JP4757707B2 - High resistivity steel with excellent machinability - Google Patents
High resistivity steel with excellent machinability Download PDFInfo
- Publication number
- JP4757707B2 JP4757707B2 JP2006144518A JP2006144518A JP4757707B2 JP 4757707 B2 JP4757707 B2 JP 4757707B2 JP 2006144518 A JP2006144518 A JP 2006144518A JP 2006144518 A JP2006144518 A JP 2006144518A JP 4757707 B2 JP4757707 B2 JP 4757707B2
- Authority
- JP
- Japan
- Prior art keywords
- machinability
- steel
- less
- magnetic properties
- drill
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 21
- 239000010959 steel Substances 0.000 title claims description 20
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 13
- 229910052745 lead Inorganic materials 0.000 claims description 8
- 229910052797 bismuth Inorganic materials 0.000 claims description 5
- 229910000976 Electrical steel Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000010936 titanium Substances 0.000 description 8
- 229910052791 calcium Inorganic materials 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 229910052714 tellurium Inorganic materials 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 150000004763 sulfides Chemical class 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- SNGAZZLJAQYLAG-UHFFFAOYSA-N sulfanylidenemethylidenetitanium Chemical compound S=C=[Ti] SNGAZZLJAQYLAG-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010273 cold forging Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、直流あるいは交流用電磁弁鉄心材をはじめとする優れた軟磁化特性が必要な部品に使用される被削性に優れた高固有抵抗電磁鋼に関するものである。 The present invention relates to a high resistivity electrical steel with excellent machinability used for parts that require excellent soft magnetization characteristics, such as DC or AC solenoid valve cores.
一般に直・交流で使用できる電磁鋼には、優れた電気抵抗性とするために、鋼中にSi、Alが添加され、さらに優れた磁化特性とするために、C,N,Sを低減したり、C,N,Sを固定する安定化元素であるTi,Ca等を添加する手段がとられている。例えば特開昭48−78018号公報(特許文献1)に開示されているように、C:0.08%以下、Cr:10〜20%、Mo:5%以下よりなる主合金成分に、Si,Alのごとき磁性改善合金元素を付随的に含有する電磁ステンレス鋼において、鋼の被削性を改善するために、さらにPb:0.03〜0.30%、Ca:0.002〜0.02%、Te:0.01〜0.20%のいずれか1種または2種以上を含有せしめた快削性電磁ステンレス鋼が提案されている。 In general, electromagnetic steel that can be used in direct / alternating current has Si and Al added to the steel in order to achieve excellent electrical resistance, and C, N, and S are reduced in order to achieve further excellent magnetic properties. Alternatively, a means for adding Ti, Ca or the like, which is a stabilizing element for fixing C, N, and S, is taken. For example, as disclosed in Japanese Patent Application Laid-Open No. 48-78018 (Patent Document 1), a main alloy component composed of C: 0.08% or less, Cr: 10-20%, Mo: 5% or less is added to Si. In order to improve the machinability of the steel in the electromagnetic stainless steel incidentally containing a magnetically improved alloy element such as Al, Pb: 0.03 to 0.30%, Ca: 0.002 to 0.003. There has been proposed a free-cutting electromagnetic stainless steel containing at least one of 02% and Te: 0.01 to 0.20%.
また、特開昭63−45350号公報(特許文献2)には、C:0.015%以下、Si:3.0%以下、Mn:0.5%以下、P:0.030%以下、S:0.030%以下、Cr:4〜14%、Al:0.2〜7.0%(但し、Al/Si≧1.0)、N:300ppm以下、及びO:100ppm以下を含み、且つ残部が実質的に鉄よりなる冷間鍛造用ステンレス鋼が提案されている。 In JP-A-63-45350 (Patent Document 2), C: 0.015% or less, Si: 3.0% or less, Mn: 0.5% or less, P: 0.030% or less, S: 0.030% or less, Cr: 4-14%, Al: 0.2-7.0% (however, Al / Si ≧ 1.0), N: 300 ppm or less, and O: 100 ppm or less, And the stainless steel for cold forging which the remainder substantially consists of iron is proposed.
さらに、特開2001−140034号公報(特許文献3)に開示されているように、TiとZrとの少なくともいずれかを金属元素成分として含有し、その金属元素成分との結合成分として、必須成分としてのCを含有し、さらにS、Se及びTeから選ばれる1種又は2種以上とを含有する(Ti、Zr)系化合物が基質金属相中に形成されている快削合金材料が提案されている。
しかしながら、これまで切削中に切削工具に形成される構成刃先に着目して被削性(特に工具の寿命)を検討した事例はない。すなわち、上述した被削性を改善するために、例えば特許文献1の場合は、Pb,Te,Caが掲げられているが、必ずしも充分ではなく、しかも、これらの元素以外被削性改善については詳細に記述されておらず、他の手段による被削性を改善する余地が充分残されていた。また、特許文献2は、Al/Si比の規定、Ti,Nbの添加等により冷間鍛造性を向上させ、Pb、Bi、Ca、TeおよびSeの添加により被削性を改善するものが提案されているが、しかし、Al添加によるAlN生成により被削性が悪く改善が充分でない。 However, there have been no examples of studying machinability (particularly tool life) by focusing on the constituent cutting edges formed on the cutting tool during cutting. That is, in order to improve the machinability described above, for example, in the case of Patent Document 1, Pb, Te, and Ca are listed, but this is not always sufficient, and for machinability improvement other than these elements. It was not described in detail, and there was enough room for improving machinability by other means. Patent Document 2 proposes improving the cold forgeability by adding Al / Si ratio, adding Ti, Nb, etc., and improving machinability by adding Pb, Bi, Ca, Te and Se. However, the machinability is poor due to the formation of AlN by addition of Al, and the improvement is not sufficient.
さらに、特許文献3は、鋼中の被削性介在物にチタン炭硫化物を利用して磁気特性、耐食性および冷鍛性を劣化させることなく被削性を改善することが提案されているが、しかし、チタン炭硫化物は硬質で、発明で示された材料を切削する際には高価な工具材を選ばなければならないという問題があった。 Furthermore, Patent Document 3 proposes to improve machinability without deteriorating magnetic properties, corrosion resistance, and cold forgeability by using titanium carbon sulfide as a machinable inclusion in steel. However, titanium carbon sulfide is hard and there is a problem that an expensive tool material must be selected when cutting the material shown in the invention.
上述したような問題を解消するために、発明者らは鋭意開発を進めた結果、(1)切削中にできる構成刃先の表面を、工具摩耗の原因となる鋼中のAl2 O3 よりも硬度が高くなるように材料成分を設定すること、および(2)構成刃先の摩耗損傷を抑制するためAl2 O3 を微細化させること、(3)穿孔性を向上させるためにCa系硫化物を生成させること、により飛躍的に被削性を改善させることが可能であることを見出した。すなわち、本発明は、切削中に工具に形成される構成刃先およびその性質を考慮して被削性、磁気特性を改善した高固有抵抗を有する電磁鋼を提供するものである。 In order to solve the above-mentioned problems, the inventors have made extensive developments. As a result, (1) the surface of the cutting edge that can be formed during cutting is more than the Al 2 O 3 in steel that causes tool wear. Setting material components so as to increase hardness, (2) Refining Al 2 O 3 to suppress wear damage of the constituent cutting edges, and (3) Ca-based sulfides for improving drillability It has been found that the machinability can be drastically improved by generating. That is, the present invention provides a magnetic steel having a high specific resistance with improved machinability and magnetic properties in consideration of the component cutting edge formed on the tool during cutting and its properties.
その発明の要旨とするところは、
(1)質量%で、C:≦0.02%、Si:2.5〜3.2%、Mn:≦0.5%、P:≦0.030%、S:0.003〜0.020%、Cr:5〜9%、Al:0.005〜0.026%、Ti:≦0.020%、Ca:0.0010〜0.0080%、O:≦0.0040%を含有し、さらに、C+N:≦0.025%、Ca/S:≧0.1、(S/32−O/16)×104 ≧−0.5、残部Feおよび不可避的不純物からなる鋼であって、かつ、Al2 O3 系酸化物平均粒径:≦5μm、からなることを特徴とする被削性に優れた高固有抵抗電磁鋼。
(2)前記(1)に記載の成分組成に加えて、PbまたはBiの1種または2種が0.20%以下であることを特徴とする被削性に優れた高固有抵抗電磁鋼にある。
The gist of the invention is that
(1) By mass%, C: ≦ 0.02%, Si: 2.5-3.2%, Mn: ≦ 0.5%, P: ≦ 0.030%, S: 0.003-0. 020%, Cr: 5-9%, Al: 0.005-0.026%, Ti: ≤0.020%, Ca: 0.0010-0.0080%, O: ≤0.0040% Furthermore, C + N: ≦ 0.025%, Ca / S: ≧ 0.1, (S / 32−O / 16) × 10 4 ≧ −0.5, the balance Fe and steel made of inevitable impurities. A high resistivity electrical steel with excellent machinability, characterized by comprising an average particle diameter of Al 2 O 3 oxide: ≦ 5 μm.
(2) In addition to the component composition described in (1), one or two of Pb or Bi is 0.20% or less. is there.
以上述べたように、本発明により磁気特性を劣化させることなく、被削性を示すドリル穿孔性、旋削工具寿命およびドリル寿命を大幅に改善することが出来る極めて優れた効果を奏するものである。 As described above, according to the present invention, it is possible to significantly improve the drill drillability, the turning tool life and the drill life, which show the machinability, without deteriorating the magnetic properties.
以下、本発明に係る成分組成の限定した理由について説明する。
C:≦0.02%
Cは、鋼の製造に際して必然的に含有するものであるが、このCは磁気特性を劣化させ、また、靱性を劣化させることから、その上限を0.02%とした。
Hereinafter, the reason why the component composition according to the present invention is limited will be described.
C: ≦ 0.02%
C is inevitably contained in the production of steel, but this C deteriorates magnetic properties and toughness, so the upper limit was made 0.02%.
Si:2.5〜3.2%
Siは、固有抵抗の増加に効果的な元素であり、所望の固有抵抗を確保するため、2.5%以上添加する。しかしながら、3.2%を超えるとSiの添加は製造上の加工性を悪化させることから、3.2%を上限とした。
Si: 2.5-3.2%
Si is an effective element for increasing the specific resistance, and is added in an amount of 2.5% or more in order to secure a desired specific resistance. However, if it exceeds 3.2%, the addition of Si deteriorates the workability in production, so 3.2% was made the upper limit.
Mn:≦0.5%
Mnは、Cと同様に、鋼の製造工程において必然的に導入される元素であるが、その多量の存在は鋼の磁気特性を悪化させることから、その上限を0.5%とした。
P:≦0.030%
Pは、不純物で多量の存在は磁気特性を悪化させることから、その上限を0.030%とした。
Mn: ≦ 0.5%
Mn, like C, is an element that is inevitably introduced in the steel manufacturing process. However, the presence of a large amount deteriorates the magnetic properties of the steel, so the upper limit was made 0.5%.
P: ≦ 0.030%
P is an impurity, and the presence of a large amount deteriorates the magnetic properties, so the upper limit was made 0.030%.
S:0.003〜0.020%
Sは、被削性を向上させる元素である。しかし、0.003%未満ではその効果が充分でなく、また、0.020%を超えると磁気特性を悪化させることから、その範囲を0.003〜0.020%とした。特性面から0.004〜0.015%が望ましい。
S: 0.003-0.020%
S is an element that improves machinability. However, if it is less than 0.003%, the effect is not sufficient, and if it exceeds 0.020%, the magnetic properties are deteriorated, so the range was made 0.003 to 0.020%. From the aspect of characteristics, 0.004 to 0.015% is desirable.
Cr:5〜9%
Crは、耐食性を向上させるために添加するが、さらにここでは構成刃先に硬質なCr2 O3 被膜を生成させてドリルおよび旋削工具の摩耗を抑制するため、すなわち、被削性を改善させるために添加する。この被膜は切削中被削材が構成刃先として凝着・表面酸化して生成するもので、硬度が工具の摩耗の原因となる鋼中のAl2 O3 系酸化物の硬度(2300〜2700kg/mm2 )よりも高い(約2900kg/mm2 )ため摩耗が抑制される。5%未満ではその効果が十分でなく、また、9%を超えると所望の耐食性が飽和することから、その範囲を5〜9%とした。
Cr: 5-9%
Cr is added to improve the corrosion resistance, but here, in order to suppress wear of the drill and turning tool by generating a hard Cr 2 O 3 coating on the constituent cutting edge, that is, to improve machinability. Add to. This coating is generated by adhesion and surface oxidation of the work material as a cutting edge during cutting, and the hardness of the Al 2 O 3 oxide in steel (2300-2700 kg / hr) which causes wear of the tool mm 2 ) (about 2900 kg / mm 2 ), so that wear is suppressed. If it is less than 5%, the effect is not sufficient, and if it exceeds 9%, the desired corrosion resistance is saturated, so the range was made 5 to 9%.
