[go: up one dir, main page]

JP5082389B2 - Austenitic free-cutting stainless steel - Google Patents

Austenitic free-cutting stainless steel Download PDF

Info

Publication number
JP5082389B2
JP5082389B2 JP2006299583A JP2006299583A JP5082389B2 JP 5082389 B2 JP5082389 B2 JP 5082389B2 JP 2006299583 A JP2006299583 A JP 2006299583A JP 2006299583 A JP2006299583 A JP 2006299583A JP 5082389 B2 JP5082389 B2 JP 5082389B2
Authority
JP
Japan
Prior art keywords
steel
machinability
stainless steel
amount
cutting stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006299583A
Other languages
Japanese (ja)
Other versions
JP2008115424A (en
Inventor
浩一 石川
哲也 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2006299583A priority Critical patent/JP5082389B2/en
Publication of JP2008115424A publication Critical patent/JP2008115424A/en
Application granted granted Critical
Publication of JP5082389B2 publication Critical patent/JP5082389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

この発明は優れた被削性,耐食性,冷間及び熱間加工性が必要とされる機器ないし部品の素材として利用するのに適した快削ステンレス鋼に関する。   The present invention relates to a free-cutting stainless steel suitable for use as a material for equipment or parts that require excellent machinability, corrosion resistance, cold and hot workability.

従来、耐食性の必要とされる機器ないし部品等の素材としてステンレス鋼、例えばJIS SUS304,SUS316,SUS303をはじめとする300台のステンレス若しくはその類似鋼種、或いはSUS836L,SUS890L,SUSXM7,SUSXM15J1等が広く用いられている。   Conventionally, stainless steel, for example, 300 stainless steels such as JIS SUS304, SUS316, SUS303 or similar steels, or SUS836L, SUS890L, SUSXM7, SUSXM15J1, etc. are widely used as materials for equipment or parts that require corrosion resistance. It has been.

本発明はこれらのステンレス鋼が使用されている用途に使用可能なステンレス鋼に関するものであり、特に被削性に加え、冷鍛加工が加わる部品,産業機器,OA機器,ポンプ,船舶等のシャフト類等に好適に使用可能なステンレス鋼に関するものである。   The present invention relates to stainless steel that can be used in applications where these stainless steels are used, and in particular, shafts for parts, industrial equipment, OA equipment, pumps, ships, etc. that are subjected to cold forging in addition to machinability. The present invention relates to stainless steel that can be suitably used for various types.

切削加工が行われる機器,部品等の生産性向上のため、これらに使用されるステンレス鋼素材にはS,Pb,Se,Bi等の被削性を向上させる元素を添加した快削ステンレス鋼が従来から広く用いられている。   In order to improve the productivity of equipment, parts, etc. where cutting is performed, free-cutting stainless steel to which elements that improve machinability such as S, Pb, Se, Bi are added is used for the stainless steel materials used in these. Widely used in the past.

通常、ステンレス鋼に被削性を付与する場合には一般にSを添加することが行われる。
添加したSは鋼中でMnSを形成し、このMnSが鋼の被削性を高める働きをなす。
精密な仕上加工が施されるなど、より高い被削性が求められる場合にはS添加量を多くすることが一般に行われるがこれには限界があり、この場合にはS単独でなく他の被削性向上元素を複合添加することが行われる。
Usually, in order to impart machinability to stainless steel, S is generally added.
The added S forms MnS in the steel, and this MnS serves to enhance the machinability of the steel.
When higher machinability is required, such as when precise finishing is performed, it is common to increase the amount of S added, but this has a limit, and in this case other than S alone A composite addition of a machinability improving element is performed.

鋼中に形成されるMnSは、その大きさが小さいと被削性向上に対してあまり効果が無く、そのため鋼中で一定以上に大きなMnSを形成するための端的な方法としてSの添加量を多くする手法が用いられてきた。   MnS formed in steel is not very effective in improving machinability when its size is small, so the amount of S added as a straightforward method for forming MnS larger than a certain level in steel is limited. Many techniques have been used.

しかしながらSの多量添加は、同時に耐食性や機械的特性の劣化を招く。
また鋼中に形成されたMnS介在物はそれ自身柔らかい介在物であるため、圧延加工の際に変形して圧延方向に紐状に長く延びた状態となり、機械的特性に異方性を生ぜしめる原因となる。
詳しくは、MnSの展伸方向と直角方向の衝撃特性が劣化し、冷間加工等の加工性も低下する。
However, the addition of a large amount of S simultaneously causes deterioration of corrosion resistance and mechanical properties.
In addition, since the MnS inclusions formed in the steel are soft inclusions themselves, they are deformed during the rolling process and become elongated in the direction of rolling in a string shape, causing anisotropy in the mechanical properties. Cause.
Specifically, the impact characteristics of the MnS in the direction perpendicular to the extending direction are deteriorated and workability such as cold working is also lowered.

尚、下記特許文献1にはアウトガス特性に優れた快削ステンレス鋼についての発明が示され、また下記特許文献2には表面仕上性に優れた高耐食快削ステンレス鋼が、更に下記特許文献3には快削ステンレス鋼についての発明がそれぞれ示されている。
但しこれら特許文献には本発明におけるMnSの特徴的な形態制御については開示されておらず、本発明とは異なったものである。
In addition, the following Patent Document 1 discloses an invention relating to a free-cutting stainless steel excellent in outgas characteristics, and the following Patent Document 2 discloses a highly corrosion-resistant free-cutting stainless steel excellent in surface finish, and further described in Patent Document 3 below. Each show inventions on free-cutting stainless steel.
However, these patent documents do not disclose characteristic configuration control of MnS in the present invention, and are different from the present invention.

特開2001−11581号公報JP 2001-11581 A 特開2001−98352号公報JP 2001-98352 A 特開2002−38241号公報JP 2002-38241 A

本発明は以上のような事情を背景とし、Sの添加量を少なく抑えつつ、必要な大きさのMnSを鋼中に形成し得て鋼の被削性を高めることができるとともに、圧延の際にMnSが圧延方向に引き延ばされることによって鋼の特性に異方性を生ぜしめる問題を良好に解決することのできるオーステナイト系快削ステンレス鋼を提供することを目的としてなされたものである。   The present invention is based on the above circumstances, and can suppress the addition amount of S while reducing the machinability of steel by forming MnS of the required size in steel, and at the time of rolling. In addition, the present invention has been made for the purpose of providing an austenitic free-cutting stainless steel that can satisfactorily solve the problem of causing anisotropy in the properties of the steel by stretching MnS in the rolling direction.

而して請求項1のものは、質量%で、C :0.01〜0.20%,Si:0.10〜2.00%,Mn:0.80〜2.50%,P:≦0.10%,S:0.10〜0.40%,Ni:5.0〜15.0%,Cr:15.0〜25.0%,Te:0.01〜0.10%,B:0.003〜0.010%,O:0.006〜0.030%,N:≦0.050%,残部Fe及び不可避的不純物の組成を有し、且つ下記式(1)〜式(3)を満たすことを特徴とする。
3.0≦[Mn]/[S]≦15.0・・・式(1)
0.10≦[Te]/[S]≦0.50・・・式(2)
10≦[S]/[O]≦40・・・式(3)
Thus, the content of claim 1 is mass%, C: 0.01 to 0.20%, Si: 0.10 to 2.00%, Mn: 0.80 to 2.50%, P: ≤0.10%, S: 0.10 to 0.40%, Ni: 5.0 to 15.0%, Cr: 15.0 to 25.0%, Te: 0.01 to 0.10%, B: 0.003 to 0.010%, O: 0.006 to 0.030%, N: ≤ 0.050%, balance Fe and inevitable impurities And the following expressions (1) to (3) are satisfied.
3.0 ≦ [Mn] / [S] ≦ 15.0 ・ ・ ・ Formula (1)
0.10 ≦ [Te] / [S] ≦ 0.50 ・ ・ ・ Formula (2)
10 ≦ [S] / [O] ≦ 40 ・ ・ ・ Formula (3)

請求項2のものは、請求項1において、Cuを質量%で、Cu:0.01〜4.0%で含有していることを特徴とする。   A second aspect of the present invention is characterized in that, in the first aspect, Cu is contained in mass% and Cu: 0.01 to 4.0%.

請求項3のものは、請求項1,2の何れかにおいて、更にMoを質量%で、Mo:0.01〜3.0%で含有していることを特徴とする。   A third aspect of the present invention is characterized in that in any one of the first and second aspects, Mo is further contained in mass% and Mo: 0.01 to 3.0%.

請求項4のものは、請求項1〜3の何れかにおいて、更にPb,Biの何れか1種又は2種を質量%で、Pb:0.03〜0.30%,Bi:0.01〜0.30%で含有していることを特徴とする。
Claim 4 contains any one or two of Pb and Bi in mass%, Pb: 0.03 to 0.30%, Bi: 0.01 to 0.30% in any one of claims 1 to 3. It is characterized by.

請求項5のものは、請求項1〜4の何れかにおいて、更にCa,Mg,REMの何れか1種又は2種以上を質量%で、Ca:0.0001〜0.05%,Mg:0.0001〜0.02%,REM:0.0001〜0.02%で含有していることを特徴とする。   Claim 5 is any one of claims 1 to 4, and any one or more of Ca, Mg, and REM in mass%, Ca: 0.0001 to 0.05%, Mg: 0.0001 to 0.02% , REM: 0.0001 to 0.02%.

請求項6のものは、請求項1〜5の何れかにおいて、更にWを質量%で、W:0.01〜2.0%で含有していることを特徴とする。   A sixth aspect of the present invention is characterized in that in any one of the first to fifth aspects, W is further contained in mass% and W: 0.01 to 2.0%.

請求項7のものは、請求項1〜6の何れかにおいて、更にNb,Ta,Vの何れか1種又は2種以上を質量%で、Nb:0.01〜0.50%,Ta:0.01〜0.50%,V:0.01〜0.50%で含有していることを特徴とする。   In a seventh aspect of the present invention, according to any one of the first to sixth aspects, any one or more of Nb, Ta, and V is in mass%, Nb: 0.01 to 0.50%, Ta: 0.01 to 0.50% , V: 0.01 to 0.50% is contained.

発明の作用・効果Effects and effects of the invention

本発明は、オーステナイト系ステンレス鋼を上記成分組成を有するものとなし、特にS,O,Mn,Teを添加し且つそれら添加元素の相対的な比率を適正化することによって、鋼中に生ずるMnS介在物を形態制御する点を発明の骨子とするものである。
従来のオーステナイト系快削ステンレス鋼の場合、被削性を高めるために上記のようにSの添加量を多くすることで対応していた。
The present invention makes an austenitic stainless steel having the above component composition, and in particular, by adding S, O, Mn, Te and optimizing the relative proportions of these additive elements, MnS generated in the steel. The point of controlling the form of inclusions is the gist of the invention.
In the case of conventional austenitic free-cutting stainless steel, it has been dealt with by increasing the amount of S added as described above in order to enhance machinability.

これは次のような理由に基づく。
鋼中に添加したSは、その添加量が少ないと鋼中でMnS介在物を形成する際に微細な介在物となって鋼中に分散して生ずる。
このような小さなMnS介在物は被削性向上には有効に働かない。
そこでSの添加量を多くすることで、鋼中に生ずるMnS介在物を一定以上に大きくし、その大きなMnS介在物によって被削性を高めていた。
This is based on the following reason.
If the amount of S added to the steel is small, it will be dispersed in the steel as fine inclusions when forming MnS inclusions in the steel.
Such small MnS inclusions do not work effectively to improve machinability.
Therefore, by increasing the amount of S added, the MnS inclusions generated in the steel were increased beyond a certain level, and the machinability was enhanced by the large MnS inclusions.

これに対して本発明では、鋼の成分としてOを所定量含有させることで、このOを核としてそこにMnS介在物を生ぜしめ且つこれを成長させて被削性向上に有効な大きさのMnSとする。
従って本発明では、少ないS添加量の下で被削性に有効な大きさのMnSを効果的に鋼中に形成することができる。
本発明では、鋼に添加したTeがMnS介在物の周りに結合し、これがピン止効果を発揮して、鋼を圧延したときにMnS介在物がその圧延方向に長く展伸し、紐状となるのを防止する働きをする。
即ち本発明によれば、添加したTeのピン止効果によって、鋼を圧延したときMnS介在物が紐状に長く展伸しないで紡錘状に形状保持され、圧延等加工した鋼に特性的な異方性が生じるのが有効に抑制される。即ち圧延方向とその直角方向とで特性的な差が生じるのが有効に抑制される。
On the other hand, in the present invention, by containing a predetermined amount of O as a component of steel, MnS inclusions are formed in this O as a core, and this is grown and grown to increase the machinability. MnS.
Therefore, in the present invention, MnS having a size effective for machinability can be effectively formed in steel with a small amount of S added.
In the present invention, Te added to the steel binds around the MnS inclusions, which exerts a pinning effect, and when rolling the steel, the MnS inclusions extend long in the rolling direction, It works to prevent becoming.
That is, according to the present invention, due to the pinning effect of the added Te, when the steel is rolled, the MnS inclusions are not stretched long in the shape of a string, but are retained in the shape of a spindle. It is possible to effectively suppress the occurrence of anisotropy. That is, the occurrence of a characteristic difference between the rolling direction and the direction perpendicular thereto is effectively suppressed.

従って本発明によれば良好な被削性,靭性,冷間加工性,熱間加工性及び耐食性を有するオーステナイト系ステンレス鋼を得ることができる。   Therefore, according to the present invention, an austenitic stainless steel having good machinability, toughness, cold workability, hot workability and corrosion resistance can be obtained.

[成分等限定理由]
次に本発明における化学成分等の限定理由を以下に詳述する。
C :0.01〜0.20%
Cは素地に固溶し、硬さを上昇させる元素である。そのため、十分な硬さを得るために0.01%以上を含有させる。
但し0.20%を超えると被削性向上に対し効果的でない単体の炭化物が多量に生成したり、耐食性の劣化を招くことから0.20%以下に限定する。望ましい範囲は0.05〜0.10%である。
[Reason for limiting ingredients]
Next, the reasons for limiting the chemical components and the like in the present invention will be described in detail below.
C: 0.01-0.20%
C is an element that dissolves in the substrate and increases the hardness. Therefore, 0.01% or more is contained in order to obtain sufficient hardness.
However, if it exceeds 0.20%, a large amount of a single carbide which is not effective for improving the machinability is generated, or corrosion resistance is deteriorated, so the content is limited to 0.20% or less. A desirable range is 0.05 to 0.10%.

Si:0.10〜2.00%
Siは鋼の脱酸剤として添加する。その含有量は0.10%以上とする。しかし含有量が過大になるとδ-フェライトの形成量が増し、鋼の熱間加工性を劣化させるため、上限を2.00%とする。熱間加工性を重視する場合の望ましい範囲は0.50%以下である。
Si: 0.10 to 2.00%
Si is added as a steel deoxidizer. Its content is 0.10% or more. However, if the content is excessive, the amount of δ-ferrite increases and the hot workability of the steel deteriorates, so the upper limit is made 2.00%. In the case where importance is attached to hot workability, a desirable range is 0.50% or less.

Mn:0.80〜2.50%
Mnは鋼の脱酸剤として作用するほか、Sとの共存により被削性に有効な化合物を生成するため0.80%以上添加する必要がある。一方で、特にMnSは耐食性を大きく劣化させ、冷間加工性を阻害するため、上限を2.50%とする。特に熱間加工性、耐食性を重視する場合には1.50〜2.00%とする。
Mn: 0.80-2.50%
In addition to acting as a deoxidizer for steel, Mn must be added in an amount of 0.80% or more in order to produce a compound effective for machinability when coexisting with S. On the other hand, especially MnS greatly deteriorates the corrosion resistance and inhibits the cold workability, so the upper limit is made 2.50%. In particular, when emphasizing hot workability and corrosion resistance, it is 1.50 to 2.00%.

P:≦0.10%
Pは粒界に偏析し、粒界腐食感受性を高めるほか、靭性の低下を招くため低いほうが望ましいが、必要以上の低減はコストの上昇を招くため、0.10%以下とする。望ましくは0.050%以下とするのがよい。
P: ≤0.10%
P is segregated at the grain boundaries to increase the intergranular corrosion susceptibility and lower toughness. However, it is desirable that the P content be lower. Preferably it is 0.050% or less.

S:0.10〜0.40%
Sは被削性を向上させるのに有効な化合物の構成元素であり、その効果が明瞭となる0.10%を下限とする。過剰な添加は熱間加工性を低下させることから、0.40%を上限とする。熱間加工性の低下とのバランスにより望ましくは0.13〜0.20%とする。
S: 0.10 to 0.40%
S is a constituent element of a compound effective for improving machinability, and the lower limit is 0.10% at which the effect becomes clear. Excessive addition reduces hot workability, so 0.40% is made the upper limit. Desirably, the content is 0.13 to 0.20% in balance with a decrease in hot workability.

Ni:5.0〜15.0%
Cr含有のみで十分でない耐食性を補填するするため必要な元素である。ただし、過剰な添加はコストが上昇してしまうため15.0%を上限とする。ただし、十分な耐食性に対する添加効果が得られるときには、配合コストとの兼ね合いから、望ましくは12.0%以下とする。
Ni: 5.0-15.0%
It is an element necessary to compensate for insufficient corrosion resistance only by containing Cr. However, excessive addition increases the cost, so the upper limit is 15.0%. However, when the effect of addition to sufficient corrosion resistance is obtained, the content is desirably 12.0% or less in view of the blending cost.

Cr:15.0〜25.0%
Crは、耐食性を向上させる元素であり、その含有量は15.0〜25.0%とする。15.0%以下では十分な耐食性が得られず、一方25.0%超ではコストがかかるだけでなく熱間加工性が低下する。望ましい範囲は十分な耐食性が得られ、コストが抑制できる17.0〜20.0%である。
Cr: 15.0-25.0%
Cr is an element that improves corrosion resistance, and its content is 15.0 to 25.0%. If it is less than 15.0%, sufficient corrosion resistance cannot be obtained. On the other hand, if it exceeds 25.0%, not only the cost is increased but also hot workability is lowered. A desirable range is 17.0 to 20.0% where sufficient corrosion resistance is obtained and the cost can be suppressed.

Te:0.01〜0.10%
Teは被削性を向上させるのに有効な元素であり、その効果が明瞭となる0.01%を下限とする。過剰な添加は、熱間加工性を低下させることから、0.10%を上限とする。被削性と熱間加工性の低下とのバランスにより望ましくは0.05%以下とする。
Te: 0.01-0.10%
Te is an element effective for improving machinability, and the lower limit is 0.01% at which the effect becomes clear. Excessive addition reduces hot workability, so the upper limit is made 0.10%. It is preferably 0.05% or less due to the balance between machinability and reduction in hot workability.

B:0.003〜0.010%
Bは熱間加工性を向上させるのに有効な元素であり、その効果が明瞭となる0.003%を下限とする。
過剰な添加はコストの上昇を招くことから上限を0.010%とする。望ましくは熱間加工性とコストのバランスを考え、0.004〜0.008%とする。
B: 0.003-0.010%
B is an element effective for improving the hot workability, and the lower limit is 0.003% at which the effect becomes clear.
Excessive addition causes an increase in cost, so the upper limit is made 0.010%. Desirably, the balance between hot workability and cost is considered to be 0.004 to 0.008%.

O:0.006〜0.030%
被削性を向上させるのに必要な硫化物の形成に関わる元素であることから0.006%以上添加する。しかし過剰な添加は、被削性の向上には効果的でない酸化物を形成することから0.030%を上限とする。製造コストとの兼ね合いであるが、望ましくは0.020%以下とするのが良い。
O: 0.006 to 0.030%
Add 0.006% or more because it is an element involved in the formation of sulfides required to improve machinability. However, excessive addition forms an oxide that is not effective in improving machinability, so 0.030% is made the upper limit. This is a balance with the manufacturing cost, but is preferably 0.020% or less.

N:≦0.050%
Nは被削性の向上には効果的でない窒化物を形成することから極力低く抑制すべきであり、0.050%を上限とする。製造コストとの兼ね合いであるが、望ましくは0.030%以下とするのが良い。
N: ≤ 0.050%
N forms nitrides that are not effective for improving machinability, so N should be suppressed as low as possible, and the upper limit is 0.050%. This is a balance with the manufacturing cost, but is preferably 0.030% or less.

Cu:0.01〜4.0%
Cuは耐食性、特に還元性酸環境中での耐食性を向上させるのに有効であること、冷間加工性を向上させることから必要に応じて添加してもよい。しかし、過剰な添加は、熱間加工性を劣化させることから4.0%を上限とする。望ましくは3.0%以下とする。
Cu: 0.01-4.0%
Cu is effective for improving the corrosion resistance, particularly the corrosion resistance in a reducing acid environment, and may improve the cold workability. However, excessive addition degrades hot workability, so 4.0% is made the upper limit. Desirably, it is 3.0% or less.

Mo:0.01〜3.0%
Moは耐食性や強度をより向上することができるため、必要に応じて添加してもよい。しかし、過剰な添加は、熱間加工性を害するほか、コストの上昇を招くため、上限をMo:3.0%とする。コストの上昇を考えると望ましくは1.0%以下とする。
Mo: 0.01-3.0%
Since Mo can further improve the corrosion resistance and strength, it may be added as necessary. However, excessive addition impairs hot workability and increases costs, so the upper limit is made Mo: 3.0%. Considering the increase in cost, it is desirable to set it to 1.0% or less.

Pb:0.03〜0.30%
Pbは被削性を向上させるのに有効な元素であり必要に応じて添加しても良い。その効果が明瞭となる0.03%を下限とする。しかし、過剰な添加は、熱間加工性を低下させることから、0.30%を上限とする。被削性を向上させるのに有効な量及び熱間加工性の低下とのバランスにより望ましくは0.10〜0.25%とする。
Pb: 0.03-0.30%
Pb is an element effective for improving the machinability and may be added as necessary. The lower limit is 0.03% where the effect becomes clear. However, excessive addition reduces hot workability, so 0.30% is made the upper limit. The amount is preferably 0.10 to 0.25% due to the balance between the amount effective for improving the machinability and the decrease in hot workability.

Bi:0.01〜0.30%
Biは被削性を更に向上させることが可能なため、必要に応じて添加しても良い。被削性向上効果が認められる0.01%を下限とする。ただし、過剰な添加は、熱間加工性を低下させるため、0.30%を上限とする。
Bi: 0.01-0.30%
Since Bi can further improve the machinability, Bi may be added as necessary. The lower limit is set to 0.01% at which the machinability improving effect is recognized. However, excessive addition reduces hot workability, so 0.30% is made the upper limit.

Ca:0.0001〜0.05%
Mg:0.0001〜0.02%
REM:0.0001〜0.02%
Ca,Mg,REMは、鋼の熱間加工性を向上させるのに有効な元素であることからそれぞれ必要に応じて0.0001%以上添加してもよい。しかし、過剰な添加は、効果が飽和し、逆に熱間加工性を低下させることからその上限をそれぞれCa:0.05%,Mg:0.02%,REM:0.02%とする。
Ca: 0.0001 to 0.05%
Mg: 0.0001 to 0.02%
REM: 0.0001 to 0.02%
Since Ca, Mg, and REM are effective elements for improving the hot workability of steel, 0.0001% or more may be added as necessary. However, excessive addition will saturate the effect and conversely reduce hot workability, so the upper limit is set to Ca: 0.05%, Mg: 0.02%, and REM: 0.02%, respectively.

W:0.01〜2.0%
Wは、耐食性や強度をより向上することができるため、必要に応じて0.01%以上添加しても良い。しかし、過剰な添加は、熱間加工性を害するほか、コストの上昇を招くため、上限を2.0%とする。
W: 0.01-2.0%
Since W can further improve the corrosion resistance and strength, 0.01% or more may be added as necessary. However, excessive addition harms hot workability and increases costs, so the upper limit is made 2.0%.

Nb:0.01〜0.50%
Ta:0.01〜0.50%
V:0.01〜0.50%
Nb,V,Taの添加は、炭窒化物を形成して鋼の結晶粒を微細化し、強靭性を高める効果があるため0.01〜0.50%の範囲で添加してもよい。
Nb: 0.01-0.50%
Ta: 0.01-0.50%
V: 0.01 to 0.50%
Addition of Nb, V, and Ta has the effect of forming carbonitrides to refine the crystal grains of the steel and increasing the toughness, so it may be added in the range of 0.01 to 0.50%.

3.0≦[Mn]/[S]≦15.0・・・式(1)
本発明において、MnとSとは適正な比率である必要がある。MnがSに対して少なく[Mn]/[S]が3.0よりも小さいと、Mnに対するSの過剰分がCrと結合し、CrSが生じる。
MnSは、それ自体柔らかい介在物であって変形能があるため、その周辺のマトリックスと一緒に変形することができるが、CrSは硬く、加工の際にCrSが変形せずに周辺だけが変形する傾向となって製造性が悪くなり、またCrSの形成部位が割れの起点ともなり易く、熱間加工性を低下させてしまう。
3.0 ≦ [Mn] / [S] ≦ 15.0 ・ ・ ・ Formula (1)
In the present invention, Mn and S need to be in an appropriate ratio. When Mn is less than S and [Mn] / [S] is smaller than 3.0, an excess of S relative to Mn is combined with Cr to produce CrS.
MnS is itself a soft inclusion and has deformability, so it can be deformed together with its surrounding matrix, but CrS is hard and only the periphery is deformed without deformation of CrS during processing. As a result, the manufacturability is deteriorated, and the site where CrS is formed tends to be the starting point of cracking, resulting in a decrease in hot workability.

一方Mnの量が多くなり過ぎると、今度はSが不足して良好な被削性が得られないとともに、Mnが多過ぎることによって耐食性が悪化してしまう。
そこでこの発明では[Mn]/[S]を15.0以下とする。
尚MnとSの比率はそれぞれ質量%での比率である。この点は以下のTeとSとの比率,SとOとの比率についても同様である。
On the other hand, if the amount of Mn is too large, S is insufficient and good machinability cannot be obtained, and corrosion resistance deteriorates due to excessive Mn.
Therefore, in the present invention, [Mn] / [S] is set to 15.0 or less.
In addition, the ratio of Mn and S is a ratio in mass%. The same applies to the ratio of Te to S and the ratio of S to O below.

0.10≦[Te]/[S]≦0.50・・・式(2)
Teによるピン止め効果を確保するためTeの量はSとの関係で一定量以上必要である。ここでは[Te]/[S]を0.10以上としておく必要がある。
一方Sとの関係においてTeの量が多過ぎると、過剰分のTeとMnが結合し、そしてTeとMnの結合した介在物が多くなると、それ自体融点が低いために熱間加工性を悪化させてしまう。
そこで本発明では[Te]/[S]を0.50以下としておく必要がある。
0.10 ≦ [Te] / [S] ≦ 0.50 ・ ・ ・ Formula (2)
In order to secure the pinning effect by Te, the amount of Te must be a certain amount or more in relation to S. Here, [Te] / [S] must be 0.10 or higher.
On the other hand, if the amount of Te is too large in relation to S, excess Te and Mn will be combined, and if the inclusions that Te and Mn are combined increase, the melting point will be low and the hot workability will deteriorate. I will let you.
Therefore, in the present invention, [Te] / [S] needs to be 0.50 or less.

10≦[S]/[O]≦40・・・式(3)
OもまたSとの関係において一定量以上必要である。例えばOがSとの関係で量的に少ないと、Oを核としてMnSが良好に形成されず、所望の被削性が得られなくなってしまう。そこで本発明では[S]/[O]を40以下としておく必要がある。
一方Oの量がSとの関係で過剰になると、Oが硬い酸化物を形成し切削性に悪影響を与えてしまう。
従って本発明では[S]/[O]を10以上としておく必要がある。
10 ≦ [S] / [O] ≦ 40 ・ ・ ・ Formula (3)
O also needs a certain amount or more in relation to S. For example, if the amount of O is small in relation to S, MnS cannot be formed satisfactorily with O as a nucleus, and desired machinability cannot be obtained. Therefore, in the present invention, [S] / [O] needs to be 40 or less.
On the other hand, if the amount of O becomes excessive in relation to S, O forms a hard oxide and adversely affects the machinability.
Therefore, in the present invention, [S] / [O] needs to be 10 or more.

表1に示した成分組成の鋼種の各々50kg鋼塊を高周波誘導炉にて溶製したのち、冷却してインゴットを作製した。各インゴットを1000〜1200℃に加熱し、熱間鍛造により60mmと20mmの丸棒と、60mm×30mmの角棒に加工した。それらの棒鋼を更に1050℃で1時間加熱した後、水冷(固溶化熱処理)し、以下の各試験に供した。   Ingots were prepared by melting 50 kg steel ingots of the steel types having the composition shown in Table 1 in a high frequency induction furnace and then cooling. Each ingot was heated to 1000 to 1200 ° C., and was processed into 60 mm and 20 mm round bars and 60 mm × 30 mm square bars by hot forging. These steel bars were further heated at 1050 ° C. for 1 hour, then cooled with water (solution heat treatment) and subjected to the following tests.

Figure 0005082389
Figure 0005082389

Figure 0005082389
Figure 0005082389


1)熱間加工性
表2に示すように熱間加工性評価は、鍛造時疵の発生程度により行った。疵が無かったものを○、グラインダーで削れる程度の僅かな疵が発生したものを△、大きな疵が発生したものを×とした。
また、熱間高速引張試験で1000℃にて引張試験を実施し、その絞り値を測定した。
1) Hot workability As shown in Table 2, hot workability was evaluated based on the degree of occurrence of flaws during forging. The case where there was no wrinkle was rated as “◯”, the case where slight wrinkles that could be cut with a grinder were generated, and the case where large wrinkles were generated were marked as “X”.
Further, a tensile test was performed at 1000 ° C. in a hot high-speed tensile test, and the drawing value was measured.

2)被削性(旋削性、ドリル穿孔性)
被削性評価は、旋削性については加工後の工具摩耗量,切屑形状により評価し、またドリル穿孔性については工具寿命(穿孔不能)が5000mmとなる切削速度、切屑形状により評価した。
旋削加工は、超硬バイト(Uti20T)を用いて周速150mm/min、一回転あたりの切込み量1.0mm、一回転あたりの送り量0.2mm/revで乾式にて実施した。
2) Machinability (turnability, drill drillability)
In the machinability evaluation, the turning performance was evaluated by the amount of tool wear after machining and the chip shape, and the drill drillability was evaluated by the cutting speed and chip shape at which the tool life (unable to drill) was 5000 mm.
Turning was performed in a dry manner using a carbide tool (Uti20T) at a peripheral speed of 150 mm / min, a cutting depth of 1.0 mm per rotation, and a feed rate of 0.2 mm / rev per rotation.

旋削加工の工具摩耗量は、工具横逃げ面平均摩耗量であり、切屑形状は目視観察し、破砕性が良好であるものは「良」、数巻き程度には破砕したものを「中」、破砕性が悪く切屑がつながった状態のものは「劣」として表している。
この旋削加工の工具摩耗量は、表3に示すように大・中・小(小さいほど良好)で判定した。
The amount of tool wear in turning is the average side flank wear amount, the chip shape is visually observed, the one with good crushability is `` good '', the one crushed to about several turns is `` medium '', Those with poor crushability and connected chips are indicated as “poor”.
As shown in Table 3, the amount of tool wear in this turning process was judged as large, medium, or small (smaller is better).

Figure 0005082389
Figure 0005082389

一方ドリル加工は、ハイスドリルSKH51(Φ5.0mm)を用いて、孔深さ15mm(めくら穴)、一回転あたりの送り量0.07mm/revで乾式にて切削速度を変動させて工具寿命距離(折損するまでの切削距離)を測定した。
このドリル加工は、上記の角棒を試験材料として加工試験した。尚他の試験については上記の丸棒を使用している。
On the other hand, in drilling, using a high-speed drill SKH51 (Φ5.0 mm), the cutting depth is fluctuated at a hole depth of 15 mm (blur hole) and the feed rate per rotation is 0.07 mm / rev, and the tool life distance ( The cutting distance until breakage) was measured.
In this drilling process, the above square bar was used as a test material. For other tests, the above round bar is used.

このドリル加工において、切屑形状は切削速度20m/minの加工時の初期切屑を目視観察し、破砕性が良好であるものは「良」、数巻き程度には破砕したものを「中」、破砕性が悪く切屑がつながった状態のものは「劣」として表している。
ここで切削速度は、表4に示すように低速、中速、高速(高速であるほど良好)で判定した。
In this drilling process, the chip shape is visually observed for initial chips at a cutting speed of 20 m / min. “Good” indicates that the crushability is good, “Medium” indicates that the crushed material is several turns, and crushes. Those with poor quality and connected chips are indicated as “poor”.
Here, as shown in Table 4, the cutting speed was determined at a low speed, a medium speed, and a high speed (the higher the speed, the better).

Figure 0005082389
Figure 0005082389

3)耐食性
耐食性の評価試験はJIS Z 2371に準拠した塩水噴霧試験にて行った。
試験片としては直径10mm、高さ50mmの円柱形状のものを用い、表面をエメリー紙により番手#400まで研磨加工し、脱脂洗浄した後、これら各試料を塩水噴霧中に96h保持した。評価は目視での96h後の外観判定により発錆の有無を見た。
3) Corrosion resistance The corrosion resistance evaluation test was conducted by a salt spray test in accordance with JIS Z 2371.
As a test piece, a cylindrical shape having a diameter of 10 mm and a height of 50 mm was used. The surface was polished to count # 400 with emery paper, degreased and washed, and each sample was held for 96 hours in salt spray. In the evaluation, the presence or absence of rusting was observed by visual inspection after 96 hours.

発明鋼1〜15は比較鋼2と比較し、優れているものを「◎」同等であるものを「○」、劣っているものを「△」とした。   Inventive steels 1 to 15 were compared with the comparative steel 2 in which “Excellent” is equivalent to “◎”, and inferior one was “△”.

4)冷間加工性
冷間加工性の評価は、φ12×18mmの円柱状の試験片を用い、600t油圧プレスにより一軸圧縮試験を行い、割れの生じない限界圧縮率で評価した。
4) Cold workability The cold workability was evaluated by using a cylindrical test piece of φ12 × 18 mm, conducting a uniaxial compression test with a 600 t hydraulic press, and evaluating with a limit compression ratio at which no cracks occurred.

5) 靭性(異方性)
靭性は上記熱処理後に試験片加工を行い、L(圧延方向)、T(圧延方向と直角方向)の各方向のシャルピー衝撃試験により測定した衝撃値を示す。
5) Toughness (anisotropic)
Toughness shows the impact value measured by the Charpy impact test of each direction of L (rolling direction) and T (perpendicular to the rolling direction) after processing the specimen after the heat treatment.

これらの結果が表2に示してある。
表1及び表2において、比較鋼1は従来のSUS304,比較鋼2はSUS303である。
Sの添加されていないSUS304は被削性の悪いものとなっている。Sの添加されている比較鋼2のSUS303は、比較鋼1のSUS304に比べてL方向,T方向ともに靭性が低く、特にT方向の靭性が低いものであって、衝撃特性が顕著な異方性を示している。
These results are shown in Table 2.
In Tables 1 and 2, comparative steel 1 is conventional SUS304, and comparative steel 2 is SUS303.
SUS304 to which S is not added has poor machinability. SUS303 of Comparative Steel 2 to which S is added has lower toughness in both the L direction and the T direction than SUS304 of Comparative Steel 1, and is particularly low in toughness in the T direction, and has a remarkable impact property. Showing sex.

比較鋼3はOの含有量が高く、旋削性,ドリル穿孔性の何れも不十分である。
また比較鋼4はS量が少なく同じく旋削性,ドリル穿孔性とも不十分である。
Comparative steel 3 has a high content of O, and neither turning ability nor drilling ability is sufficient.
In comparison steel 4, the amount of S is small and the turning ability and drilling ability are also insufficient.

比較鋼5はTeの添加量が少なく、衝撃値がL方向とT方向とで差が大きく、異方性を示している。
比較鋼6はOの量が少なく、旋削性,ドリル穿孔性とも不十分である。
The comparative steel 5 has a small amount of Te added, has a large difference in impact value between the L direction and the T direction, and exhibits anisotropy.
Comparative steel 6 has a small amount of O, and is insufficient in both turning and drilling performance.

比較鋼7はSが本発明の上限値を超えて多く、旋削性,ドリル穿孔性とも良好であるものの限界圧縮率,衝撃値とも低い値となっている。
更に比較鋼8はMnの量が不十分で、その結果旋削性,穿孔性ともに不十分な結果となっている。
The comparative steel 7 has a large amount of S exceeding the upper limit of the present invention, and both the machinability and the drillability are good, but both the critical compression ratio and the impact value are low.
Further, the comparative steel 8 has an insufficient amount of Mn, and as a result, the turning and drilling properties are insufficient.

これに対して各発明鋼は熱間加工性,被削性即ち旋削性及びドリル穿孔性,耐食性,限界圧縮率,靭性何れも良好な結果が得られている。
以上本発明の実施形態を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。
On the other hand, each of the inventive steels has good results in all of hot workability, machinability, that is, machinability, that is, drillability, corrosion resistance, critical compressibility, and toughness.
Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be implemented in variously modified forms without departing from the spirit of the present invention.

Claims (7)

質量%で、
C :0.01〜0.20%
Si:0.10〜2.00%
Mn:0.80〜2.50%
P:≦0.10%
S:0.10〜0.40%
Ni:5.0〜15.0%
Cr:15.0〜25.0%
Te:0.01〜0.10%
B:0.003〜0.010%
O:0.006〜0.030%
N:≦0.050%
残部Fe及び不可避的不純物の組成を有し、且つ下記式(1)〜式(3)を満たすことを特徴とするオーステナイト系快削ステンレス鋼。
3.0≦[Mn]/[S]≦15.0・・・式(1)
0.10≦[Te]/[S]≦0.50・・・式(2)
10≦[S]/[O]≦40・・・式(3)
% By mass
C: 0.01-0.20%
Si: 0.10 to 2.00%
Mn: 0.80-2.50%
P: ≤0.10%
S: 0.10 to 0.40%
Ni: 5.0-15.0%
Cr: 15.0-25.0%
Te: 0.01-0.10%
B: 0.003-0.010%
O: 0.006 to 0.030%
N: ≤ 0.050%
An austenitic free-cutting stainless steel having a composition of remaining Fe and inevitable impurities and satisfying the following formulas (1) to (3).
3.0 ≦ [Mn] / [S] ≦ 15.0 ・ ・ ・ Formula (1)
0.10 ≦ [Te] / [S] ≦ 0.50 ・ ・ ・ Formula (2)
10 ≦ [S] / [O] ≦ 40 ・ ・ ・ Formula (3)
請求項1において、Cuを質量%で
Cu:0.01〜4.0%
で含有していることを特徴とするオーステナイト系快削ステンレス鋼。
In Claim 1, Cu is mass%.
Cu: 0.01-4.0%
An austenitic free-cutting stainless steel characterized by comprising
請求項1,2の何れかにおいて、更にMoを質量%で
Mo:0.01〜3.0%
で含有していることを特徴とするオーステナイト系快削ステンレス鋼。
In any one of Claims 1 and 2, Mo is further contained in mass%.
Mo: 0.01-3.0%
An austenitic free-cutting stainless steel characterized by comprising
請求項1〜3の何れかにおいて、更にPb,Biの何れか1種又は2種を質量%で
Pb:0.03〜0.30%
Bi:0.01〜0.30%
で含有していることを特徴とするオーステナイト系快削ステンレス鋼。
Either of Claims 1-3 WHEREIN: Furthermore, either 1 type or 2 types of Pb and Bi is mass%.
Pb: 0.03-0.30%
Bi: 0.01-0.30%
An austenitic free-cutting stainless steel characterized by comprising
請求項1〜4の何れかにおいて、更にCa,Mg,REMの何れか1種又は2種以上を質量%で
Ca:0.0001〜0.05%
Mg:0.0001〜0.02%
REM:0.0001〜0.02%
で含有していることを特徴とするオーステナイト系快削ステンレス鋼。
In any one of Claims 1-4, any 1 type (s) or 2 or more types of Ca, Mg, and REM are further in the mass%.
Ca: 0.0001 to 0.05%
Mg: 0.0001 to 0.02%
REM: 0.0001 to 0.02%
An austenitic free-cutting stainless steel characterized by comprising
請求項1〜5の何れかにおいて、更にWを質量%で
W:0.01〜2.0%
で含有していることを特徴とするオーステナイト系快削ステンレス鋼。
In any one of Claims 1-5, W is further in the mass%.
W: 0.01-2.0%
An austenitic free-cutting stainless steel characterized by comprising
請求項1〜6の何れかにおいて、更にNb,Ta,Vの何れか1種又は2種以上を質量%で
Nb:0.01〜0.50%
Ta:0.01〜0.50%
V:0.01〜0.50%
で含有していることを特徴とするオーステナイト系快削ステンレス鋼。
In any one of Claims 1-6, 1 type (s) or 2 or more types of Nb, Ta, and V are further further in the mass%.
Nb: 0.01-0.50%
Ta: 0.01-0.50%
V: 0.01 to 0.50%
An austenitic free-cutting stainless steel characterized by comprising
JP2006299583A 2006-11-02 2006-11-02 Austenitic free-cutting stainless steel Active JP5082389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006299583A JP5082389B2 (en) 2006-11-02 2006-11-02 Austenitic free-cutting stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006299583A JP5082389B2 (en) 2006-11-02 2006-11-02 Austenitic free-cutting stainless steel

Publications (2)

Publication Number Publication Date
JP2008115424A JP2008115424A (en) 2008-05-22
JP5082389B2 true JP5082389B2 (en) 2012-11-28

Family

ID=39501617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006299583A Active JP5082389B2 (en) 2006-11-02 2006-11-02 Austenitic free-cutting stainless steel

Country Status (1)

Country Link
JP (1) JP5082389B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112795848A (en) * 2021-03-22 2021-05-14 北京科技大学 A kind of free-cutting corrosion-resistant steel and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5818541B2 (en) * 2011-07-01 2015-11-18 新日鐵住金ステンレス株式会社 Austenitic S-containing free-cutting stainless steel
JP5881552B2 (en) * 2012-07-31 2016-03-09 新日鐵住金ステンレス株式会社 Austenitic S-containing free-cutting stainless steel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3703008B2 (en) * 2000-07-27 2005-10-05 山陽特殊製鋼株式会社 Free-cutting stainless steel
JP3958193B2 (en) * 2002-11-25 2007-08-15 山陽特殊製鋼株式会社 Austenitic free-cutting stainless steel
JP2004176080A (en) * 2002-11-25 2004-06-24 Citizen Watch Co Ltd Exterior parts for wristwatch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112795848A (en) * 2021-03-22 2021-05-14 北京科技大学 A kind of free-cutting corrosion-resistant steel and preparation method thereof
CN112795848B (en) * 2021-03-22 2021-06-25 北京科技大学 Free-cutting corrosion-resistant steel and preparation method thereof

Also Published As

Publication number Publication date
JP2008115424A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP5135918B2 (en) Martensitic free-cutting stainless steel
JP5231101B2 (en) Machine structural steel with excellent fatigue limit ratio and machinability
CN100355927C (en) Steel excellent in machinability
JP2008274380A (en) High strength nonmagnetic stainless steel, and high strength nonmagnetic stainless steel component using the same and its production method
JP2007289979A (en) Method for producing cast slab or steel ingot made of titanium-added case hardening steel and the cast slab or steel ingot, and case hardening steel made of the cast slab or steel ingot
JP7283271B2 (en) Free-cutting ferritic stainless steel and method for producing the same
JP5142601B2 (en) High hardness, non-magnetic free-cutting stainless steel
JP5737801B2 (en) Ferritic free-cutting stainless steel and manufacturing method thereof
JP5683197B2 (en) Ferritic free-cutting stainless steel bar wire with excellent corrosion resistance
JP5082389B2 (en) Austenitic free-cutting stainless steel
JP4986203B2 (en) BN free-cutting steel with excellent tool life
JP4765679B2 (en) Ferritic free-cutting stainless steel
JP3703008B2 (en) Free-cutting stainless steel
JP5474615B2 (en) Martensitic stainless free-cutting steel bar wire with excellent forgeability
JP2005336553A (en) Hot tool steel
JP2008106306A (en) Ferritic free-cutting stainless steel
JP3966841B2 (en) Ferritic free-cutting stainless steel
JP5576895B2 (en) BN free-cutting steel with excellent tool life
JP5957241B2 (en) Ferritic free-cutting stainless steel bar wire and method for producing the same
JP5141313B2 (en) Steel material with excellent black skin peripheral turning and torsional strength
US20090246065A1 (en) Alloy, shaft made therefrom, and motor with shaft
JP2001226746A (en) Manganese alloy steel
JP3966190B2 (en) Stainless steel with excellent machinability and cold workability
WO2013146880A1 (en) Steel material for friction welding, and method for producing same
JP2005281826A (en) Corrosion resistant steel having excellent cold workability and machinability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Ref document number: 5082389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3