しかしながら電子部品の発熱量が増大すると、ヒートシンクを単に空冷するだけでは電子部品を必要十分な程度まで冷却することができない問題が発生する。
本発明の目的は、発熱量の大きな電子部品を、いわゆる水冷によって必要十分な程度まで冷却できる電子部品冷却装置を提供することにある。
本発明の他の目的は、小形の水冷タイプの電子部品冷却装置を提供することにある。
本発明の更に他の目的は、電動ファンをラジエータに取り付けることが容易な電子部品冷却装置を提供することにある。
本発明の別の目的は、ラジエータに装着された電動ファンから発生する騒音が小さい電子部品冷却装置を提供することにある。
本発明の他の目的は、送風性能が高い電動ファンを備えた電子部品冷却装置を提供することにある。
本発明の別の目的は、より放熱効率の高い水冷タイプのヒートシンクを備えた電子部品冷却装置を提供することにある。
本発明の別の目的は、電子部品冷却装置に用いるのに適した電動ポンプを提供することにある。
本発明の他の目的は、従来よりも小形で、しかもベアリングの温度上昇を抑えることができて、しかもベアリングへの潤滑材の補給が不要な電動ポンプを提供することにある。
本発明の更に他の目的は、ベアリングホルダ内への冷媒の供給を確実且つスムーズに行える電動ポンプを提供することにある。
本発明の更に他の目的は、回転体の内部に冷媒が確実に入り込む電動ポンプを提供することにある。
本発明の他の目的は、軸線方向の寸法を大きくせずに、ポンプ性能を向上させることができる電動ポンプを提供することにある。
本発明の更に他の目的は、ベアリングとしてボールベアリングを用いることが可能な電動ポンプを提供することにある。
本発明の別の目的は、小形でしかも冷却性能の高い電動ポンプを提供することにある。
本発明の別の目的は、電子部品冷却装置に用いるのに適したラジエータを提供することにある。
本発明の他の目的は、小形でしかも熱交換率の高いラジエータを提供することにある。
本発明の他の目的は、冷媒中に気泡が含まれて冷却性能が低下するのを防止できるラジエータを提供することにある。
本発明の電子部品冷却装置は、いわゆる水冷のヒートシンクと、電動ファンによって冷却されるラジエータと、ヒートシンクとラジエータとの間で冷媒を循環させるための第1及び第2の冷媒通路と、冷媒に移動エネルギーを与える電動ポンプとを備えている。
ヒートシンクは、CPU等の冷却されるべき電子部品が装着される電子部品装着面と、冷媒入口及び冷媒出口を有して電子部品装着面を強制的に冷却するための冷媒として液体が流れる冷媒流路とを備えている。またラジエータは、冷媒入口及び冷媒出口を有して冷媒が流れる液体流路を備え、空冷によって液体流路が冷却されて冷媒を冷却する構造を有している。電動ファンは、ラジエータの放熱部に対して装着されて冷却用空気をラジエータに供給する。また配管等から構成される第1の冷媒通路はヒートシンクの冷媒出口とラジエータの冷媒入口とをつなぎ、第2の冷媒通路はラジエータの冷媒出口とヒートシンクの冷媒入口とをつなぐように構成されている。そして電動ポンプは、第1の冷媒通路または第2の冷媒通路に配置されて冷媒に移動エネルギーを与える。
このような構成を採用すると、電子部品の発熱量が増大した場合でも、ヒートシンクを冷媒で積極的に冷却することができるので、空冷のみでヒートシンクを冷却していた場合と比べて、大幅に冷却性能を高めることができる。
電動ファンは、ラジエータの放熱部の前面と対向する吸い込み面を一端に有し且つ他端に吐き出し面を有する風洞と、複数枚のブレードを有して風洞内に少なくとも一部が配置されたインペラと、吸い込み面から空気を吸い込んで吐き出し面から空気を吐き出すようにインペラを回転させるモータと、風洞と一体に設けられた複数の係合片とを具備しているものである。この場合、ラジエータには複数の係合片と係合する複数の被係合部を設ける。理論的には、ラジエータの放熱部に空気を吹き付けてラジエータを冷却することも可能である。しかしながらラジエータの放熱部の形状は複雑でありしかも吹き付けられる空気に対する抵抗が大きい。そのため、冷却効率を上げるためには、電動ファンの回転数を上げなければならず、騒音が大きくなる問題がある。これに対して電動ファンによりラジエータの放熱部から空気を吸い込む構成を採用すると、ラジエータの放熱部の構成が複雑であっても、電動ファンの回転数を必要以上に上げることなく、加熱された空気を放熱部から引き出すことができる。また騒音も小さくすることができる。また電動ファンをラジエータに取り付ける場合に、係合片と被係合部との係合によって両者を結合させる構成を採用すると、電動ファンのラジエータへの装着が簡単になって組み立て作業効率を高めることができる。
また複数枚のブレードの放熱部の前面と対向する端縁を、インペラの回転中心から径方向外側に向かうに従って放熱部の前面から離れるように傾斜させると、騒音を低減させることができる。またモータのハウジングと風洞の吐き出し面側の端部とを連結する複数本のウエブが、吐き出し面の外側に位置するようにすると、または吐き出し側の端面をモータのハウジングの最上面よりも下げると、ウエブを風洞の吐き出し面側の端部よりも内側に位置させた場合と比べて送風性能を高め、負荷騒音を低減させることができる。
ヒートシンクは、電子部品装着面及び電子部品装着面と厚み方向に対向して冷媒と直接接触する放熱面を備えたベースプレートと、ベースプレートとの間に所定の間隔をあけて対向するトッププレートと、ベースプレートとトッププレートとを連結する周壁部とを備えている。このヒートシンクには放熱面の一辺側から該一辺と対向する他辺側に冷媒が流れるように冷媒入口と冷媒出口とを設けるのが好ましい。そしてベースプレートの横断面形状を、放熱面の一辺と他辺との間に冷媒の流れに対する抵抗を増加させる抵抗増大部を形成するように定められるのが好ましい。このような構成にすると、冷媒入口からヒートシンク内に入った冷媒は抵抗増大部で流速を速められ、その後冷媒出口から排出される。その結果、抵抗増大部での熱交換効率を向上させて、結果としてヒートシンクの熱交換効率を高めることができる。
なおヒートシンクのベースプレートの放熱面上には、複数枚の放熱フィンを一体に設けて熱交換効率を高めるようにしてもよい。その場合には、複数枚の放熱フィンは、それぞれ冷媒入口が位置する一辺側から冷媒出口が位置する他辺側に向かう第1の方向に延び、しかも該第1の方向と直交し且つ放熱面に沿う第2の方向に所定の間隔をあけて配置するのが好ましい。このように放熱フィンを配置すると、隣接する二枚の放熱フィン間の連続して形成される流路を通る冷媒によって効率の良い熱交換を実現することができる。この場合において、冷媒入口及び冷媒出口は、一辺及び他辺のそれぞれ近傍においてトッププレートを厚み方向に貫通するようにそれぞれ形成するのが好ましい。このようにすると、冷媒入口から入った冷媒は放熱面に当たってトッププレートとベースプレートとの間のスペース内に極端な偏りを生じさせることなく広がり、また冷媒出口にもその周囲から偏りなく全体的に冷媒が流れ込む。その結果、ヒートシンクは全体的に冷却されることになる。この場合において、複数枚の放熱フィンの第1の方向の両端部の位置を、冷媒入口から入って冷媒出口から出る冷媒が隣接する2枚の放熱フィンの間に形成される各流路を流れる冷媒の流速に極端に大きなバラツキが発生しないように定めるのが好ましい。
本発明の電子部品冷却装置では、種々の電動ポンプを利用することができる。発明者は、この電子部品冷却装置に用いるのに適した小形の電動ポンプを発明した。この小形の電動ポンプは、円筒状の周壁部及び該周壁部によって囲まれる内部空間の一端を塞ぐようにこの周壁部と一体に設けられた閉塞壁部を有する回転体と;周壁部の内周面上に設けられた永久磁石からなる複数の回転側磁極と;閉塞壁部の中心部に一端が固定されて周壁部の中心を延びるシャフトとを備えたロータと、シャフトを回転自在に支持するベアリングと;ベアリングが嵌合されて保持される筒状のベアリングホルダと;シャフトの他端と2つのベアリングのうち閉塞壁部とは反対側に位置するベアリングとの間に配置されてシャフトの抜け止めを図る抜け止め機構と;ベアリングホルダの外周上に取り付けられて回転体の内部に配置されるステータコア及びこのステータコアに巻き付けられた複数の励磁コイルを有するステータと;複数の励磁コイルに励磁電流を供給する励磁電流供給回路と;回転体の閉塞壁部とは対向しないベアリングホルダの一方の開口端部を液密に塞ぐシール部材を含んで、ステータ及び励磁電流供給回路を防水する防水構造と;回転体の少なくとも閉塞壁部上に配置されるブレード取付部及びブレード取付部に設けられた複数枚のブレードからなるインペラと;液体入口及び液体出口を備え、ロータ、インペラ及びベアリングが冷媒中に浸漬された状態になり、且つインペラが回転すると液体を液体入口から吸い込んで液体出口から吐出すことができるように構成されて、ロータ、インペラ、ステータ等の各エレメントを収納するハウジングとから構成されている。
この電動ポンプの構造では、ベアリングホルダの外周上にステータコアが位置し、その外側でロータが回転する。そのため電動ポンプの軸線方向の寸法を小さくできるだけでなく、ロータのイナーシャを最大限利用してポンプの性能を高めることができる。またこの構造では、ベアリングホルダの内部にも液体が入り込むことになるため、ベアリングホルダを通してもステータからの熱を内部を流れる液体に放出させることができる。またベアリングホルダ内に入りこむ液体は、ベアリングに対して潤滑剤として機能するため、ベアリングに潤滑剤を補充する必要がなく、電動ポンプの寿命を大幅に延ばすことができる。特に、このような構成を採用すると、ベアリングに対する潤滑剤の補給が必要なくなるため、ベアリングとしてボールベアリングを用いることが可能になる。
なおベアリングの数は1つでもよいが、シャフトを安定した状態で支持するために2つのベアリングを用いるのが好ましい。この場合、ベアリングホルダの内周面と2つのベアリングのそれぞれの外周面との間には、シャフトに沿って延びる少なくとも1本の液体流通路を形成するのが好ましい。この液体流通路は、ベアリングホルダ内の2つのベアリング間に形成される空間内はもとより、ベアリングホルダ内部全体を流通する液体で完全に満たすことを許容する。なおこの液体流通路を形成するにあたっては、ベアリングホルダの内周面及びベアリングの外周面の少なくとも一方にシャフトに沿って延びる少なくとも1本の溝を形成すればよい。なおベアリングの外周面よりは、ベアリングホルダの内周面のベアリングの前述の面と対向する部分に、シャフトに沿って延びる少なくとも1本の溝を形成するほうが、既製のベアリングを利用できる。複数本の溝を形成する場合には、周方向に等間隔をあけて形成するのが好ましい。このようにすると複数の溝の存在が、ベアリングホルダの中心とベアリングの中心とをずらす原因になるのを防止できる。またベアリングホルダの内周面に、シャフトに沿って延び且つ2つのベアリングの外周面とそれぞれ対向する1本以上の細長い溝を形成し、この1本以上の細長い溝で液体流通路を構成してもよい。このようにすると各ベアリングに対応して形成する溝の形成が容易になる。
また回転体の閉塞壁部には、厚み方向に閉塞壁部を貫通して冷媒を流通させる1以上の貫通孔を形成してもよい。このような貫通孔を形成すると、回転体の内部と外部との間における液体の流通がスムーズに行えるようになる。なおインペラのブレード取付部が、回転体の閉塞壁部とほぼ全面的に対向する部分を有している場合には、この部分にも閉塞壁部に設けた1以上の貫通孔に整合する1以上の貫通孔を形成しておく必要がある。
インペラのブレード取付部には、回転体の周壁部に沿って延びる筒状の延長取付部を設けることができる。また複数枚のブレードをそれぞれブレード取付部上から筒状の延長取付部上に連続して延びる形状にしてもよい。このようにすると回転体の外面を最大限利用して長いブレードを形成することができ、電動ポンプの性能を高めることができる。
また、インペラが回転するスペース内にシャフト固定用のブラケットがないため、液体の流入を妨げるものがなく、ポンプ性能を向上できる。
本発明の電子部品冷却装置で使用されるラジエータは、できるだけ小形に構成できるものであればどのような構造のものであってもよい。発明者は、このようなラジエータとして好適な構造のものを開発した。このラジエータは、並んで設けられた複数本の液体管路と、これら液体管路の外面にそれぞれ取り付けられた放熱フィンと、複数本の液体管路の両側にそれぞれ配置され、複数本の液体管路の両端部がそれぞれ連通状態で接続された2本の液体タンクと、2本の液体タンクの一方及び他方の液体タンクにそれぞれ設けられた液体入口及び液体出口とを具備する。そして、2本の液体タンク内のチャンバーは、それぞれ複数本の液体管路が並ぶ方向にm枚以上(mは1以上の整数)の仕切壁により仕切られて構成されたm+1以上の小形チャンバーを有しており、2本の液体タンク内の小形チャンバーと複数本の液体管路とは、液体入口と液体出口との間に1本以上の液体管路を流路構成管路として蛇行状態に形成された液体流路を構成するようにそれぞれ接続されている。このラジエータでは、液体流路が1本以上の液体管路を流路構成管路として蛇行状態に形成されることになるため、流路の長さを長くすることができて、熱交換効率を高めることができる。
また、2本の液体タンクの一方の液体タンクに液体入口及び液体出口を設けることもできる。このラジエータでは、一方の液体タンクは、複数本の液体管路が並ぶ方向にn枚以上(nは2以上の整数)の仕切壁により仕切られて構成されたn+1以上の小形チャンバーを有し、他方の液体タンク内は、複数本の液体管路が並ぶ方向にn−1枚以上の仕切壁により仕切られて構成されたn以上の小形チャンバーを有することになる。このようなラジエータでは、一方の液体タンクに液体入口及び液体出口の両方が設けられているため、液体入口及び液体出口にそれぞれ接続される第1及び第2の冷媒通路の配置スペースを小さくできる。
2本の液体タンクは、他方の液体タンクの第1の小形チャンバーが、一方の液体タンクの第1の小形チャンバーよりも上側に位置して、液体によって満たされない空間を内部に形成できる形状寸法を有しているように構成できる。このようにすると、液体中に含まれる可能性のある気泡は前述の空間内に溜まることになり、液体中に気泡が混入して冷却効率が低下するのを有効に防止できる。
本発明によれば、電子部品の発熱量が増大した場合でも、ヒートシンクを冷媒で積極的に冷却することができるので、空冷のみでヒートシンクを冷却していた場合と比べて、大幅に冷却性能を高めることができる。
以下図面を参照して、本発明の電子部品冷却装置の実施の形態の一例を詳細に説明する。図1は、本発明の電子部品冷却装置1の実施の形態の一例の構成を示す平面図である。この電子部品冷却装置1は、いわゆる内部に冷媒流路を備えた水冷のヒートシンク3と、電動ファン5によって冷却されるラジエータ7と、ヒートシンク3とラジエータ7との間で冷媒を循環させるための冷媒に移動エネルギーを与える電動ポンプ13とを備えている。
ヒートシンク3は、CPU等の冷却されるべき電子部品が装着される電子部品装着面と、冷媒入口(筒体35)及び冷媒出口(筒体36)を有して電子部品装着面を強制的に冷却するための冷媒として液体が流れる冷媒流路とを備えている。またラジエータ7は、冷媒入口80及び冷媒出口81を有して冷媒が流れる液体流路を備え、空冷によって液体流路が冷却されて冷媒を冷却する構造を有している。電動ファン5は、ラジエータ7の放熱部に対して装着されて冷却用空気をラジエータ7に供給する。また配管等から構成される第1の冷媒通路9はヒートシンク3の冷媒出口36とラジエータ7の冷媒入口80とをつなぎ、第2の冷媒通路11はラジエータ7の冷媒出口81とヒートシンク3の冷媒入口35とをつなぐように構成されている。
図2に示すように、ヒートシンク3は、電子部品装着面31a及び電子部品装着面31aと厚み方向に対向して冷媒と直接接触する放熱面31bを備えた銅やアルミニウム等の熱伝導性に優れた金属製のベースプレート31と、ベースプレート31との間に所定の間隔をあけて対向するトッププレート32及びベースプレート31とトッププレート32とを連結する周壁部33を備えたトッププレートケース34とから構成されて、内部に冷媒流路を形成する。トッププレートケース34は、ベースプレート31と同様に銅やアルミニウム等の熱伝導性に優れた金属によって形成されていてもよいが、合成樹脂材料により一体に成形されていてもよい。トッププレートケース34には、冷媒入口を構成する筒体35と冷媒出口を構成する筒体36とが一体に設けられており、ベースプレート31の放熱面31bの一辺37a側から該一辺と対向する他辺37b側に冷媒が流れるように冷媒入口(筒体35)と冷媒出口(筒体36)とを設けるのが好ましい。ベースプレート31の横断面形状は、放熱面31bの一辺37aと他辺37bとの間に冷媒の流れに対する抵抗を増加させる抵抗増大部31cを形成するように定められている。
抵抗増大部31cは、放熱面31bが一辺37a側の平面37cから厚みが徐々に増加して放熱面31bに傾斜面37dを形成する部分と、この傾斜面37dに続いて形成されて抵抗増大部31cの厚みが一定になる平面37eを形成する部分と、この平面37eに続いて形成されて抵抗増大部31cの厚みが徐々に小さくなって他辺37gに向かって延びる傾斜面37fを形成する部分とから構成される。このような構成にすると、冷媒入口(筒体35)からヒートシンク3内に入った冷媒は抵抗増大部31cで流速を速められ、その後冷媒出口(筒体36)から排出される。その結果、抵抗増大部31cでの熱交換効率を向上させて、結果としてヒートシンク3の熱交換効率を高めることができる。
この例では、ヒートシンク3のベースプレート31の放熱面31b上には、複数枚の放熱フィン38を一体に設けて熱交換効率を高めるようにしている。複数枚の放熱フィン38は、それぞれ平板形状を呈しており、トッププレート32の内面と接している。複数枚の放熱フィン38は、それぞれ冷媒入口(35)が位置する一辺37a側から冷媒出口(36)が位置する他辺(37b)側に向かう第1の方向(図面で見た左右方向)に延び、しかも第1の方向と直交し且つ放熱面31bに沿う第2の方向(図面で見た上下方向)に所定の間隔をあけて配置されている。このように放熱フィン38を配置すると、隣接する二枚の放熱フィン38,38間の連続して形成される流路39を通る冷媒によって効率の良い熱交換を実現することができる。この場合において、冷媒入口(35)及び冷媒出口(36)は、一辺37a及び他辺37bのそれぞれ中央部に対応する位置でトッププレート32を厚み方向に貫通するようにそれぞれ形成されている。このようにすると、冷媒入口(35)から入った冷媒は放熱面31bに当たってトッププレート32とベースプレート31との間のスペース内に極端な偏りを生じさせることなく広がり、また冷媒出口(36)にもその周囲から偏りなく全体的に冷媒が流れ込む。その結果、ヒートシンク3は全体的に冷却されることになる。この例では、複数枚の放熱フィン38の第1の方向の両端部の位置を、冷媒入口(35)から入って冷媒出口(36)から出る冷媒が隣接する2枚の放熱フィン38,38の間に形成される各流路39を流れる冷媒の流速に極端に大きなバラツキが発生しないように、各放熱フィン38の両端部の位置を定めている。なお筒体36には、第1の冷媒通路9を構成する金属パイプ等からなるパイプ9aの一端が接続されており、筒体35には第2の冷媒通路11の一部を構成する金属パイプ等からなるパイプ11aの一端が接続されている。パイプ11aの他端は、電動ポンプ13の液体出口を構成する筒体148に接続されている。そして電動ポンプ13の液体入口を構成する筒体147は、ラジエータ7の液体出口を構成する筒体81に、第2の冷媒通路11の一部を構成する金属パイプ等からなるパイプ11bを介して接続されている。
電動ポンプ13は、第2の冷媒通路11内に配置されて冷媒に移動エネルギーを与える。図3(A)及び(B)は、電動ポンプ13の平面図及び正面図を示している。また図4は図3(B)のIV−IV線断面図であり、図5は図3(B)のV−V線拡大断面図である。電動ポンプ13は、ハウジング131を備えている。ハウジング131は、合成樹脂製のハウジング本体132と合成樹脂製の蓋部材133とから構成される。図5に示されるように、ハウジング本体132は、両端が開口する円筒状の外側筒状部135と、この外側筒状部135の内部に外側筒状部135と一体に設けられた仕切壁部136と、外側筒状部135の一端(下端)を閉じるように外側筒状部135の一端に嵌合された底壁部137とから構成される。仕切壁部136は、外側筒状部135の内壁に一体に設けられて径方向内側に突出する第1の環状部138と、この第1の環状部138の内側端部と一体に設けられて第1の環状部138が延びる方向と直交する方向(軸線方向)に延びる第1の内側筒状部139と、この第1の内側筒状部139の内側に位置して軸線方向に延びる第2の内側筒状部140と、蓋部材133側に位置する第1及び第2の内側筒状部139及び140の一方の端部を連結する第2の環状部141とから構成される。なおこの例では第2の内側筒状部140の主要部分がベアリングホルダ142を構成している。そして、第2の内側筒状部140の他方の端部には、液密(シール)構造を介してキャップ(シール部材)143が嵌合されて固定されており、この他方の端部はキャップ143によって閉塞されている。この例では、仕切壁部136とキャップ143とにより空間Sに液体が浸入しないようにする防水構造が構成されている。外側筒状部135の一部と、仕切壁部136と、底壁部137と、キャップ143とによって囲まれる空間S内には、後に説明するステータ144と回路基板145とが収納されている。
図3に示すように、蓋部材133は、ハウジング本体132の外側筒状部135(図5)の開口端部に対して溶着される開口端部を有する中空の蓋部材本体146と、この蓋部材本体146の中心部から軸線方向に延びて液体入口を構成する筒体147と、蓋部材本体146の横から接線方向に延びて液体出口を構成する筒体148とを備えている。
図5に戻って、ステータ144は、ベアリングホルダ142の外周上に取り付けられていたステータコア149と、このステータコア149に嵌合された合成樹脂製のスロットインシュレータ150と、スロットインシュレータ150を介してステータコア149の突極部に巻き付けられた複数の励磁コイル151とを有している。励磁コイル151の引出し線は、スロットインシュレータ150に固定された複数の導電ピン152にそれぞれ接続されている。そして複数の導電ピン152は、複数の励磁コイル151に励磁電流を供給する励磁電流供給回路が構成されている回路基板145に設けられた接続用スルーホールに嵌合されている。
ベアリングホルダ142の内部にはシャフト153を回転自在に支持する2つのベアリング(この例ではボールベアリング)154及び155が嵌合されて保持されている。2つのベアリング154及び155は、ベアリングホルダ142の両側の開口部から、それぞれベアリングホルダ内に挿入されている。
シャフト153のキャップ143側に位置する端部には、抜け止め用の金具156とコイルバネ157とが嵌合されている。コイルバネ157は、ベアリング155の内輪と抜け止め用の金具156との間に圧縮された状態で配置されている。この例では、コイルバネ157と抜け止め用の金具156とにより抜け止め機構が構成されている。このような構成を採用すると、インペラが回転するスペース内に液体の流入を妨げるものがないのでポンプ性能を上げることができる。
またシャフト153の蓋部材133側に位置する端部には、回転体158が固定されている。回転体158は、導磁性材料によって形成されており、円筒状の周壁部159と、この周壁部159によって囲まれる内部空間の一端を塞ぐようにこの周壁部159と一体に設けられた閉塞壁部160とを有している。シャフト153の端部は、閉塞壁部160の中央に形成された貫通孔にきつく嵌合されている。回転体158の周壁部159の内周面上には、永久磁石からなる複数の回転側磁極161が固定されている。そして回転体158の閉塞壁部160の上には、インペラ162が固定されている。インペラ162は、閉塞壁部160に固定されたブレード取付部163とこのブレード取付部163の表面に一体に設けられた複数枚のブレード164とを備えて構成されている。この例では、回転体158の周壁部159の端部に縮径部159aが形成されている。そしてインペラ162のブレード取付部163の外周部には、縮径部159aの外周上に嵌る環状の延長部165が一体に設けられている。この電動ポンプでは、回転体158から延長部165までの部品によってロータ166が構成されている。そしてこの電動ポンプでは、ロータ166、インペラ162及びベアリング154及び155が冷媒中に浸漬された状態になり、インペラ162が回転すると液体を液体入口(147)から吸い込んで液体出口(148)から吐出す。
この電動ポンプ13の構造では、ベアリングホルダ142の外周上にステータコア149が位置し、その外側でロータ166が回転する。そのため電動ポンプ13の軸線方向の寸法を小さくできるだけでなく、ロータ166のイナーシャを最大限利用してポンプの性能を高めることができる。またこの構造では、ベアリングホルダ142の内部にも液体が入り込むことになるため、ベアリングホルダ142を通してもステータ144からの熱をポンプの内部を流れる液体に放出させることができる。またベアリングホルダ142内に入りこむ液体は、ベアリング154及び155に対して潤滑剤として機能するため、ベアリング154及び155に潤滑剤を補充する必要がなく、電動ポンプ13の寿命を大幅に延ばすことができる。
この電動ポンプ13では、ベアリングホルダ142の内周面と2つのベアリング154及び155のそれぞれの外周面との間には、シャフト153に沿って延びる少なくとも1本の液体流通路167が形成されている。なお図5には1本の液体流通路167のみを図示してある。この液体流通路167は、ベアリングホルダ142内の2つのベアリング154及び155間に形成される空間内はもとより、ベアリングホルダ142内部全体を流通する液体で完全に満たすことを許容する。なおこの液体流通路167を形成するにあたっては、ベアリングホルダ142の内周面及びベアリング154及び155の外周面の少なくとも一方にシャフト153に沿って延びる少なくとも1本の溝を形成すればよい。
また回転体158の閉塞壁部160には、厚み方向に閉塞壁部160を貫通して冷媒を流通させる1以上(具体的には4つ)の貫通孔168が形成されている。またインペラ162のブレード取付部163にも、閉塞壁部160に設けた4つの貫通孔168に整合する4つの貫通孔169が形成されている。このような貫通孔168及び169を形成すると、回転体158の内部と外部との間における液体の流通がスムーズに行えるようになる。
図6(A)は、本発明で用いる電動ポンプ1013の他の例を示す断面図である。この電動ポンプ1013は、図3乃至図5に示した先の例の電動ポンプ13と比べて、軸線方向の寸法が短くなる構成を有している。この電動ポンプ1013の構成のうち図3乃至図5に示した電動ポンプ13の構成と同様の部分には、図3乃至図5に付した符号の数に1000の数を加えた数の符号を付して説明を省略する。この電動ポンプ1013では、特に、ベアリングホルダ1142の内周面のベアリング1154及び1155の外周面と対向する部分に、シャフト1153に沿って連続して延びる3本の溝1167を形成し、これら3本の溝1167により液体流通路を構成している。3本の溝1167は、図6(B)に示すようにシャフト1153の周方向に等間隔をあけて形成されている。このようにすると3本の溝1167の存在が、ベアリングホルダ1142の中心とベアリング1154及び1155の中心とをずらす原因になるのを防止できる。またこれらの溝1167は、シャフト1153に沿って延び且つ2つのベアリング1154及び1155の外周面とそれぞれ対向する細長い形状を有している。なおこの例では、ハウジング本体1132には底壁部を設けていない。そしてキャップ1143の外周部には環状の凹部1172を形成し、この凹部内にOリング1173を嵌めて、シール部を構成している。またベアリングホルダ1142の端部に当接するエンドカバー1174を設けている。その他の点は、図3乃至図5に示した電動ポンプの構成と実質的に同じである。
図7は、本発明で用いる電動ポンプ2013の他の例を示す断面図である。この電動ポンプ2013は、図6(A)に示した電動ポンプと同様に、図3乃至図5に示した先の例の電動ポンプ13と比べて軸線方向の寸法が短くなる構成を有している。この電動ポンプ2013の構成のうち図3乃至図5に示した電動ポンプ13の構成と同様の部分には、図3乃至図5に付した符号の数に2000の数を加えた数の符号を付して説明を省略する。この電動ポンプ2013では、インペラ2162のブレード取付部2163には、回転体2158の周壁部2159に沿って延びる筒状の延長取付部2163aを設けている。そして複数枚のブレード2164をそれぞれブレード取付部2163上から筒状の延長取付部2163a上に連続して延びる形状にしてもよい。このようにすると回転体2158の外面を最大限利用して長いブレードを形成することができ、電動ポンプの性能を高めることができる。
図8(A)乃至(D)は、図1の実施の形態で用いるラジエータ7の平面図、正面図、左側面図及び底面図である。このラジエータ7は、上下方向に平行に並ぶように設けられた10本の液体管路71と、これら液体管路71の外面にそれぞれ取り付けられた蛇腹状の放熱フィン72とを備えている。そして10本の液体管路71の両側には、それぞれ10本の液体管路71の両端部がそれぞれ連通状態で接続された2本の液体タンク73及び74が配置されている。また10本の液体管路71の並設方向の両側には、電動ファン取付用ブラケット75及び76が配置されている。電動ファン取付用ブラケット75及び76は、金属板にプレス加工と折り曲げ加工とを施して形成されており、それぞれ取付用ネジが挿入される貫通孔が形成された複数のネジ挿入用突出片77を備えている。また電動ファン取付用ブラケット75及び76には電動ファン5を固定する際に電動ファン5に設けられた係合片56,57(図12)を係合させるための被係合部を構成する複数の孔部78及び79をそれぞれ備えている。なおこのラジエータ7では、図8(B)に示した10本の液体管路71と放熱フィン72によって放熱部88が構成されている。
また液体タンク73には液体入口を構成する筒体80が設けられ、液体タンク74には液体出口を構成する筒体81が設けられている。このラジエータ7では、図9に示すように、2本のタンク73及び74内のチャンバーを、それぞれ10本の液体管路71が並ぶ方向に2枚の仕切壁84により仕切って形成した3つの小形チャンバー82a〜82c及び83a〜83cにより構成している。この例では、小形チャンバー82aには上から数えて2本の液体管路71の一端が連通可能に接続され、小形チャンバー83aには上から数えて4本の液体管路71の他端が連通可能に接続されて、小形チャンバー82bには上から数えて3本目から6本目までの4本の液体管路71の一端が連通可能に接続され、小形チャンバー83bには上から数えて5本目から8本目までの4本の液体管路71の他端が連通可能に接続され、小形チャンバー82cには上から数えて7本目から10本目までの4本の液体管路71の一端が連通可能に接続され、小形チャンバー83cには上から数えて9本目及び10本目の2本の液体管路71の他端が連通可能に接続されている。言い換えれば、2本のタンク73及び74内の3つの小形チャンバー82a〜82c及び83a〜83cと10本の液体管路71とは、液体入口(80)と液体出口(81)との間に2本の液体管路71を流路構成管路として蛇行状態に形成された液体流路を構成するようにそれぞれ接続されている。このようにすると比較的早い時間で且つ所定の量の液体を冷却することができる。なお2本のタンク内の複数の小形チャンバーと複数本の液体管路とを、液体入口と液体出口との間に1本の液体管路を流路構成管路として蛇行状態に形成された液体流路を構成するようにそれぞれ接続してもよい。
このラジエータ7で採用している液体流路の構成手法を一般化して表現すると次のようになる。すなわち、2本の液体タンク73,74内のチャンバーは、それぞれ複数本の液体管路71が並ぶ方向にm枚以上(mは1以上の整数:本例では2枚)の仕切壁84により仕切られて構成されたm+1以上(本例では3つ)の小形チャンバー82a〜82c,83a〜83cを有しており、2本の液体タンク内の小形チャンバー82a〜82c,83a〜83cと複数本の液体管路71とは、液体入口80と液体出口81との間に1本以上(本例では2本)の液体管路を流路構成管路として蛇行状態に形成させる。
この例では、2本のタンク73及び74を、それぞれ小形チャンバー82a及び83aが上側に位置し小形チャンバー82c及び83cが下側に位置するように配置して使用する。そこでこの例では、タンク74の小形チャンバー83aを、タンク73の小形チャンバー82aよりも上側に位置して液体によって満たされない空間85を内部に形成できる形状寸法にしている。このようにすると液体中に含まれる可能性のある気泡は空間85内に溜まることになり、液体中に気泡が混入して冷却効率が低下するのを有効に防止できる。なおタンク74の小形チャンバー83aの上方には、冷媒を補充するための冷媒補充キャップ86が装着されている。
なお図10に示すように、2本のタンク73′及び74′内を仕切壁部により仕切らない公知の構造を採用してもよいのは勿論である。
図11は、更に他のラジエータの構造を示している。このラジエータの構成のうち図9に示したラジエータ7の構成と同様の部分には、図9に付した符号の数に100の数を加えた数の符号を付して説明を省略する。このラジエータ107では、一方の液体タンク173内のチャンバーを8本の液体管路171が並ぶ方向に2枚の仕切壁184により仕切って形成した3つの小形チャンバー182a〜182cにより構成し、他方の液体タンク174内のチャンバーを、8本の液体管路171が並ぶ方向に1枚の仕切壁184により仕切って形成した2つの小形チャンバー183a及び183bにより構成している。この例では、小形チャンバー182aには上から数えて2本の液体管路171の一端が連通可能に接続され、小形チャンバー183aには上から数えて4本の液体管路171の他端が連通可能に接続されて、小形チャンバー182bには上から数えて3本目から6本目までの4本の液体管路171の一端が連通可能に接続され、小形チャンバー183bには上から数えて5本目から8本目までの4本の液体管路171の他端が連通可能に接続され、小形チャンバー182cには上から数えて7本目から8本目までの2本の液体管路171の一端が連通可能に接続されている。そして、一方の液体タンク173の小形チャンバー182a,182cに液体入口(筒体180)及び液体出口(筒体181)がそれぞれ設けられている。
このラジエータ107の小形チャンバーの構成を一般化して表現すると次のようになる。すなわち一方の液体タンク173は、複数本の液体管路171が並ぶ方向にn枚以上(nは2以上の整数:本例では2枚)の仕切壁184により仕切られて構成されたn+1以上(本例では3つ)の小形チャンバー182a〜182cを有しており、他方の液体タンク174内は、複数本の液体管路が並ぶ方向にn−1枚以上(本例では1枚)の仕切壁184により仕切られて構成されたn以上(本例では2つ)の小形チャンバー183a,183bを有しており、2本の液体タンク173,174内の小形チャンバー182a〜182c,183a,183bと複数本の液体管路171とは、液体入口180と液体出口181との間に1本以上(本例では2本)の液体管路を流路構成管路として蛇行状態に形成させる。
図12(A)乃至(D)は、ラジエータ7の空冷に用いられる電動ファン5の正面図、左側面図及び平面図並びに一部切り欠き平面図である。この電動ファン5は、風洞51と、インペラ52と、モータ53とを有している。風洞51は、図8に示したラジエータ7の放熱部88の前面と対向する吸い込み面54を一端に有し且つ他端に吐き出し面55を有している。そして風洞51の外周の吸い込み面54側の縁部には6個の係合片56及び57が一体に設けられている。3つの係合片56は、ラジエータ7の電動ファン取付用ブラケット76に設けた被係合部を構成する3つの孔部79に先端部が挿入されて係止される形状を有している。また3つの係合片57は、ラジエータ7の電動ファン取付用ブラケット75に設けた被係合部を構成する3つの孔部78に先端部が挿入されて係止されるフック形状を有している。電動ファン5をラジエータ7に装着する場合には、先に係合片56を孔部79に挿入し、後から係合片57を変形させながら孔部78に挿入する。
インペラ52は、モータ53によって回転駆動されるカップ状部材58と、このカップ状部材58の周壁部に一体に設けられた7枚のブレード59とから構成される。7枚のブレード59は、ラジエータ7の放熱部88の前面と対向する端縁60を、インペラ52の回転中心から径方向外側に向かうに従って放熱部88の前面から離れるように傾斜させている。このようにすると、騒音を低減させることができる。またこの電動ファン5では、モータ53のハウジング62と風洞51の吐き出し面55側の端部とを連結する3本のウエブ61を、吐き出し面55の外側に位置するようにしている。言い換えると、吐き出し面55の端部はモータ53のハウジング62の最上面よりも下がっている。このようにすると、ウエブ61を吐き出し面55よりも内側に位置させた場合と比べて送風性能を高め、負荷騒音を低減させることができる。
モータ53は、吸い込み面54から空気を吸い込んで吐き出し面55から空気を吐き出すようにインペラ52を回転させる方向に回転する。この例のように、電動ファン5によりラジエータ7の放熱部88から空気を吸い込む構成を採用すると、ラジエータ7の放熱部88の構成が複雑であっても、電動ファン5の回転数を必要以上に上げることなく、加熱された空気を放熱部88から引き出すことができる。また騒音も小さくすることができる。