Al:0.005〜0.026%
Alは、脱酸による磁気特性を改善する元素である。しかし、0.005%未満ではその効果が十分でなく、また、多量の添加はAlNが生成して被削性を悪化させることから、その範囲を0.005〜0.026%とした。
Ti:≦0.020%
Tiは、TiCNを生成して被削性が著しく悪化するので規制する。被削性に有害なTiCNが生成しない0.020%を上限とした。
Al: 0.005 to 0.026%
Al is an element that improves magnetic properties by deoxidation. However, if it is less than 0.005%, the effect is not sufficient, and addition of a large amount deteriorates machinability by generating AlN, so the range was made 0.005 to 0.026%.
Ti: ≦ 0.020%
Ti is regulated because it generates TiCN and the machinability is remarkably deteriorated. The upper limit was 0.020% at which TiCN harmful to machinability was not generated.
Ca:0.0010〜0.0080%
Caは、磁気特性、被削性を向上させるために添加する。Al脱酸後にCaを添加することにより、Ca系硫化物がAl2 O3 周りに生成して浮上分離が促進され、介在物が微細化し、磁気特性、工具寿命および穿孔性が改善されるいうものである。しかし、0.0010%未満ではその効果は十分でなく、また、0.0080%を超えるとその効果が飽和することから、その範囲を0.0010〜0.0080%とした。
Ca: 0.0010 to 0.0080%
Ca is added to improve magnetic properties and machinability. By adding Ca after Al deoxidation, Ca-based sulfides are generated around Al 2 O 3 to promote floating separation, the inclusions are refined, and magnetic properties, tool life and punchability are improved. Is. However, if it is less than 0.0010%, the effect is not sufficient, and if it exceeds 0.0080%, the effect is saturated, so the range was made 0.0010 to 0.0080%.
O:≦0.0040%
Oは、不可避的に鋼中に酸化物として存在し、磁気特性および被削性を悪化させるため極力低く抑制すべき元素である。しかし、0.0040%を超えると被削性や磁気特性を悪化させることから、その上限を0.0040%とした。
O: ≦ 0.0040%
O is inevitably present as an oxide in steel, and is an element that should be suppressed as low as possible in order to deteriorate the magnetic properties and machinability. However, if it exceeds 0.0040%, machinability and magnetic properties are deteriorated, so the upper limit was made 0.0040%.
C+N:≦0.025%
Nは、不純物で多量の存在は磁気特性を悪化させる。また、Cは上述したように、磁気特性を劣化させ、また、靱性を劣化させる。また、TiC,AlN,TiNを生成し、被削性を悪化させることから、両者の上限を0.025%とした。好ましくは0.020%とする。
C + N: ≦ 0.025%
N is an impurity and the presence of a large amount deteriorates magnetic properties. Further, C deteriorates magnetic properties and toughness as described above. Moreover, since TiC, AlN, and TiN are produced and the machinability is deteriorated, the upper limit of both is set to 0.025%. Preferably it is 0.020%.
Ca/S:≧0.1
Sに対してCaの添加が十分でないとMnSが生成して磁気特性が悪化することから、Ca/S比を規制した。しかし、両者の比が0.1未満では、MnSが生成して磁気特性を悪化することから、その比を0.1以上とした。
(S/32−O/16)×104 ≧−0.5
(S/32−O/16)×104 を規制したのは、Ca系硫化物による浮上分離効果を促進するために規制したもので、その値が−0.5未満では効果が十分でないために、その下限を−0.5とした。
Ca / S: ≧ 0.1
If Ca is not sufficiently added to S, MnS is generated and the magnetic properties deteriorate, so the Ca / S ratio was regulated. However, if the ratio between the two is less than 0.1, MnS is generated and the magnetic properties are deteriorated, so the ratio is set to 0.1 or more.
(S / 32-O / 16) × 10 4 ≧ −0.5
(S / 32-O / 16) × 10 4 is regulated in order to promote the floating separation effect by Ca-based sulfide, and if the value is less than −0.5, the effect is not sufficient. The lower limit was set to -0.5.
PbまたはBiの1種または2種が0.20%以下
PbまたはBiは、被削性を向上させる元素である。所望の穿孔性に応じて添加するもので、穿孔性をより改善したい場合には、PbまたはBiの1種または2種が0.20%以下添加する。しかし、多量に含有してもその効果は飽和することから、その上限を0.20%とした。
One or two of Pb or Bi is 0.20% or less. Pb or Bi is an element that improves machinability. If it is added depending on the desired piercing property and it is desired to improve the piercing property, one or two of Pb or Bi is added in an amount of 0.20% or less. However, even if contained in a large amount, the effect is saturated, so the upper limit was made 0.20%.
Al2 O3 系酸化物平均粒径:≦5μm
Al2 O3 系酸化物の平均粒径は磁気特性および被削性に悪影響を及ぼすので規制する。平均粒径が5μmを超えると特に工具の摩耗が著しく増加するので上限を5μmとした。確認できてはいないが、生成したCr2 O3 被膜は非常に薄いため、粒径が大きい場合、摩耗が増加したのではないかと推定している。なお、この平均粒径は、先ずAl脱酸を行ってOを規制範囲内に留めた後、Ca添加した場合に得られる。この順序で製造すれば、溶鋼中のAl2 O3 周りにCa系硫化物が生成して粒径が増加し、粗大なAl2 O3 が浮上分離されて所望の粒径に制御できる。
Al 2 O 3 oxide average particle diameter: ≦ 5 μm
The average particle size of the Al 2 O 3 oxide is restricted because it adversely affects magnetic properties and machinability. When the average particle size exceeds 5 μm, the wear of the tool increases remarkably, so the upper limit was set to 5 μm. Although it has not been confirmed, since the produced Cr 2 O 3 coating is very thin, when the particle size is large, it is presumed that the wear has increased. This average particle diameter is obtained when Ca is added after first deoxidizing Al to keep O within the regulation range. If produced in this order, the particle size increased Ca-based sulfides generated Al 2 O 3 around in the molten steel can be controlled to a desired particle size of coarse Al 2 O 3 is flotation.
以下、本発明について実施例によって具体的に説明する。
表1に示す成分組成の鋼を真空溶解炉で溶解後、100kgの鋼塊を鋳造した。溶解においては、基本的にはCa系硫化物の浮上分離効果を利用し、Al脱酸後Ca添加して成分を調整した。比較鋼の一部ではCa脱酸後Al添加して成分調整した100kg鋼塊を溶製した。この鋼塊を700〜1000℃でφ60mm、20mmおよび角45mmに鍛伸し、800〜900℃で大気焼鈍を行ったものを各種の調査素材とした。
Hereinafter, the present invention will be specifically described with reference to examples.
A steel ingot having a composition shown in Table 1 was melted in a vacuum melting furnace, and then a 100 kg steel ingot was cast. In the dissolution, basically, the floating separation effect of the Ca-based sulfide was utilized, and Ca was added after Al deoxidation to adjust the components. In some of the comparative steels, 100 kg steel ingots were prepared by adjusting the components by adding Al after Ca deoxidation. The steel ingot was forged at 700 to 1000 ° C. to 60 mm, 20 mm, and 45 mm, and subjected to atmospheric annealing at 800 to 900 ° C. as various investigation materials.
Al2 O3 系酸化物平均粒径はφ20mm素材の長手方向断面を鏡面研磨し、光学顕微鏡にてAl2 O3 系酸化物50個の粒径を測定して求めた(表1中)。表2に特性調査結果を示す。磁気特性は、φ20mm素材にてOD13×ID9×t5mmの磁気リングを作製し、850℃で真空磁気焼鈍後、直流磁気測定装置にて5Oeの磁束密度(T)を測定し、1.20T以上を良好、1.20未満を不良として評価した。 The average particle diameter of the Al 2 O 3 oxide was obtained by mirror-polishing the longitudinal section of a φ20 mm material and measuring the particle diameter of 50 Al 2 O 3 oxides using an optical microscope (in Table 1). Table 2 shows the results of characteristic investigation. Magnetic characteristics are as follows: OD13 x ID9 x t5mm magnetic ring made of φ20mm material, vacuum magnetic annealing at 850 ° C, 5Oe magnetic flux density (T) measured with DC magnetometer, 1.20T or more Good and less than 1.20 were evaluated as bad.
ドリル穿孔性試験は、φ60mm素材の断面を新品のSKH51ドリル(φ5)で推力414N、回転数1190rpm、乾式の条件で深さ7mmの穴を5つ穴あけし、3回繰り返して平均の穿孔時間(秒)を求め、15秒以下を良好、これを超えるものを不良として評価した。 In the drill drillability test, a cross section of a φ60 mm material was drilled with a new SKH51 drill (φ5) with a thrust of 414 N, a rotation speed of 1190 rpm, and a depth of 7 mm under dry conditions. Seconds), and 15 seconds or less were evaluated as good and those exceeding this value were evaluated as defective.
ドリル寿命試験は、角45mm素材の長手面をフライスで平滑化し、SKH51ドリル(φ5)で回転数760rpm、送り63mm/分、水溶性冷却媒体を使って深さ15mmの穴を200個穴あけし、穴あけ後のドリル刃先の摩耗量(mm)を測定し、0.100mm以下を良好、これを超えるものを不良として評価した。 In the drill life test, the long surface of a 45 mm square material was smoothed with a mill, and SKH51 drill (φ5) was rotated at 760 rpm, the feed was 63 mm / min, and 200 holes with a depth of 15 mm were drilled using a water-soluble cooling medium. The wear amount (mm) of the drill blade edge after drilling was measured, and 0.100 mm or less was evaluated as good, and a value exceeding this was evaluated as defective.
旋削工具寿命試験は、φ60mm素材のスケールをターニング除去し、超硬工具で切削速度100mm/分、切り込み深さ1mm、乾式の条件で12分間旋削し、旋削後の逃面摩耗量(mm)を測定し、0.100mm以下を良好、これを超えるものを不良として評価した。 In the turning tool life test, the φ60mm scale was removed by turning, turning with a carbide tool at a cutting speed of 100mm / min, cutting depth of 1mm, and dry conditions for 12 minutes, and the flank wear after turning (mm). The measurement was made, and 0.100 mm or less was evaluated as good, and those exceeding this value were evaluated as defective.
比較例No.14はAl含有量が高いために、被削性を示すドリル摩耗量が大きく、かつ逃面摩耗量が大きい。比較例No.15はTi含有量が高いために、被削性を示すドリル摩耗量が大きく、かつ逃面摩耗量が大きい。比較例No.16はCa脱酸処理後Al脱酸することによりAl2 O3 平均粒径が大きくなったため、磁気特性が悪く、さらに被削性を示すドリル摩耗量が大きく、かつ逃面摩耗量が大きい。比較例No.17はCa/Sが低いために磁気特性が悪い。これに対し、本発明例であるNo.1〜10はいずれも本発明の条件を満足していることから、磁気特性および被削性のいずれの特性も優れていることが分かる。 Comparative Example No. Since No. 14 has a high Al content, the drill wear amount indicating machinability is large and the flank wear amount is large. Comparative Example No. Since No. 15 has a high Ti content, the drill wear amount indicating machinability is large and the flank wear amount is large. Comparative Example No. In No. 16, since the Al 2 O 3 average particle size was increased by deoxidizing Al after Ca deoxidation treatment, the magnetic properties were poor, the drill wear amount indicating machinability was large, and the flank wear amount was large. Comparative Example No. No. 17 has poor magnetic properties because Ca / S is low. On the other hand, No. which is an example of the present invention. Since all of Nos. 1 to 10 satisfy the conditions of the present invention, it can be seen that both the magnetic characteristics and the machinability are excellent.
以上のように、本発明により、フェライト系電磁ステンレス鋼本来の耐食性、磁気特性、強度を維持ないし向上させると共に、被削性(ドリル穿孔性、旋削工具寿命およびドリル寿命)を飛躍的に改善したもので、特に切削中に工具に形成される構成刃先の摩耗損傷を軽減し、飛躍的に被削性を改善したことは工業的に極めて有利のものである。
特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, the present invention significantly improves the machinability (drill drillability, turning tool life and drill life) while maintaining or improving the inherent corrosion resistance, magnetic properties and strength of ferritic electromagnetic stainless steel. In particular, it is industrially extremely advantageous that the wear damage of the constituent cutting edges formed on the tool during cutting is reduced and the machinability is dramatically improved.
Patent applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina
Claims (2)
C:≦0.02%、
Si:2.5〜3.2%、
Mn:≦0.5%、
P:≦0.030%、
S:0.003〜0.020%、
Cr:5〜9%、
Al:0.005〜0.026%、
Ti:≦0.020%、
Ca:0.0010〜0.0080%、
O:≦0.0040%、
を含有し、さらに、
C+N:≦0.025%、
Ca/S:≧0.1、
(S/32−O/16)×104 ≧−0.5、
残部Feおよび不可避的不純物からなる鋼であって、かつ、Al2 O3 系酸化物平均粒径:≦5μm、からなることを特徴とする被削性に優れた高固有抵抗電磁鋼。 % By mass
C: ≦ 0.02%
Si: 2.5-3.2%,
Mn: ≦ 0.5%,
P: ≦ 0.030%
S: 0.003-0.020%,
Cr: 5-9%
Al: 0.005 to 0.026%,
Ti: ≦ 0.020%,
Ca: 0.0010 to 0.0080%,
O: ≦ 0.0040%
In addition,
C + N: ≦ 0.025%,
Ca / S: ≧ 0.1,
(S / 32-O / 16) × 10 4 ≧ −0.5,
A high resistivity electrical steel excellent in machinability, characterized in that it is a steel composed of the balance Fe and inevitable impurities and comprising an Al 2 O 3 oxide average particle size: ≦ 5 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006144518A JP4757707B2 (en) | 2006-05-24 | 2006-05-24 | High resistivity steel with excellent machinability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006144518A JP4757707B2 (en) | 2006-05-24 | 2006-05-24 | High resistivity steel with excellent machinability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007314830A JP2007314830A (en) | 2007-12-06 |
JP4757707B2 true JP4757707B2 (en) | 2011-08-24 |
Family
ID=38848963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006144518A Active JP4757707B2 (en) | 2006-05-24 | 2006-05-24 | High resistivity steel with excellent machinability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4757707B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6177303A (en) * | 1984-09-21 | 1986-04-19 | Daido Steel Co Ltd | Yoke for dot printer head |
JP4115610B2 (en) * | 1998-12-03 | 2008-07-09 | 山陽特殊製鋼株式会社 | Electromagnetic stainless steel with excellent low temperature toughness |
JP2003027190A (en) * | 2001-07-12 | 2003-01-29 | Daido Steel Co Ltd | Electromagnetic material for relay |
-
2006
- 2006-05-24 JP JP2006144518A patent/JP4757707B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007314830A (en) | 2007-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5072285B2 (en) | Duplex stainless steel | |
JP5000136B2 (en) | High-strength electrical steel sheet, shape processed parts thereof, and manufacturing method thereof | |
JP4924422B2 (en) | Low carbon sulfur free cutting steel | |
JP2004084053A (en) | Electrical steel sheet with remarkably excellent magnetic properties and manufacturing method thereof | |
JP2010180459A (en) | Duplex phase stainless steel and manufacturing method thereof | |
JP4510559B2 (en) | High-strength electrical steel sheet and manufacturing method and processing method thereof | |
JP5092578B2 (en) | Low carbon sulfur free cutting steel | |
JPH08170153A (en) | High corrosion resistance duplex stainless steel | |
JP2004176176A (en) | Steel with excellent machinability | |
JP3736721B2 (en) | High corrosion resistance free-cutting stainless steel | |
JP4986203B2 (en) | BN free-cutting steel with excellent tool life | |
JP4757707B2 (en) | High resistivity steel with excellent machinability | |
JP4041511B2 (en) | Low-carbon sulfur free-cutting steel with excellent machinability | |
JP2004002951A (en) | Free cutting tool steel | |
JP2006299296A (en) | Rolled bar steel for case hardening having excellent fatigue property and crystal grain coarsening resistance, and method for producing the same | |
JP2010159494A (en) | High strength magnetic steel sheet, and production method and working method therefor | |
JP4250305B2 (en) | BN free cutting steel with excellent soft magnetism | |
JP2007162119A (en) | Low carbon resulfurized free-cutting steel excellent in machinability | |
JP2006169615A (en) | Electrical steel sheet with excellent high-frequency magnetic properties and manufacturing method thereof | |
JP4397833B2 (en) | Free-cutting electrical steel with excellent magnetic properties | |
JP7355234B2 (en) | electromagnetic soft iron | |
JP3958193B2 (en) | Austenitic free-cutting stainless steel | |
JPH04111962A (en) | Production of high-speed tool steel | |
JP4348164B2 (en) | Steel with excellent machinability | |
JP2006097040A (en) | Free-cutting stainless steel with excellent machinability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090413 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110512 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110531 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110601 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4757707 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140610 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |