[go: up one dir, main page]

JP4580797B2 - 偏光状態検査方法及び半導体装置の製造方法 - Google Patents

偏光状態検査方法及び半導体装置の製造方法 Download PDF

Info

Publication number
JP4580797B2
JP4580797B2 JP2005092658A JP2005092658A JP4580797B2 JP 4580797 B2 JP4580797 B2 JP 4580797B2 JP 2005092658 A JP2005092658 A JP 2005092658A JP 2005092658 A JP2005092658 A JP 2005092658A JP 4580797 B2 JP4580797 B2 JP 4580797B2
Authority
JP
Japan
Prior art keywords
inspection
exposure amount
photosensitive layer
exposure
illumination light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005092658A
Other languages
English (en)
Other versions
JP2006278527A (ja
Inventor
和也 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005092658A priority Critical patent/JP4580797B2/ja
Priority to US11/389,207 priority patent/US7586605B2/en
Priority to KR1020060027336A priority patent/KR100785937B1/ko
Priority to CNB2006100840264A priority patent/CN100533096C/zh
Publication of JP2006278527A publication Critical patent/JP2006278527A/ja
Application granted granted Critical
Publication of JP4580797B2 publication Critical patent/JP4580797B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/04Stoves or ranges heated by electric energy with heat radiated directly from the heating element
    • F24C7/043Stoves
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70653Metrology techniques
    • G03F7/70675Latent image, i.e. measuring the image of the exposed resist prior to development
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/10Tops, e.g. hot plates; Rings
    • F24C15/101Tops, e.g. hot plates; Rings provisions for circulation of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/06Arrangement or mounting of electric heating elements
    • F24C7/062Arrangement or mounting of electric heating elements on stoves
    • F24C7/065Arrangement or mounting of electric heating elements on stoves with reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明はリソグラフィ技術に係り、特に偏光状態検査方法及び半導体装置の製造方法に関する。
光リソグラフィ技術により露光波長と同程度あるいは露光波長以下の寸法のパターンを形成する場合、照明光の偏光状態が結像に及ぼす影響が大きくなる。偏光状態には、電気ベクトルが照明光の入射面に垂直な方向に振動する「s偏光」と、入射面に平行な方向に振動する「p偏光」とがある。ここでラインアンドスペースパターンを形成する場合、「s偏光」の方がコントラストが高く露光量余裕度が大きくなる傾向がある。そのため、マスクパターンをウェハ上に投影する照明光を偏光に変え、ウェハへの入射光をs偏光に近づけることによってウェハ上に微細パターンを形成する試みがなされている(例えば、特許文献1参照。)。
しかし偏光照明の採用により微細パターン形成時の露光量余裕度は上昇するものの、偏光度の誤差を要因とする微細パターンの寸法誤差が昨今問題になってきている。偏光度はs偏光の強度とp偏光の強度との差を全体の光強度で割った値で定義され、-1から+1の間の値をとる。偏光度の誤差の影響は微細パターンで大きく、パターンサイズの上昇と共に小さくなる。したがって偏光度の誤差は、縮小投影光学系で投影されるパターンのサイズに応じて寸法誤差が生じる現象である光近接効果(OPE)の要因の一つであると考えられる。しかし、OPEの要因は偏光度の誤差以外にも複数あるため、OPEでみられる寸法変動の要因を特定するのは困難である。そこでOPEが生じた場合に、照明光の偏光状態を他の寸法変動要因から独立して定量化する技術が望まれていた。
特開2004-207709号公報
本発明は光の偏光状態を高精度に検査可能な偏光状態検査方法及び半導体装置の製造方法を提供する。
上記目的を達成するために本発明の第1の特徴は、(イ)平坦な表面及び反射率が偏光方向により変化する格子パターンを有する検査ウェハ上に検査感光層を形成するステップと、(ロ)検査感光層を照明光で露光するステップと、(ハ)検査感光層の感光変化を計測するステップと、(ニ)平坦な表面上の検査感光層の感光変化に要した照明光の基準露光量を取得するステップと、(ホ)格子パターン上の検査感光層を平坦な表面上の検査感光層と同じだけ感光変化させるための照明光の参照露光量を取得するステップと、(ヘ)基準露光量と、参照露光量との比を算出することにより照明光の偏光状態を検査するステップとを含む偏光状態検査方法であることを要旨とする。
本発明の第2の特徴は、(イ)平坦な表面及び反射率が偏光方向により変化する格子パターンを有する検査ウェハ上に検査感光層を形成するステップと、(ロ)検査感光層を照明光で露光するステップと、(ハ)検査感光層の感光変化を計測するステップと、(ニ)平坦な表面上の検査感光層の感光変化に要した照明光の基準露光量を取得するステップと、(ホ)格子パターン上の検査感光層を平坦な表面上の検査感光層と同じだけ感光変化させるための照明光の参照露光量を取得するステップと、(ヘ)基準露光量と、参照露光量との比を算出することにより照明光の偏光状態を検査するステップと、()偏光状態に基づいて照明光の照明光学系を補正するステップと、()製品ウェハ上に製品レジスト膜を塗布するステップと、()照明光学系を用いて、製品マスクに設けられた回路パターンの像を製品レジスト膜に投影するステップと、()製品レジスト膜を現像し、回路パターンに対応する製品レジストパターンを製品ウェハ上に形成させるステップとを含む半導体装置の製造方法であることを要旨とする。
本発明によれば光の偏光状態を高精度に検査可能な偏光状態検査方法及び半導体装置の製造方法を提供することができる。
次に図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。なお以下の示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は構成部品の配置等を下記のものに特定するものではない。この発明の技術的思想は、特許請求の範囲において種々の変更を加えることができる。
(第1の実施の形態)
本発明の第1の実施の形態に係る偏光状態検査システムは、図1に示すように、中央演算処理装置(CPU)300、及び平坦な表面及び反射率が偏光方向により変化する格子パターンのそれぞれを有する検査ウェハ上の検査感光層に偏光にされた照明光を照射する露光装置3を有する。露光装置3はCPU300に接続されている。CPU300は、平坦な表面上の検査感光層を照明光で感光変化させるための基準露光量DSと、格子パターン上の検査感光層を平坦な表面上の検査感光層と同じだけ照明光で感光変化させるための参照露光量DRとの露光量比REを算出する露光量比算出部341、及び露光量比REに基づいて照明光の偏光状態を評価する評価部342を有する。
