / heat exchanger is provided to operate the heater at the start of operation and the rotary humidity.・ Rotation of the heat exchanger is slower than in normal operation. At the start of operation, moisture remaining in the humidification passage of the rotary moisture / heat exchanger is taken in and supplied to the air or fuel. Moisture It has the effect of supplying.
[0009]
【Example】
Hereinafter, a first embodiment of the fuel cell of the present invention will be described in detail with reference to the drawings. FIG. 1 is a system diagram of a fuel cell according to the present invention. Reference numeral 1 denotes a battery cell, in which an electrolytic solution and an electrode are provided, and by supplying hydrogen and air, hydrogen and oxygen in the air react to generate electricity. Since the battery cell of a fuel cell is common, detailed description is abbreviate | omitted.
[0010]
Reference numeral 2 denotes a fuel intake port for introducing fuel (hydrogen) sent from a fuel reformer (not shown) such as a hydrogen cylinder (not shown) or methanol, and 3 denotes an air intake port for introducing air. Reference numeral 4 denotes an exhaust port from which oxygen-depleted air and steam are discharged.
[0011]
Reference numeral 5 denotes a rotary moisture / heat exchanger, for example, an aluminum foil is formed in a honeycomb shape, and a moisture adsorbent such as silica gel is supported on the surface of the aluminum foil. Is something.
[0012]
The rotary moisture / heat exchanger 5 is rotationally driven by a motor (not shown) in the direction of the arrow in FIG. The rotary moisture / heat exchanger 5 is divided into an endothermic zone 6 and a heat radiating zone 7. In the heat absorption zone 6, latent heat and sensible heat are collected and taken away from the air system exhaust passing through this portion, and in the heat dissipation zone 7, latent heat and sensible heat are given to the air passing through this portion.
[0013]
Since the process of exchanging latent heat and sensible heat is known in many applications classified as the above F-term, description thereof is omitted here.
[0014]
A heater 8 is provided in a passage into the heat dissipation zone 7 and heats air sent to the heat dissipation zone. A drain pan 9 is provided below the endothermic zone 6 and receives water condensed in the endothermic zone 6. A humidity sensor 10 measures the humidity of the air before entering the air intake 3. Reference numeral 12 denotes a fuel system exhaust port.
[0015]
FIG. 2 is a flowchart showing the operating state of the fuel cell of the present invention. This operation can be easily realized using a commercially available sequencer or microcomputer. First, when the operation of the battery cell 1 is started, in step 1, the rotary moisture / heat exchanger 5 is rotated at a low speed and the heater 8 is energized.
[0016]
Next, in step 2, it is determined whether or not a predetermined time T has elapsed from the start of operation of the battery cell 1. If the predetermined time T has not elapsed, the process returns to step 1 to maintain the low speed operation of the rotary moisture / heat exchanger 5 and the energization of the heater 8.
[0017]
As a result, the outside air heated by the heater 8 passes through the heat dissipation zone 7 and releases the moisture adsorbed by the moisture adsorbent. Accordingly, the outside air is humidified and becomes humid air and enters the air intake 3 of the battery cell 1. In this manner, the humid air is supplied to the battery cell 1 for a predetermined time T, and moisture is supplied when the battery cell 1 is started up. Here, the predetermined time T is set so as to be a time until the battery cell 1 is fully functional.
[0018]
When a predetermined time T has elapsed from the start of the operation of the battery cell 1, the process proceeds to step 3, where the rotary moisture / heat exchanger 5 is rotated at a high speed and energization to the heater 8 is stopped. At this time, that is, after the predetermined time T has elapsed, the battery cell 1 is fully functioning, and high-temperature air and steam with reduced oxygen are discharged from the exhaust port 4 of the battery cell 1.
[0019]
While the high-temperature air and steam pass through the heat absorption zone 6 of the rotary moisture / heat exchanger 5, heat and moisture are given to the rotary moisture / heat exchanger 5. The rotary moisture / heat exchanger 5 rotates at a high speed and moves to the heat dissipation zone 7 in a short time. Then, heat and steam are given to the outside air in the heat radiation zone 7, and the outside air that has become hot and humid is supplied to the air intake 3. Power supply efficiency of the battery cell 1 is increased by supplying high temperature and high humidity outside air to the battery cell 1.
[0020]
Next, the routine proceeds to step 4 where it is checked whether or not the output w of the humidity sensor 10 is greater than a predetermined value W. That is, if the humidity of the air entering the air intake port 3 is too high, the power generation efficiency of the battery cell 1 is reduced, and therefore the humidity of the air needs to be a predetermined value W or less.
[0021]
That is, when the electric load of the battery cell 1 is large and the amount of power generation is large, the amount of supply air increases, the humidity of the air leaving the heat dissipation zone 7 decreases, and conversely, when the amount of power generation is small, the amount of supply air is small. The humidity of the air leaving the heat dissipation zone 7 becomes high.
[0022]
If the output w of the humidity sensor 10 is greater than or equal to the predetermined value, the process proceeds to step 5 where the rotation of the rotary moisture / heat exchanger 5 is decelerated and the recovery of water vapor from the exhaust of the battery cell 1 is reduced. On the other hand, when the output w of the humidity sensor 10 is equal to or less than the predetermined value, the process proceeds to step 6 where the rotation of the rotary moisture / heat exchanger 5 is increased and the recovery of water vapor from the exhaust of the battery cell 1 is increased. Thus, moisture and heat can be supplied according to the operating status of the battery cell 1.
[0023]
After adjusting the rotation of the rotary moisture / heat exchanger 5 in step 5 or step 6, the process proceeds to step 7 to determine whether or not to end the operation of the battery cell 1. If the operation is not ended, the process returns to step 4. When it ends, it proceeds to the end operation.
[0024]
The air supplied to the battery cell 1 by the above operation is sufficiently humidified from the start, and the rotary moisture / heat exchanger 5 is used for exchanging moisture and heat. However, since the exchange efficiency of moisture and heat is high, even a small rotary moisture / heat exchanger 5 can sufficiently exchange moisture and heat.
[0025]
In the first embodiment described above, an example in which moisture and heat exchange is performed between air and air system exhaust is shown. However, as in Example 2 shown in FIG. A rotary moisture / heat exchanger 5 ′ that performs moisture / heat exchange may be provided. Here, 6 ′ is an endothermic zone and 7 ′ is a heat radiating zone, which are substantially the same as the heat absorbing zone 6 and the heat radiating zone 7 of the first embodiment. Reference numeral 8 'denotes a heater for heating the hydrogen of the fuel.
[0026]
Reference numeral 9 'denotes a drain pan which is the same as the drain pan 9 of the first embodiment. The humidity sensor 10' is substantially the same as the humidity sensor 10 of the first embodiment and the pump 11 'is substantially the same as the pump 11 of the first embodiment. It is. The operation of the second embodiment is the same as that of the first embodiment, and a description thereof will be omitted.
[0027]
In the second embodiment, hydrogen as a fuel is sufficiently humidified from the start, and the efficiency of the battery cell 1 is improved. In addition, since the rotary moisture / heat exchanger 5 'is used for exchanging moisture and heat, the humidity and heat medium itself moves, and the humidity and heat exchange efficiency is high, so a small rotary moisture / heat exchanger is available. Even 5 ', sufficient moisture and heat exchange can be performed.
[0028]
In the first embodiment described above, moisture / heat exchange is performed between air and air system exhaust, and in the second embodiment, an example is illustrated in which moisture / heat exchange is performed between fuel and fuel system exhaust. As shown in the third embodiment, rotary moisture / heat exchangers 5 and 5 ′ for performing moisture / heat exchange between air and air system exhaust and hydrogen as fuel and fuel system exhaust may be provided.
[0029]
In each of the above embodiments, as the means for slowing the rotation of the rotary moisture / heat exchangers 5 and 5 ', the rotational speed is simply increased as the means for simply decreasing the rotational speed and increasing the rotation speed. By rotating the humidity / heat exchangers 5 and 5 ′ intermittently and adjusting the length of the stop time, the same effect as when the rotational speed is increased or decreased can be obtained.
[0030]
Even in the above embodiments, when the moisture supply at the time of starting is insufficient, the pumps 11 and 11 ′ for pumping the water received in the drain pans 9 and 9 ′ are provided to rotate the water in the drain pans 9 and 9 ′. Humidity at the time of start-up when the pumps 11 and 11 'are operated between the step 1 and the step 2 by dropping from the heat radiation zones 7 and 7' of the moisture / heat exchangers 5 and 5 '. The amount of supply can be increased.
[0031]
【The invention's effect】
Since the fuel cell of the present invention is configured as described above, it can be remarkably miniaturized as compared with the case where moisture in the exhaust gas is supplied to the supply air using a moisture permeable membrane, and water is vaporized by heat and supplied. Energy consumption can be remarkably reduced as compared with the case of humidifying air.
[0032]
That is, moisture and heat are moved from the exhaust to the supply air while moving the moisture and heat medium, so that even a small device can sufficiently exchange moisture and heat. In addition, after a predetermined time has elapsed from the start of operation, the humidity and heat of the exhaust gas are used as they are for humidification and heating of the supply air, so that energy consumption is small.
[0033]
Furthermore, since the fuel cell of the present invention uses the water generated when the fuel cell was operated before the start of operation, it is not necessary to supply water from the outside at the time of start-up, and maintenance is easy.
[0034]
In addition, the supply of moisture can be controlled according to the operating conditions such as when the battery cell is started or the load state, and the power generation efficiency of the battery cell can be optimized by setting the optimal humidification amount.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing Example 1 of a fuel cell of the present invention.
FIG. 2 is a flowchart showing the operation of the fuel cell of the present invention.
FIG. 3 is an explanatory view showing Example 2 of the fuel cell of the present invention.
FIG. 4 is an explanatory view showing Example 3 of the fuel cell of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery cell 2 Hydrogen intake port 3 Air intake port 4 Air system exhaust port 5, 5 'Rotary-type moisture and heat exchanger 6, 6' Endothermic zone 7, 7 'Radiation zone 8, 8' Heater 9, 9 'Drain pan 10 10 '' humidity sensor 11, 11 'pump 12 fuel system exhaust port

Claims (6)

電池セルと、前記電池セルへの空気取り入れ管路と前記電池セルからの空気系排気管路との間で顕熱とともに潜熱を交換する回転式湿気・熱交換器を有し、大気を前記回転式湿気・熱交換器の放熱ゾーンに通して空気取り入れ管路に送るようにするとともに空気系排気を回転式湿気・熱交換器の吸熱ゾーンに通して大気へ放出するようにし、大気を前記回転式湿気・熱交換器の放熱ゾーンに通す前に加熱するヒーターを設け、前記吸熱ゾーンで結露した水を受けるドレンパンと、このドレンパンに溜まった水を前記放熱ゾーンに送るポンプを設け、前記電池セルの運転開始時のみヒーターを動作させ、前記ポンプを動作させて放熱ゾーンに水を供給するとともに回転式湿気・熱交換器の回転を通常運転時より遅くなるよう前記ヒーターと前記ポンプと前記回転式湿気・熱交換器の運転を制御するようにした燃料電池。The battery cell has a rotary moisture / heat exchanger that exchanges latent heat together with sensible heat between the battery cell and an air intake pipe to the battery cell and an air exhaust pipe from the battery cell. The air is sent to the air intake pipe through the heat release zone of the moisture / heat exchanger and the air exhaust is discharged to the atmosphere through the heat absorption zone of the rotary moisture / heat exchanger. A heater for heating before passing through the heat dissipation zone of the moisture / heat exchanger, a drain pan for receiving water condensed in the heat absorption zone, and a pump for sending the water accumulated in the drain pan to the heat dissipation zone, to the heater at the start of the operation only operation, the said heater to be lower than during normal operation the rotation of the rotary moisture-heat exchanger supplies the water to the heat radiation zone by operating the pump Fuel cell so as to control the operation of the pump and the rotary moisture-heat exchanger. 電池セルと、前記電池セルへの燃料取り入れ管路と前記電池セルからの燃料系排気管路との間で顕熱とともに潜熱を交換する回転式湿気・熱交換器を有し、燃料を前記回転式湿気・熱交換器の放熱ゾーンに通して燃料取り入れ管路に送るようにするとともに燃料系排気を回転式湿気・熱交換器の吸熱ゾーンに通して大気へ放出するようにし、燃料を前記回転式湿気・熱交換器の放熱ゾーンに通す前に加熱するヒーターを設け、前記吸熱ゾーンで結露した水を受けるドレンパンと、このドレンパンに溜まった水を前記放熱ゾーンに送るポンプを設け、前記電池セルの運転開始時のみヒーターを動作させ、前記ポンプを動作させて放熱ゾーンに水を供給するとともに回転式湿気・熱交換器の回転を通常運転時より遅くなるよう前記ヒーターと前記ポンプと前記回転式湿気・熱交換器の運転を制御するようにした燃料電池。A battery cell, and a rotary moisture / heat exchanger for exchanging latent heat together with sensible heat between a fuel intake line to the battery cell and a fuel system exhaust line from the battery cell. Through the heat release zone of the moisture / heat exchanger and the fuel exhaust to the atmosphere through the heat absorption zone of the rotary moisture / heat exchanger, and the fuel rotates. A heater for heating before passing through the heat dissipation zone of the moisture / heat exchanger, a drain pan for receiving water condensed in the heat absorption zone, and a pump for sending the water accumulated in the drain pan to the heat dissipation zone, to the heater at the start of the operation only operation, the said heater to be lower than during normal operation the rotation of the rotary moisture-heat exchanger supplies the water to the heat radiation zone by operating the pump Fuel cell so as to control the operation of the pump and the rotary moisture-heat exchanger. 電池セルと、前記電池セルへの空気取り入れ管路と前記電池セルからの空気系排気管路との間で顕熱とともに潜熱を交換する第1回転式湿気・熱交換器と、前記電池セルへの燃料取り入れ管路と前記電池セルからの燃料系排気管路との間で顕熱とともに潜熱を交換する第2回転式湿気・熱交換器を有し、大気を前記第1回転式湿気・熱交換器の放熱ゾーンに通して空気取り入れ管路に送るようにするとともに空気系排気を第1回転式湿気・熱交換器の吸熱ゾーンを通して大気へ放出するようにし、前記第1回転式湿気・熱交換器の吸熱ゾーンで結露した水を受ける第1ドレンパンと、この第1ドレンパンに溜まった水を前記第1回転式湿度・熱交換器の放熱ゾーンに送る第1ポンプと、燃料を前記第2回転式湿気・熱交換器の放熱ゾーンに通して燃料取り入れ管路に送るようにするとともに燃料系排気を第2回転式湿気・熱交換器の吸熱ゾーンに通して大気へ放出するようにし、前記第2回転式湿気・熱交換器の吸熱ゾーンで結露した水を受ける第2ドレンパンと、この第2ドレンパンに溜まった水を前記第2回転式湿度・熱交換器の放熱ゾーンに送る第2ポンプと、大気を前記第1回転式湿気・熱交換器の放熱ゾーンに通す前に加熱する第1ヒーターと、燃料を前記第2回転式湿気・熱交換器の放熱ゾーンに通す前に加熱する第2ヒーターを設け、前記電池セルの運転開始時のみ第1及び第2ヒーターと、前記第1及び第2ポンプを動作させるとともに前記第1及び第2回転式湿気・熱交換器の回転を通常運転時より遅くなるよう前記第1及び第2ヒーターと前記第1及び第2回転式湿気・熱交換器の運転を制御するようにした燃料電池。A battery cell, a first rotary moisture / heat exchanger for exchanging latent heat together with sensible heat between an air intake line to the battery cell and an air exhaust line from the battery cell; to the battery cell Having a second rotary moisture / heat exchanger for exchanging latent heat with sensible heat between the fuel intake pipeline of the battery and the fuel system exhaust pipeline from the battery cell, and the atmosphere is used for the first rotary moisture / heat. through heat radiation zone of exchanger air system exhaust through the heat absorbing zone of the first rotary moisture-heat exchanger so as to release into the atmosphere as well as to send the air intake conduit, the first rotary moisture A first drain pan that receives water condensed in the heat absorption zone of the heat exchanger, a first pump that sends the water accumulated in the first drain pan to the heat dissipation zone of the first rotary humidity / heat exchanger, and the fuel passing the heat radiating zone of the second rotary moisture-heat exchanger The fuel system exhaust through the endothermic zone of the second rotary moisture-heat exchanger so as to release into the atmosphere as well as to send the fuel intake conduit Te, the endothermic zone of the second rotary moisture-heat exchanger A second drain pan that receives the water condensed in the second drain pan, a second pump that sends the water accumulated in the second drain pan to the heat dissipation zone of the second rotary humidity / heat exchanger, and the atmosphere for the first rotary moisture / heat a first heater for heating prior to passing the heat radiating zone of exchanger, a second heater for heating prior to passing the fuel in heat radiation zone of the second rotary moisture-heat exchanger is provided, the operation at the start of the battery cell Only the first and second heaters, the first and second pumps are operated, and the first and second rotary moisture / heat exchangers are rotated slower than in normal operation. And the first and second times Fuel cell so as to control the operation of the equation moisture-heat exchanger. 電池セルの運転開始時のみヒーターを動作させるとともに回転式湿気・熱交換器の回転を通常運転時より遅くした請求項1又は請求項2又は請求項3記載の燃料電池。4. The fuel cell according to claim 1, wherein the heater is operated only at the start of battery cell operation, and the rotation of the rotary moisture / heat exchanger is made slower than that during normal operation. 回転式湿気・熱交換器の回転を通常運転時より遅くする手段として回転速度を低下させた請求項4記載の燃料電池。The fuel cell according to claim 4, wherein the rotational speed is lowered as means for slowing the rotation of the rotary moisture / heat exchanger from that during normal operation. 回転式湿気・熱交換器の回転を通常運転時より遅くする手段として回転を間歇回転とした請求項4記載の燃料電池。5. The fuel cell according to claim 4 , wherein the rotation of the rotary moisture / heat exchanger is intermittent rotation as means for slowing the rotation of the rotary moisture / heat exchanger from that during normal operation.
JP2001251025A 2001-08-22 2001-08-22 Fuel cell Expired - Lifetime JP4708623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001251025A JP4708623B2 (en) 2001-08-22 2001-08-22 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001251025A JP4708623B2 (en) 2001-08-22 2001-08-22 Fuel cell

Publications (2)

Publication Number Publication Date
JP2003059516A JP2003059516A (en) 2003-02-28
JP4708623B2 true JP4708623B2 (en) 2011-06-22

Family

ID=19079739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001251025A Expired - Lifetime JP4708623B2 (en) 2001-08-22 2001-08-22 Fuel cell

Country Status (1)

Country Link
JP (1) JP4708623B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2409763B (en) * 2003-12-31 2007-01-17 Intelligent Energy Ltd Water management in fuel cells
JP2006244786A (en) * 2005-03-01 2006-09-14 Kawamura Electric Inc Fuel cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110237A (en) * 1988-10-20 1990-04-23 Komatsu Ltd Total heat exchanger
JPH06132038A (en) * 1992-10-20 1994-05-13 Fuji Electric Co Ltd Solid polymer electrolyte fuel cell
JPH0861729A (en) * 1994-08-26 1996-03-08 Kankyo:Kk Total heat exchange ventilator
JPH10176842A (en) * 1996-12-03 1998-06-30 Seibu Giken:Kk Air conditioner
JP2000182648A (en) * 1998-12-14 2000-06-30 Matsushita Electric Ind Co Ltd Solid polymer fuel cell system and information recording medium
JP2000357530A (en) * 1999-06-14 2000-12-26 Sanyo Electric Co Ltd Fuel cell system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110237A (en) * 1988-10-20 1990-04-23 Komatsu Ltd Total heat exchanger
JPH06132038A (en) * 1992-10-20 1994-05-13 Fuji Electric Co Ltd Solid polymer electrolyte fuel cell
JPH0861729A (en) * 1994-08-26 1996-03-08 Kankyo:Kk Total heat exchange ventilator
JPH10176842A (en) * 1996-12-03 1998-06-30 Seibu Giken:Kk Air conditioner
JP2000182648A (en) * 1998-12-14 2000-06-30 Matsushita Electric Ind Co Ltd Solid polymer fuel cell system and information recording medium
JP2000357530A (en) * 1999-06-14 2000-12-26 Sanyo Electric Co Ltd Fuel cell system

Also Published As

Publication number Publication date
JP2003059516A (en) 2003-02-28

Similar Documents

Publication Publication Date Title
US6936359B2 (en) Apparatus for warming-up fuel cell
JP2009200026A (en) Evaporation cooling type fuel cell system and its cooling method
JP2000111096A (en) Desiccant air conditioning system
JP3685936B2 (en) Polymer electrolyte fuel cell system
JP2001167779A (en) Fuel cell system for car
JP2000156236A5 (en)
KR101328584B1 (en) Tri-gen system
JP2007255780A (en) Desiccant air conditioning system utilizing solar energy
CN107627808B (en) A vehicle dehumidification and cooling device
JP4708623B2 (en) Fuel cell
JP3821031B2 (en) Desiccant air conditioning system
KR100724701B1 (en) Air Conditioning Device and Air Conditioning Method Using Fuel Cell
JP4122346B2 (en) Dehumidifying air conditioner
JP5623962B2 (en) Air conditioning system
CN106765704A (en) Double caloic coupled solar hot-air type vapo(u)rization systems and its method
JPH0942709A (en) Desiccant air conditioner
JP4414110B2 (en) Dehumidifying air conditioner
JP2000030726A5 (en)
JP2001193966A (en) Humidity control system
KR20160067610A (en) Using a fuel cell heat recovry drying unit and its dry method
JP2002224529A (en) Dehumidifying air conditioner
JP4470329B2 (en) Fuel cell power generator and method of operating the same
CN207345431U (en) Dehumidifying and cooling device for vehicle
JP4348531B2 (en) Dehumidifying air conditioner
CN114135949B (en) PEMFC jointly supplied fresh air purification, dehumidification and humidification device and its control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110317

R150 Certificate of patent or registration of utility model

Ref document number: 4708623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250