JP6846925B2 - Free-cutting electrical steel with excellent manufacturability - Google Patents
Free-cutting electrical steel with excellent manufacturability Download PDFInfo
- Publication number
- JP6846925B2 JP6846925B2 JP2016251223A JP2016251223A JP6846925B2 JP 6846925 B2 JP6846925 B2 JP 6846925B2 JP 2016251223 A JP2016251223 A JP 2016251223A JP 2016251223 A JP2016251223 A JP 2016251223A JP 6846925 B2 JP6846925 B2 JP 6846925B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- less
- evaluation
- formula
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005520 cutting process Methods 0.000 title claims description 17
- 229910000976 Electrical steel Inorganic materials 0.000 title description 7
- 229910000831 Steel Inorganic materials 0.000 claims description 42
- 239000010959 steel Substances 0.000 claims description 42
- 150000001875 compounds Chemical class 0.000 claims description 19
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 17
- 229910052804 chromium Inorganic materials 0.000 claims description 15
- 229910052748 manganese Inorganic materials 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 229910052720 vanadium Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 235000019633 pungent taste Nutrition 0.000 claims description 2
- 238000011156 evaluation Methods 0.000 description 48
- 230000007797 corrosion Effects 0.000 description 35
- 238000005260 corrosion Methods 0.000 description 35
- 230000000052 comparative effect Effects 0.000 description 32
- 238000005336 cracking Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 10
- 241000221535 Pucciniales Species 0.000 description 8
- 230000007613 environmental effect Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000005553 drilling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000003568 thioethers Chemical class 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000000441 X-ray spectroscopy Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000002173 cutting fluid Substances 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
Description
この出願は、ソレノイド、電磁弁などの各種電磁アクチュエーターや電磁センサーの部材として使用できる、非鉛で環境負荷も少なく、優れた耐食性および被削性を有し、さらに良好な製造性を兼ね備えた快削電磁鋼に関する。 This application is lead-free, has a low environmental load, has excellent corrosion resistance and machinability, and can be used as a member of various electromagnetic actuators such as solenoids and solenoid valves, and electromagnetic sensors. Regarding electrical steel cutting.
電磁鋼には優れた磁気特性、被削性、耐食性、そして材料が安価で安定供給可能という観点から、良好な製造性も要求される。良好な製造性で、磁気特性と耐食性を損なわずに優れた被削性を有するPb添加電磁鋼はすでに市場に出ている。しかし、近年の製造業ではPbの有毒性を考慮し、Pbの使用は避けられている。Pb代替快削元素としてSを添加し、硫化物を被削性改善物質として、鋼中に分散させる例がある。しかしながら、このものは、上記した磁気特性、被削性、耐食性の他に良好な製造性などの各種要求特性は劣化する。そこで、非Pbで、かつ優れた磁気特性、被削性、耐食性、熱間加工性などの良好な製造性という全てを兼ね備えた材料が求められている。 Electrical steel is also required to have good manufacturability from the viewpoints of excellent magnetic properties, machinability, corrosion resistance, and low cost and stable supply of materials. Pb-added electrical steels with good manufacturability and excellent machinability without impairing magnetic properties and corrosion resistance are already on the market. However, in recent years, the manufacturing industry has avoided the use of Pb in consideration of the toxicity of Pb. There is an example in which S is added as an alternative free-cutting element for Pb and sulfide is dispersed in steel as a machinability improving substance. However, this product deteriorates various required characteristics such as good manufacturability in addition to the above-mentioned magnetic characteristics, machinability, and corrosion resistance. Therefore, there is a demand for a material that is non-Pb and has excellent manufacturability such as excellent magnetic properties, machinability, corrosion resistance, and hot workability.
従来技術として、例えば、Ti4C2S2によって磁気特性、耐食性を損なうことなく快削性を付与した材料が提案されて特許されている(例えば、特許文献1参照。)。しかし、この提案の特許は、安価でかつ安定供給という観点からは、製造性に関して詳細な検討はされていない。また、この提案は0.15質量%以下のPbの添加も許容している点に問題がある。 As a prior art, for example, a material to which free-cutting property is imparted by Ti 4 C 2 S 2 without impairing magnetic properties and corrosion resistance has been proposed and patented (see, for example, Patent Document 1). However, the patent of this proposal has not been examined in detail regarding manufacturability from the viewpoint of low cost and stable supply. In addition, this proposal has a problem in that it also allows the addition of Pb of 0.15% by mass or less.
この電磁鋼は、Pbを使用することなく(Cr,Mn)SおよびTeの添加によって磁気特性および耐食性を損なうことなく、快削性を付与した材料が提案されて特許されている(例えば、特許文献2参照。)。しかし、この提案の特許は、被削性を担うSの添加量が0.040質量%以下と少なく、そのために被削性向上が必ずしも十分でない問題がある。 This electrical steel has been proposed and patented as a material imparted with free-cutting property without impairing magnetic properties and corrosion resistance by adding (Cr, Mn) S and Te without using Pb (for example, patent). See Reference 2.). However, the patent of this proposal has a problem that the amount of S added, which is responsible for machinability, is as small as 0.040% by mass or less, and therefore the improvement in machinability is not always sufficient.
この電磁鋼は、Pbを使用することなく、(Cr、Mn)SおよびTeの添加によって磁気特性および耐食性を損なうことなく快削性を付与した材料であり、被削性を担うS添加量も多く、Pb添加鋼と同等の以上の被削性を有する提案の出願である(例えば、特許文献3参照。)。この提案の出願は、製造性のうち熱間加工性は考慮しているものの、単に製造可能というレベルのものであり、安価に安定して供給するという観点からは、さらなる製造性の向上が必要である。 This electrical steel is a material that imparts free-cutting property without impairing magnetic properties and corrosion resistance by adding (Cr, Mn) S and Te without using Pb, and the amount of S added that is responsible for machinability is also Most of the applications are proposals having machinability equal to or higher than that of Pb-added steel (see, for example, Patent Document 3). Although the application for this proposal considers hot workability among the manufacturability, it is simply at the level of being manufacturable, and further improvement in manufacturability is necessary from the viewpoint of inexpensive and stable supply. Is.
本願の発明が解決しようとする問題は、ソレノイド、電磁弁などの各種電磁アクチュエーターや電磁センサー部材などは、まず優れた軟磁気特性が要求される。さらに、その他にも、使用環境に対して十分な耐食性や、精密加工や量産加工に対応できる被削性も要求される。こうした要求に対応するべく、鉄鋼材料においては、耐食性を損なわずに大幅に被削性を向上させることから、Pbの添加が古くから利用されている。しかし、環境負荷への低減を考慮すると、Pbの使用は避ける必要がある。そこで、Pb代替の快削元素としてSを添加する方法が用いられている。ただし、Sの添加は必須特性である磁気特性および耐食性を劣化させ、さらに低融点化合物の形成助長によって、素材の製造性までも著しく阻害してしまい、安定供給の面および製造コストの面で問題が生じる。こうした問題を解決するために、Pbを添加せずに十分な耐食性と被削性を有し、さらに安定的に供給できる優れた製造性を有した快削電磁鋼を提供することである。 The problem to be solved by the invention of the present application is that various electromagnetic actuators such as solenoids and solenoid valves, electromagnetic sensor members, and the like are first required to have excellent soft magnetic properties. Furthermore, in addition, sufficient corrosion resistance for the usage environment and machinability that can be used for precision processing and mass production processing are also required. In order to meet such demands, the addition of Pb has been used for a long time in steel materials because the machinability is significantly improved without impairing the corrosion resistance. However, considering the reduction to the environmental load, it is necessary to avoid the use of Pb. Therefore, a method of adding S as a free-cutting element instead of Pb is used. However, the addition of S deteriorates the magnetic properties and corrosion resistance, which are essential properties, and further promotes the formation of low melting point compounds, which significantly impairs the manufacturability of the material, which is problematic in terms of stable supply and manufacturing cost. Occurs. In order to solve such a problem, it is an object of the present invention to provide a free-cutting electrical steel having sufficient corrosion resistance and machinability without adding Pb and having excellent manufacturability that can be stably supplied.
上記の課題を解決するための本願発明の手段は、第1として、環境負荷が小さく、かつ十分な耐食性と磁気特性を有し、さらに、素材の製造性である耐鋼塊割れ性および熱間加工性などに優れた快削電磁鋼とするために、次の5点の手段をとることとする。
1.環境負荷低減のため、非Pb鋼とする。
2.硫化物あるいは硫化物とTe化合物からなる複合化合物を鋼中に分散させてPb鋼同等以上の被削性を有するものとする。
3.S添加による磁気特性の劣化をSi添加量およびCr添加量を調整することで回避する。
4.Cr、Mn、Sの組成、および式(1)であるMn/Sの値を制御し、Sを硫化物として固定して熱間加工性を確保しながら、Crリッチとすることで、良好な耐食性を得る。
5.Al、Ti、Nb、Vの中の1種または2種以上の組成、および下記の式(2)によってフェライト安定度を高め、優れた磁気特性ならびに製造性である耐鋼塊割れ性および熱間加工性を確保する。
First, the means of the present invention for solving the above problems has a small environmental load, sufficient corrosion resistance and magnetic properties, and further, steel ingot crack resistance and hotness, which are material manufacturability. In order to obtain free-cutting electromagnetic steel with excellent workability, the following five measures will be taken.
1. 1. Non-Pb steel is used to reduce the environmental load.
2. A sulfide or a composite compound composed of a sulfide and a Te compound is dispersed in the steel to have a machinability equal to or higher than that of Pb steel.
3. 3. Deterioration of magnetic properties due to S addition is avoided by adjusting the Si addition amount and Cr addition amount.
4. It is good by controlling the composition of Cr, Mn, S and the value of Mn / S of the formula (1), fixing S as a sulfide to ensure hot workability, and making it Cr-rich. Obtain corrosion resistance.
5. The composition of one or more of Al, Ti, Nb, and V, and the formula (2) below enhances ferrite stability, resulting in excellent magnetic properties and manufacturability. Ensure workability.
第2として、次の6.の1点の手段をとることとする。
6.Teの組成、および式(3)、式(4)による制限により、被削性および磁気特性を向上させつつ、Te添加による熱間加工性の劣化を抑制する。
すなわち、下記の第1の手段、第2の手段の発明とする。
Secondly, the following 6. We will take one of the measures.
6. By the composition of Te and the limitation by the formulas (3) and (4), the machinability and the magnetic properties are improved, and the deterioration of the hot workability due to the addition of Te is suppressed.
That is, it is an invention of the following first means and second means.
第1の手段では、質量%で、C:0.030%以下、Si:0.5〜3.5%、Mn:0.05〜0.50%、P:0.030%以下、S:0.050〜0.200%、Cr:6.0〜10.0%、N:0.030%以下を含有し、さらにAl、Ti、VおよびNbの中の1種または2種以上を合計で0.005〜0.800%含有し、残部Feおよび不可避不純物からなる鋼であり、該鋼中に、快削性付与化合物として長径400μm以下の(Cr、Mn)硫化物が106μm2の範囲に40個以上分散して存在し、式(1)の大きさは1.2〜5.0であり、かつ式(2)の大きさは30以上であることを特徴とする耐鋼塊割れ性および熱間加工性の製造性に優れる快削電磁鋼である。
ただし、
式(1):Mn/S
式(2):8Si+8Al+Cr+4Ti+4V+2Nb+2(Mn/S)−16(C+N)
In the first means, in terms of mass%, C: 0.030% or less, Si: 0.5 to 3.5%, Mn: 0.05 to 0.50%, P: 0.030% or less, S: It contains 0.050 to 0.200%, Cr: 6.0 to 10.0%, N: 0.030% or less, and one or more of Al, Ti, V and Nb in total. in containing 0.005 to 0.800 percent, a steel balance consisting of Fe and unavoidable impurities, into steel, as machinability improving compound major diameter 400μm following (Cr, Mn) sulfide 10 6 [mu] m 2 40 or more are dispersed in the range of, the size of the formula (1) is 1.2 to 5.0, and the size of the formula (2) is 30 or more. It is a free-cutting electromagnetic steel with excellent manufacturability of lump cracking and hot workability.
However,
Equation (1): Mn / S
Equation (2): 8Si + 8Al + Cr + 4Ti + 4V + 2Nb + 2 (Mn / S) -16 (C + N)
第2の手段では、請求項1の化学成分を有し、かつ、式(1)および式(2)の大きさに加えて、質量%で、Te:0.030%以下を含有し、残部Feおよび不可避不純物からなる鋼であり、該鋼中に、快削性付与化合物としては(Cr、Mn)硫化物とその周りを囲むように存在するTe化合物からなる長径300μm以下の複合介在物であり、106μm2の範囲に30個以上分散して存在し、式(3)は0.15以上であり、式(4)は0.95以下であることを特徴とする耐鋼塊割れ性および熱間加工性の製造性に優れる快削電磁鋼である。
ただし
式(3):Te/S
式(4):55Te−{2Al+2Ti+4V+4Nb+(Mn/20S)
The second means has the chemical component of claim 1 and, in addition to the sizes of formulas (1) and (2), contains Te: 0.030% or less in mass%, and the balance. It is a steel composed of Fe and unavoidable impurities, and the free-cutting property-imparting compound is a composite inclusion having a major axis of 300 μm or less composed of (Cr, Mn) sulfide and a Te compound existing so as to surround the sulfide. There exists dispersed 30 or more in the range of 10 6 [mu] m 2, and the formula (3) is 0.15 or more, the formula (4) is耐鋼mass cracking, characterized in that 0.95 or less It is a free-cutting electromagnetic steel with excellent manufacturability and hot workability.
However, equation (3): Te / S
Equation (4): 55Te- {2Al + 2Ti + 4V + 4Nb + (Mn / 20S)
上記の手段の発明は、Pbを有さない非Pb鋼であるので、環境負荷が低減されて小さく、(Mn、Cr)Sからなる硫化物あるいは該硫化物とその周りを囲むTe化合物からなる複合化合物を鋼中に分散させていることで、Pb鋼と同等以上の被削性を有し、保磁力が低く、かつ耐食性に優れ、S添加による磁気特性の劣化をSiおよびCrの添加量を調整することで回避しており、Cr、Mn、Sの組成、および式(1)であるMn/Sを制御し、Sを硫化物として固定して熱間加工性を加工しつつ、Crリッチとすることによって、良好な耐食性が得られ、かつAl、Ti、Nb、Vの組成および式(2)によってフェライト安定度を高めることで優れた磁気特性ならびに製造性である耐鋼塊割れ性および熱間加工性を確保しており、Teの組成および式(3)、式に(4)よる制限により被削性および磁気特性を向上させつつ、Te添加による熱間加工性の劣化を抑制する効果を有する。 Since the invention of the above means is a non-Pb steel having no Pb, the environmental load is reduced and it is small, and it is composed of a sulfide composed of (Mn, Cr) S or a Te compound surrounding the sulfide. By dispersing the composite compound in the steel, it has machinability equal to or higher than that of Pb steel, has low coercive force, and has excellent corrosion resistance. Cr, Mn, S composition and Mn / S of formula (1) are controlled, S is fixed as sulfide and hot workability is processed, while Cr is avoided. By making it rich, good corrosion resistance can be obtained, and by increasing the ferrite stability according to the composition of Al, Ti, Nb, V and the formula (2), the steel ingot cracking resistance, which is excellent magnetic properties and manufacturability, is obtained. And hot workability is ensured, and while improving machinability and magnetic properties by limiting the composition of Te and formulas (3) and (4), deterioration of hot workability due to the addition of Te is suppressed. Has the effect of
発明を実施するための形態に先立って、本願発明における化学成分および各条件について説明する。なお、化学成分は質量%で示す。 Prior to the embodiment for carrying out the invention, the chemical composition and each condition in the present invention will be described. The chemical composition is shown in% by mass.
C:0.030%以下
Cは、不可避不純物であり、0.030%より多いと得られた電磁鋼の磁気特性、耐食性および快削性を劣化する。そこで、Cは0.030%以下とする。
C: 0.030% or less C is an unavoidable impurity, and if it is more than 0.030%, the magnetic properties, corrosion resistance and free-cutting property of the obtained electromagnetic steel are deteriorated. Therefore, C is set to 0.030% or less.
Si:0.5〜3.5%
Siは、固有抵抗および磁気特性の向上に役立つ元素である。そのために、Siは0.5%以上とする。しかし、Siは3.5%より多いと過剰添加で磁気特性が悪化し、材料の靱性および加工性が劣化する。そこで、Siは0.5〜3.5%とする。
Si: 0.5-3.5%
Si is an element that helps improve the intrinsic resistance and magnetic properties. Therefore, Si is set to 0.5% or more. However, if Si is more than 3.5%, the magnetic properties deteriorate due to excessive addition, and the toughness and workability of the material deteriorate. Therefore, Si is set to 0.5 to 3.5%.
Mn:0.05〜0.50%
Mnは、Sと結合して硫化物を形成し、被削性を向上させる元素である。そこで、Mnは0.05%以上とする。しかし、Mnは0.50%より多いと磁気特性が劣化する。そこで、Mnは0.05〜0.50%とする。
Mn: 0.05 to 0.50%
Mn is an element that combines with S to form sulfide and improves machinability. Therefore, Mn is set to 0.05% or more. However, if Mn is more than 0.50%, the magnetic characteristics deteriorate. Therefore, Mn is set to 0.05 to 0.50%.
P:0.030%以下
Pは、不可避不純物であり、0.030%より多いと得られた電磁鋼の熱間加工性および磁気特性が劣化する。そこで、Pは0.030%以下とする
P: 0.030% or less P is an unavoidable impurity, and if it is more than 0.030%, the hot workability and magnetic properties of the obtained electromagnetic steel deteriorate. Therefore, P is set to 0.030% or less.
S:0.050〜0.200%
Sは、Mnと結合して硫化物を形成し、被削性を向上する元素である。そのためにはSは0.050%以上とする必要がある。しかし、Sは0.200%より多いと磁気特性および耐食性が劣化する。そこで、Sは0.050〜0.200%とする。
S: 0.050 to 0.200%
S is an element that combines with Mn to form a sulfide and improves machinability. For that purpose, S needs to be 0.050% or more. However, if S is more than 0.200%, the magnetic properties and corrosion resistance deteriorate. Therefore, S is set to 0.050 to 0.200%.
Cr:6.0〜10.0%
Crは、耐食性の向上に必須の元素であり、また、保磁力を低減して軟磁気特性を改善する元素である。そのためには、Crは6.0%以上とする。しかし、Crは10.0%より多いと、Crの効果は飽和し、かつ過剰添加により保磁力が上昇して劣化する。そこで、Crは6.0〜10.0%とする。
Cr: 6.0-10.0%
Cr is an element essential for improving corrosion resistance, and is an element that reduces coercive force and improves soft magnetic properties. For that purpose, Cr is set to 6.0% or more. However, when Cr is more than 10.0%, the effect of Cr is saturated, and the coercive force is increased and deteriorated due to excessive addition. Therefore, Cr is set to 6.0 to 10.0%.
N:0.030%以下
Nは、不可避不純物であり、0.030%より多いと得られた電磁鋼の磁気特性が劣化し、窒化物生成による被削性が悪化する。そこで、Nは0.030%以下とする。
N: 0.030% or less N is an unavoidable impurity, and if it is more than 0.030%, the magnetic properties of the obtained electromagnetic steel deteriorate and the machinability due to nitride formation deteriorates. Therefore, N is set to 0.030% or less.
Al、Ti、V、Nbの少なくとも1種または2種以上を含み、その合計は:0.005〜0.800%
Al、Ti、V、Nbは、いずれも選択元素であり、鋼塊割れ、熱間加工性、耐食性、被削性、磁気特性に関与する元素である。ところで、これらの元素の1種または2種以上の合計が0.005%以上であると、フェライト相の安定化により、これらの鋼塊割れ、熱間加工性、耐食性、被削性、磁気特性の劣化は回避できる。一方、これらの元素の1種または2種以上の合計が0.800%より多いと、上記の効果は飽和し、炭窒化物の形成によって、熱間加工性、耐食性、被削性、磁気特性が劣化する。そこで、Al、Ti、V、Nbの少なくとも1種または2種以上を含み、その合計は0.005〜0.800%とする。
Contains at least one or more of Al, Ti, V, Nb, the total of which is: 0.005 to 0.800%
Al, Ti, V, and Nb are all selective elements, and are elements involved in ingot cracking, hot workability, corrosion resistance, machinability, and magnetic properties. By the way, when the total of one or more of these elements is 0.005% or more, due to the stabilization of the ferrite phase, these ingot cracks, hot workability, corrosion resistance, machinability and magnetic properties Deterioration can be avoided. On the other hand, when the total of one or more of these elements is more than 0.800%, the above effect is saturated, and due to the formation of carbonitride, hot workability, corrosion resistance, machinability, and magnetic properties Deteriorates. Therefore, at least one or more of Al, Ti, V, and Nb are included, and the total thereof is 0.005 to 0.800%.
1.2≦:式(1):≦5.0、ただし、式(1)=Mn/S
式(1)は、熱間加工性および耐食性に関与する値である。式(1)の値が1.2より小さいと熱間加工性が悪化する。一方、式(1)の値が5.0より大きいと耐食性が悪化する。そこで、1.2≦式(1)≦5.0とする。
1.2 ≤: Equation (1): ≤ 5.0, where equation (1) = Mn / S
Formula (1) is a value related to hot workability and corrosion resistance. If the value of the formula (1) is smaller than 1.2, the hot workability deteriorates. On the other hand, if the value of the formula (1) is larger than 5.0, the corrosion resistance deteriorates. Therefore, 1.2 ≦ equation (1) ≦ 5.0 is set.
式(2):≧30、ただし、式(2)=8Si+8Al+Cr+4Ti+4V+2Nb+2(Mn/S)−16(C+N)
式(2)は、熱間加工性に関与する値である。式(2)の値が30より小さいと熱間加工性が悪化する。そこで、式(2)≧30とする。
Equation (2): ≧ 30, where equation (2) = 8Si + 8Al + Cr + 4Ti + 4V + 2Nb + 2 (Mn / S) -16 (C + N)
Equation (2) is a value related to hot workability. If the value of the formula (2) is smaller than 30, the hot workability deteriorates. Therefore, the equation (2) ≥ 30 is set.
Te:≦0.030%
Teは、Te化合物の生成およびTe硫化物の形態制御で、被削性、磁気特性および熱間加工性に関与する元素である。Teが0.030%以下であると、Te化合物の生成およびTe硫化物の形態制御で、被削性、磁気特性が向上する。一方、Teが0.030%を超えると熱間加工性が悪化する。そこで、Teは0.030%以下とする。
Te: ≤0.030%
Te is an element involved in machinability, magnetic properties and hot workability in the formation of Te compounds and the morphological control of Te sulfides. When Te is 0.030% or less, machinability and magnetic properties are improved by forming a Te compound and controlling the morphology of Te sulfide. On the other hand, if Te exceeds 0.030%, the hot workability deteriorates. Therefore, Te is set to 0.030% or less.
式(3):≧0.15、ただし、式(3)=Te/S
式(3)の値は、Te化合物の低融点に伴う熱間加工性に関与する。そこで、式(3)の値を0.15以上とすることにより、Te化合物の低融点化を抑えて熱間加工性を確保する。そこで、式(3)の値は0.15以上とする。
Equation (3): ≧ 0.15, where equation (3) = Te / S
The value of the formula (3) is related to the hot workability associated with the low melting point of the Te compound. Therefore, by setting the value of the formula (3) to 0.15 or more, it is possible to suppress the lowering of the melting point of the Te compound and secure the hot workability. Therefore, the value of the formula (3) is set to 0.15 or more.
式(4):≦0.95、ただし、式(4)=55Te−{2Al+2Ti+4V+4Nb+(Mn/20S)}
式(4)は、鋼塊割れ、被削性および磁気特性に関与する値である。つまり、式(4)の値が0.95より大きいと、鋼塊割れを起こし、被削性および磁気特性を劣化する。そこで、式(4)の値は0.95以下とする。
Equation (4): ≤0.95, where equation (4) = 55Te- {2Al + 2Ti + 4V + 4Nb + (Mn / 20S)}
Equation (4) is a value related to ingot cracking, machinability and magnetic properties. That is, if the value of the formula (4) is larger than 0.95 , ingot cracking occurs and the machinability and magnetic properties deteriorate. Therefore, the value of the equation (4) is set to 0.95 or less.
ここで、発明の実施の形態について、以下に記載することとする。表1に記載の化学成分からなり、式(1)〜式(4)を満足する実施例であるNo.1〜14の発明例の快削電磁鋼と、表2に記載の発明例の比較例であるNo.15〜36の電磁鋼を、それぞれ100kgVIM(真空誘導溶解法)にて鋼塊を溶製し、得られた鋼塊を径20mmの棒材に形成した。 Here, embodiments of the invention will be described below. No. 1 is an example composed of the chemical components shown in Table 1 and satisfying the formulas (1) to (4). No. 1 is a comparative example of the free-cutting electrical steel of the invention examples 1 to 14 and the invention example shown in Table 2. Ingots of 15 to 36 electromagnetic steels were melted by 100 kg VIM (vacuum induction melting method), and the obtained ingots were formed into rods having a diameter of 20 mm.
上記で得られた発明例の鋼塊および比較例の鋼塊に含有される介在物の構成を確認するために、EDX(エネルギー分散型X線分光法)を用いて、これらの鋼塊から形成した径20mmの棒材のL断面に観測された快削性付与化合物の硫化物およびTe化合物を観察および分析して、これらの発明例を表3に比較例を表4にそれぞれ示した。すなわち、表3および表4の観測された介在物の欄において、Teを添加していない鋼からなる材料については、106μm2の範囲に長径400μm以下の(Cr、Mn)Sが分散して40個以上あれば、評価を○とし、40個未満では評価は×とした。Te添加材については、106μm2の範囲に30個以上の(Cr、Mn)Sとその周りを囲むように存在するTe化合物からなる長径300μm以下の複合介在物が存在していれば、評価を○とし、30個未満の(Cr、Mn)Sとその周りを囲むように存在するTe化合物からなる長径300μm以下の複合介在物が存在する場合は評価を×とし示した。 Formed from these ingots using EDX (Energy Dispersion X-ray Spectroscopy) to confirm the composition of inclusions contained in the ingots of the invention examples and the ingots of the comparative examples obtained above. The sulfide and Te compound of the free-cutting compound observed on the L cross section of the rod having a diameter of 20 mm were observed and analyzed, and examples of these inventions are shown in Table 3 and Comparative Examples are shown in Table 4, respectively. That is, in the column of the observed inclusions in Table 3 and Table 4, for the material consisting of steel without the addition of Te, diameter 400μm following (Cr, Mn) S is dispersed in a range of 10 6 [mu] m 2 If the number is 40 or more, the evaluation is evaluated as ◯, and if the number is less than 40, the evaluation is evaluated as x. For Te additive, 10 of 6 [mu] m 2 range 30 or more (Cr, Mn) if S with the presence compound inclusions following major diameter 300μm consisting of Te compounds to surround its exists, The evaluation was evaluated as ◯, and when there was a composite inclusion having a major axis of 300 μm or less composed of less than 30 (Cr, Mn) S and a Te compound existing so as to surround the S, the evaluation was indicated as ×.
発明例の表3および比較例の表4における耐鋼塊割れ性の評価は、鋼の100kgをVIMで溶解して、円柱状インゴットに鋳造し、インゴット上端から約250mmの位置で輪切りにし、切断端面を浸透探傷によるカラーチェックで割れを探傷し、このカラーチェックにて鋼塊中心に割れが確認された範囲の面積を測定した。鋼塊割れ率=割れ発生面積/カラーチェックの被験面積とする計算にて定量化して表示した。鋼塊割れ率が10%未満であれば良好であるので評価を○とし、鋼塊割れ率が10%以上では悪いので評価を×として、それぞれ表3および表4に示した。 In the evaluation of steel ingot crack resistance in Table 3 of Invention Example and Table 4 of Comparative Example, 100 kg of steel is melted by VIM, cast into a columnar ingot, sliced at a position of about 250 mm from the upper end of the ingot, and cut. The end face was detected for cracks by a color check by penetrant inspection, and the area of the range where cracks were confirmed in the center of the steel ingot was measured by this color check. It was quantified and displayed by the calculation of steel ingot crack rate = crack occurrence area / test area of color check. If the steel ingot crack rate is less than 10%, the evaluation is good, and the evaluation is ◯. If the steel ingot crack rate is 10% or more, the evaluation is x, and they are shown in Tables 3 and 4, respectively.
熱間加工性の評価は、耐鋼塊割れ性の評価後に、上端から250mmで切断したインゴットのうち、上端側を使用して、15mm角の長さ110mmの角材を採取し、これらを1150℃で均質化熱処理した後、径8mmの棒で長さ100mmのグリーブル試験片へ加工して熱間加工性の評価試験を実施した。これらのグリーブル試験片をグリーブル試験機を用いて1000℃、1050℃、1100℃の各温度に加熱した後、毎秒50mmの引張速度で引張試験を行って絞り値を測定した。上記の各加熱温度で絞り値を測定し、絞り値が全て70%以上を評価で○とし、それ以外は、たとい1つの加工温度の絞り値が70%以上であっても、他の2つ加工温度の絞り値のうちの1つのでも絞り値70%未満であれば絞り値の評価を×とし、それぞれ表3および表4に示した。 In the evaluation of hot workability, after the evaluation of steel ingot cracking resistance, among the ingots cut 250 mm from the upper end, the upper end side was used to collect 15 mm square lumber with a length of 110 mm, and these were collected at 1150 ° C. After homogenizing heat treatment with, it was processed into a gleeble test piece having a length of 100 mm with a rod having a diameter of 8 mm, and an evaluation test of hot workability was carried out. These gleeble test pieces were heated to each temperature of 1000 ° C., 1050 ° C., and 1100 ° C. using a gleeble tester, and then a tensile test was performed at a tensile speed of 50 mm per second to measure the drawing value. The aperture value is measured at each of the above heating temperatures, and all the aperture values are evaluated as ○, and other than that, even if the aperture value of one processing temperature is 70% or more, the other two. If even one of the drawing values of the processing temperature is less than 70% of the drawing value, the evaluation of the drawing value is set to x, and they are shown in Tables 3 and 4, respectively.
上記以外の評価用の試験片には、耐鋼塊割れ性の評価後に、それらのインゴットの上端から250mmで切断してそれらのインゴットのうちの下端側を使用して、径60mmと径20mmの棒材に鍛伸して、次いで熱処理として750〜850℃で焼鈍し、グリーブル試験片を除く下記の磁気特性、被削性および耐食性の各試料を作製した。 For evaluation test pieces other than the above, after evaluation of steel ingot cracking resistance, cut at 250 mm from the upper end of the ingots and use the lower end side of the ingots to have a diameter of 60 mm and a diameter of 20 mm. It was forged into a bar and then annealed at 750 to 850 ° C. as a heat treatment to prepare the following samples having magnetic properties, machinability and corrosion resistance, excluding the gleeble test piece.
磁気特性の評価は、径20mmの棒材を外径13mm、内径9mm、厚さ5mmからなる磁気リングに機械加工し、さらに、750〜900℃で真空磁気焼鈍を施した後に、直流磁気測定装置にて保磁力を測定した。保磁力130A/m未満の評価を○とし、保磁力130A/m以上のものの評価を×とした。 To evaluate the magnetic characteristics, a bar with a diameter of 20 mm is machined into a magnetic ring consisting of an outer diameter of 13 mm, an inner diameter of 9 mm, and a thickness of 5 mm, and further subjected to vacuum magnetic annealing at 750 to 900 ° C. The coercive force was measured at. The evaluation of the coercive force of less than 130 A / m was evaluated as ◯, and the evaluation of the coercive force of 130 A / m or more was evaluated as x.
被削性の評価は、径60mmの棒材の断面を旋盤で平滑化し、被削性評価を実施した。評価方法はドリル穿孔試験で、これは、深さ10mmの穿孔までに要する時間を測定し、その所要時間が10.5秒未満のものの評価を○とし、10.5秒以上のものの評価を×とした。 The machinability was evaluated by smoothing the cross section of a bar having a diameter of 60 mm with a lathe. The evaluation method is a drill drilling test, which measures the time required to drill a depth of 10 mm, and evaluates those with a required time of less than 10.5 seconds as ○, and those with a depth of 10.5 seconds or more as ×. And said.
上記のドリル穿孔試験の詳細な試験条件は、以下の通りである。
ドリル:SKH51、径5mm
切削油:なし
推力:414N
回転数:1190rpm
The detailed test conditions for the above drill drilling test are as follows.
Drill: SKH51, diameter 5 mm
Cutting oil: None Thrust: 414N
Rotation speed: 1190 rpm
耐食性の評価は、径20mmの棒材から、径12mmで長さ21mmの腐食試験用の試料を作製した。この試験片に50ppmの希薄塩水を35℃で16時間噴霧する塩水噴霧試験を実施し、試験片の表面を観察し、長径3mm以上の点状錆の数が20個以下のものの評価を○とし、長径3mm以上の点状錆の数が21個以上のものの評価を×とした。 For the evaluation of corrosion resistance, a sample for a corrosion test having a diameter of 12 mm and a length of 21 mm was prepared from a rod having a diameter of 20 mm. A salt spray test was conducted in which 50 ppm of dilute salt water was sprayed on this test piece at 35 ° C. for 16 hours, the surface of the test piece was observed, and those with a major axis of 3 mm or more and 20 or less punctate rusts were evaluated as ◯. The evaluation of the number of punctate rusts having a major axis of 3 mm or more and 21 or more was evaluated as x.
本願の第1の手段(すなわち請求項1)の発明例のNo.1〜5および第2の手段(すなわち請求項2)の発明例のNo.6〜14は、表1に示すように、式(1)の値が1.2〜5.0の範囲にあり、式(2)の値が30以上で、かつ第2の手段(すなわち請求項2)の発明例のNo.6〜14は、式(3)の値が0.15以上で、式(4)の値が0.95以下である。さらに本願の第1の手段(すなわち請求項1)の発明例のNo.1〜5および第2の手段(すなわち請求項2)の発明例のNo.6〜14は、表3に示すように、106μm2中に観測された介在物(Cr、Mn)Sの個数は、第1の手段の発明例のNo.1〜5のいずれもが長径400μm以下の硫化物の個数が40個以上であり、第2の手段の発明例のNo.6〜14のいずれもが長径300μm以下の硫化物の個数が30個以上であり、これらの本願の発明例は、いずれもが、耐鋼塊割れ性の鋼塊割れ率が10%以下で評価は○で、熱間加工性の1000℃、1050℃、1100℃での絞り値が70%以上で評価が○で、磁気特性の保磁力が130A/mより小さく評価が○で、被削性の穿孔時間が10.5secより短時間で評価が○で、耐食性の点状錆数が20個以下で評価が○である。 No. 1 of the invention example of the first means of the present application (that is, claim 1). No. 1 to 5 and the invention example of the second means (that is, claim 2). In Nos. 6 to 14, as shown in Table 1, the value of the formula (1) is in the range of 1.2 to 5.0, the value of the formula (2) is 30 or more, and the second means (that is, the claim). Item No. 2) of the invention example. In 6 to 14, the value of the formula (3) is 0.15 or more, and the value of the formula (4) is 0.95 or less. Furthermore, No. 1 of the invention example of the first means (that is, claim 1) of the present application. No. 1 to 5 and the invention example of the second means (that is, claim 2). 6-14, as shown in Table 3, 10 6 [mu] m observed inclusions in 2 (Cr, Mn) the number of S, the No. of the invention of the first means In each of 1 to 5, the number of sulfides having a major axis of 400 μm or less is 40 or more, and No. 1 of the invention example of the second means. Each of 6 to 14 has 30 or more sulfides having a major axis of 300 μm or less, and all of these invention examples of the present application are evaluated with a steel ingot cracking resistance of 10% or less. Is ○, the hot workability at 1000 ° C, 1050 ° C, and 1100 ° C is 70% or more, and the evaluation is ○, the coercive force of the magnetic characteristics is smaller than 130 A / m, and the evaluation is ○, and the machinability. The evaluation is ◯ when the drilling time is shorter than 10.5 sec, and the evaluation is ◯ when the number of corrosion-resistant punctate rusts is 20 or less.
一方、本願の第1の手段(すなわち請求項1)の比較例のNo.15〜26および第2の手段(すなわち請求項2)の比較例のNo.27〜36について検討する。なお、比較例のNo.37は、鉛添加鋼であって参考例である。 On the other hand, No. 1 of the comparative example of the first means of the present application (that is, claim 1). No. 15-26 and Comparative Examples of the Second Means (ie, claim 2). Consider 27-36. In addition, No. of the comparative example. Reference numeral 37 denotes lead-added steel, which is a reference example.
比較例のNo.15は、表2に示すように、Cの質量が0.033%と、本発明のCの質量の上限の0.030%よりも多いので、表4に示すように、耐食性が劣化し点状錆数が20個よりも多く評価が×である。 Comparative example No. As shown in Table 2, in No. 15, the mass of C is 0.033%, which is larger than the upper limit of 0.030% of the mass of C in the present invention. Therefore, as shown in Table 4, the corrosion resistance deteriorates. The number of rusts is more than 20, and the evaluation is x.
比較例のNo.16は、表2に示すように、Siの質量が3.7%と、本発明のSiの質量の上限の0.50%よりも多いので、表4に示すように、磁気特性が悪化し、保磁力が141A/mと、本発明の130A/m未満よりも多く評価が×である。 Comparative example No. As shown in Table 2, in No. 16, the mass of Si is 3.7%, which is larger than the upper limit of 0.50% of the mass of Si of the present invention. Therefore, as shown in Table 4, the magnetic characteristics deteriorate. The coercive force is 141 A / m, which is more than the 130 A / m of the present invention and is evaluated as x.
比較例のNo.17は、表2に示すように、Mnの質量が0.61%と、本発明のMnの質量の上限の0.50%よりも多いので、表4に示すように、磁気特性が劣化し、保磁力が138A/mと、本発明の130A/m未満よりも多く評価が×である。 Comparative example No. As shown in Table 2, in No. 17, the mass of Mn is 0.61%, which is larger than the upper limit of 0.50% of the mass of Mn of the present invention. Therefore, as shown in Table 4, the magnetic characteristics deteriorate. The coercive force is 138 A / m, which is more than the 130 A / m of the present invention and is evaluated as x.
比較例のNo.18は、表2に示すように、Pの質量が0.048%と、本発明のPの質量の上限の0.030%よりも多いので、表4に示すように、熱間加工性が劣化し、1000℃、1050℃の絞り値が64%、68%と、本発明の下限値の70%よりも少なく評価が×である。 Comparative example No. As shown in Table 2, No. 18 has a mass of P of 0.048%, which is larger than the upper limit of the mass of P of the present invention of 0.030%. It deteriorated, and the aperture values at 1000 ° C. and 1050 ° C. were 64% and 68%, which were less than the lower limit of 70% of the present invention, and the evaluation was x.
比較例のNo.19は、表2に示すように、Sの質量が0.247%と、本発明のSの質量の上限の0.200%よりも多く、表4に示すように、熱間加工性が劣化し、1000℃、1050℃、1100℃の絞り値が65%、59%、68%と、本発明の下限値の70%よりも少なく評価が×となった。そこで、磁気特性の保磁力の評価以下は行わなかった。 Comparative example No. As shown in Table 2, the mass of S in No. 19 is 0.247%, which is larger than the upper limit of 0.200% of the mass of S of the present invention, and as shown in Table 4, the hot workability is deteriorated. However, the aperture values at 1000 ° C., 1050 ° C., and 1100 ° C. were 65%, 59%, and 68%, which were less than the lower limit of 70% of the present invention, and the evaluation was x. Therefore, the evaluation of the coercive force of the magnetic characteristics was not performed.
比較例のNo.20は、表2に示すように、Sの質量が0.037%と、本発明のSの質量の下限値の0.050%よりも少ないので、表4に示すように、介在物の個数が34個と本発明の40個以上を満足しないので介在物の評価は×であり、被削性の穿孔時間が悪く、本発明の上限値の10.5secよりも多く評価が×である。 Comparative example No. As shown in Table 2, No. 20 has a mass of S of 0.037%, which is less than the lower limit of the mass of S of the present invention of 0.050%. Therefore, as shown in Table 4, the number of inclusions is 20. However, the number of inclusions is not satisfied with 34 or more of the present invention, so the evaluation of inclusions is x, the perforation time of machinability is poor, and the evaluation is x more than the upper limit of 10.5 sec of the present invention.
比較例のNo.21は、表2に示すように、Crの質量が11.1%と、本発明のCrの質量の上限値の10.0%よりも多いので、表4に示すように、磁気特性の保磁力が悪く、本発明の上限の130A/mよりも多く評価が×である。 Comparative example No. As shown in Table 2, in No. 21, the mass of Cr is 11.1%, which is larger than the upper limit of the mass of Cr of the present invention of 10.0%. Therefore, as shown in Table 4, the magnetic properties of 21 are maintained. The magnetic force is poor, and the evaluation is x, which is more than the upper limit of 130 A / m of the present invention.
比較例のNo.22は、表2に示すように、Al、Ti、V、Nbの合せた質量が0.819%と、本発明のこれらの合せた質量の上限値の0.800%よりも多いので、表4に示すように、磁気特性の保磁力が150A/mであり、本発明の上限の130A/mを超えており評価が×である。 Comparative example No. In Table 2, as shown in Table 2, the combined mass of Al, Ti, V, and Nb is 0.819%, which is larger than the upper limit of 0.800% of these combined masses of the present invention. As shown in 4, the coercive force of the magnetic property is 150 A / m, which exceeds the upper limit of 130 A / m of the present invention, and the evaluation is x.
比較例のNo.23は、表2に示すように、Nの質量が0.045%と、本発明の0.030%よりも多いので、表4に示すように、磁気特性の保磁力が150A/mであり、本発明の上限の130A/mを超えており評価が×である。 Comparative example No. As shown in Table 2, No. 23 has a mass of N of 0.045%, which is larger than 0.030% of the present invention. Therefore, as shown in Table 4, the coercive force of the magnetic property is 150 A / m. , The upper limit of 130 A / m of the present invention is exceeded, and the evaluation is x.
比較例のNo.24は、表2に示すように、式(1)の値が0.7と、本発明の下限値の1.0よりも小さいので、表4に示すように、熱間加工性の1000℃と1050℃の絞り値が65%、69%と、本発明の絞り値の上限値の70%より少ないので熱間加工性の評価が×である。 Comparative example No. In No. 24, as shown in Table 2, the value of the formula (1) is 0.7, which is smaller than the lower limit of 1.0 of the present invention. Therefore, as shown in Table 4, the hot workability of 1000 ° C. Since the drawing values at 1050 ° C. and 1050 ° C. are 65% and 69%, which are less than 70% of the upper limit of the drawing value of the present invention, the evaluation of hot workability is x.
比較例のNo.25は、表2に示すように、式(1)の値が5.5と、本発明の上限値の5.0よりも大きいので、表4に示すように、耐食性の点状錆数が27と、本発明の耐食性の点状錆数の上限値の20よりも大きいので耐食性の評価が×である。 Comparative example No. In No. 25, as shown in Table 2, the value of the formula (1) is 5.5, which is larger than the upper limit of 5.0 of the present invention. Therefore, as shown in Table 4, the number of corrosion-resistant punctate rusts is large. Since it is larger than 27, which is the upper limit of the number of punctate rusts of the present invention, which is 20, the evaluation of the corrosion resistance is ×.
比較例のNo.26は、表2に示すように、式(2)の値が27と、本発明の下限値の30よりも小さいので、表4に示すように、耐鋼塊割れ性の鋼塊割れ率が13%と、本発明の鋼塊割れ率の上限値の10%よりも大きいので耐鋼塊割れ性の評価が×である。 Comparative example No. In No. 26, as shown in Table 2, the value of the formula (2) is 27, which is smaller than the lower limit value of 30 of the present invention. Since it is 13%, which is larger than 10% of the upper limit of the ingot cracking rate of the present invention, the evaluation of the ingot cracking resistance is x.
比較例のNo.27からは、発明例2の比較例である。比較例のNo.27は、表2に示すように、化学成分のTeの質量が0.045%と、発明例2の上限値の質量の0.030%よりも多いので、表4に示すように、熱間加工性の絞り値の1000℃、1050℃、1100℃の値が57%、62%、64%と、いずれも本発明の熱間加工性の各温度の絞り値の70%よりも小さいので熱間加工性の評価が×である。 Comparative example No. From 27, it is a comparative example of Invention Example 2. Comparative example No. In 27, as shown in Table 2, the mass of Te, which is a chemical component, is 0.045%, which is larger than 0.030% of the mass of the upper limit of Invention Example 2, and therefore, as shown in Table 4, it is hot. The workability drawing values of 1000 ° C., 1050 ° C., and 1100 ° C. are 57%, 62%, and 64%, all of which are smaller than 70% of the hot workability drawing values of the present invention. The evaluation of workability is ×.
比較例のNo.28は、表2に示すように、式(3)の値が0.12で、本発明の下限値の0.15より小さいので、表4に示すように、熱間加工性の絞り値の1000℃、1100℃の値が64%、69%と、いずれも本発明の熱間加工性の各温度の絞り値の70%よりも小さいので熱間加工性の評価が×である。 Comparative example No. In No. 28, as shown in Table 2, the value of the formula (3) is 0.12, which is smaller than the lower limit of 0.15 of the present invention. The values of 1000 ° C. and 1100 ° C. are 64% and 69%, both of which are smaller than 70% of the drawing value of each temperature of the hot workability of the present invention, so that the evaluation of hot workability is x.
比較例のNo.29は、表2に示すように、式(4)の値が1.02で、本発明の上限値の0.95より大きいので、表4に示すように、熱間加工性の絞り値の1000℃の値が66%と、本発明の熱間加工性の各温度の絞り値の70%よりも小さいので熱間加工性の評価が×である。 Comparative example No. As shown in Table 2, 29 has a value of the formula (4) of 1.02, which is larger than the upper limit of 0.95 of the present invention. Since the value at 1000 ° C. is 66%, which is smaller than 70% of the drawing value of each temperature of the hot workability of the present invention, the evaluation of hot workability is x.
比較例のNo.30は、表2に示すように、Mnの質量が0.58%で、本発明のMnの質量の上限値の0.50%より大きいので、表4に示すように、磁気特性の保磁力が133A/mと、本発明の磁気特性の保磁力の130A/mよりも大きいので磁気特性の評価が×である。 Comparative example No. As shown in Table 2, No. 30 has a Mn mass of 0.58%, which is larger than 0.50% of the upper limit of the Mn mass of the present invention. Is 133 A / m, which is larger than the coercive force of 130 A / m of the magnetic characteristics of the present invention, so the evaluation of the magnetic characteristics is x.
比較例のNo.31は、表2に示すように、Cの質量が3.8%で、本発明のCの質量の上限値の3.5%より大きいので、表4に示すように、磁気特性の保磁力が142A/mと、本発明の磁気特性の保磁力の130A/mよりも大きいので磁気特性の評価が×である。 Comparative example No. As shown in Table 2, No. 31 has a mass of C of 3.8%, which is larger than 3.5% of the upper limit of the mass of C of the present invention. Is 142 A / m, which is larger than the coercive force of 130 A / m of the magnetic characteristics of the present invention, so the evaluation of the magnetic characteristics is x.
比較例のNo.32は、表2に示すように、Crの質量が10.4%で、本発明のCrの質量の上限値の10.0%より大きいので、表4に示すように、磁気特性の保磁力が149A/mと、本発明の磁気特性の保磁力の130A/mよりも大きいので磁気特性の評価が×である。 Comparative example No. As shown in Table 2, in No. 32, the mass of Cr is 10.4%, which is larger than 10.0% of the upper limit of the mass of Cr of the present invention. Therefore, as shown in Table 4, the coercive force of the magnetic property is Is 149 A / m, which is larger than the coercive force of 130 A / m of the magnetic characteristics of the present invention, so the evaluation of the magnetic characteristics is x.
比較例のNo.33は、表2に示すように、Nの質量が0.036%で、本発明のNの質量の上限値の0.030%より大きいので、表4に示すように、磁気特性の保磁力が149A/mと、本発明の磁気特性の保磁力の130A/mよりも大きいので磁気特性の評価が×である。 Comparative example No. As shown in Table 2, No. 33 has a mass of N of 0.036%, which is larger than 0.030% of the upper limit of the mass of N of the present invention. Is 149 A / m, which is larger than the coercive force of 130 A / m of the magnetic characteristics of the present invention, so the evaluation of the magnetic characteristics is x.
比較例のNo.34は、表2に示すように、式(1)の値が5.3で、本発明の式(1
)の値の上限値の5.0より大きいので、表4に示すように、耐食性の点状錆数が24と
、本発明の耐食性の点状錆数の上限値の20個よりも大きいので耐食性の評価が×である。
Comparative example No. As shown in Table 2, 34 has a value of the formula (1) of 5.3 and the formula (1) of the present invention.
) Is larger than the upper limit of 5.0, and as shown in Table 4, the number of corrosion-resistant punctate rusts is 24, which is larger than the upper limit of the number of corrosion-resistant punctate rusts of the present invention, which is 20. The evaluation of corrosion resistance is ×.
比較例のNo.35は、表2に示すように、式(2)の値が28で、本発明の式(2)の値の下限値の30より小さいので、表4に示すように、耐鋼塊割れ性の鋼塊割れ率が16と、本発明の耐鋼塊割れ性の鋼塊割れ率の上限値の10よりも大きいので耐鋼塊割れ性の評価が×である。 Comparative example No. As shown in Table 2, No. 35 has a value of the formula (2) of 28, which is smaller than the lower limit of 30 of the value of the formula (2) of the present invention. Since the ingot cracking rate of No. 16 is larger than the upper limit of 10 of the ingot cracking resistance of the present invention, the evaluation of the ingot cracking resistance is x.
比較例のNo.36は、表2に示すように、Sの質量が0.023%と、本発明のSの質量の下限値の0.050%よりも少ないので、表4に示すように、介在物の個数が25個と本発明の30個以上を満足しないので介在物の評価は×であり、被削性の穿孔時間が悪く、本発明の上限値の10.5secよりも多く評価が×である。 Comparative example No. As shown in Table 2, No. 36 has a mass of S of 0.023%, which is less than the lower limit of the mass of S of the present invention, which is 0.050%. The number of inclusions is 25, which does not satisfy 30 or more of the present invention, so the evaluation of inclusions is x, the perforation time of machinability is poor, and the evaluation is x more than the upper limit of 10.5 sec of the present invention.
比較例のNo.37は、参考例であり、鉛添加鋼であって、表2に示すように、Pbの質量で0.12%含有しているが、表4に示すように、106μm2中に観測された長さ300μm2以下のPb介在物の個数は観測されず評価は×である。なお、耐鋼塊割れ性、熱間加工性、磁気特性、被削性および耐食性の評価はいずれも○である。 Comparative example No. 37 is a reference example, a lead-containing steel, as shown in Table 2, but containing 0.12% by weight of Pb, as shown in Table 4, observed during 10 6 [mu] m 2 The number of Pb inclusions with a length of 300 μm 2 or less was not observed and the evaluation was ×. The evaluations of steel ingot cracking resistance, hot workability, magnetic properties, machinability and corrosion resistance are all ◯.
Claims (2)
ただし、
式(1):Mn/S
式(2):8Si+8Al+Cr+4Ti+4V+2Nb+2(Mn/S)−16(C+N) By mass%, C: 0.030% or less, Si: 0.5 to 3.5%, Mn: 0.05 to 0.50%, P: 0.030% or less, S: 0.050 to 0. It contains 200%, Cr: 6.0 to 10.0%, N: 0.030% or less, and one or more of Al, Ti, V and Nb in total 0.005 to 0. containing .800%, a steel balance consisting of Fe and unavoidable impurities, into steel, as machinability improving compound major diameter 400μm following (Cr, Mn) sulfide 40 or more in the range of 10 6 [mu] m 2 Steel ingot crack resistance and hotness characterized by being dispersed, having a size of formula (1) of 1.2 to 5.0, and having a size of formula (2) of 30 or more. Free-cutting electromagnetic steel with excellent workability.
However,
Equation (1): Mn / S
Equation (2): 8Si + 8Al + Cr + 4Ti + 4V + 2Nb + 2 (Mn / S) -16 (C + N)
ただし
式(3):Te/S
式(4):55Te−{2Al+2Ti+4V+4Nb+(Mn/20S) It has the chemical composition of claim 1, and in addition to the sizes of the formulas (1) and (2), contains Te: 0.030% or less in mass%, and is composed of the balance Fe and unavoidable impurities. It is a steel, and the free-cutting property-imparting compound is a composite inclusion having a major axis of 300 μm or less composed of (Cr, Mn) sulfide and a Te compound existing so as to surround the sulfide in the steel, and is 10 6 μm 2 30 or more are dispersed in the range of, the formula (3) is 0.15 or more, and the formula (4) is 0.95 or less. Free-cutting electromagnetic steel with excellent manufacturability.
However, equation (3): Te / S
Equation (4): 55Te- {2Al + 2Ti + 4V + 4Nb + (Mn / 20S)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016251223A JP6846925B2 (en) | 2016-12-26 | 2016-12-26 | Free-cutting electrical steel with excellent manufacturability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016251223A JP6846925B2 (en) | 2016-12-26 | 2016-12-26 | Free-cutting electrical steel with excellent manufacturability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018104753A JP2018104753A (en) | 2018-07-05 |
JP6846925B2 true JP6846925B2 (en) | 2021-03-24 |
Family
ID=62786702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016251223A Active JP6846925B2 (en) | 2016-12-26 | 2016-12-26 | Free-cutting electrical steel with excellent manufacturability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6846925B2 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001073101A (en) * | 1999-09-01 | 2001-03-21 | Sanyo Special Steel Co Ltd | Electromagnetic material having high magnetic flux density and high specific resistance and excellent in machinability and cold forgeability |
JP4544977B2 (en) * | 2004-11-26 | 2010-09-15 | 清仁 石田 | Free-cutting soft magnetic stainless steel |
JP4515355B2 (en) * | 2005-08-18 | 2010-07-28 | 株式会社神戸製鋼所 | Soft magnetic steel materials with excellent magnetic properties and machinability in high magnetic fields and soft magnetic steel components with excellent magnetic properties in high magnetic fields |
JP5730153B2 (en) * | 2011-07-29 | 2015-06-03 | 山陽特殊製鋼株式会社 | Electrical steel with high resistivity, excellent machinability and magnetization characteristics |
JP6395588B2 (en) * | 2014-12-15 | 2018-09-26 | 山陽特殊製鋼株式会社 | Lead-free soft magnetic material with excellent workability and corrosion resistance |
US10400320B2 (en) * | 2015-05-15 | 2019-09-03 | Nucor Corporation | Lead free steel and method of manufacturing |
CN105483532B (en) * | 2015-12-04 | 2018-01-02 | 北京科技大学 | A kind of method for improving the carbon structure Steel Properties of antimony containing residual elements |
-
2016
- 2016-12-26 JP JP2016251223A patent/JP6846925B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018104753A (en) | 2018-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8137613B2 (en) | Austenitic stainless steel welded joint and austenitic stainless steel welding material | |
US20100054983A1 (en) | Austenitic stainless steel | |
FI125734B (en) | Duplex ferritic austenitic stainless steel | |
KR101612474B1 (en) | Ferritic stainless-steel wire with excellent cold forgeability and machinability | |
JP6120303B2 (en) | Free-cutting stainless steel with double-phase inclusions | |
US8865060B2 (en) | Austenitic stainless steel | |
JP6207408B2 (en) | Stainless steel with excellent machinability, hardness, wear resistance and corrosion resistance | |
KR20190045314A (en) | Surface hardened steel, method of manufacturing the same, and method of manufacturing gear parts | |
WO2017104202A1 (en) | Ferrite-based free-machining stainless steel and method for producing same | |
JP5737801B2 (en) | Ferritic free-cutting stainless steel and manufacturing method thereof | |
JP6677071B2 (en) | Ferritic free-cutting stainless steel | |
JP4441295B2 (en) | Manufacturing method of high strength steel for welding and high strength steel for welding with excellent corrosion resistance and machinability | |
WO2019069998A1 (en) | Austenitic stainless steel | |
JP6122677B2 (en) | High-strength austenitic free-cutting stainless steel wire and method for producing the same | |
JP6846925B2 (en) | Free-cutting electrical steel with excellent manufacturability | |
JP5474616B2 (en) | Ferritic stainless free-cutting steel rod with excellent forgeability | |
JP2000144339A (en) | High corrosion resistance free cutting stainless steel | |
JP6395588B2 (en) | Lead-free soft magnetic material with excellent workability and corrosion resistance | |
JP4359548B2 (en) | BN free cutting steel | |
JP6814655B2 (en) | Ferritic free-cutting stainless steel wire | |
JP2015199971A (en) | High strength nonmagnetic stainless steel and stainless steel component | |
JP2022130746A (en) | Non-heat-treated forged component and non-heat-treated forging steel | |
JP7270420B2 (en) | Hot forged non-heat treated parts, manufacturing method thereof, and steel materials for hot forged non-heat treated parts | |
JP7189053B2 (en) | Non-tempered forging steel and non-tempered forged parts | |
JP6194696B2 (en) | Martensite Bi free-cutting stainless steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191021 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201020 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210225 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210302 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6846925 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |