JP4544977B2 - Free-cutting soft magnetic stainless steel - Google Patents
Free-cutting soft magnetic stainless steel Download PDFInfo
- Publication number
- JP4544977B2 JP4544977B2 JP2004343109A JP2004343109A JP4544977B2 JP 4544977 B2 JP4544977 B2 JP 4544977B2 JP 2004343109 A JP2004343109 A JP 2004343109A JP 2004343109 A JP2004343109 A JP 2004343109A JP 4544977 B2 JP4544977 B2 JP 4544977B2
- Authority
- JP
- Japan
- Prior art keywords
- free
- soft magnetic
- stainless steel
- less
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 21
- 239000010935 stainless steel Substances 0.000 title claims description 19
- 229910000831 Steel Inorganic materials 0.000 claims description 32
- 239000010959 steel Substances 0.000 claims description 32
- 239000011159 matrix material Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052711 selenium Inorganic materials 0.000 claims description 5
- 229910052714 tellurium Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 9
- 230000007797 corrosion Effects 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000004453 electron probe microanalysis Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 229910052745 lead Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 229910000915 Free machining steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Landscapes
- Soft Magnetic Materials (AREA)
Description
本発明は、快削軟磁性ステンレス鋼に関する。 The present invention relates to a free-cutting soft magnetic stainless steel.
近年、切削加工を経て製造される部材の生産性を向上させるため、被削性向上元素としてSを含有させた快削鋼が材料として用いられている。これは、主にMnS系の介在物を生成させ、切屑形成時における介在物への応力集中効果や工具と切屑間の潤滑作用によって被削性を高めているものである。 In recent years, free-cutting steel containing S as a machinability improving element has been used as a material in order to improve the productivity of members manufactured through cutting. This is because MnS inclusions are mainly generated, and the machinability is enhanced by the stress concentration effect on the inclusions during chip formation and the lubricating action between the tool and the chips.
なかでも、電磁弁のソレノイド,モーター,センサー等の磁心材料に好適な軟磁気特性材料としては、0.3%前後のSを添加し、MnS系やCrS系の介在物を分散させた430F等の快削ステンレス鋼が、従来より用いられている(特許文献1参照)。しかしながら、かかる快削軟磁性ステンレス鋼では、Sの添加による被削性の向上を重視するあまり、磁気特性や耐食性が損なわれてしまうという問題がある。 Among them, as a soft magnetic property material suitable for magnetic core materials such as solenoids, motors, and sensors of solenoid valves, 430F or the like in which about 0.3% of S is added and MnS-based or CrS-based inclusions are dispersed. The free-cutting stainless steel is conventionally used (see Patent Document 1). However, such a free-cutting soft magnetic stainless steel has a problem that magnetic properties and corrosion resistance are impaired due to the importance of improving machinability by adding S.
本発明は、上記の点に鑑みて為されたものであり、良好な磁気特性や耐食性を備えつつも、優れた被削性が付与された快削軟磁性ステンレス鋼を提供することを目的とする。 The present invention has been made in view of the above points, and an object thereof is to provide a free-cutting soft magnetic stainless steel provided with excellent machinability while having good magnetic properties and corrosion resistance. To do.
上記課題を解決するため、本発明の快削軟磁性ステンレス鋼は、質量%で、C:0.02〜0.15%,Si:0.5〜3.0%,Mn:2.0%以下,S:0.1〜0.5%,Cr:10〜22%,Al:0.01〜4.0%,Ti:0.5〜1.5%,Ni:1%以下,Cu:1%以下,Mo:2%以下を含有し、残部がFe及び不可避的不純物からなることを特徴とする。 In order to solve the above problems, the free-cutting soft magnetic stainless steel of the present invention is, in mass%, C: 0.02 to 0.15%, Si: 0.5 to 3.0%, Mn: 2.0% Hereinafter, S: 0.1 to 0.5%, Cr: 10 to 22%, Al: 0.01 to 4.0%, Ti: 0.5 to 1.5% , Ni: 1% or less, Cu: It contains 1% or less, Mo: 2% or less , and the balance consists of Fe and inevitable impurities.
かかる本発明では、上記組成範囲のTi,C,Sを含有させることで、これらを含有するTi系介在物を鋼組織中に生成させることが可能であり、これによって良好な被削性を付与することができる。また、MnSやCrSを主要介在物とする場合(上記特許文献1参照)と比較して、少量のSであっても被削性を改善できるため、磁気特性や耐食性を良好に維持できる。つまり、本発明によれば、良好な磁気特性や耐食性を備えつつも、優れた被削性が付与された快削軟磁性ステンレス鋼を実現できるのである。 In the present invention, by including Ti, C, and S in the above composition range, it is possible to generate Ti-based inclusions containing these in the steel structure, thereby imparting good machinability. can do. Moreover, compared with the case where MnS or CrS is used as the main inclusion (see Patent Document 1 above), the machinability can be improved even with a small amount of S, so that the magnetic properties and corrosion resistance can be maintained well. In other words, according to the present invention, it is possible to realize a free-cutting soft magnetic stainless steel having excellent machinability while having good magnetic properties and corrosion resistance.
ここで、上記Ti系介在物は、組成式Ti4C2S2にて表される介在物(以下、TiCSともいう)を主に含有するものとすることができる。また、TiCSにおいては、Tiの一部又は全部がZrと、Sの一部又は全部がSe若しくはTeと置換されていてもよい。鋼中のTi系介在物の同定は、X線回折(例えば、ディフラクトメータ法)や電子線プローブ微小分析(EPMA)法により行うことができる。例えば、Ti4C2S2の介在物にて存在しているか否かは、X線ディフラクトメータ法による測定プロファイルに、対応する介在物のピークが現れるか否かにより確認できる。また、組織中における該介在物の形成領域は、鋼材の断面組織に対してEPMAによる面分析を行い、Ti,C,Sの特性X線強度の二次元マッピング結果を比較することにより特定できる。 Here, the Ti-based inclusions can mainly contain inclusions represented by the composition formula Ti 4 C 2 S 2 (hereinafter also referred to as TiCS). In TiCS, part or all of Ti may be replaced with Zr, and part or all of S may be replaced with Se or Te. Identification of Ti inclusions in steel can be performed by X-ray diffraction (for example, diffractometer method) or electron probe microanalysis (EPMA) method. For example, whether or not Ti 4 C 2 S 2 exists in the inclusion can be confirmed by whether or not the corresponding inclusion peak appears in the measurement profile by the X-ray diffractometer method. The inclusion formation region in the structure can be identified by performing a surface analysis with EPMA on the cross-sectional structure of the steel material and comparing the two-dimensional mapping results of the characteristic X-ray intensities of Ti, C, and S.
なお、本発明者らは以前、フェライト系ステンレス鋼中にTi系介在物を分散形成させた発明(上記特許文献2参照)を為しているが、このようなTi系介在物を本発明のような軟磁性ステンレス鋼に適用した場合には、Ti系介在物の成分によって磁気特性が大幅に劣化するものと予想していた。しかしながら、本発明者らは、実際には、磁気特性の劣化がそれ程生じずに被削性を付与可能であることを見出し、本発明を為すに到った。 The present inventors have previously made an invention in which Ti-based inclusions are dispersedly formed in ferritic stainless steel (see Patent Document 2 above). Such Ti-based inclusions are used in the present invention. When applied to such soft magnetic stainless steel, it was expected that the magnetic properties would be significantly degraded by the components of the Ti inclusions. However, the present inventors have found that the machinability can be imparted without actually causing much deterioration of the magnetic properties, and have arrived at the present invention.
以下、上記各成分の組成限定理由について説明する。 Hereinafter, the reasons for limiting the composition of each component will be described.
(1)C:0.02〜0.15%
Cは、被削性を向上させるTi系介在物を構成する元素である。また、Ti系介在物に固定されることによって、マトリックス相中の固溶C量が低下し、マトリックス相の軟磁気特性が良好に維持される。かかる効果を得るためには、0.02%以上の添加が必要である。さらには、0.03%以上の添加が好ましい。他方、過度の添加は、炭化物や固溶Cが増加して、磁気特性を劣化させてしまうので、0.15%以下の添加とする。さらには、0.06%以下の添加が好ましい。
(1) C: 0.02 to 0.15%
C is an element constituting a Ti-based inclusion that improves machinability. Further, by fixing to the Ti-based inclusions, the amount of solid solution C in the matrix phase is reduced, and the soft magnetic properties of the matrix phase are favorably maintained. In order to obtain such an effect, addition of 0.02% or more is necessary. Furthermore, addition of 0.03% or more is preferable. On the other hand, excessive addition increases carbides and solute C and degrades magnetic properties, so the addition is made 0.15% or less. Furthermore, addition of 0.06% or less is preferable.
(2)Si:0.5〜3.0%
Siは、脱酸剤として有効なだけでなく、保磁力を低下させる等の軟磁気特性の改善や、電気抵抗増加効果による磁気回路の損失低減に有効な元素である。かかる効果を得るためには、0.5%以上の添加が必要である。さらには、0.6%以上の添加が好ましい。他方、過度の添加は、磁束密度を低下させてしまうので、3.0%以下の添加とする。さらには、1.5%以下の添加が好ましい。
(2) Si: 0.5 to 3.0%
Si is an element not only effective as a deoxidizer but also effective in improving soft magnetic properties such as reducing the coercive force and reducing loss in the magnetic circuit due to the effect of increasing electrical resistance. In order to obtain such an effect, addition of 0.5% or more is necessary. Furthermore, addition of 0.6% or more is preferable. On the other hand, excessive addition reduces the magnetic flux density, so 3.0% or less is added. Furthermore, addition of 1.5% or less is preferable.
(3)Mn:2.0%以下
Mnは、精錬における脱酸剤として有効な元素であるが、過度の添加は軟磁気特性を低下させてしまうので、2.0%以下の添加とする。さらには、0.5%以下の添加が好ましい。なお、本発明では、上述の通り、被削性を向上させるためにTi系介在物を生成させていることから、MnSの形成は抑制されている。
(3) Mn: 2.0% or less Mn is an element that is effective as a deoxidizer in refining, but excessive addition causes a decrease in soft magnetic properties, so 2.0% or less is added. Furthermore, addition of 0.5% or less is preferable. In the present invention, as described above, the formation of MnS is suppressed because Ti inclusions are generated in order to improve machinability.
(4)S:0.1〜0.5%
Sは、被削性を向上させるTi系介在物を構成する元素である。かかる効果を得るためには、0.1%以上の添加が必要である。さらには、0.15%以上の添加が好ましい。他方、過度の添加は、軟磁気特性を劣化させてしまうので、0.5%以下の添加とする。さらには、0.30%以下の添加が好ましい。また、Sは、Se,Teにより置換することが可能である。詳しくは、S+0.41Se+0.25Teが0.1〜0.5%となるようにS,Se,Teの1種又は2種以上を含有するようにすることができる。
(4) S: 0.1 to 0.5%
S is an element constituting a Ti-based inclusion that improves machinability. In order to obtain such an effect, addition of 0.1% or more is necessary. Furthermore, addition of 0.15% or more is preferable. On the other hand, excessive addition degrades the soft magnetic properties, so 0.5% or less is added. Furthermore, addition of 0.30% or less is preferable. S can be replaced by Se or Te. Specifically, one or more of S, Se, and Te can be contained so that S + 0.41Se + 0.25Te is 0.1 to 0.5%.
(5)Cr:10〜22%
Crは、フェライト系ステンレスの主要合金元素として、耐食性向上に寄与する元素である。かかる効果を得るためには、10%以上の添加が必要である。さらには、12%以上の添加が好ましい。他方、過度の添加は、冷鍛性を阻害してしまうので、22%以下の添加とする。さらには、20%以下の添加が好ましい。
(5) Cr: 10-22%
Cr is an element that contributes to improvement of corrosion resistance as a main alloy element of ferritic stainless steel. In order to obtain such an effect, addition of 10% or more is necessary. Furthermore, addition of 12% or more is preferable. On the other hand, excessive addition inhibits cold forgeability, so it should be 22% or less. Furthermore, addition of 20% or less is preferable.
(6)Al:0.01〜4.0%
Alは、Siと同様に、電気抵抗増加効果による磁気回路の損失低減に有効な元素である。かかる効果を得るためには、0.01%の添加が必要である。さらには、0.1%以上の添加が好ましい。他方、過度の添加は、磁気特性を阻害してしまうので、4.0%以下の添加とする。さらには、1.0%以下の添加が好ましい。
(6) Al: 0.01 to 4.0%
Al, like Si, is an element effective for reducing the loss of the magnetic circuit due to the effect of increasing the electrical resistance. In order to obtain such an effect, addition of 0.01% is necessary. Furthermore, addition of 0.1% or more is preferable. On the other hand, excessive addition inhibits the magnetic properties, so 4.0% or less is added. Furthermore, addition of 1.0% or less is preferable.
(7)Ti:0.5〜1.5%
Tiは、被削性を向上させるTi系介在物を構成する元素であるとともに、マトリックス相中の固溶CやSを低下させて磁気特性の向上に寄与する。また、MnSの形成が抑制されるので、耐食性向上にも寄与する。かかる効果を得るためには、0.5%以上の添加が必要である。さらには、0.6%以上の添加が好ましい。他方、過度の添加は、磁気特性を低下させてしまうので、1.5%以下の添加とする。さらには、1.3%以下の添加が好ましい。また、Tiは、Zrにより置換することが可能である。詳しくは、Ti+0.52Zrが0.5〜1.5%となるようにTi,Zrの1種又は2種を含有するようにすることができる。
(7) Ti: 0.5 to 1.5%
Ti is an element that constitutes a Ti-based inclusion that improves machinability, and contributes to improvement of magnetic properties by reducing solid solution C and S in the matrix phase. Moreover, since formation of MnS is suppressed, it contributes also to an improvement in corrosion resistance. In order to obtain such an effect, addition of 0.5% or more is necessary. Furthermore, addition of 0.6% or more is preferable. On the other hand, excessive addition reduces the magnetic properties, so 1.5% or less is added. Furthermore, addition of 1.3% or less is preferable. Ti can be replaced by Zr. Specifically, it is possible to contain one or two of Ti and Zr so that Ti + 0.52Zr is 0.5 to 1.5%.
次に、本発明の快削軟磁性ステンレス鋼は、鋼成分としてさらに、Nb:2%以下,V:1%以下のうちのいずれか1種または2種以上を含有させることができる。Ni,Cu,Mo,Nb及びVは、いずれも耐食性をより向上させるのに有効であるので、必要に応じて添加できる。しかしながら、過度の添加は、軟磁気特性を阻害する場合があるので、上限をそれぞれ上記の通りとすることが好ましい。 Next, the free-cutting soft magnetic stainless steel of the present invention may further contain any one or more of Nb: 2% or less and V: 1% or less as a steel component. Ni, Cu, Mo, Nb and V are all effective in improving the corrosion resistance, and can be added as necessary. However, excessive addition may impair the soft magnetic properties, so the upper limit is preferably set as described above.
次に、本発明の快削軟磁性ステンレス鋼は、鋼成分としてさらに、Pb:0.15%以下を含有させることができる。Pbは、Sと比較して、耐食性や冷間加工性を低下させずに被削性、特にドリル穿孔性を向上させることができる。また、Pbを添加させることにより、Pbがほぼ単独で鋼中に分散的に析出する。このような析出物が被削性を向上させるのに有効となる。しかしながら、過度の添加は、熱間加工性を低下させてしまうため、0.15%以下の添加が好ましい。 Next, the free-cutting soft magnetic stainless steel of the present invention can further contain Pb: 0.15% or less as a steel component. Compared with S, Pb can improve machinability, in particular drill drillability, without reducing corrosion resistance and cold workability. Moreover, by adding Pb, Pb precipitates dispersively in the steel almost alone. Such precipitates are effective for improving the machinability. However, excessive addition reduces hot workability, so addition of 0.15% or less is preferable.
次に、本発明の快削軟磁性ステンレス鋼は、マトリックス相中の固溶C量が0.1ppm以下であることが好ましい。これによって、マトリックス相の軟磁気特性が良好に維持される。ここで、マトリックス相中の固溶C量は、C添加量からTiと結合して介在物を形成するC量を引いた値で見積もられる。すなわち、例えば、Ti添加量からTi4C2S2として固定されるC量(ただし、Sが不足する場合はTiCとして固定される)を求め、残余のCがマトリックス相中に固溶しているとする。 Next, the free-cutting soft magnetic stainless steel of the present invention preferably has a solid solution C content in the matrix phase of 0.1 ppm or less. As a result, the soft magnetic properties of the matrix phase are well maintained. Here, the amount of dissolved C in the matrix phase is estimated by a value obtained by subtracting the amount of C that forms inclusions by combining with Ti from the amount of added C. That is, for example, the amount of C fixed as Ti 4 C 2 S 2 is obtained from the amount of Ti added (however, when S is insufficient, it is fixed as TiC), and the remaining C is dissolved in the matrix phase. Suppose that
次に、本発明の快削軟磁性ステンレス鋼は、MnS快削材で一般的に必要とされるS量と同じS:約0.3%では、1.9A/cm以下の保磁力が得られ、MnS快削材と同等以上の被削性を得るに十分なS:約0.2%では、1.7A/cm以下の保磁力を得ることができる。 Next, the free-cutting soft magnetic stainless steel of the present invention has a coercive force of 1.9 A / cm or less at the same S: about 0.3% as the amount of S generally required for MnS free-cutting materials. With a sufficient S: about 0.2% for obtaining machinability equivalent to or higher than that of a MnS free-cutting material, a coercive force of 1.7 A / cm or less can be obtained.
次に、本発明の快削軟磁性ステンレス鋼は、マトリックス相中に分散形成されたTi系介在物の平均径が2〜5μmであることが好ましい。Ti系介在物は、マトリックス相中に微細に分散されることで、鋼の被削性を向上させる。かかる効果を高めるためには、Ti系介在物の径(例えば、鋼材の研磨断面組織において観察されるTi系介在物の外形線に外接平行線を引いたときの最大間隔にて表すことができる)の平均値が、上記範囲であることが好ましい。また、Ti系介在物の組織中の面積率は、例えば0.1〜0.6%程度であることが好ましい。 Next, in the free-cutting soft magnetic stainless steel of the present invention, it is preferable that the average diameter of the Ti inclusions dispersed and formed in the matrix phase is 2 to 5 μm. Ti-based inclusions are finely dispersed in the matrix phase, thereby improving the machinability of the steel. In order to enhance such an effect, the diameter of the Ti inclusions (for example, the maximum interval when a circumscribed parallel line is drawn on the outline of the Ti inclusions observed in the polished cross-sectional structure of the steel material can be expressed. ) Is preferably in the above range. Moreover, it is preferable that the area ratio in the structure | tissue of Ti type inclusions is about 0.1 to 0.6%, for example.
以下、本発明の効果を確認するために行った試験について説明する。
表1に示す化学組成に基づき、真空誘導溶解炉を用いてAr雰囲気中で100kgの鋳塊を造り、更に、熱間鍛造で80角鋼片とした後、熱間圧延で線径9.5mmの線材として、750℃×3時間焼鈍−冷間引抜き−850℃×3時間焼鈍−曲り矯正−センタレス研磨により、8mm径の棒鋼とした。
なお、表1中の比較鋼の組成において、本発明で規定する組成範囲を逸脱しているものには、下限を下回る場合は下向矢印(↓)、上限を上回る場合は上向矢印(↑)を付している。
Hereinafter, tests conducted for confirming the effects of the present invention will be described.
Based on the chemical composition shown in Table 1, an ingot of 100 kg was made in an Ar atmosphere using a vacuum induction melting furnace, and after making 80 square steel pieces by hot forging, the wire diameter was 9.5 mm by hot rolling. As a wire rod, a steel bar having a diameter of 8 mm was obtained by annealing at 750 ° C. for 3 hours, cold drawing, annealing at 850 ° C. for 3 hours, straightening, and centerless polishing.
In addition, in the composition of the comparative steel in Table 1, those that deviate from the composition range defined in the present invention include a downward arrow (↓) when below the lower limit, and an upward arrow (↑) when exceeding the upper limit. ) Is attached.
次に、かかる発明鋼及び比較鋼に対し、以下に記述する磁気特性,被削性,介在物径の評価を行った。評価結果を表1及び図1〜5に示す。なお、図中において、「発明鋼12%Cr系」とはCr含有量が12%付近の発明鋼(発明鋼2,3,6,7,10)を、「比較鋼12%Cr系」とはCr含有量が12%付近の比較鋼(比較鋼13,14,15,18,19,21)を、「発明鋼17%Cr系」とはCr含有量が17%付近の発明鋼(発明鋼1,4,5,8,11)を、「比較鋼17%Cr系」とはCr含有量が17%付近の比較鋼(比較鋼12,16,17,20,22)を、「比較鋼MnS系」とは主にMnS系の介在物を有する比較鋼(比較鋼23,24)を表す。
Next, the magnetic properties, machinability, and inclusion diameter described below were evaluated for the inventive steel and the comparative steel. The evaluation results are shown in Table 1 and FIGS. In the figure, the “invention steel 12% Cr system” means the invention steel (invention steel 2, 3, 6, 7, 10) having a Cr content of about 12% and “comparative steel 12% Cr system”. Is a comparative steel having a Cr content of around 12% (
<磁気特性>
磁気特性は、各々を8mm外径×3.6mm内径×5mm厚のリングに切削し、真空炉で950℃×3時間焼鈍後、B−Hループトレーサーで測定した。
<Magnetic properties>
The magnetic properties were measured with a B-H loop tracer after cutting each into a ring of 8 mm outer diameter × 3.6 mm inner diameter × 5 mm thickness, annealing at 950 ° C. × 3 hours in a vacuum furnace.
<被削性>
被削性は、自動盤で、呼び径4mm、先端角118度のSKH51ドリルで、水溶性潤滑剤を用い、切削速度15m/min、送り0.07mm/rev、深さ10mmで1500回穴あけ後の切刃磨耗量を測定した。
<Machinability>
Machinability is an automatic board, SKH51 drill with a nominal diameter of 4 mm and tip angle of 118 degrees, using water-soluble lubricant, after cutting 1500 times at a cutting speed of 15 m / min, feed 0.07 mm / rev,
<介在物径>
介在物径は、各々を鏡面研磨し、観察される介在物の長短径について、視野内最大値及び平均値を取った。なお、この際、僅かに観察された角型のTiN(EPMA、特性X線マップで確認)は、観察対象から除外している。
<Inclusion diameter>
The inclusion diameters were each mirror-polished and the maximum and average values in the field of view were taken for the major and minor diameters of the inclusions observed. At this time, the slightly observed square TiN (EPMA, confirmed by the characteristic X-ray map) is excluded from the observation target.
図1は保磁力、図2は最大透磁率、図3は磁束密度のS濃度依存性の評価結果を示すものである。図によると、いずれもS濃度が0.1%付近を越えると依存性が緩やかとなっている。また、後述の切刃磨耗の評価結果(図4)によると、S濃度が0.2%付近で被削性が最も優れているため、発明鋼は、一般的にSが約0.3%の添加されるMnS快削材よりも磁気特性を良好にすることが可能である。 1 shows the coercive force, FIG. 2 shows the maximum magnetic permeability, and FIG. 3 shows the evaluation results of the S concentration dependence of the magnetic flux density. According to the figure, the dependence becomes mild when the S concentration exceeds about 0.1%. In addition, according to the evaluation result of cutting edge wear described later (FIG. 4), since the machinability is most excellent when the S concentration is around 0.2%, the invention steel generally has S of about 0.3%. It is possible to make the magnetic properties better than the MnS free-cutting material to which is added.
図4は、ドリル切刃磨耗のS濃度依存性の評価結果を示すものである。被削性は、S濃度が0.1〜0.5%で良好であり、特に0.2%付近で最も優れている。 FIG. 4 shows an evaluation result of S concentration dependency of drill cutting edge wear. The machinability is good when the S concentration is 0.1 to 0.5%, and is particularly excellent around 0.2%.
図5は、介在物径のS濃度依存性の観察結果を示すものである。上記したように磁気特性(図1〜3)はS濃度が0.1%付近で依存性が緩やかとなるが、これは、図5に示されるようにS濃度が0.1%付近で平均径が2μmを超えることで、磁壁ピンニング効果が弱められているものと推定される。一般に、磁壁の厚さが粒子径と同じときに、最もピンニングの効果が強くなると言われている。 FIG. 5 shows the observation result of the S concentration dependence of the inclusion diameter. As described above, the magnetic properties (FIGS. 1 to 3) have a moderate dependency when the S concentration is around 0.1%, but this is an average when the S concentration is around 0.1% as shown in FIG. It is presumed that the domain wall pinning effect is weakened when the diameter exceeds 2 μm. In general, it is said that the pinning effect is strongest when the domain wall thickness is the same as the particle diameter.
以上より、本発明の発明鋼は、上記組成範囲とすることでTi系介在物が鋼組織中に生成し、その結果、良好な磁気特性及び被削性を備えるものであることがわかる。 From the above, it can be seen that, in the steel of the present invention, Ti inclusions are generated in the steel structure by setting the above composition range, and as a result, have good magnetic properties and machinability.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004343109A JP4544977B2 (en) | 2004-11-26 | 2004-11-26 | Free-cutting soft magnetic stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004343109A JP4544977B2 (en) | 2004-11-26 | 2004-11-26 | Free-cutting soft magnetic stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006152354A JP2006152354A (en) | 2006-06-15 |
JP4544977B2 true JP4544977B2 (en) | 2010-09-15 |
Family
ID=36630991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004343109A Expired - Lifetime JP4544977B2 (en) | 2004-11-26 | 2004-11-26 | Free-cutting soft magnetic stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4544977B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010128545A1 (en) | 2009-05-07 | 2010-11-11 | 日新製鋼株式会社 | High‑strength stainless steel pipe |
JP6856886B2 (en) * | 2016-12-01 | 2021-04-14 | アイシン精機株式会社 | Iron-based soft magnetic material and iron-based soft magnetic core |
JP6846925B2 (en) * | 2016-12-26 | 2021-03-24 | 山陽特殊製鋼株式会社 | Free-cutting electrical steel with excellent manufacturability |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002038238A (en) * | 2000-07-21 | 2002-02-06 | Kiyohito Ishida | Ferritic free-cutting stainless steel |
JP2003221654A (en) * | 2002-01-31 | 2003-08-08 | Daido Steel Co Ltd | Free-cutting stainless steel |
JP2003301245A (en) * | 2002-04-15 | 2003-10-24 | Tohoku Tokushuko Kk | Precipitation hardening soft magnetic ferritic stainless steel |
-
2004
- 2004-11-26 JP JP2004343109A patent/JP4544977B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002038238A (en) * | 2000-07-21 | 2002-02-06 | Kiyohito Ishida | Ferritic free-cutting stainless steel |
JP2003221654A (en) * | 2002-01-31 | 2003-08-08 | Daido Steel Co Ltd | Free-cutting stainless steel |
JP2003301245A (en) * | 2002-04-15 | 2003-10-24 | Tohoku Tokushuko Kk | Precipitation hardening soft magnetic ferritic stainless steel |
Also Published As
Publication number | Publication date |
---|---|
JP2006152354A (en) | 2006-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006233308A (en) | Austenitic-ferritic stainless steel having excellent grain boundary corrosion resistance | |
JP5142601B2 (en) | High hardness, non-magnetic free-cutting stainless steel | |
JP2018012883A (en) | Soft magnetic alloy | |
JP5737801B2 (en) | Ferritic free-cutting stainless steel and manufacturing method thereof | |
JP4441295B2 (en) | Manufacturing method of high strength steel for welding and high strength steel for welding with excellent corrosion resistance and machinability | |
JP3736721B2 (en) | High corrosion resistance free-cutting stainless steel | |
JP4986203B2 (en) | BN free-cutting steel with excellent tool life | |
JP4544977B2 (en) | Free-cutting soft magnetic stainless steel | |
JP4500709B2 (en) | BN free-cutting steel | |
JP2013049918A (en) | Electromagnetic stainless steel and method of manufacturing the same | |
JP4359548B2 (en) | BN free cutting steel | |
JP6395588B2 (en) | Lead-free soft magnetic material with excellent workability and corrosion resistance | |
JP5730153B2 (en) | Electrical steel with high resistivity, excellent machinability and magnetization characteristics | |
JP5082389B2 (en) | Austenitic free-cutting stainless steel | |
JP2003221654A (en) | Free-cutting stainless steel | |
JP4516832B2 (en) | Free-cutting soft magnetic iron | |
JP4250305B2 (en) | BN free cutting steel with excellent soft magnetism | |
JP2009256765A (en) | Nonmagnetic austenitic stainless steel, shaft or motor, and motor | |
JP3429133B2 (en) | High magnetic flux density corrosion-resistant soft magnetic material | |
JP2006316310A (en) | Material for component in electronic equipment | |
JP3425129B2 (en) | Free cutting alloy material | |
WO2024014419A1 (en) | Precipitation hardening-type soft-magnetic ferritic stainless steel having excellent machinability | |
JP4770437B2 (en) | Ferritic free-cutting stainless steel | |
JP4088539B2 (en) | Shaft material and method for producing shaft material | |
JP4757707B2 (en) | High resistivity steel with excellent machinability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071002 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100412 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100519 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100607 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100629 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4544977 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |