[go: up one dir, main page]

JPH02110237A - Total heat exchanger - Google Patents

Total heat exchanger

Info

Publication number
JPH02110237A
JPH02110237A JP26289188A JP26289188A JPH02110237A JP H02110237 A JPH02110237 A JP H02110237A JP 26289188 A JP26289188 A JP 26289188A JP 26289188 A JP26289188 A JP 26289188A JP H02110237 A JPH02110237 A JP H02110237A
Authority
JP
Japan
Prior art keywords
membrane
air
tubes
temperature
indoor air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26289188A
Other languages
Japanese (ja)
Other versions
JP2617782B2 (en
Inventor
Mitsuru Oaku
大阿久 満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP26289188A priority Critical patent/JP2617782B2/en
Publication of JPH02110237A publication Critical patent/JPH02110237A/en
Application granted granted Critical
Publication of JP2617782B2 publication Critical patent/JP2617782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To prevent absorption liquid from being spattered, foul indoor air from being mixed into fresh air and make applicable for hospitals or high technology facilities by connecting the upper end and the lower end of a pair of membrane tubes with a connection tube respectively and filling absorption liquid in this enclosed passage. CONSTITUTION:A pair of membrane tubes 1 and 2 are separated from each other by a partition wall 3 and laid out so that their axial center may be oriented vertically. Both the upper end and the lower end of the paired membrane tubes 1 and 2 are connected with each other by connection tubes 4, 5 which penetrate the partition wall 3, thereby forming a ring-shaped enclosed passage. The membrane tubes are formed by a hydrophobic and porous membrane which has permeability to water vapor but against liquid. Absorbing solution, such as lithium chloride which can absorb moisture is filled in the tubes. The absorbing solution 6 filled in the tubes is adapted to circulate clockwise as indicated by the arrow. This construction exchanges total heat between the supplied open air and the exhausted indoor air by way of the absorbing solution so that the temperature and moisture of the open air may approxymate the temperature and moisture of the discharged indoor air.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷暖房されたオフィス、ホテル、病院、工場
等の換気装置に用いられ、この換気装置により給排気さ
れる空気の相互の顕然と潜熱を含む全熱の熱交換を行な
う全熱交換器に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is used in a ventilation system for air-conditioned offices, hotels, hospitals, factories, etc. The present invention relates to a total heat exchanger that exchanges total heat including latent heat.

〔従来の技術〕[Conventional technology]

第8図は余熱交換器として一般に従来から用いられてい
る回転式の全熱交換器の原理図である、この回転式の全
熱交換器は吸湿剤を塗布したハニカム状構造の低速回転
するロータ素子aの軸方向両側を仕切壁b1、b2にて
直径方向に仕切り、その一方に取り入れる外気を、他方
に排出する室内空気を対向流として流し、ロータ素子a
が1回転する間に、一方の空気よりロータ素子aへ全熱
(顕熱十潜熱)の蓄熱を行ない、この蓄熱された全熱を
他方の空気へ放熱し、取り入れ外気の温度及び湿度を室
内空気のそれに近ずけるようになっているもので、夏場
、冬場のように、空気調和された室内空気の温度、湿度
と外気のそれらとが大幅に異なる場合、空気調和する上
で余熱の回収が大となるため省エネルギの上から大きな
効果のあるものである。
Figure 8 is a diagram showing the principle of a rotary total heat exchanger that has been conventionally used as a residual heat exchanger. Both sides of the element a in the axial direction are diametrically partitioned by partition walls b1 and b2, and the outside air taken in to one side and the indoor air to be discharged to the other side are made to flow as countercurrents, and the rotor element a
During one rotation, total heat (sensible heat and latent heat) is stored in rotor element a from one air, and this stored total heat is radiated to the other air, changing the temperature and humidity of the outside air into the room. It is designed to approximate that of air, and when the temperature and humidity of conditioned indoor air differ significantly from those of outside air, such as in summer and winter, residual heat can be recovered during air conditioning. is large, so it has a great effect in terms of energy saving.

なお上記回転するロータ素子aを用いた全熱交換器は第
9図に示すように、ベルトCをロータ素子aとプーリd
に巻掛け、このプーリdをモータeで駆動することによ
りロータ素子aを低速回転するようなっている。またこ
のロータ索子aを通る空気はそれずれ図示しないブロク
により送風されるようになっている。ロータ素子aの両
側に位置する仕切壁b 1 、b 2とロータ素子aと
の対向部には、外気と排気及び給気と室内空気との混合
を防ぐためのシールf、 fが取付けである。
In addition, in the total heat exchanger using the rotating rotor element a, as shown in FIG.
The rotor element a is rotated at a low speed by driving this pulley d with a motor e. Further, the air passing through the rotor cable a is blown by a block (not shown). Seals f and f are attached to the opposing parts of rotor element a and partition walls b 1 and b 2 located on both sides of rotor element a to prevent mixing of outside air and exhaust air and supply air and indoor air. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の全熱交換器では次のような問題があった。 The above-mentioned conventional total heat exchanger had the following problems.

(1)外気温度が非常に低温の場合や長時間運転を停止
するなどしてロータ素子a内が高湿度になる場合には、
塩化リチウム等の吸湿剤が溶は出し、その飛沫が給気、
排気の気流に混入してあたりに飛散して環境を汚染する
ことがある。
(1) If the outside air temperature is extremely low or the humidity inside rotor element a becomes high due to reasons such as stopping operation for a long time,
Hygroscopic agents such as lithium chloride dissolve, and the droplets enter the supply air.
It can get mixed into the exhaust airflow and scatter around, polluting the environment.

(2)ロータ素子aとこれの両側の仕切壁す1、b2と
の間のシールf、fはどうしても完全とはならず、必ず
漏れが生じ、汚れた室内空気の一部が新鮮な給気側にも
れることがあり、病院やハイテク施設においては使用で
きないことがある、また同様に、外気が排気側へ漏れた
場合、その分だけ外気用ブロクの動力損失となる。
(2) The seals f and f between the rotor element a and the partition walls s1 and b2 on both sides of the rotor element a are not perfect, and leakage always occurs, and part of the dirty indoor air becomes fresh air. It may leak to the side, making it unusable in hospitals or high-tech facilities. Similarly, if outside air leaks to the exhaust side, the outside air block will lose power accordingly.

(3)回転形であるため、静止形に比較して駆動装置や
シール等が必要であるため大型となり、保守点検費用が
増大し、また、故障発生率もそれだけ増大する。
(3) Since it is a rotating type, compared to a stationary type, it requires a drive device, seals, etc., making it larger, increasing maintenance and inspection costs, and increasing the failure rate accordingly.

本発明は上記のことにかんがみなされたもので、吸収液
の飛散がなくなることにより使用場所に制限がなく、ま
た新鮮な吸入側の空気に汚れた室内空気が混入すること
がな(なって病院やハイテク施設に充分適用でき、さら
に、外気が排気側へ漏れることがないことにより、外気
送風動力の損失をなくすことができ、そしてさらに、構
造がシンプルとなり、保守点検等の費用を大幅に低減す
ることができると共に、信頼性を向上とすることができ
、さらに、小型化を図ることができるようにした全熱交
換器を提供することを目的とするものである。
The present invention has been developed in consideration of the above-mentioned problems, and since there is no scattering of the absorption liquid, there are no restrictions on where it can be used, and there is no possibility that dirty indoor air will mix with the fresh air on the intake side. It can be fully applied to industrial and high-tech facilities, and since outside air does not leak to the exhaust side, loss of outside air blowing power can be eliminated, and the structure is simple, significantly reducing maintenance and inspection costs. It is an object of the present invention to provide a total heat exchanger that is capable of increasing reliability, improving reliability, and further achieving miniaturization.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明に係る全熱交換器は、
水蒸気透過性を有する膜にて構成された膜チューブを対
状に、かつ軸心を上下方向に向けて配置し、この対状の
膜チューブの上端及び下端の相互を接続チューブにて接
続してリング状の閉通路を構成し、この閉通路内に塩化
リチウム族環水分を吸収する吸収液を充填し、対状にな
っている一方の膜チューブを給気路内に、また他方の膜
チューブを排気路内にそれぞれ配置した構成となってい
る。
In order to achieve the above object, the total heat exchanger according to the present invention includes:
Membrane tubes made of a water vapor permeable membrane are arranged in pairs with their axes pointing in the vertical direction, and the upper and lower ends of the pair of membrane tubes are connected with a connecting tube. A ring-shaped closed passage is formed, and this closed passage is filled with an absorption liquid that absorbs lithium chloride group ring moisture, and one membrane tube in a pair is placed in the air supply passage, and the other membrane tube is placed in the air supply passage. are arranged in the exhaust path.

〔作 用〕[For production]

給気路に、例えば高温、高湿の外気を、排気路に低温、
低湿の室内空気を流した場合、給気路側の膜チューブ内
の吸収液は外気の温度と水蒸気を吸収して高温となると
共に、水分にてうすめられる。一方排気路側の膜チュー
ブ内の吸収液はそれとは逆の作用で室内空気により低温
となると共に濃縮される。吸収液・には高温、低濃度に
なると比重が軽くなり、その逆で比重が重くなる性質が
あるから、上記作用により、閉路通路内の吸収液は高温
、高湿から低温、低湿方向に循環され、この作用により
、給気路側の外気と排気路側の室内空気とは顕熱と潜熱
を含む全熱交換が行なわれる。
For example, high-temperature, high-humidity outside air is placed in the air supply path, and low-temperature, high-humidity air is placed in the exhaust path.
When low-humidity indoor air flows, the absorption liquid in the membrane tube on the side of the air supply path absorbs the temperature of the outside air and water vapor, becomes high in temperature, and is diluted with moisture. On the other hand, the absorbent liquid in the membrane tube on the exhaust path side is cooled and concentrated by the indoor air due to the opposite effect. Absorbent liquid has the property that its specific gravity becomes lighter when it becomes high temperature and low concentration, and vice versa, so due to the above action, the absorbent liquid in the closed path circulates from high temperature and high humidity to low temperature and low humidity. Due to this action, total heat exchange including sensible heat and latent heat is performed between the outside air on the air supply path side and the indoor air on the exhaust path side.

〔実 施 例〕〔Example〕

本発明の実施例を第1図から第7図に基づいて説明する
Embodiments of the present invention will be described based on FIGS. 1 to 7.

第1図は本発明に係る全熱交換器の原理的構成である要
素対を示すもので、1対の膜チューブ、1.2が仕切壁
3を隔てて、かつ軸心を上下方向に向けて配置され、こ
の1対の膜チューブ1.2の上下の両端が上記仕切板3
を貫通する接続チューブ4.5にて接続されてリング状
の閉通路が構成されている。上記膜チューブ1.2は疎
水性多孔膜や通気性膜等液体は透過しないが水蒸気が透
過可能の水蒸気透過性の膜にて構成されている。そして
このチューブ内に塩化リチウム等水分を吸収する吸収液
6が充填しである。
FIG. 1 shows a pair of elements that are the principle configuration of a total heat exchanger according to the present invention, in which a pair of membrane tubes 1.2 are separated by a partition wall 3 and their axes are oriented in the vertical direction. The upper and lower ends of this pair of membrane tubes 1.2 are connected to the partition plate 3.
They are connected by a connecting tube 4.5 that passes through them to form a ring-shaped closed passage. The membrane tube 1.2 is made of a water vapor permeable membrane such as a hydrophobic porous membrane or an air permeable membrane that does not allow liquid to pass therethrough but allows water vapor to pass therethrough. This tube is filled with an absorbing liquid 6 such as lithium chloride that absorbs moisture.

上記膜チューブ1.2は上記したように疎水性多孔膜や
通気性膜等が用いられるが、その−例としての疎水性多
孔膜は、100μmの膜厚で、かつ面積比で25〜85
%の多数の細孔を有しており、この細孔の孔径は0.2
μmで、かつこの細孔の内面は疎水性を有している。そ
してこの多孔膜の材料は疎水性である素樹脂や他の有材
、無材材料が用いられ、また材料に疎水性がない場合に
は、細孔の内面にパラフィン等の疎水性剤を塗布、また
は含浸させる。
As described above, the membrane tube 1.2 is made of a hydrophobic porous membrane, an air permeable membrane, etc. As an example, the hydrophobic porous membrane has a thickness of 100 μm and an area ratio of 25 to 85 μm.
%, and the pore diameter of these pores is 0.2%.
μm, and the inner surface of this pore is hydrophobic. The material used for this porous membrane is hydrophobic base resin, other organic materials, or non-material materials.If the material is not hydrophobic, a hydrophobic agent such as paraffin is applied to the inner surface of the pores. , or impregnated.

この構成において、仕切壁3にて仕切られた一方、例え
ば第1図において左側に給気用の外気を流し、右側に排
気用の室内空気を流したときの作用を説明する。
In this configuration, while partitioned by the partition wall 3, the effect will be described when, for example, in FIG. 1, outside air for air supply flows to the left side and indoor air for exhaust air flows to the right side.

夏場の場合、外気は室内空気より温度が高く、かつ湿度
も高い。このため、左側の膜チューブ1内の吸収液はこ
の高温、高湿の空気にさらされて、この空気の全熱(顕
熱+水蒸気)を吸収して温度が上昇すると共に吸湿して
うすめられる。一方布側の膜チューブ2内の吸収液は上
記外気より低温、低湿の室内空気にさらされて左側のそ
れより低温になると共に、空気に放湿して濃くなり、こ
の部分の吸収液の全熱が放出される。
In the summer, outside air has a higher temperature and humidity than indoor air. For this reason, the absorption liquid in the membrane tube 1 on the left side is exposed to this high temperature and high humidity air, absorbs all the heat (sensible heat + water vapor) of this air, and as the temperature rises, it also absorbs moisture and becomes diluted. . On the other hand, the absorbent liquid in the membrane tube 2 on the cloth side is exposed to indoor air that is lower temperature and lower humidity than the outside air, and becomes lower temperature than that on the left side, and also releases moisture into the air and becomes thicker. Heat is released.

吸収液は温度が高くなる程、及び第6図に示すように、
吸湿してうずくなる程比重が軽くなる性質があるから、
上記作用によって、高温高湿の外気が接触して全熱を吸
収した左側の膜チューブ1内の吸収液は比重が軽くなる
ことにより上昇し、低温、低湿の室内空気に接触する右
側の膜チューブ2内に吸収液は比重が重くなって下降し
、結局チューブ内の吸収液は図中実線の矢印で示すよう
に右まわりに循環する。これにより、給気される外気と
排気される室内空気とは吸収液を介して全熱交換され、
外気の温度、湿度は排気される室内空気の温度、湿度に
近づけられる。
As the temperature of the absorption liquid increases, and as shown in Figure 6,
Because it has the property of becoming lighter in specific gravity as it absorbs moisture and makes you tingle,
Due to the above action, the absorption liquid in the left membrane tube 1, which has absorbed all the heat when it comes into contact with the high temperature and high humidity outside air, rises due to its lower specific gravity, and the right membrane tube 1, which comes into contact with the low temperature and low humidity indoor air, rises. The absorption liquid in the tube becomes heavier in specific gravity and descends, and eventually the absorption liquid in the tube circulates clockwise as shown by the solid arrow in the figure. As a result, total heat is exchanged between the outside air that is supplied and the indoor air that is exhausted through the absorption liquid.
The temperature and humidity of the outside air are brought close to the temperature and humidity of the exhausted indoor air.

冬場の場合は外気の方が室内空気より低温、低湿なので
、チューブ内の吸収液の循環は図中点線の矢印で示すよ
うに左まわりに循環する。
In winter, the outside air is lower in temperature and humidity than the indoor air, so the absorption liquid inside the tube circulates counterclockwise as shown by the dotted arrow in the figure.

第2図、第3図は本発明の具体的な実施例を示すもので
、仕切板6の両側に、それぞれ複数本の膜チューブla
、lb、lc、・・・及び2a。
2 and 3 show specific embodiments of the present invention, in which a plurality of membrane tubes are provided on both sides of the partition plate 6, respectively.
, lb, lc, ... and 2a.

2b、2C1・・・が軸心を上下方向に向けて相互に離
間して配置され、この各膜チューブの両端が上記仕切板
6を貫通する接続チューブ7.8にて接続されて膜チュ
ーブユニット9が構成されて、この膜チューブユニット
9が仕切板6に沿って前後方向に複数組配列されている
。各組の膜チューブユニット9の上側の接続チューブ7
に吸収液膨張タンク10が接続してあり、それぞれに吸
収液が充填しである。11はダクトであり、このダクト
11内に、仕切板6の左側で、かつ各膜チューブユニッ
ト9と直角方向に給気路12がまた同様に仕切板6の右
側に排気路13がそれぞれ構成されている。
2b, 2C1... are arranged spaced apart from each other with their axes directed in the vertical direction, and both ends of each membrane tube are connected by a connecting tube 7.8 passing through the partition plate 6 to form a membrane tube unit. A plurality of membrane tube units 9 are arranged in the front-rear direction along the partition plate 6. The upper connection tube 7 of each set of membrane tube unit 9
An absorption liquid expansion tank 10 is connected to the two, each of which is filled with absorption liquid. Reference numeral 11 denotes a duct, and within this duct 11, an air supply passage 12 is formed on the left side of the partition plate 6 and in a direction perpendicular to each membrane tube unit 9, and an exhaust passage 13 is similarly formed on the right side of the partition plate 6. ing.

上記構成において、給気路12に外気を流し、排気路1
3に室内空気を流すことにより、両空気の温度差及び湿
度差に応じで各膜チューブユニット9内において吸収液
が循環され、上記外気と室内空気とは各膜チューブユニ
ット9内の吸収液を介して全熱交換される。
In the above configuration, outside air flows through the air supply path 12 and the exhaust path 1
3, the absorption liquid is circulated in each membrane tube unit 9 according to the temperature difference and humidity difference between the two airs, and the above-mentioned outside air and indoor air circulate the absorption liquid in each membrane tube unit 9. Total heat is exchanged through the

第4図、第5図は本発明の他例を示すもので、左右のダ
クト14.15内のそれぞれに、左右で対となる複数組
の膜チューブユニット9′が接続チューブ16.17に
て接続して内装しである各膜チューブユニット9°は多
数本の膜チューブ18の両端部をモールド材1つにより
モールドすることにより各膜チューブ18の両端がそれ
ぞれ上下のヘッダ20.21に開口するように固定され
、左右の上下のヘッダ20.21のそれぞれが接続チュ
ーブ16.17にて接続されている。各膜チューブユニ
ット9゛の各ヘッダ20.21は分割板22にてそれぞ
れダクト内で独立されている。そして両ダクト14.1
5において、各膜ユニット9°の膜チューブ18の部分
が給、排気路となるようになっている。
4 and 5 show another example of the present invention, in which a plurality of left and right pairs of membrane tube units 9' are connected to connecting tubes 16.17 in left and right ducts 14.15, respectively. Each membrane tube unit 9°, which is connected and installed internally, has both ends of a large number of membrane tubes 18 molded with one molding material, so that both ends of each membrane tube 18 are opened to upper and lower headers 20 and 21, respectively. The upper and lower left and right headers 20.21 are connected to each other by connection tubes 16.17. Each header 20, 21 of each membrane tube unit 9' is separated within the duct by a dividing plate 22. and both ducts 14.1
5, the portion of the membrane tube 18 at 9° of each membrane unit serves as a supply and exhaust path.

この構成における作用は上記各例におけるものと同様で
、左右のダクト14.15を流れる空気はそれぞれ各膜
チューブユニット内の吸収液にて全熱交換される。
The operation in this configuration is similar to that in each of the above examples, and the air flowing through the left and right ducts 14 and 15 undergoes total heat exchange with the absorption liquid in each membrane tube unit.

なおこの実施例において、上記説明では各膜チューブユ
ニット9゛ ごとに多数本の膜チューブの両端部をモー
ルド材19によりモールドする例を説明したが、各膜チ
ューブユニット9゜ごとにわけないで、左、右のダクト
14.15内のそれぞれの全ての膜チューブ18の両端
部を一体状にモールド材19にてモールドし、この各膜
チューブ18の上下の両端が開口する上下の室を分割板
22にて仕切って各ユニットごとの室にし、このそれぞ
れの室を接続チューブ16.17にて左右のダクト相互
で接続するようにしてもよい。
In addition, in this embodiment, in the above explanation, an example was explained in which both ends of a large number of membrane tubes are molded with the molding material 19 for each membrane tube unit 9゛. Both ends of all the membrane tubes 18 in the left and right ducts 14 and 15 are integrally molded with a molding material 19, and the upper and lower chambers in which the upper and lower ends of each membrane tube 18 are open are divided by plates. 22 to form a chamber for each unit, and each chamber may be connected to the left and right ducts by connecting tubes 16 and 17.

上記各実施例における冬場の全熱交換パターンを示すと
第7図に示すようになり、これにより、非常に効率のよ
り全熱交換が行なわれていることがわかる。
The total heat exchange pattern in winter in each of the above embodiments is shown in FIG. 7, and it can be seen that total heat exchange is performed very efficiently.

〔発明の効果〕〔Effect of the invention〕

本発明によれば以下のような効果を奏することができる
すなわち、 (1)吸収液の飛散がないので、使用場所が制限されな
い。
According to the present invention, the following effects can be achieved: (1) Since there is no scattering of the absorbing liquid, there are no restrictions on where it can be used.

(2)給気と排気との相互の漏れがないことにより、新
鮮な吸入側の空気に汚れた室内空気が混入することがな
くなって病院やハイテク施設に充分適用できる。
(2) Since there is no mutual leakage between the supply air and the exhaust air, there is no possibility that dirty indoor air will mix with the fresh intake air, making it suitable for hospitals and high-tech facilities.

(3)給入外気が排気側へ漏れることがないことにより
、外気送風動力の損失をなくすことができる。
(3) Since the supplied outside air does not leak to the exhaust side, loss of outside air blowing power can be eliminated.

(4)静止形であるので構造がシンプルとなり、保守点
等の費用を大幅に低減することができると共に、信頼性
を向上することができる。
(4) Since it is a stationary type, the structure is simple, and costs such as maintenance points can be significantly reduced, and reliability can be improved.

(5)膜チューブは細く、体積当たりの膜表面積が大き
くなるため装置の小型化を図ることができる。
(5) Since the membrane tube is thin and the membrane surface area per volume is large, the device can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第7図は本発明の実施例を示すもので、第1
図は原理的な構成説明図、第2図、第3図及び第4図、
第5図は本発明の具体的な構成のそれぞれ異なる実施例
を示すもので、第2図、第4図はそれぞれ一部破断正面
図、第3図、第5図は一部破断正面図、第6図は塩化リ
チウム液の温度及び濃度に対する比重の関係を示す線図
、第7図は熱交換サイクルを示す線図である第8図と第
9図は従来例を示すもので、第8図は原理的な構成説明
図、第9図は概略的な構成を示す側面図である。 1.2、la、lbx 1cs−2as 2b。 2C,・・・ 18は膜チューブ、3.6は仕切板、4
.5.7.8.16.17は接続チューブ、11はダク
ト、12は給気路、13は排気路。
1 to 7 show embodiments of the present invention.
The diagrams are diagrams explaining the basic configuration, Figures 2, 3, and 4.
5 shows different embodiments of the specific structure of the present invention, FIGS. 2 and 4 are partially cutaway front views, respectively, FIGS. 3 and 5 are partially cutaway front views, Fig. 6 is a diagram showing the relationship between specific gravity and temperature and concentration of lithium chloride liquid; Fig. 7 is a diagram showing the heat exchange cycle; Figs. 8 and 9 show conventional examples; The figure is a diagram illustrating the basic configuration, and FIG. 9 is a side view showing the schematic configuration. 1.2, la, lbx 1cs-2as 2b. 2C,... 18 is a membrane tube, 3.6 is a partition plate, 4
.. 5.7.8.16.17 is a connecting tube, 11 is a duct, 12 is an air supply path, and 13 is an exhaust path.

Claims (1)

【特許請求の範囲】[Claims] 水蒸気透過性を有する膜にて構成された膜チューブを対
状に、かつ軸心を上下方向に向けて配置し、この対状の
膜チューブの上端及び下端の相互を接続チューブにて接
続してリング状の閉回路を構成し、この閉通路内にも塩
化リチウム液等水分を吸収する吸収液を充填し、対状に
なっている一方の膜チューブを給気路内に他方の膜チュ
ーブを排気路内にそれぞれ配置したことを特徴とする全
熱交換器。
Membrane tubes made of a water vapor permeable membrane are arranged in pairs with their axes pointing in the vertical direction, and the upper and lower ends of the pair of membrane tubes are connected with a connecting tube. A ring-shaped closed circuit is formed, and this closed passage is also filled with an absorbing liquid that absorbs moisture, such as lithium chloride liquid, and one membrane tube in a pair is placed in the air supply path and the other membrane tube is placed in the air supply path. A total heat exchanger characterized by being placed in each exhaust passage.
JP26289188A 1988-10-20 1988-10-20 Total heat exchanger Expired - Lifetime JP2617782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26289188A JP2617782B2 (en) 1988-10-20 1988-10-20 Total heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26289188A JP2617782B2 (en) 1988-10-20 1988-10-20 Total heat exchanger

Publications (2)

Publication Number Publication Date
JPH02110237A true JPH02110237A (en) 1990-04-23
JP2617782B2 JP2617782B2 (en) 1997-06-04

Family

ID=17382053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26289188A Expired - Lifetime JP2617782B2 (en) 1988-10-20 1988-10-20 Total heat exchanger

Country Status (1)

Country Link
JP (1) JP2617782B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059516A (en) * 2001-08-22 2003-02-28 Seibu Giken Co Ltd Fuel cell
US20140264967A1 (en) * 2013-03-15 2014-09-18 Carrier Corporation Membrane contactor for dehumidification systems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059516A (en) * 2001-08-22 2003-02-28 Seibu Giken Co Ltd Fuel cell
JP4708623B2 (en) * 2001-08-22 2011-06-22 株式会社西部技研 Fuel cell
US20140264967A1 (en) * 2013-03-15 2014-09-18 Carrier Corporation Membrane contactor for dehumidification systems
US9308491B2 (en) * 2013-03-15 2016-04-12 Carrier Corporation Membrane contactor for dehumidification systems

Also Published As

Publication number Publication date
JP2617782B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
CN100357668C (en) Air conditioner
CN112303734B (en) Fresh air system
CN101813362A (en) Multifunctional ventilation air-conditioning fan
CN216132009U (en) Device for dehumidifying
JP4639485B2 (en) Air conditioner
JPH02110237A (en) Total heat exchanger
JPH07163830A (en) Dry dehumidifier and air conditioning equipment using the same
JPS62297647A (en) Dehumidification system of building
JP2016040506A (en) Desiccant block device and desiccant air conditioner
JP2001255083A (en) Heat exchange equipment
JPH02187542A (en) Dehumidifier/humidifier and air conditioner equipped with dehumidifier/humidifier
JPS58178189A (en) Total heat exchanging device
JPS58138992A (en) Latent heat exchanger
JP4296663B2 (en) Adsorption type air conditioner
JP2000205599A (en) Desiccant air-conditioning system
CN110743373B (en) A detachable hollow fiber membrane module
JPS6249137A (en) Air conditioner
CN108953673B (en) Multi-way reversing valve and heat pump unit
CN113294853A (en) Humidity regulator
JPH0332899Y2 (en)
JPS6133461Y2 (en)
JPS58203331A (en) Dehumidifier for room cooler
JP3595446B2 (en) Humidification, ventilation and dehumidification units and air conditioners
WO2023282695A1 (en) Purification and ventilation apparatus using liquid humidity-control material
JPH06322A (en) Open-type absorptive air conditioner