露光装置3は、図2に示すように、照明光学系14を有する。照明光学系14は、例えば波長193nmのフッ化アルゴンレーザ等の照明光を発する照明光源41、照明光源41の下部に配置される開口絞りホルダ58、照明光源41より照射された照明光を偏光にする偏光子59、照明光を集光する集光光学系43、及び集光光学系43の下部に配置されるスリットホルダ54を有する。露光装置3はさらにスリットホルダ54の下部に配置されるレチクルステージ51、レチクルステージ51の下部に配置される投影光学系42、投影光学系42の下部に配置されるウェハステージ32を有する。偏光子59には偏光子調節機構70が接続される。偏光子調節機構70は偏光子59の配置位置を調節し、照明光の偏光方向を調節する。
レチクルステージ51は、レチクル用XYステージ81、レチクル用XYステージ81上部に配置されたレチクル用可動軸83a, 83b、レチクル用可動軸83a, 83bのそれぞれでレチクル用XYステージ81に接続されるレチクル用Z傾斜ステージ82を有する。レチクルステージ51にはレチクルステージ駆動部97が接続される。レチクルステージ駆動部97はレチクル用XYステージ81を水平方向に走査する。またレチクル用可動軸83a, 83bのそれぞれを垂直方向に駆動する。よって、レチクル用Z傾斜ステージ82はレチクル用XYステージ81によって水平方向に位置決めされ、かつレチクル用可動軸83a, 83bのそれぞれにより水平面に対して傾斜をつけて配置することができる。レチクル用Z傾斜ステージ82端部にはレチクル用移動鏡98が配置される。レチクル用Z傾斜ステージ82の配置位置はレチクル用移動鏡98に対向して配置されたレチクル用レーザ干渉計99で計測される。
ウェハステージ32は、ウェハ用XYステージ91、ウェハ用XYステージ91上部に配置されたウェハ用可動軸93a, 93b、ウェハ用可動軸93a, 93bのそれぞれでウェハ用XYステージ91に接続されるウェハ用Z傾斜ステージ92を有する。ウェハステージ32にはウェハステージ駆動部94が接続される。ウェハステージ駆動部94はウェハ用XYステージ91を水平方向に走査する。またウェハ用可動軸93a, 93bのそれぞれを垂直方向に駆動する。よって、ウェハ用Z傾斜ステージ92はウェハ用XYステージ91によって水平方向に位置決めされ、かつウェハ用可動軸93a, 93bのそれぞれにより水平面に対して傾斜をつけて配置することができる。ウェハ用Z傾斜ステージ92端部にはウェハ用移動鏡96が配置される。ウェハ用Z傾斜ステージ92の配置位置はウェハ用移動鏡96に対向して配置されたウェハ用レーザ干渉計95で計測される。
ウェハステージ32上には、図3に示すシリコン(Si)等からなる検査ウェハ15、及び図5に示すように検査ウェハ15上に配置された検査感光層16を有する検査基板が配置される。図3に示す検査ウェハ15には、複数の格子パターン25a, 25b, 25c,…, 25xのそれぞれが設けられている。格子パターン25aの拡大上面図である図4、及びA-A方向からみた断面図である図5に示すように、1辺が100μmの正方形の領域に、ピッチ150nmで100nmの深さを有する複数の溝125a, 125b, 125c,…, 125nのそれぞれが周期的に設けられている。なお格子パターン25aのピッチは、照明光の波長の2倍以下、好ましくは波長以下であればよい。複数の格子パターン25a〜25xのそれぞれは、表面が平坦な検査ウェハ15上に100μm以上の間隔をおいてアイランド状に配置されている。
検査基板は、さらに、検査ウェハ15表面に塗布されたポジ型レジスト等の検査感光層16を有し、複数の溝125a〜125nのそれぞれの内部も検査感光層16で充填されている。他の格子パターン25b〜25xのそれぞれについても同様である。ここで、照明光の波長の2倍以下のピッチで、屈折率あるいは消衰係数等の光学特性が異なる物質が反復されて配置されている領域に照明光を照射すると、複数の溝125a〜125nのそれぞれの長手方向と照明光の電気ベクトル振動方向のなす図6に示す角θに応じて照明光の反射率が変化する。具体的には角θが0°の場合に反射率は最も高く、角θが90°に近づくにつれて反射率は低くなっていく。なお図4においては、格子パターン25aは1辺が100μmの正方形であるとしたが、これに限定されることはない。格子パターン25aの大きさは、格子パターン25aと周囲の検査ウェハ15表面の平坦部との境界における照明光の回折の影響が無視できる大きさであればよい。例えば照明光の波長の10倍以上あればよく、照明光の波長が193nmである場合、格子パターン25aは1辺の長さは2μm以上あればよい。
図1に示すCPU300にはさらに現像装置4及び膜厚測定装置333が接続される。現像装置4は、露光装置3で露光された検査感光層16を現像するための装置で、現像液濃度、現像液温度、及び現像時間等の現像条件を管理可能な装置が使用可能である。膜厚測定装置333としては分光光度計、エリプソメータ、光学顕微鏡、及び原子間力顕微鏡(AFM)等が使用可能である。膜厚測定装置333は現像後の検査感光層16の膜厚を測定をする。なお分光光度計及びエリプソメータ等を使用する場合は、図5に示す格子パターン25aにより測定結果に誤差が生じないように測定波長の選択をすることが好ましい。
図1に示すCPU300はさらに露光装置制御部326を有する。露光装置制御部326は、露光装置3に露光条件に合った露光環境を設定する。例えば図2に示す照明光源41から照射される照明光の照射量の調整をする。またレチクルステージ駆動部97及びウェハステージ駆動部94を駆動してレチクルステージ51及びウェハステージ32を移動させ、それぞれの配置位置、走査方向、走査速度等をレチクル用レーザ干渉計99及びウェハ用レーザ干渉計95で監視することにより、ステップアンドスキャン露光の環境を設定する。さらに露光装置制御部326は露光装置3の露光回数を監視する内部カウンタを有する。
図1に示す露光量比算出部341は、図7に示すように検査ウェハ15の平坦な表面上の検査感光層16が現像後になくなる時の基準露光量DSを分母に、複数の格子パターン25a〜25xのいずれかの上部の検査感光層16が現像後になくなる時の参照露光量DRを分子にとった露光量比REを算出する。ここで、図6に示す複数の溝125a〜125nのそれぞれの長手方向と照明光の電気ベクトル振動方向のなす角θと、露光量比REの関係を図8に示す。角θが0°で複数の溝125a〜125nのそれぞれの長手方向と照明光の電気ベクトル振動方向が一致する場合に、露光量比REは最小値"a"をとる。角θが増えるにつれて露光量比REは大きくなり、角θが90°で露光量比REは最大値"b"をとる。図1に示す評価部342は、図8に示す関係を利用して露光量比算出部341が算出した露光量比REを基に、照明光の偏光状態を評価する。例えば、偏光が完全でなく照明光がs偏光とp偏光を含む場合、照明光の偏光度は1より小さくなる。複数の溝125a〜125nのそれぞれの長手方向がs偏光にされた照明光の電気ベクトル振動方向と一致するよう、検査基板がウェハステージ32上に配置されている場合、照明光の偏光度が1より小さくなるにつれて、複数の格子パターン25a〜25xのそれぞれにおける照明光の反射率は低下する。したがって、複数の格子パターン25a〜25xのそれぞれの上部の検査感光層16を無くすために必要な参照露光量DRは上昇し、露光量比REも上昇する。したがって図1に示す評価部342は、露光量比REが上昇している場合は、照明光の偏光度が減少していると評価する。
CPU300にはさらにデータ記憶装置200が接続されている。データ記憶装置200は、リソグラフィ条件記憶部201、露光量比記憶部204、及び検査条件記憶部205を有する。リソグラフィ条件記憶部201は、露光装置3の露光条件のデータベースを保存している。図9は露光条件のデータベースの一例であり、図2に示した露光装置3でステップアンドスキャン露光する際の露光量D1, D2, D3, ・・・・・, D24のそれぞれを定義した露光条件6A, 6B, 6C, ・・・・・, 6F, 6G, 6H, 6I, ・・・・・, 6L, 6M, 6N, 6O, ・・・・・, 6R, 6S, 6T, 6U, ・・・・・, 6Xを保存している。例えば、露光量D1, D2, D3, ・・・・・, D24のそれぞれには、順次増加する値が与えられている。さらに図1に示すリソグラフィ条件記憶部201は、露光装置3の投影光学系42の開口数(NA)、コヒーレンスファクターσ、照明光源41の輪帯遮蔽率等の露光条件等も保存する。露光量比記憶部204は露光量比算出部341が算出する露光量比REを保存する。検査条件記憶部205は、照明光の偏光状態を検査する回数の上限の回数である上限検査回数、及び露光量比REの変動の許容値を保存する。
CPU300には、入力装置312、出力装置313、プログラム記憶装置330、及び一時記憶装置331がさらに接続される。入力装置312としては、例えばキーボード、及びマウス等のポインティングデバイス等が使用可能である。出力装置313には液晶ディスプレイ、モニタ等の画像表示装置、及びプリンタ等が使用可能である。プログラム記憶装置330は、CPU300を制御するオペレーティングシステム等を保存する。一時記憶装置331は、CPU300による演算結果を逐次格納する。プログラム記憶装置330及び一時記憶装置331としては、例えば半導体メモリ、磁気ディスク、光ディスク、光磁気ディスクや磁気テープなどのプログラムを記録する記録媒体等が使用可能である。
次に図5に示す検査基板の製造方法を、図10乃至図12を用いて説明する。まず図10で、検査ウェハ15上にスピンコータ等を用いてレジスト26をスピン塗布する。次に図11で、リソグラフィ技術を用いてレジスト26に複数の開口126a, 126b, 126c, …, 126nのそれぞれを設け、検査ウェハ15を表出させる。その後、エッチング技術を用いて、複数の開口126a〜126nのそれぞれから表出する検査ウェハ15を選択的に除去し、図12に示すように、複数の溝125a〜125nを検査ウェハ15に形成させる。最後にアルカリ溶液等でレジスト26を除去した後、検査ウェハ15上に新たに検査感光層16をスピン塗布し、図5に示す検査基板を得る。
次に図13に示すフローチャートを用いて第1の実施の形態に係る偏光状態検査方法を用いた半導体装置の製造方法について説明する。
(a) ステップS90で、図1に示す露光装置制御部326は内部カウンタ"nT"に"1"を割り当てる。ステップS100で、図3乃至図5に示す複数の格子パターン25a〜25xのそれぞれが設けられた検査ウェハ15を用意する。ステップS101で、検査ウェハ15上に例えばポジ型のレジストをスピン塗布し、検査ウェハ15上に検査感光層16を堆積する。ステップS102で、検査ウェハ15を図2に示すウェハステージ32上に配置し、レチクルステージ51上に、石英ガラス等からなりパターンを有さない透明マスク基板を配置する。なおレチクルステージ51上には何も配置しなくてもよい。次に図1に示す露光装置制御部326は図2に示す偏光子調節機構70に偏光子59の配置位置を調節するよう指示し、照明光の偏光方向を設定する。
(b) ステップS103で、図1に示す露光装置制御部326はリソグラフィ条件記憶部201から図9に示す露光条件6A〜6Xを読み出す。図2に示す露光装置3は、図3乃至図5に示す複数の格子パターン25a〜25xのそれぞれと、複数の格子パターン25a〜25xのそれぞれに隣接する検査ウェハ15上の平坦な表面のそれぞれの上部の検査感光層16を、図1に示す露光装置制御部326の指示に従い露光条件6A〜6Xを用いて露光量を増やしながらステップアンドスキャン露光する。
(c) ステップS104で、検査感光層16を露光後ベーク(PEB)処理した後、現像装置4で検査感光層16を現像処理する。ステップS105で、膜厚測定装置333で図3乃至図5に示す複数の格子パターン25a〜25xのそれぞれの上部の検査感光層16の膜厚、及び検査ウェハ15の平坦な表面上の検査感光層16の膜厚をそれぞれ測定する。図1に示す膜厚測定装置333は測定した検査感光層16の膜厚を露光量比算出部341に送る。
(d) ステップS106で露光量比算出部341は、図12に示すように検査ウェハ15の平坦な表面上の検査感光層16がなくなった時の基準露光量DSを図9に示す露光条件6A〜6Xの中から抽出する。ステップS107で次に図1に示す露光量比算出部341は、複数の格子パターン25a〜25xのそれぞれの上部の検査感光層16がなくなった時の参照露光量DRを図9に示す露光条件6A〜6Xの中から抽出する。ステップS108で図1に示す露光量比算出部341は、基準露光量DSを分母に、参照露光量DRを分子にとった露光量比REを算出する。露光量比算出部341は露光装置制御部326に内部カウンタ"nT"の値を参照する。さらに露光量比算出部341は算出した露光量比REを、第nT回目の露光量比REとして露光量比記憶部204に保存する。
(e) ステップS109で露光装置3を一定期間使用あるいは放置する等する。ステップS110で、露光装置制御部326は内部カウンタ"nT"に割り当てられた値が、検査条件記憶部205に保存されている上限検査回数以上であるか否かを判定する。内部カウンタ"nT"の値が上限検査回数未満である場合はステップS120に進み、内部カウンタ"nT"の値に"1"を加算する。内部カウンタ"nT"の値が上限検査回数以上である場合はステップS111に進む。ステップS111に進む時点で、露光量比記憶部204には第1回目の露光量比REから第nT回目の露光量比REまでのそれぞれの値が保存されている。
(f) ステップS111で、評価部342は露光量比記憶部204から第1乃至nT回目の露光量比REのそれぞれを読み出す。評価部342は第1回目の露光量比REに対して、後に取得された第nT回目の露光量比REが上昇しているか否かを評価する。例えば、第1回目の露光量比REを取得した時に照明光の偏光度が1であったにも関わらず、ステップS109の間に偏光度が計時変化により低下した場合、偏光が完全でなくなるため、第nT回目の露光量比REが第1回目の露光量比REから上昇する。したがって、評価部342は第nT回目の露光量比REが第1回目の露光量比REよりも検査条件記憶部205に保存されている変動の許容値以上に上昇している場合は、照明光の偏光状態を再調整する必要があると評価する。
(g) ステップS131で、図2に示す照明光学系14を調整し、照明光の偏光度が1になるように補正する。ステップS132で、製品レジスト膜がスピン塗布された製品ウェハを準備する。製品ウェハにはSiウェハ等が使用可能である。ステップS133で、ウェハステージ32に製品ウェハを配置し、レチクルステージに製品マスクを配置する。製品マスクは、透明なマスク基板、及びマスク基板上に配置されたクロム(Cr)等よりなる製品遮光膜を有し、製品遮光膜に回路パターンが設けられている。照明光源41から照明光を照射し、製品マスクに設けられた回路パターンを製品ウェハ上の製品レジスト膜に投影する。ステップS134で製品レジスト膜を現像し、回路パターンに対応する製品レジストパターンを製品ウェハ上に形成する。以後、イオン注入、絶縁膜形成、配線形成等を行い、半導体装置を完成させる。
以上、図1乃至図13に示した第1の実施の形態に係る偏光状態検査システム及び偏光状態検査方法を用いた半導体装置製造方法によれば、図2に示す露光装置3の偏光子59を透過した照明光の偏光状態の計時変化を監視することが可能となる。従来の偏光状態検査方法においては、照明光学系14あるいは投影光学系42に偏光解析装置を挿入して、照明光の偏光状態を検査する必要があった。しかし、照明光学系14及び投影光学系42のそれぞれは高度にアライメントされているため、偏光解析装置を挿入するには高度な専門技術を要した。これに対し、第1の実施の形態に係る偏光状態検査方法においては、半導体装置の製造に用いられる製品ウェハと同じ大きさの検査ウェハ15に格子パターン25a〜25xを設けた検査基板をウェハステージ32上に配置するのみで、偏光解析装置を光学系に挿入することなく照明光の偏光状態の計時変化を監視することが可能となる。また照明光の偏光状態が悪化していると判明した時点で初めてステップS131で偏光解析装置を用いて照明光の偏光状態を補正し、露光装置3の光学系の結像特性を改善すればよい。したがって、露光装置3のメンテナンス工程を大幅に簡略化し、且つメンテナンス時間の短縮を図ることが可能となる。
なお図13のステップS105乃至ステップS107において、図7に示す検査ウェハ15表面を目視、あるいは光学顕微鏡で観察し、基準露光量DS及び参照露光量DRのそれぞれを入力装置312から露光量比算出部341に入力してもよい。また検査ウェハ15の平坦な表面上の検査感光層16の膜厚が塗布時から図14に示すように厚さΔh減少する時の露光量を基準露光量DSとし、複数の格子パターン25a〜25xのそれぞれの上部の検査感光層16の膜厚も同じΔh減少する時の露光量を参照露光量DRとしてもよい。
(第2の実施の形態)
図15に示す第2の実施の形態にかかる偏光状態検査システムが図1と異なるのは、CPU300に複数の露光装置3a, 3b, 3c, …, 3nが接続されている点である。複数の露光装置3a〜3nのそれぞれは図2に示した露光装置3と同様の構成をしている。またCPU300は装置比較部343を有する。装置比較部343は、複数の露光装置3a〜3nのそれぞれの露光量比REを比較し、複数の露光装置3a〜3nのそれぞれの照明光の偏光状態が同レベルであるか否かを判定する。また複数の露光装置3a〜3nのそれぞれの照明光の偏光状態が異なる場合には、露光量比REに基づいて複数の露光装置3a〜3nのそれぞれを序列化する。検査条件記憶部205は、複数の露光装置3a〜3nの露光量比REのばらつきの許容値を保存する。図15に示した偏光状態検査システムのその他の構成要素についても図1と同じであるので説明は省略する。
次に図16に示すフローチャートを用いて第2の実施の形態に係る偏光状態検査方法について説明する。
(a) ステップS190で、図15に示す露光装置制御部326は内部カウンタ"nM"に"1"を割り当てる。次に図13のステップS100及びステップS101と同様に、図16のステップS200及びステップS201を実施する。ステップS202で、検査ウェハ15を複数の露光装置3a〜3nの中の第nM番目の露光装置の図2に示すウェハステージ32上に配置し、レチクルステージ51上に、石英ガラス等からなりパターンを有さない透明マスク基板を配置する。次に図15に示す露光装置制御部326は図2に示す偏光子調節機構70に偏光子59の配置位置を調節するよう指示し、照明光の偏光方向を設定する。
(b) 第nM番目の露光装置を用いて、ステップS203を図13のステップS103と同様に実施する。次にステップS204及びステップS205を図13のステップS104及びステップS105と同様に実施する。ステップS206で、図13のステップS106と同様に図15に示す露光量比算出部341は露光量比REを算出する。次に露光量比算出部341は露光装置制御部326に内部カウンタ"nM"の値を参照する。さらに露光量比算出部341は算出した露光量比REを、第nM番目の露光装置の露光量比REとして露光量比記憶部204に保存する。
(c) ステップS208で、露光装置制御部326は内部カウンタ"nM"に割り当てられた値が、検査条件記憶部205に保存されている露光装置3a〜3nの総数以上であるか否かを判定する。内部カウンタ"nM"の値が総数未満である場合はステップS210に進み、内部カウンタ"nM"の値に"1"を加算する。内部カウンタ"nM"の値が総数以上である場合はステップS209に進む。ステップS209に進む時点で、露光量比記憶部204には複数の露光装置3a〜3nのそれぞれの露光量比REが保存されている。
(d) ステップS209で、装置比較部343は露光量比記憶部204から複数の露光装置3a〜3nのそれぞれの露光量比REを読み出す。装置比較部343は複数の露光装置3a〜3nの露光量比REのばらつきが、検査条件記憶部205に保存されているばらつきの許容値以下であるか否かを判定する。複数の露光装置3a〜3nの露光量比REのばらつきが許容値以下である場合、装置比較部343は複数の露光装置3a〜3nを露光量比REの小さい順に序列化する。その後、装置比較部343は複数の露光装置3a〜3nのうち、最も露光量比REの小さい露光装置が最も偏光度が1に近い照明光を照射可能であると判定して、第2の実施の形態に係る偏光状態検査方法を終了する。
以上、図15及び図16に示した第2の実施の形態にかかる偏光状態検査システム及び偏光状態検査方法によれば、複数の露光装置3a〜3nのそれぞれの偏光度を比較することが可能となる。そのため、微細な半導体装置を製造する際には、ステップS209で照明光の偏光度が最も1に近いと判定された露光装置を優先的に使用することにより、半導体装置製造工程における歩留まりを向上することが可能となる。
(変形例)
図8において、溝と照明光の電気ベクトル振動方向のなす角θの変化量に対する露光量比REの変化量が大きいほど、より高い感度で偏光度を検査することが可能となる。実施の形態の変形例に係る検査基板は、図17及びA-A方向から見た断面図である図18に示すように、Si等を材料とする検査ウェハ15、検査ウェハ15上に配置された酸化シラン(SiO2)等を材料とする絶縁膜13、絶縁膜13にストライプ状に埋め込まれた銅(Cu)等を材料とする複数の金属部45a, 45b, 45c,…, 45nを有する格子パターン52a、及び絶縁膜13上に塗布されたレジスト等からなる検査感光層16を有する。SiO2等の誘電体とCu等の電気伝導体とは誘電率の差が大きい。すなわち、絶縁膜13と複数の金属部45a, 45b, 45c,…, 45nのそれぞれとは屈折率差が大きい。そのため、複数の金属部45a〜45nのそれぞれの長手方向に対し、照明光の電気ベクトル振動方向が垂直になるにつれ、格子パターン52aに入射する照明光の反射率が図5に示した検査基板に比べより低くなる。したがって、露光量比REの変化をより高い感度で検出することが可能となる。
次に図18に示す検査基板の製造方法を、図19乃至図23を用いて説明する。
(a) まず図19で、検査ウェハ15上にテトラエトキシシラン(TEOS)を用いたプラズマCVD装置を用いて、絶縁膜13を堆積させる。次に図20で、スピンコータ等を用いて絶縁膜13上にレジスト36をスピン塗布する。リソグラフィ技術を用いて、図21に示すようにレジスト36に複数の開口136a, 136b, 136c,…, 136nを設け、絶縁膜13を表出させる。
(b) 複数の開口136a〜136cのそれぞれから表出する絶縁膜13をエッチング技術等で選択的に除去し、図22に示すように、複数の溝113a, 113b, 113c,…, 113nのそれぞれを絶縁膜13に形成する。次にCuをメッキ法により絶縁膜13に堆積させた後、化学機械研磨法(CMP法)で研磨処理し、複数の溝113a, 113b, 113c…のそれぞれの内部を、図23に示すように、金属部45a, 45b, 45c,…, 45nで充填する。最後に、スピンコータ等を用いて、絶縁膜13上に検査感光層16をスピン塗布し、図18に示す実施の形態の変形例に係る検査基板を得る。
以上、図17及び図18に示した検査基板を、図13に示した第1の実施の形態に係る偏光状態検査方法あるいは図16に示した第2の実施の形態に係る偏光状態検査方法に用いることにより、さらに高い感度で照明光の偏光状態を検査することが可能となる。
(第3の実施の形態)
第3の実施の形態に係る偏光状態検査システムの図は図1と同様であるので省略する。第3の実施の形態に係る検査基板は、図24に示すように、複数の格子パターン群225a, 225b, 225c…, 225xが設けられた検査ウェハ15、及び検査ウェハ15上に塗布された検査感光層を有する。格子パターン群225aには、図25の拡大上面図に示すように、溝の長手方向がそれぞれ異なる複数の格子パターン35a, 35b, 35c, 35d, 35e, 35f, 35g, 35h, 35iが設けられている。格子パターン35aの断面図は図5と同様である。図25に示す複数の格子パターン35a〜35iには、同一のピッチで複数の溝が設けられている。
ただし、格子パターン35b〜35iのそれぞれにに設けられた複数の溝の長手方向は、格子パターン35aに設けられた複数の溝の長手方向に対し、それぞれ11.25°方向、22.5°方向、37.5°方向、45°方向、56.25°方向、67.5°方向、78.75°方向、90°方向に向いている。図24に示す他の複数の格子パターン群225b, 225c…のそれぞれにも、図25に示す格子パターン群225aと同様に、溝の長手方向がそれぞれ異なる複数の格子パターン35a〜35iのそれぞれが設けられている。
次に図26に示すフローチャートを用いて第3の実施の形態に係る偏光状態検査方法について説明する。
(a) ステップS250で、図24及び図25に示す複数の格子パターン群225a〜225xのそれぞれが設けられた検査ウェハ15を用意する。ステップS251で、検査ウェハ15上に例えばポジ型のレジストをスピン塗布し、図5に示すように検査ウェハ15上に検査感光層16を堆積する。ステップS252で、図24に示す検査ウェハ15を図2に示すウェハステージ32上に配置し、レチクルステージ51上に、石英ガラス等からなりパターンを有さない透明マスク基板を配置する。
(b) ステップS253で、図1に示す露光装置制御部326はリソグラフィ条件記憶部201から図9に示す露光条件6A〜6Xを読み出す。図2に示す露光装置3は、図24及び図25に示す複数の格子パターン群225a〜225xのそれぞれの上部の検査感光層16を、図1に示す露光装置制御部326の指示に従い露光条件6A〜6Xを用いて露光量を増やしながらステップアンドスキャン露光する。
(c) ステップS254で、検査感光層16をPEB処理した後、現像装置4で検査感光層16を現像処理する。ステップS255で、膜厚測定装置333で図24及び図25に示す複数の格子パターン群225a〜225xのそれぞれの上部の検査感光層16の膜厚を測定する。図1に示す膜厚測定装置333は測定した検査感光層16の膜厚を露光量比算出部341に送る。
(d) ステップS256で露光量比算出部341は、検査ウェハ15の平坦な表面上の検査感光層16がなくなった時の基準露光量DSを図9に示す露光条件6A〜6Xの中から抽出する。次に図1に示す露光量比算出部341は、図24に示す複数の格子パターン群225a〜225xのそれぞれに含まれる図25に示す格子パターン35aの上部の検査感光層16がなくなった時の第1の参照露光量DRaを図9に示す露光条件6A〜6Xの中から抽出する。露光量比算出部341は、同様に、格子パターン35bの上部の検査感光層16がなくなった時の第2の参照露光量DRb、格子パターン35cの上部の検査感光層16がなくなった時の第3の参照露光量DRc、格子パターン35dの上部の検査感光層16がなくなった時の第4の参照露光量DRd、格子パターン35eの上部の検査感光層16がなくなった時の第5の参照露光量DRe、格子パターン35fの上部の検査感光層16がなくなった時の第6の参照露光量DRf、格子パターン35gの上部の検査感光層16がなくなった時の第7の参照露光量DRg、格子パターン35hの上部の検査感光層16がなくなった時の第8の参照露光量DRh、及び格子パターン35iの上部の検査感光層16がなくなった時の第9の参照露光量DRiのそれぞれを図9に示す露光条件6A〜6Xの中から抽出する。
(e) ステップS257で、図1に示す露光量比算出部341は、基準露光量DSを分母に、第1の参照露光量DRaを分子にとった第1の露光量比REaを算出する。また露光量比算出部341は、基準露光量DSを分母に、第2の参照露光量DRbを分子にとった第2の露光量比REb、基準露光量DSを分母に、第3の参照露光量DRcを分子にとった第3の露光量比REc、基準露光量DSを分母に、第4の参照露光量DRdを分子にとった第4の露光量比REd、基準露光量DSを分母に、第5の参照露光量DReを分子にとった第5の露光量比REe、基準露光量DSを分母に、第6の参照露光量DRfを分子にとった第6の露光量比REf、基準露光量DSを分母に、第7の参照露光量DRgを分子にとった第7の露光量比REg、基準露光量DSを分母に、第8の参照露光量DRhを分子にとった第8の露光量比REh、及び基準露光量DSを分母に、第9の参照露光量DRiを分子にとった第9の露光量比REiのそれぞれを算出する。露光量比算出部341は算出した第1乃至第9の露光量比REa〜REiを露光量比記憶部204に保存する。
(f) ステップS258で評価部342は露光量比記憶部204から第1乃至第9の露光量比REa〜REiのそれぞれを読み出す。評価部342は第1乃至第9の露光量比REa〜REiから最も小さい値のものを選択する。図27に示すグラフでは、格子パターン35aに設けられた複数の溝の長手方向を基準にした、格子パターン35b〜35iのそれぞれに設けられた複数の溝の長手方向の角度と、第1乃至第9の露光量比REa〜REiの関係をプロットしている。ここでは、複数の溝の長手方向が、格子パターン35aに設けられた複数の溝の長手方向に対し37.5°方向に向いている格子パターン35d上部の検査感光層16がなくなった時の第4の参照露光量DRdに基づいて算出された第4の露光量比REdが最も小さい値である。この場合、評価部342は照明光の電気ベクトルは格子パターン35dに含まれる複数の溝の長手方向とほぼ並行方向に振動していると評価して第3の実施の形態を終了する。
以上、図24及び図25に示す複数の格子パターン35a〜35iを含む複数の格子パターン群225a〜225xを用いることにより、偏向された照明光の電気ベクトルの主な振動方向を計測することが可能となる。なお、複数の格子パターン35a〜35iのそれぞれの溝の長手方向が11.25°ずつ異なる場合を例示したが、さらに多くの格子パターンを検査ウェハ15上に設け、それぞれの溝の長手方向の角度の差を細かくすることにより、第3の実施の形態に係る偏光状態検査方法の分解能を上昇させることが可能である。また複数の格子パターン35a〜35iのそれぞれには、図18に示したように、複数の電気伝導体と複数の誘電体のそれぞれを周期的に配置してもよい。
(第4の実施の形態)
第4の実施の形態に係る偏光状態検査システムの図は図1と同様であるので省略する。第4の実施の形態においては、図2に示す露光装置3の開口絞りホルダ58に、図28に示す2つの開口281, 282が設けられた二重極照明用開口絞り板80が挿入される。二重極照明用開口絞り板80が挿入された照明光学系14の2次光源の像180は、図29に示すように、光強度がほぼ0の領域183に周囲を囲まれ、2つの開口281, 282に対応する2つの射出光領域181, 182を有する。図29に示す矢印は、射出光領域181, 182から射出する照明光の電気ベクトルの振動方向を示す。
第4の実施の形態に係る検査マスクは、図30に示すように、厚さ6.35mmを有する透明な検査マスク基板50、及び検査マスク基板50上に配置され直径60μmの円形のピンホール61を有する検査遮光膜60を有する。検査マスク基板50の材料としては石英ガラス等が使用可能であり、検査遮光膜60の材料としてはCr等が使用可能である。ピンホール61からは検査マスク基板50が表出する。検査マスクは、ピンホール61が設けられた側を、検査基板表面と光学的に共役でない側(上側)にして、図2に示すレチクルステージ51に配置される。
第4の実施の形態に係る検査基板は、図31に示すように、格子パターン55が設けられた検査ウェハ15を有する。格子パターン55は、一辺の長さが500μmの正方形である。格子パターン55には、図5に示した格子パターン25aと同様に、複数の溝が設けられている。検査ウェハ15上には図32及びA-A方向から見た断面図である図33に示すように、検査感光層16が配置されている。
図28に示す二重極照明用開口絞り板80と図30に示す検査マスクを用いて図33に示す検査感光層16を図2に示す露光装置3で露光すると、検査感光層16上に図29に示す2次光源の像180が転写される。ここで照明光の偏光方向は、格子パターン55に含まれる複数の溝の長手方向と平行方向に揃えられているとする。図29に示す2つの開口281, 282のそれぞれから射出される照明光の偏光度が同じ場合、検査感光層16を現像すると、図34及びA-A方向から見た断面図である図35に示すように、共に同じ深さを有する凹部46a, 46bが検査感光層16に形成される。さらに強い露光量で検査感光層16を露光し、検査感光層16を現像すると、図36及びA-A方向から見た断面図である図37に示すように、穴146a, 146bが検査感光層16に形成され、格子パターン55が表出する。これに対し、図28に示す開口281, 282のそれぞれから射出する照明光の偏光度が異なり、開口282から射出する照明光の偏光度が低下している場合、検査感光層16を現像すると、図38及びA-A方向から見た断面図である図39に示すように、開口281から射出された照明光で凹部246aが検査感光層16に形成される。しかし、上述したとおり照明光の偏光度が減少すると格子パターン55における反射率が低下するため、開口282から射出された照明光では凹部が形成されない。さらに強い露光量で検査感光層16を露光し、検査感光層16を現像すると、図40及びA-A方向から見た断面図である図41に示すように、開口281から射出された照明光で穴346が検査感光層16に形成され、格子パターン55が表出し、開口282から射出された照明光で凹部246bが検査感光層16に形成される。したがって、図28に示す二重極照明用開口絞り板80、図30に示す検査マスク、及び図31に示す検査基板を用い、検査感光層16の感光変化を観察することにより、2次光源内の偏光度分布を検査することが可能となる。
次に図42に示すフローチャートを用いて第4の実施の形態に係る偏光状態検査方法について説明する。
(a) ステップS301で、図28に示す二重極照明用開口絞り板80を図2に示す開口絞りホルダ58に挿入する。ステップS302で、図30に示すピンホール61を有する検査マスクを図2に示すレチクルステージ51に配置する。ステップS303で、図31乃至図33に示す検査ウェハ15上に検査感光層16をスピン塗布した検査基板を図2に示すウェハステージ32上に配置する。
(b) ステップS304で、図2に示す照明光源41から照明光を照射し、図31に示す格子パターン55上に塗布された検査感光層16を照明光で露光する。ステップS305で、図1に示す現像装置4で検査感光層16を現像処理する。ステップS306で、膜厚測定装置333で検査感光層16の感光変化による膜厚変化を測定する。
(c) ステップS307で評価部342は、検査感光層16の膜厚変化に基づいて、2次光源内の偏光度分布を評価する。具体的には、図34及び図35に示すように、共に同じ深さを有する凹部46a, 46bが検査感光層16に形成された場合には、図29に示す2つの開口281, 282のそれぞれから射出される照明光の偏光度が同じと評価する。また、図38及び図39に示すように、開口281から射出された照明光で凹部246aが検査感光層16に形成されたが、開口282から射出された照明光で形成された凹部が検査感光層16に確認されなかった場合には、開口282から射出された照明光は、開口281から射出された照明光に比較して偏光度が減少していると評価して、第4の実施の形態に係る偏光状態検査方法を終了する。
以上示したように、図42に示す第4の実施の形態に係る偏光状態検査方法によれば、2次光源内の偏光度分布を検査することが可能となる。2次光源内の偏光度分布は、図2に示す投影光学系42の結像特性に影響を与える。したがって、検査結果に基づいて照明光学系14から射出される照明光の偏光度を調整することにより、露光装置3で製造される半導体装置の精度を向上し、また製造工程の歩留まりを向上させることが可能となる。なお図31に示す格子パターン55には、図18に示したように、複数の電気伝導体と複数の誘電体のそれぞれを周期的に配置してもよい。また第4の実施の形態では、図28に示す二重極照明用開口絞り板80による二重極照明を用いる例を示したが、四重極照明、あるいは五重極照明等の様々な多重極照明を用いてもよいことはもちろんである。さらに第4の実施の形態では、図30に示す直径60μmの円形のピンホール61を有する検査遮光膜60で覆われた検査マスク基板50を使用したが、ピンホール61と同程度の大きさのピンホールを有する検査遮光板を照明光学系14の下部、あるいは投影光学系42の下部に配置しても同様の効果を得ることが可能である。
(第5の実施の形態)
第5の実施の形態に係る偏光状態検査システムの図は、図1と同様であるので省略する。第5の実施の形態においては、図43に示すように、検査基板の露光領域を第1の分割領域525a、第2の分割領域525b、第3の分割領域525c、及び第4の分割領域525dに分割し、それぞれを同じ露光条件で露光する。すなわち、格子パターン25a, 25g, 25m, 25sのそれぞれは、同じ露光量で露光される。格子パターン25b, 25h, 25n, 25tのそれぞれも、同じ露光量で露光される。以下同様に、格子パターン25f, 25l, 25r, 25xのそれぞれも、同じ露光量で露光される。
図1に示すリソグラフィ条件記憶部201は、図44に示すように、露光条件106A, 106B, 106C, ・・・・・, 106F, 106G, 106H, 106I, ・・・・・, 106L, 106M, 106N, 106O, ・・・・・, 106R, 106S, 106T, 106U, ・・・・・, 106Xを保存している。露光条件106G〜106Lに定義される露光量は、露光条件106A〜106Fに定義される露光量と同じである。露光条件106M〜106R, 106S〜106Xに定義される露光量も、露光条件106A〜106Fに定義される露光量と同じである。図1に示す検査条件記憶部205は、露光量比REのばらつきの許容値を保存する。
次に図45に示すフローチャートを用いて第5の実施の形態に係る偏光状態検査方法について説明する。
(a) ステップS500で、図43に示す複数の格子パターン25a〜25xのそれぞれが設けられた検査ウェハ15を用意する。ステップS501で、検査ウェハ15上に例えばポジ型のレジストをスピン塗布し、検査ウェハ15上に検査感光層16を堆積する。ステップS502で、検査ウェハ15を図2に示すウェハステージ32上に配置し、レチクルステージ51上に、石英ガラス等からなりパターンを有さない透明マスク基板を配置する。次に図1に示す露光装置制御部326は図2に示す偏光子調節機構70に偏光子59の配置位置を調節するよう指示し、照明光の偏光方向を設定する。
(b) ステップS503で、図1に示す露光装置制御部326はリソグラフィ条件記憶部201から図44に示す露光条件106A〜106Fを読み出す。図2に示す露光装置3は、図43に示す第1の分割領域525aに含まれる複数の格子パターン25a〜25fのそれぞれと、複数の格子パターン25a〜25fのそれぞれに隣接する検査ウェハ15上の平坦な表面のそれぞれの上部の検査感光層16を、図1に示す露光装置制御部326の指示に従い露光条件106A〜106Fを用いて露光量を増やしながらステップアンドスキャン露光する。
(c) ステップS504で、図1に示す露光装置制御部326はリソグラフィ条件記憶部201から図44に示す露光条件106G〜106Lを読み出す。図2に示す露光装置3は、図43に示す第2の分割領域525bに含まれる複数の格子パターン25g〜25lのそれぞれと、複数の格子パターン25g〜25lのそれぞれに隣接する検査ウェハ15上の平坦な表面のそれぞれの上部の検査感光層16を、図1に示す露光装置制御部326の指示に従い露光条件106G〜106Lを用いて露光量を増やしながらステップアンドスキャン露光する。
(d) ステップS505で、図1に示す露光装置制御部326はリソグラフィ条件記憶部201から図44に示す露光条件106M〜106Rを読み出す。図2に示す露光装置3は、図43に示す第3の分割領域525cに含まれる複数の格子パターン25m〜25rのそれぞれと、複数の格子パターン25m〜25rのそれぞれに隣接する検査ウェハ15上の平坦な表面のそれぞれの上部の検査感光層16を、図1に示す露光装置制御部326の指示に従い露光条件106M〜106Rを用いて露光量を増やしながらステップアンドスキャン露光する。
(e) ステップS506で、図1に示す露光装置制御部326はリソグラフィ条件記憶部201から図44に示す露光条件106S〜106Xを読み出す。図2に示す露光装置3は、図43に示す第4の分割領域525dに含まれる複数の格子パターン25s〜25xのそれぞれと、複数の格子パターン25s〜25xのそれぞれに隣接する検査ウェハ15上の平坦な表面のそれぞれの上部の検査感光層16を、図1に示す露光装置制御部326の指示に従い露光条件106S〜106Xを用いて露光量を増やしながらステップアンドスキャン露光する。
(f) ステップS507で、検査感光層16をPEB処理した後、現像装置4で検査感光層16を現像処理する。ステップS508で、膜厚測定装置333で図3乃至図5に示す複数の格子パターン25a〜25xのそれぞれの上部の検査感光層16の膜厚、及び検査ウェハ15の平坦な表面上の検査感光層16の膜厚をそれぞれ測定する。図1に示す膜厚測定装置333は測定した検査感光層16の膜厚を露光量比算出部341に送る。
(g) ステップS509で露光量比算出部341は、第1の分割領域525aにおいて、図12に示すように検査ウェハ15の平坦な表面上の検査感光層16がなくなった時の第1の分割領域の基準露光量DSD1を図44に示す露光条件106A〜106Fの中から抽出する。次に図1に示す露光量比算出部341は、複数の格子パターン25a〜25fのそれぞれの上部の検査感光層16がなくなった時の第1の分割領域の参照露光量DRD1を図44に示す露光条件106A〜106Fの中から抽出する。その後図1に示す露光量比算出部341は、第1の分割領域の基準露光量DSD1を分母に、第1の分割領域の参照露光量DRD1を分子にとった第1の分割領域の露光量比RED1を算出する。さらに露光量比算出部341は算出した第1の分割領域の露光量比RED1を露光量比記憶部204に保存する。
(h) ステップS510で露光量比算出部341は、第2の分割領域525bにおいて、図12に示すように検査ウェハ15の平坦な表面上の検査感光層16がなくなった時の第2の分割領域の基準露光量DSD2を図44に示す露光条件106G〜106Lの中から抽出する。次に図1に示す露光量比算出部341は、複数の格子パターン25g〜25lのそれぞれの上部の検査感光層16がなくなった時の第2の分割領域の参照露光量DRD2を図44に示す露光条件106G〜106Lの中から抽出する。その後図1に示す露光量比算出部341は、第2の分割領域の基準露光量DSD2を分母に、第2の分割領域の参照露光量DRD2を分子にとった第2の分割領域の露光量比RED2を算出する。さらに露光量比算出部341は算出した第2の分割領域の露光量比RED2を露光量比記憶部204に保存する。
(i) ステップS511で露光量比算出部341は、第3の分割領域525cにおいて、図12に示すように検査ウェハ15の平坦な表面上の検査感光層16がなくなった時の第3の分割領域の基準露光量DSD3を図44に示す露光条件106M〜106Rの中から抽出する。次に図1に示す露光量比算出部341は、複数の格子パターン25m〜25rのそれぞれの上部の検査感光層16がなくなった時の第3の分割領域の参照露光量DRD3を図44に示す露光条件106M〜106Rの中から抽出する。その後図1に示す露光量比算出部341は、第3の分割領域の基準露光量DSD3を分母に、第3の分割領域の参照露光量DRD3を分子にとった第3の分割領域の露光量比RED3を算出する。さらに露光量比算出部341は算出した第3の分割領域の露光量比RED3を露光量比記憶部204に保存する。
(j) ステップS512で露光量比算出部341は、第4の分割領域525dにおいて、図12に示すように検査ウェハ15の平坦な表面上の検査感光層16がなくなった時の第4の分割領域の基準露光量DSD4を図44に示す露光条件106S〜106Xの中から抽出する。次に図1に示す露光量比算出部341は、複数の格子パターン25s〜25xのそれぞれの上部の検査感光層16がなくなった時の第4の分割領域の参照露光量DRD4を図44に示す露光条件106S〜106Xの中から抽出する。その後図1に示す露光量比算出部341は、第4の分割領域の基準露光量DSD4を分母に、第4の分割領域の参照露光量DRD4を分子にとった第4の分割領域の露光量比RED4を算出する。さらに露光量比算出部341は算出した第4の分割領域の露光量比RED4を露光量比記憶部204に保存する。
(k) ステップS513で、評価部342は露光量比記憶部204から第1乃至第4の分割領域の露光量比RED1〜RED4のそれぞれを読み出す。評価部342は第1乃至第4の分割領域の露光量比RED1〜RED4のそれぞれを比較し、第1乃至第4の分割領域の露光量比RED1〜RED4のばらつきが検査条件記憶部205に保存されているばらつきの許容値以上である場合は、照明光の偏光状態が面内で分布していると評価して実施の形態に係る偏光状態検査方法を終了する。
以上示した、第5の実施の形態に係る偏光状態検査方法によれば、照明光の偏光度が第1乃至第4の分割領域525a〜525dでばらついているか否かを検査することが可能となる。照明光の偏光度が検査ウェハ15上の照射領域によってばらついている場合、露光装置3で半導体装置を製造すると、パターンの投影位置によって寸法が異なるものとなる。したがって、第5の実施の形態に係る偏光状態検査方法によって照明光の偏光度を検査し、偏光度が照射領域によってばらついている場合は、照明光学系14から照射される照明光の偏光度を調整することで、露光装置3で製造される半導体装置の寸法精度を向上させることが可能となる。
(その他の実施の形態)
上記のように、本発明を実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。例えば図5及び図18では、検査感光層16としてポジ型のレジストを示す例を示した。しかしポジ型のレジスト以外にも、ネガ型のレジスト、フォトクロミックフィルム等の照射光の光強度に応じて色が変化するフィルム、あるいは照射光の光強度に応じて膜厚変化するフィルム等が検査感光層16に使用可能である。また実施の形態においては、半導体装置製造用の露光装置の照射光の偏光状態検査方法を示した。しかし実施の形態に係る偏光状態検査システム及び偏光状態検査方法は、ホログラム製造用の露光装置及び偏光顕微鏡等、偏光にされた照明光を使用するあらゆる光学装置に適用可能である。さらに図6の説明では、角θが0°の場合に反射率は最も高く、角θが90°に近づくにつれて反射率は低くなっていくと説明した。しかし、格子パターンの溝の深さ、周期、溝と溝の間隔に対する溝の幅の比、検査感光層16の材料の組合せによっては、反対に角θが0°の場合に反射率は最も低く、角θが90°に近づくにつれて反射率は高くなることもある。その場合は、図13に示す露光状態検査方法では、ステップS109で露光量比REが低下した場合に、偏光度が下がったと評価すればよい。以上示したように、この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。したがって、本発明の技術的範囲は上記の説明からは妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
本発明の第1の実施の形態に係る偏光状態評価システムを示すブロック図である。 本発明の第1の実施の形態に係る露光装置を示す模式図である。 本発明の第1の実施の形態に係る検査基板の上面図である。 本発明の第1の実施の形態に係る検査基板の第1の拡大上面図である。 本発明の第1の実施の形態に係る検査基板の第1の断面図である。 本発明の第1の実施の形態に係る検査基板の第2の拡大上面図である。 本発明の第1の実施の形態に係る検査基板の第2の断面図である。 本発明の第1の実施の形態に係る格子パターンの溝と光の電気ベクトルの振動方向とがなす角と、露光量比との関係を示すグラフである。 本発明の第1の実施の形態に係る露光装置の露光条件を示す模式図である。 本発明の第1の実施の形態に係る検査基板の第1の工程断面図である。 本発明の第1の実施の形態に係る検査基板の第2の工程断面図である。 本発明の第1の実施の形態に係る検査基板の第3の工程断面図である。 本発明の第1の実施の形態に係る偏光状態検査方法を示すフローチャートである。 本発明の第1の実施の形態に係る検査基板の第3の断面図である。 本発明の第2の実施の形態に係る偏光状態評価システムを示すブロック図である。 本発明の第2の実施の形態に係る偏光状態検査方法を示すフローチャートである。 本発明の実施の形態の変形例に係る検査基板の拡大上面図である。 本発明の実施の形態の変形例に係る検査基板の断面図である。 本発明の実施の形態の変形例に係る検査基板の第1の工程断面図である。 本発明の実施の形態の変形例に係る検査基板の第2の工程断面図である。 本発明の実施の形態の変形例に係る検査基板の第3の工程断面図である。 本発明の実施の形態の変形例に係る検査基板の第3の工程断面図である。 本発明の実施の形態の変形例に係る検査基板の第4の工程断面図である。 本発明の第3の実施の形態に係る検査基板の上面図である。 本発明の第3の実施の形態に係る検査基板の拡大上面図である。 本発明の第3の実施の形態に係る偏光状態検査方法を示すフローチャートである。 本発明の第3の実施の形態に係る格子パターンの溝と光の電気ベクトルの振動方向とがなす角と、露光量比との関係を示すグラフである。 本発明の第4の実施の形態に係る開口絞り板の上面図である。 本発明の第4の実施の形態に係る露光装置の2次光源面の模式図である。 本発明の第4の実施の形態に係る検査マスクの上面図である。 本発明の第4の実施の形態に係る検査基板の拡大上面図である。 本発明の第4の実施の形態に係る検査基板の第1の上面図である。 本発明の第4の実施の形態に係る検査基板の第1の断面図である。 本発明の第4の実施の形態に係る検査基板の第2の上面図である。 本発明の第4の実施の形態に係る検査基板の第2の断面図である。 本発明の第4の実施の形態に係る検査基板の第3の上面図である。 本発明の第4の実施の形態に係る検査基板の第3の断面図である。 本発明の第4の実施の形態に係る検査基板の第4の上面図である。 本発明の第4の実施の形態に係る検査基板の第4の断面図である。 本発明の第4の実施の形態に係る検査基板の第4の上面図である。 本発明の第4の実施の形態に係る検査基板の第4の断面図である。 本発明の第4の実施の形態に係る偏光状態検査方法を示すフローチャートである。 本発明の第5の実施の形態に係る検査基板の上面図である。 本発明の第5の実施の形態に係る露光装置の露光条件を示す模式図である。 本発明の第5の実施の形態に係る偏光状態検査方法を示すフローチャートである。
符号の説明
3…露光装置
201…リソグラフィ条件記憶部
204…露光量比記憶部
205…検査条件記憶部
326…露光装置制御部
333…膜厚測定装置
341…露光量比算出部
342…評価部

Claims (4)

  1. 平坦な表面及び反射率が偏光方向により変化する格子パターンを有する検査ウェハ上に検査感光層を形成するステップと、
    前記検査感光層を照明光で露光するステップと、
    前記検査感光層の感光変化を計測するステップと、
    前記平坦な表面上の前記検査感光層の前記感光変化に要した前記照明光の基準露光量を取得するステップと、
    前記格子パターン上の前記検査感光層を前記平坦な表面上の前記検査感光層と同じだけ感光変化させるための前記照明光の参照露光量を取得するステップと、
    前記基準露光量と、前記参照露光量との比を算出することにより前記照明光の偏光状態を検査するステップ
    とを含むことを特徴とする偏光状態検査方法。
  2. 前記格子パターンのピッチが、前記照明光の波長の2倍以下であることを特徴とする請求項に記載の偏光状態検査方法。
  3. 前記格子パターンには、複数の電気伝導体及び複数の誘電体のそれぞれが周期的に配置されていることを特徴とする請求項1又は2に記載の偏光状態検査方法。
  4. 平坦な表面及び反射率が偏光方向により変化する格子パターンを有する検査ウェハ上に検査感光層を形成するステップと、
    前記検査感光層を照明光で露光するステップと、
    前記検査感光層の感光変化を計測するステップと、
    前記平坦な表面上の前記検査感光層の前記感光変化に要した前記照明光の基準露光量を取得するステップと、
    前記格子パターン上の前記検査感光層を前記平坦な表面上の前記検査感光層と同じだけ感光変化させるための前記照明光の参照露光量を取得するステップと、
    前記基準露光量と、前記参照露光量との比を算出することにより前記照明光の偏光状態を検査するステップと、
    前記偏光状態に基づいて前記照明光の照明光学系を補正するステップと、
    製品ウェハ上に製品レジスト膜を塗布するステップと、
    前記照明光学系を用いて、製品マスクに設けられた回路パターンの像を前記製品レジスト膜に投影するステップと、
    前記製品レジスト膜を現像し、前記回路パターンに対応する製品レジストパターンを前記製品ウェハ上に形成させるステップ とを含むことを特徴とする半導体装置の製造方法。
JP2005092658A 2005-03-28 2005-03-28 偏光状態検査方法及び半導体装置の製造方法 Expired - Fee Related JP4580797B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005092658A JP4580797B2 (ja) 2005-03-28 2005-03-28 偏光状態検査方法及び半導体装置の製造方法
US11/389,207 US7586605B2 (en) 2005-03-28 2006-03-27 Method for testing a polarization state, method for manufacturing a semiconductor device, and test substrate for testing a polarization state
KR1020060027336A KR100785937B1 (ko) 2005-03-28 2006-03-27 편광 상태 검사 방법, 반도체 장치의 제조 방법 및 편광상태 검사용 검사 기판
CNB2006100840264A CN100533096C (zh) 2005-03-28 2006-03-28 偏振状态检查方法和检查衬底、半导体器件的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092658A JP4580797B2 (ja) 2005-03-28 2005-03-28 偏光状態検査方法及び半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2006278527A JP2006278527A (ja) 2006-10-12
JP4580797B2 true JP4580797B2 (ja) 2010-11-17

Family

ID=37213002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092658A Expired - Fee Related JP4580797B2 (ja) 2005-03-28 2005-03-28 偏光状態検査方法及び半導体装置の製造方法

Country Status (4)

Country Link
US (1) US7586605B2 (ja)
JP (1) JP4580797B2 (ja)
KR (1) KR100785937B1 (ja)
CN (1) CN100533096C (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4976670B2 (ja) * 2005-08-24 2012-07-18 キヤノン株式会社 露光装置及びデバイス製造方法
JP5094517B2 (ja) * 2008-04-11 2012-12-12 キヤノン株式会社 露光装置、測定方法、安定化方法及びデバイスの製造方法
KR101039288B1 (ko) 2008-04-11 2011-06-07 캐논 가부시끼가이샤 노광 장치, 측정 방법, 안정화 방법 및 디바이스의 제조 방법
US8031330B2 (en) * 2008-08-11 2011-10-04 International Business Machines Corporation Mixed polarization state monitoring
JP5448494B2 (ja) * 2009-02-18 2014-03-19 キヤノン株式会社 偏光計測装置、露光装置、及びデバイス製造方法
CN109841535B (zh) * 2019-01-31 2022-04-15 合肥鑫晟光电科技有限公司 阵列基板及其制备方法、显示面板、显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254542A (ja) * 1994-01-25 1995-10-03 Fujitsu Ltd 投影露光装置
JPH1022205A (ja) * 1996-07-05 1998-01-23 Canon Inc パターン形成状態検出装置、及びこれを用いた投影露光装置
JP2005043353A (ja) * 2003-07-05 2005-02-17 Carl Zeiss Smt Ag 偏光固有調査方法、光学的結像システムおよび校正方法
JP2005116733A (ja) * 2003-10-07 2005-04-28 Toshiba Corp 露光装置検査用マスク、露光装置検査方法及び露光装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629115A (en) * 1993-04-30 1997-05-13 Kabushiki Kaisha Toshiba Exposure mask and method and apparatus for manufacturing the same
US6594012B2 (en) * 1996-07-05 2003-07-15 Canon Kabushiki Kaisha Exposure apparatus
US6020966A (en) * 1998-09-23 2000-02-01 International Business Machines Corporation Enhanced optical detection of minimum features using depolarization
JP3997199B2 (ja) 2002-12-10 2007-10-24 キヤノン株式会社 露光方法及び装置
JP4425059B2 (ja) 2003-06-25 2010-03-03 シャープ株式会社 偏光光学素子、およびそれを用いた表示装置
JP4802481B2 (ja) * 2004-11-09 2011-10-26 株式会社ニコン 表面検査装置および表面検査方法および露光システム
JP2006140223A (ja) * 2004-11-10 2006-06-01 Toshiba Corp 露光システム、偏光モニタマスク及び偏光モニタ方法
JP2006178186A (ja) * 2004-12-22 2006-07-06 Seiko Epson Corp 偏光制御素子、偏光制御素子の製造方法、偏光制御素子の設計方法、電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254542A (ja) * 1994-01-25 1995-10-03 Fujitsu Ltd 投影露光装置
JPH1022205A (ja) * 1996-07-05 1998-01-23 Canon Inc パターン形成状態検出装置、及びこれを用いた投影露光装置
JP2005043353A (ja) * 2003-07-05 2005-02-17 Carl Zeiss Smt Ag 偏光固有調査方法、光学的結像システムおよび校正方法
JP2005116733A (ja) * 2003-10-07 2005-04-28 Toshiba Corp 露光装置検査用マスク、露光装置検査方法及び露光装置

Also Published As

Publication number Publication date
CN100533096C (zh) 2009-08-26
US7586605B2 (en) 2009-09-08
US20060250615A1 (en) 2006-11-09
CN1865890A (zh) 2006-11-22
KR20060103873A (ko) 2006-10-04
JP2006278527A (ja) 2006-10-12
KR100785937B1 (ko) 2007-12-14

Similar Documents

Publication Publication Date Title
JP4778021B2 (ja) インスペクション方法および装置、リソグラフィ装置、リソグラフィ処理セル、ならびにデバイス製造方法
US6767680B2 (en) Semiconductor structure and method for determining critical dimensions and overlay error
KR100276852B1 (ko) 리소그래픽 프로세스에서의 파라미터 제어 프로세스
US8994944B2 (en) Methods and scatterometers, lithographic systems, and lithographic processing cells
JP4486651B2 (ja) 光波散乱測定データに基づいてプロセスパラメータ値を決定する方法
TWI470374B (zh) 判定對焦校正之方法、微影處理製造單元及元件製造方法
KR100301648B1 (ko) 리소그래픽프로세스에서의파라미터제어프로세스
KR100276849B1 (ko) 기판상의 파라미터 측정을 위한 표적 및 방법
KR101906289B1 (ko) 리소그래피를 수반하는 제조 공정을 위한 공정 파라미터의 측정
KR102370347B1 (ko) 메트롤로지 방법 및 장치 및 연계된 컴퓨터 제품
KR102748447B1 (ko) 연질 x-선 산란계측에 기초한 오버레이 측정을 위한 방법 및 시스템
CN100582934C (zh) 一种曝光方法及曝光处理装置
TW201732858A (zh) 用於檢測的方法和設備
JPH08339074A (ja) 露光マスクの製造方法
JP2008258593A (ja) インスペクション方法及び装置、リソグラフィ装置、リソグラフィプロセシングセル及びデバイス製造方法、これら方法で使用する基板
TW201506349A (zh) 量測疊對誤差的方法及器件製造方法
TWI764314B (zh) 組態一度量衡標記之方法、用於判定一疊對量測之方法及相關之基板及電腦程式產品
KR100785937B1 (ko) 편광 상태 검사 방법, 반도체 장치의 제조 방법 및 편광상태 검사용 검사 기판
US5789118A (en) Method and apparatus for precision determination of phase-shift in a phase-shifted reticle
TW201812850A (zh) 監控製程裝置的方法與裝置
JP2022539425A (ja) メトロロジ方法及び関連のコンピュータプロダクト
TWI467346B (zh) 決定特性之方法
JP2005009941A (ja) ライブラリ作成方法
JPH06302492A (ja) 露光条件検定パターンおよび露光原版ならびにそれらを用いた露光方法
KR20240070563A (ko) 기판 상의 적어도 하나의 타겟을 측정하는 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees