[go: up one dir, main page]

JP2018104753A - Free-cutting electromagnetic steel excellent in manufacturability - Google Patents

Free-cutting electromagnetic steel excellent in manufacturability Download PDF

Info

Publication number
JP2018104753A
JP2018104753A JP2016251223A JP2016251223A JP2018104753A JP 2018104753 A JP2018104753 A JP 2018104753A JP 2016251223 A JP2016251223 A JP 2016251223A JP 2016251223 A JP2016251223 A JP 2016251223A JP 2018104753 A JP2018104753 A JP 2018104753A
Authority
JP
Japan
Prior art keywords
formula
less
steel
evaluation
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016251223A
Other languages
Japanese (ja)
Other versions
JP6846925B2 (en
Inventor
孝 細田
Takashi Hosoda
孝 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2016251223A priority Critical patent/JP6846925B2/en
Publication of JP2018104753A publication Critical patent/JP2018104753A/en
Application granted granted Critical
Publication of JP6846925B2 publication Critical patent/JP6846925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

【課題】 Pbを添加せずに十分な耐食性と被削性を有し、さらに安定的に供給できる優れた製造性を有した快削電磁鋼を提供することである。【解決手段】 質量%で、C:0.030%以下、Si:0.5〜3.5%、Mn:0.05〜0.50%、P:0.030%以下、S:0.050〜0.200%、Cr:6.0〜10.0%、N:0.030%以下を有し、さらにAl、Ti、VおよびNbの中の1種または2種以上を合計で0.005〜0.800%有し、残部Feおよび不可避不純物からなる鋼で、該鋼中に快削性付与化合物として長径400μm以下の(Cr、Mn)Sが106μm2の範囲に40個以上分散存在し、式(1)の大きさは1.2〜5.0で、かつ式(2)の大きさは30以上である耐鋼塊割れ性および熱間加工性の製造性に優れる快削電磁鋼。ただし、式(1):Mn/S、式(2):8Si+8Al+Cr+4Ti+4V+2Nb+2(Mn/S)−16(C+N)【選択図】 なしPROBLEM TO BE SOLVED: To provide a free-cutting electrical steel having sufficient corrosion resistance and machinability without adding Pb and having excellent manufacturability capable of being stably supplied. SOLUTION: In mass%, C: 0.030% or less, Si: 0.5 to 3.5%, Mn: 0.05 to 0.50%, P: 0.030% or less, S: 0. It has 050 to 0.200%, Cr: 6.0 to 10.0%, N: 0.030% or less, and one or more of Al, Ti, V and Nb is 0 in total. A steel having .005 to 0.800% and composed of the balance Fe and unavoidable impurities, and 40 or more (Cr, Mn) S having a major axis of 400 μm or less as a free-cutting imparting compound are dispersed in the steel in the range of 106 μm 2. However, the size of the formula (1) is 1.2 to 5.0, and the size of the formula (2) is 30 or more. steel. However, formula (1): Mn / S, formula (2): 8Si + 8Al + Cr + 4Ti + 4V + 2Nb + 2 (Mn / S) -16 (C + N) [Selection diagram] None

Description

この出願は、ソレノイド、電磁弁などの各種電磁アクチュエーターや電磁センサーの部材として使用できる、非鉛で環境負荷も少なく、優れた耐食性および被削性を有し、さらに良好な製造性を兼ね備えた快削電磁鋼に関する。   This application is a lead-free, low environmental load, excellent corrosion resistance and machinability that can be used as a member of various electromagnetic actuators and electromagnetic sensors such as solenoids and solenoid valves, and also has excellent manufacturability. It relates to cutting steel.

電磁鋼には優れた磁気特性、被削性、耐食性、そして材料が安価で安定供給可能という観点から、良好な製造性も要求される。良好な製造性で、磁気特性と耐食性を損なわずに優れた被削性を有するPb添加電磁鋼はすでに市場に出ている。しかし、近年の製造業ではPbの有毒性を考慮し、Pbの使用は避けられている。Pb代替快削元素としてSを添加し、硫化物を被削性改善物質として、鋼中に分散させる例がある。しかしながら、このものは、上記した磁気特性、被削性、耐食性の他に良好な製造性などの各種要求特性は劣化する。そこで、非Pbで、かつ優れた磁気特性、被削性、耐食性、熱間加工性などの良好な製造性という全てを兼ね備えた材料が求められている。   Electrical steel is also required to have good manufacturability from the viewpoints of excellent magnetic properties, machinability, corrosion resistance, and stable supply of materials at low cost. Pb-added electrical steels having excellent machinability and excellent machinability without impairing magnetic properties and corrosion resistance have already been put on the market. However, in recent manufacturing industries, the use of Pb is avoided in consideration of the toxicity of Pb. There is an example in which S is added as a Pb alternative free-cutting element, and sulfide is dispersed in steel as a machinability improving substance. However, this product deteriorates various required characteristics such as good manufacturability in addition to the above-described magnetic characteristics, machinability and corrosion resistance. Therefore, there is a demand for a material that is non-Pb and has all of excellent manufacturability such as excellent magnetic properties, machinability, corrosion resistance, and hot workability.

従来技術として、例えば、Ti422によって磁気特性、耐食性を損なうことなく快削性を付与した材料が提案されて特許されている(例えば、特許文献1参照。)。しかし、この提案の特許は、安価でかつ安定供給という観点からは、製造性に関して詳細な検討はされていない。また、この提案は0.15質量%以下のPbの添加も許容している点に問題がある。 As a prior art, for example, a material imparted with free-cutting properties without impairing magnetic properties and corrosion resistance with Ti 4 C 2 S 2 has been proposed and patented (see, for example, Patent Document 1). However, this proposed patent has not been studied in detail regarding manufacturability from the viewpoint of low cost and stable supply. This proposal also has a problem in that addition of 0.15% by mass or less of Pb is allowed.

この電磁鋼は、Pbを使用することなく(Cr,Mn)SおよびTeの添加によって磁気特性および耐食性を損なうことなく、快削性を付与した材料が提案されて特許されている(例えば、特許文献2参照。)。しかし、この提案の特許は、被削性を担うSの添加量が0.040質量%以下と少なく、そのために被削性向上が必ずしも十分でない問題がある。   This electromagnetic steel has been proposed and patented with a material that has been given free-cutting properties without impairing magnetic properties and corrosion resistance by adding (Cr, Mn) S and Te without using Pb (for example, patents) Reference 2). However, this proposed patent has a problem that the machinability is not always improved sufficiently because the amount of S which is responsible for machinability is as small as 0.040 mass% or less.

この電磁鋼は、Pbを使用することなく、(Cr、Mn)SおよびTeの添加によって磁気特性および耐食性を損なうことなく快削性を付与した材料であり、被削性を担うS添加量も多く、Pb添加鋼と同等の以上の被削性を有する提案の出願である(例えば、特許文献3参照。)。この提案の出願は、製造性のうち熱間加工性は考慮しているものの、単に製造可能というレベルのものであり、安価に安定して供給するという観点からは、さらなる製造性の向上が必要である。   This electromagnetic steel is a material that imparts free-cutting properties without impairing magnetic properties and corrosion resistance by adding (Cr, Mn) S and Te without using Pb. Many of the proposed applications have machinability equal to or higher than that of Pb-added steel (see, for example, Patent Document 3). Although the application for this proposal considers hot workability among the manufacturability, it is merely a level that can be produced, and further improvement in manufacturability is necessary from the viewpoint of stably supplying at a low cost. It is.

特許第4544977号公報Japanese Patent No. 4544977 特許第5730153号公報Japanese Patent No. 5730153 特開2016−113667号公報Japanese Patent Laid-Open No. 2006-113667

本願の発明が解決しようとする問題は、ソレノイド、電磁弁などの各種電磁アクチュエーターや電磁センサー部材などは、まず優れた軟磁気特性が要求される。さらに、その他にも、使用環境に対して十分な耐食性や、精密加工や量産加工に対応できる被削性も要求される。こうした要求に対応するべく、鉄鋼材料においては、耐食性を損なわずに大幅に被削性を向上させることから、Pbの添加が古くから利用されている。しかし、環境負荷への低減を考慮すると、Pbの使用は避ける必要がある。そこで、Pb代替の快削元素としてSを添加する方法が用いられている。ただし、Sの添加は必須特性である磁気特性および耐食性を劣化させ、さらに低融点化合物の形成助長によって、素材の製造性までも著しく阻害してしまい、安定供給の面および製造コストの面で問題が生じる。こうした問題を解決するために、Pbを添加せずに十分な耐食性と被削性を有し、さらに安定的に供給できる優れた製造性を有した快削電磁鋼を提供することである。   The problem to be solved by the present invention is that various electromagnetic actuators such as solenoids and electromagnetic valves, electromagnetic sensor members, and the like are required to have excellent soft magnetic characteristics. In addition, sufficient corrosion resistance with respect to the use environment and machinability that can cope with precision machining and mass production machining are also required. In order to meet these demands, in steel materials, the machinability is greatly improved without impairing the corrosion resistance, so the addition of Pb has been used for a long time. However, the use of Pb must be avoided in view of the reduction in environmental load. Therefore, a method of adding S as a free cutting element instead of Pb is used. However, the addition of S deteriorates the magnetic properties and corrosion resistance, which are essential properties, and further promotes the formation of low melting point compounds, which significantly impedes the manufacturability of the material, and is problematic in terms of stable supply and manufacturing costs. Occurs. In order to solve these problems, it is an object of the present invention to provide a free-cutting electrical steel that has sufficient corrosion resistance and machinability without adding Pb and has excellent manufacturability that can be stably supplied.

上記の課題を解決するための本願発明の手段は、第1として、環境負荷が小さく、かつ十分な耐食性と磁気特性を有し、さらに、素材の製造性である耐鋼塊割れ性および熱間加工性などに優れた快削電磁鋼とするために、次の5点の手段をとることとする。
1.環境負荷低減のため、非Pb鋼とする。
2.硫化物あるいは硫化物とTe化合物からなる複合化合物を鋼中に分散させてPb鋼同等以上の被削性を有するものとする。
3.S添加による磁気特性の劣化をSi添加量およびCr添加量を調整することで回避する。
4.Cr、Mn、Sの組成、および式(1)であるMn/Sの値を制御し、Sを硫化物として固定して熱間加工性を確保しながら、Crリッチとすることで、良好な耐食性を得る。
5.Al、Ti、Nb、Vの中の1種または2種以上の組成、および下記の式(2)によってフェライト安定度を高め、優れた磁気特性ならびに製造性である耐鋼塊割れ性および熱間加工性を確保する。
The means of the present invention for solving the above-mentioned problems are as follows. First, the environmental load is small, the steel has sufficient corrosion resistance and magnetic properties, and the steel ingot cracking resistance and hotness which are the manufacturability of the material. In order to obtain a free-cutting electromagnetic steel excellent in workability and the like, the following five points are taken.
1. Non-Pb steel is used to reduce environmental impact.
2. It is assumed that sulfide or a composite compound of sulfide and Te compound is dispersed in steel and has machinability equal to or higher than that of Pb steel.
3. The deterioration of the magnetic characteristics due to the addition of S is avoided by adjusting the Si addition amount and the Cr addition amount.
4). Controlling the composition of Cr, Mn, S and the value of Mn / S in the formula (1), fixing S as a sulfide and ensuring hot workability, while making Cr rich, good Get corrosion resistance.
5. One or more of Al, Ti, Nb, and V, and the following formula (2) increase ferrite stability, excellent magnetic properties and manufacturability of steel ingot cracking and hot Ensure processability.

第2として、次の6.の1点の手段をとることとする。
6.Teの組成、および式(3)、式(4)による制限により、被削性および磁気特性を向上させつつ、Te添加による熱間加工性の劣化を抑制する。
すなわち、下記の第1の手段、第2の手段の発明とする。
Second, the following 6. We will take the following means.
6). The composition of Te and the limitations by the formulas (3) and (4) suppress the deterioration of hot workability due to the addition of Te while improving machinability and magnetic properties.
That is, the invention of the following first means and second means is provided.

第1の手段では、質量%で、C:0.030%以下、Si:0.5〜3.5%、Mn:0.05〜0.50%、P:0.030%以下、S:0.050〜0.200%、Cr:6.0〜10.0%、N:0.030%以下を含有し、さらにAl、Ti、VおよびNbの中の1種または2種以上を合計で0.005〜0.800%含有し、残部Feおよび不可避不純物からなる鋼であり、該鋼中に、快削性付与化合物として長径400μm以下の(Cr、Mn)硫化物が106μm2の範囲に40個以上分散して存在し、式(1)の大きさは1.2〜5.0であり、かつ式(2)の大きさは30以上であることを特徴とする耐鋼塊割れ性および熱間加工性の製造性に優れる快削電磁鋼である。
ただし、
式(1):Mn/S
式(2):8Si+8Al+Cr+4Ti+4V+2Nb+2(Mn/S)−16(C+N)
In the first means, by mass%, C: 0.030% or less, Si: 0.5 to 3.5%, Mn: 0.05 to 0.50%, P: 0.030% or less, S: 0.050 to 0.200%, Cr: 6.0 to 10.0%, N: 0.030% or less, and one or more of Al, Ti, V and Nb in total 0.005 to 0.800% and the balance Fe and unavoidable impurities, and (Cr, Mn) sulfide having a major axis of 400 μm or less as a free-cutting property imparting compound is 10 6 μm 2. 40 or more dispersed in the range, the size of the formula (1) is 1.2 to 5.0, and the size of the formula (2) is 30 or more. It is a free-cutting electrical steel with excellent lump cracking and hot workability manufacturability.
However,
Formula (1): Mn / S
Formula (2): 8Si + 8Al + Cr + 4Ti + 4V + 2Nb + 2 (Mn / S) -16 (C + N)

第2の手段では、請求項1の化学成分を有し、かつ、式(1)および式(2)の大きさに加えて、質量%で、Te:0.030%以下を含有し、残部Feおよび不可避不純物からなる鋼であり、該鋼中に、快削性付与化合物としては(Cr、Mn)硫化物とその周りを囲むように存在するTe化合物からなる長径300μm以下の複合介在物であり、106μm2の範囲に30個以上分散して存在し、式(3)は0.15以上であり、式(4)は0.95以下であることを特徴とする耐鋼塊割れ性および熱間加工性の製造性に優れる快削電磁鋼である。
ただし
式(3):Te/S
式(4):55Te−{2Al+2Ti+4V+4Nb+(Mn/20S)
In the second means, the chemical component of claim 1 is included, and in addition to the size of the formula (1) and the formula (2), the content of Te is 0.030% or less, and the balance. It is a steel composed of Fe and inevitable impurities. In the steel, as a free-cutting property imparting compound, (Cr, Mn) is a composite inclusion having a major axis of 300 μm or less composed of a sulfide and a Te compound existing so as to surround it. Yes, 30 or more dispersed in the range of 10 6 μm 2 , the formula (3) is 0.15 or more, and the formula (4) is 0.95 or less. Is a free-cutting electrical steel excellent in workability and manufacturability of hot workability.
However, Formula (3): Te / S
Formula (4): 55Te- {2Al + 2Ti + 4V + 4Nb + (Mn / 20S)

上記の手段の発明は、Pbを有さない非Pb鋼であるので、環境負荷が低減されて小さく、(Mn、Cr)Sからなる硫化物あるいは該硫化物とその周りを囲むTe化合物からなる複合化合物を鋼中に分散させていることで、Pb鋼と同等以上の被削性を有し、保磁力が低く、かつ耐食性に優れ、S添加による磁気特性の劣化をSiおよびCrの添加量を調整することで回避しており、Cr、Mn、Sの組成、および式(1)であるMn/Sを制御し、Sを硫化物として固定して熱間加工性を加工しつつ、Crリッチとすることによって、良好な耐食性が得られ、かつAl、Ti、Nb、Vの組成および式(2)によってフェライト安定度を高めることで優れた磁気特性ならびに製造性である耐鋼塊割れ性および熱間加工性を確保しており、Teの組成および式(3)、式に(4)よる制限により被削性および磁気特性を向上させつつ、Te添加による熱間加工性の劣化を抑制する効果を有する。   Since the invention of the above means is a non-Pb steel having no Pb, the environmental load is reduced and the sulfide is made of (Mn, Cr) S sulfide or the sulfide and a Te compound surrounding the sulfide. Dispersing the composite compound in steel has machinability equivalent to or better than that of Pb steel, has low coercive force, excellent corrosion resistance, and decreases the magnetic properties due to the addition of S. The composition of Cr, Mn, and S, and Mn / S in the formula (1) are controlled, and the hot workability is processed by fixing S as a sulfide while adjusting Cr. By making it rich, good corrosion resistance is obtained, and steel ingot cracking resistance, which is excellent magnetic properties and manufacturability by increasing the ferrite stability by the composition of Al, Ti, Nb, V and formula (2) And secures hot workability, e composition and formula (3), while improving the machinability and magnetic properties by a formula in (4) by limiting, having an effect of suppressing the hot workability of deterioration due Te added.

発明を実施するための形態に先立って、本願発明における化学成分および各条件について説明する。なお、化学成分は質量%で示す。   Prior to the embodiments for carrying out the invention, chemical components and conditions in the present invention will be described. In addition, a chemical component is shown by the mass%.

C:0.030%以下
Cは、不可避不純物であり、0.030%より多いと得られた電磁鋼の磁気特性、耐食性および快削性を劣化する。そこで、Cは0.030%以下とする。
C: 0.030% or less C is an inevitable impurity, and if it exceeds 0.030%, the magnetic properties, corrosion resistance and free-cutting properties of the obtained electrical steel are deteriorated. Therefore, C is set to 0.030% or less.

Si:0.5〜3.5%
Siは、固有抵抗および磁気特性の向上に役立つ元素である。そのために、Siは0.5%以上とする。しかし、Siは3.5%より多いと過剰添加で磁気特性が悪化し、材料の靱性および加工性が劣化する。そこで、Siは0.5〜3.5%とする。
Si: 0.5 to 3.5%
Si is an element useful for improving specific resistance and magnetic properties. Therefore, Si is made 0.5% or more. However, if the Si content exceeds 3.5%, the magnetic properties deteriorate due to excessive addition, and the toughness and workability of the material deteriorate. Therefore, Si is 0.5 to 3.5%.

Mn:0.05〜0.50%
Mnは、Sと結合して硫化物を形成し、被削性を向上させる元素である。そこで、Mnは0.05%以上とする。しかし、Mnは0.50%より多いと磁気特性が劣化する。そこで、Mnは0.05〜0.50%とする。
Mn: 0.05 to 0.50%
Mn is an element that combines with S to form sulfides and improves machinability. Therefore, Mn is set to 0.05% or more. However, if Mn is more than 0.50%, the magnetic properties deteriorate. Therefore, Mn is set to 0.05 to 0.50%.

P:0.030%以下
Pは、不可避不純物であり、0.030%より多いと得られた電磁鋼の熱間加工性および磁気特性が劣化する。そこで、Pは0.030%以下とする
P: 0.030% or less P is an inevitable impurity, and when it exceeds 0.030%, the hot workability and magnetic properties of the obtained electrical steel deteriorate. Therefore, P is set to 0.030% or less.

S:0.050〜0.200%
Sは、Mnと結合して硫化物を形成し、被削性を向上する元素である。そのためにはSは0.050%以上とする必要がある。しかし、Sは0.200%より多いと磁気特性および耐食性が劣化する。そこで、Sは0.050〜0.200%とする。
S: 0.050-0.200%
S is an element that combines with Mn to form a sulfide and improves machinability. For that purpose, S needs to be 0.050% or more. However, if S exceeds 0.200%, the magnetic properties and corrosion resistance deteriorate. Therefore, S is set to 0.050 to 0.200%.

Cr:6.0〜10.0%
Crは、耐食性の向上に必須の元素であり、また、保磁力を低減して軟磁気特性を改善する元素である。そのためには、Crは6.0%以上とする。しかし、Crは10.0%より多いと、Crの効果は飽和し、かつ過剰添加により保磁力が上昇して劣化する。そこで、Crは6.0〜10.0%とする。
Cr: 6.0 to 10.0%
Cr is an element essential for improving the corrosion resistance, and is an element for reducing the coercive force and improving the soft magnetic characteristics. For that purpose, Cr is made 6.0% or more. However, if Cr is more than 10.0%, the effect of Cr is saturated, and coercive force increases due to excessive addition and deteriorates. Therefore, Cr is set to 6.0 to 10.0%.

N:0.030%以下
Nは、不可避不純物であり、0.030%より多いと得られた電磁鋼の磁気特性が劣化し、窒化物生成による被削性が悪化する。そこで、Nは0.030%以下とする。
N: 0.030% or less N is an unavoidable impurity, and if it exceeds 0.030%, the magnetic properties of the obtained electrical steel deteriorate, and the machinability due to nitride formation deteriorates. Therefore, N is set to 0.030% or less.

Al、Ti、V、Nbの少なくとも1種または2種以上を含み、その合計は:0.005〜0.800%
Al、Ti、V、Nbは、いずれも選択元素であり、鋼塊割れ、熱間加工性、耐食性、被削性、磁気特性に関与する元素である。ところで、これらの元素の1種または2種以上の合計が0.005%以上であると、フェライト相の安定化により、これらの鋼塊割れ、熱間加工性、耐食性、被削性、磁気特性の劣化は回避できる。一方、これらの元素の1種または2種以上の合計が0.800%より多いと、上記の効果は飽和し、炭窒化物の形成によって、熱間加工性、耐食性、被削性、磁気特性が劣化する。そこで、Al、Ti、V、Nbの少なくとも1種または2種以上を含み、その合計は0.005〜0.800%とする。
Including at least one or two or more of Al, Ti, V and Nb, the total is: 0.005 to 0.800%
Al, Ti, V, and Nb are all selective elements and are elements involved in steel ingot cracking, hot workability, corrosion resistance, machinability, and magnetic properties. By the way, if the total of one or more of these elements is 0.005% or more, these steel ingot cracks, hot workability, corrosion resistance, machinability, and magnetic properties are achieved by stabilizing the ferrite phase. Degradation can be avoided. On the other hand, when the total of one or more of these elements is more than 0.800%, the above effect is saturated, and hot workability, corrosion resistance, machinability, magnetic properties are formed by the formation of carbonitride. Deteriorates. Therefore, at least one or more of Al, Ti, V, and Nb is included, and the total is made 0.005 to 0.800%.

1.2≦:式(1):≦5.0、ただし、式(1)=Mn/S
式(1)は、熱間加工性および耐食性に関与する値である。式(1)の値が1.2より小さいと熱間加工性が悪化する。一方、式(1)の値が5.0より大きいと耐食性が悪化する。そこで、1.2≦式(1)≦5.0とする。
1.2 ≦: Formula (1): ≦ 5.0, where Formula (1) = Mn / S
Formula (1) is a value related to hot workability and corrosion resistance. When the value of the formula (1) is smaller than 1.2, hot workability deteriorates. On the other hand, if the value of the formula (1) is larger than 5.0, the corrosion resistance is deteriorated. Therefore, 1.2 ≦ expression (1) ≦ 5.0.

式(2):≧30、ただし、式(2)=8Si+8Al+Cr+4Ti+4V+2Nb+2(Mn/S)−16(C+N)
式(2)は、熱間加工性に関与する値である。式(2)の値が30より小さいと熱間加工性が悪化する。そこで、式(2)≧30とする。
Formula (2): ≧ 30, where Formula (2) = 8Si + 8Al + Cr + 4Ti + 4V + 2Nb + 2 (Mn / S) -16 (C + N)
Expression (2) is a value related to hot workability. When the value of the formula (2) is smaller than 30, hot workability deteriorates. Therefore, the expression (2) ≧ 30.

Te:≦0.030%
Teは、Te化合物の生成およびTe硫化物の形態制御で、被削性、磁気特性および熱間加工性に関与する元素である。Teが0.030%以下であると、Te化合物の生成およびTe硫化物の形態制御で、被削性、磁気特性が向上する。一方、Teが0.030%を超えると熱間加工性が悪化する。そこで、Teは0.030%以下とする。
Te: ≦ 0.030%
Te is an element involved in machinability, magnetic properties, and hot workability in the formation of Te compounds and the control of the morphology of Te sulfide. When Te is 0.030% or less, the machinability and magnetic properties are improved by the generation of Te compound and the morphology control of Te sulfide. On the other hand, when Te exceeds 0.030%, hot workability deteriorates. Therefore, Te is set to 0.030% or less.

式(3):≧0.15、ただし、式(3)=Te/S
式(3)の値は、Te化合物の低融点に伴う熱間加工性に関与する。そこで、式(3)の値を0.15以上とすることにより、Te化合物の低融点化を抑えて熱間加工性を確保する。そこで、式(3)の値は0.15以上とする。
Formula (3): ≧ 0.15, where Formula (3) = Te / S
The value of formula (3) is related to the hot workability associated with the low melting point of the Te compound. Therefore, by setting the value of the formula (3) to 0.15 or more, the low melting point of the Te compound is suppressed and the hot workability is ensured. Therefore, the value of Equation (3) is set to 0.15 or more.

式(4):≦0.95、ただし、式(4)=55Te−{2Al+2Ti+4V+4Nb+(Mn/20S)}
式(4)は、鋼塊割れ、被削性および磁気特性に関与する値である。つまり、式(4)の値が0.90より大きいと、鋼塊割れを起こし、被削性および磁気特性を劣化する。そこで、式(4)の値は0.90以下とする。
Formula (4): ≦ 0.95, where Formula (4) = 55Te− {2Al + 2Ti + 4V + 4Nb + (Mn / 20S)}
Equation (4) is a value related to steel ingot cracking, machinability and magnetic properties. That is, if the value of the formula (4) is larger than 0.90, the steel ingot is cracked and the machinability and the magnetic properties are deteriorated. Therefore, the value of Equation (4) is set to 0.90 or less.

ここで、発明の実施の形態について、以下に記載することとする。表1に記載の化学成分からなり、式(1)〜式(4)を満足する実施例であるNo.1〜14の発明例の快削電磁鋼と、表2に記載の発明例の比較例であるNo.15〜36の電磁鋼を、それぞれ100kgVIM(真空誘導溶解法)にて鋼塊を溶製し、得られた鋼塊を径20mmの棒材に形成した。   Here, embodiments of the invention will be described below. No. 1, which is an example consisting of the chemical components shown in Table 1 and satisfying the formulas (1) to (4). No. 1 which is a comparative example of the free cutting electrical steels of the invention examples 1 to 14 and the invention examples described in Table 2. The steel ingots were melted with 100 kg VIM (vacuum induction melting method) for 15 to 36 electromagnetic steels, and the obtained steel ingots were formed into rods having a diameter of 20 mm.

Figure 2018104753
Figure 2018104753

Figure 2018104753
Figure 2018104753

上記で得られた発明例の鋼塊および比較例の鋼塊に含有される介在物の構成を確認するために、EDX(エネルギー分散型X線分光法)を用いて、これらの鋼塊から形成した径20mmの棒材のL断面に観測された快削性付与化合物の硫化物およびTe化合物を観察および分析して、これらの発明例を表3に比較例を表4にそれぞれ示した。すなわち、表3および表4の観測された介在物の欄において、Teを添加していない鋼からなる材料については、106μm2の範囲に長径400μm以下の(Cr、Mn)Sが分散して40個以上あれば、評価を○とし、40個未満では評価は×とした。Te添加材については、106μm2の範囲に30個以上の(Cr、Mn)Sとその周りを囲むように存在するTe化合物からなる長径300μm以下の複合介在物が存在していれば、評価を○とし、30個未満の(Cr、Mn)Sとその周りを囲むように存在するTe化合物からなる長径300μm以下の複合介在物が存在する場合は評価を×とし示した。 In order to confirm the structure of inclusions contained in the steel ingots of the invention examples and comparative examples obtained above, they are formed from these steel ingots using EDX (energy dispersive X-ray spectroscopy). The sulfides and Te compounds of the free-cutting property imparting compound observed in the L cross section of the bar with a diameter of 20 mm were observed and analyzed. Table 3 shows the invention examples and Table 4 shows the comparative examples. That is, in the observed inclusion column of Tables 3 and 4, (Cr, Mn) S having a major axis of 400 μm or less is dispersed in a range of 10 6 μm 2 for the steel material to which Te is not added. If it is 40 or more, the evaluation is ○, and if it is less than 40, the evaluation is ×. As for the Te additive, if there is a composite inclusion having a major axis of 300 μm or less composed of 30 or more (Cr, Mn) S and a Te compound existing so as to surround it in the range of 10 6 μm 2 , The evaluation was shown as “Good”, and when there were composite inclusions having a major axis of 300 μm or less composed of less than 30 (Cr, Mn) S and a Te compound surrounding the periphery, the evaluation was shown as “X”.

Figure 2018104753
Figure 2018104753

Figure 2018104753
Figure 2018104753

発明例の表3および比較例の表4における耐鋼塊割れ性の評価は、鋼の100kgをVIMで溶解して、円柱状インゴットに鋳造し、インゴット上端から約250mmの位置で輪切りにし、切断端面を浸透探傷によるカラーチェックで割れを探傷し、このカラーチェックにて鋼塊中心に割れが確認された範囲の面積を測定した。鋼塊割れ率=割れ発生面積/カラーチェックの被験面積とする計算にて定量化して表示した。鋼塊割れ率が10%未満であれば良好であるので評価を○とし、鋼塊割れ率が10%以上では悪いので評価を×として、それぞれ表3および表4に示した。   Evaluation of steel ingot cracking resistance in Table 3 of the invention example and Table 4 of the comparative example was made by melting 100 kg of steel with VIM, casting it into a cylindrical ingot, cutting it into a ring at a position of about 250 mm from the upper end of the ingot, and cutting it. Cracks were detected on the end face by color check using penetrant flaw detection, and the area in the range where cracks were confirmed at the center of the steel ingot by this color check was measured. The steel ingot cracking ratio = the crack occurrence area / the color check test area was quantified and displayed. Since the steel ingot cracking rate is less than 10%, the evaluation is good, and the evaluation is “good”, and the steel ingot cracking rate is 10% or more.

熱間加工性の評価は、耐鋼塊割れ性の評価後に、上端から250mmで切断したインゴットのうち、上端側を使用して、15mm角の長さ110mmの角材を採取し、これらを1150℃で均質化熱処理した後、径8mmの棒で長さ100mmのグリーブル試験片へ加工して熱間加工性の評価試験を実施した。これらのグリーブル試験片をグリーブル試験機を用いて1000℃、1050℃、1100℃の各温度に加熱した後、毎秒50mmの引張速度で引張試験を行って絞り値を測定した。上記の各加熱温度で絞り値を測定し、絞り値が全て70%以上を評価で○とし、それ以外は、たとい1つの加工温度の絞り値が70%以上であっても、他の2つ加工温度の絞り値のうちの1つのでも絞り値70%未満であれば絞り値の評価を×とし、それぞれ表3および表4に示した。   The evaluation of hot workability was performed by using the upper end side of the ingot cut from 250 mm from the upper end after evaluating the steel ingot cracking resistance, collecting 15 mm square pieces with a length of 110 mm, and obtaining these at 1150 ° C. After the homogenization heat treatment at, the hot workability evaluation test was carried out by processing into a 100 mm-long greeble test piece with a 8 mm diameter rod. These greeble test pieces were heated to 1000 ° C., 1050 ° C., and 1100 ° C. using a greeble tester, and then subjected to a tensile test at a tensile speed of 50 mm per second to measure a drawing value. The aperture value is measured at each of the heating temperatures described above, and all the aperture values are 70% or more as a result of evaluation. Otherwise, even if the aperture value of one processing temperature is 70% or more, the other two If even one of the drawing values of the processing temperature is less than 70%, the evaluation of the drawing value is x, and the results are shown in Table 3 and Table 4, respectively.

上記以外の評価用の試験片には、耐鋼塊割れ性の評価後に、それらのインゴットの上端から250mmで切断してそれらのインゴットのうちの下端側を使用して、径60mmと径20mmの棒材に鍛伸して、次いで熱処理として750〜850℃で焼鈍し、グリーブル試験片を除く下記の磁気特性、被削性および耐食性の各試料を作製した。   For the test pieces for evaluation other than the above, after evaluating the steel ingot cracking resistance, the ingots were cut at 250 mm from the upper end and the lower end side of those ingots was used, and the diameters of 60 mm and 20 mm were used. The sample was forged into a bar and then annealed at 750 to 850 ° C. as a heat treatment to prepare the following samples of magnetic properties, machinability and corrosion resistance, excluding the greeble test piece.

磁気特性の評価は、径20mmの棒材を外径13mm、内径9mm、厚さ5mmからなる磁気リングに機械加工し、さらに、750〜900℃で真空磁気焼鈍を施した後に、直流磁気測定装置にて保磁力を測定した。保磁力130A/m未満の評価を○とし、保磁力130A/m以上のものの評価を×とした。   Evaluation of magnetic properties was carried out by machining a bar having a diameter of 20 mm into a magnetic ring having an outer diameter of 13 mm, an inner diameter of 9 mm, and a thickness of 5 mm, and after subjecting it to vacuum magnetic annealing at 750 to 900 ° C. The coercive force was measured at. Evaluation with a coercive force of less than 130 A / m was evaluated as ◯, and evaluation with a coercive force of 130 A / m or more was evaluated as x.

被削性の評価は、径60mmの棒材の断面を旋盤で平滑化し、被削性評価を実施した。評価方法はドリル穿孔試験で、これは、深さ10mmの穿孔までに要する時間を測定し、その所要時間が10.5秒未満のものの評価を○とし、10.5秒以上のものの評価を×とした。   The machinability was evaluated by smoothing the cross section of a bar with a diameter of 60 mm with a lathe and performing machinability. The evaluation method is a drill drilling test, which measures the time required for drilling at a depth of 10 mm, evaluates that the required time is less than 10.5 seconds as ○, and evaluates that is more than 10.5 seconds × It was.

上記のドリル穿孔試験の詳細な試験条件は、以下の通りである。
ドリル:SKH51、径5mm
切削油:なし
推力:414N
回転数:1190rpm
The detailed test conditions of the drill drilling test are as follows.
Drill: SKH51, diameter 5mm
Cutting oil: None Thrust: 414N
Rotation speed: 1190rpm

耐食性の評価は、径20mmの棒材から、径12mmで長さ21mmの腐食試験用の試料を作製した。この試験片に50ppmの希薄塩水を35℃で16時間噴霧する塩水噴霧試験を実施し、試験片の表面を観察し、長径3mm以上の点状錆の数が20個以下のものの評価を○とし、長径3mm以上の点状錆の数が21個以上のものの評価を×とした。   For the evaluation of corrosion resistance, a sample for a corrosion test having a diameter of 12 mm and a length of 21 mm was prepared from a rod having a diameter of 20 mm. A salt water spray test in which 50 ppm of diluted salt water is sprayed on this test piece at 35 ° C. for 16 hours, the surface of the test piece is observed, and the evaluation of those having 20 or less point rusts having a major axis of 3 mm or more is given as “Good”. The evaluation of those having 21 or more dotted rusts having a major axis of 3 mm or more was evaluated as x.

本願の第1の手段(すなわち請求項1)の発明例のNo.1〜5および第2の手段(すなわち請求項2)の発明例のNo.6〜14は、表1に示すように、式(1)の値が1.2〜5.0の範囲にあり、式(2)の値が30以上で、かつ第2の手段(すなわち請求項2)の発明例のNo.6〜14は、式(3)の値が0.15以上で、式(4)の値が0.95以下である。さらに本願の第1の手段(すなわち請求項1)の発明例のNo.1〜5および第2の手段(すなわち請求項2)の発明例のNo.6〜14は、表3に示すように、106μm2中に観測された介在物(Cr、Mn)Sの個数は、第1の手段の発明例のNo.1〜5のいずれもが長径400μm以下の硫化物の個数が40個以上であり、第2の手段の発明例のNo.6〜14のいずれもが長径300μm以下の硫化物の個数が30個以上であり、これらの本願の発明例は、いずれもが、耐鋼塊割れ性の鋼塊割れ率が10%以下で評価は○で、熱間加工性の1000℃、1050℃、1100℃での絞り値が70%以上で評価が○で、磁気特性の保磁力が130A/mより小さく評価が○で、被削性の穿孔時間が10.5secより短時間で評価が○で、耐食性の点状錆数が20個以下で評価が○である。 No. 1 of the invention example of the first means (that is, claim 1) of the present application. Nos. 1 to 5 and the second means (i.e., claim 2) of the invention examples. 6 to 14, as shown in Table 1, the value of the formula (1) is in the range of 1.2 to 5.0, the value of the formula (2) is 30 or more, and the second means (that is, claims) No. 2) of the invention example. As for 6-14, the value of a formula (3) is 0.15 or more, and the value of a formula (4) is 0.95 or less. Further, the invention No. 1 of the first means of the present application (namely, claim 1). Nos. 1 to 5 and the second means (i.e., claim 2) of the invention examples. 6 to 14, as shown in Table 3, the number of inclusions (Cr, Mn) S observed in 10 6 μm 2 is the No. of the first invention example. Nos. 1 to 5 have 40 or more sulfides having a major axis of 400 μm or less. Each of 6-14 has 30 or more sulfides having a major axis of 300 μm or less, and all of the invention examples of the present application are evaluated with a steel ingot cracking resistance of 10% or less. Is ◯, the hot workability is 1000 ° C., 1050 ° C., 1100 ° C. with a drawing value of 70% or more, the evaluation is ◯, the magnetic coercive force is less than 130 A / m, the evaluation is ◯, and machinability The evaluation is good when the perforation time is shorter than 10.5 sec, and the evaluation is good when the number of corrosion-resistant point-like rusts is 20 or less.

一方、本願の第1の手段(すなわち請求項1)の比較例のNo.15〜26および第2の手段(すなわち請求項2)の比較例のNo.27〜36について検討する。なお、比較例のNo.37は、鉛添加鋼であって参考例である。   On the other hand, the comparative example No. 1 of the first means of the present application (ie, claim 1). Nos. 15 to 26 and the comparative example No. 2 of the second means (namely, claim 2). Consider 27-36. The comparative example No. Reference numeral 37 is a lead-added steel, which is a reference example.

比較例のNo.15は、表2に示すように、Cの質量が0.033%と、本発明のCの質量の上限の0.030%よりも多いので、表4に示すように、耐食性が劣化し点状錆数が20個よりも多く評価が×である。   Comparative Example No. 15 has a mass of C of 0.033% as shown in Table 2, which is more than 0.030% of the upper limit of the mass of C of the present invention, so that the corrosion resistance deteriorates as shown in Table 4. The number of rusts is more than 20 and the evaluation is x.

比較例のNo.16は、表2に示すように、Siの質量が3.7%と、本発明のSiの質量の上限の0.50%よりも多いので、表4に示すように、磁気特性が悪化し、保磁力が141A/mと、本発明の130A/m未満よりも多く評価が×である。   Comparative Example No. No. 16 has a mass of Si of 3.7% as shown in Table 2, which is higher than the upper limit of 0.50% of the mass of Si of the present invention. The coercive force is 141 A / m, and the evaluation is x more than less than 130 A / m of the present invention.

比較例のNo.17は、表2に示すように、Mnの質量が0.61%と、本発明のMnの質量の上限の0.50%よりも多いので、表4に示すように、磁気特性が劣化し、保磁力が138A/mと、本発明の130A/m未満よりも多く評価が×である。   Comparative Example No. No. 17, as shown in Table 2, the mass of Mn is 0.61%, which is higher than the upper limit of 0.50% of the mass of Mn of the present invention. The coercive force is 138 A / m, and the evaluation is x more than less than 130 A / m of the present invention.

比較例のNo.18は、表2に示すように、Pの質量が0.048%と、本発明のPの質量の上限の0.030%よりも多いので、表4に示すように、熱間加工性が劣化し、1000℃、1050℃の絞り値が64%、68%と、本発明の下限値の70%よりも少なく評価が×である。   Comparative Example No. No. 18 has a mass of P as 0.048% as shown in Table 2, which is larger than the upper limit of 0.030% of the mass of P of the present invention. Deteriorated, and the aperture values at 1000 ° C. and 1050 ° C. are 64% and 68%, respectively, and the evaluation is x less than 70% of the lower limit of the present invention.

比較例のNo.19は、表2に示すように、Sの質量が0.247%と、本発明のSの質量の上限の0.200%よりも多く、表4に示すように、熱間加工性が劣化し、1000℃、1050℃、1100℃の絞り値が65%、59%、68%と、本発明の下限値の70%よりも少なく評価が×となった。そこで、磁気特性の保磁力の評価以下は行わなかった。   Comparative Example No. No. 19 has a mass of S of 0.247% as shown in Table 2, more than 0.200% of the upper limit of the mass of S of the present invention, and the hot workability is deteriorated as shown in Table 4. The aperture values at 1000 ° C., 1050 ° C., and 1100 ° C. were 65%, 59%, and 68%, and the evaluation was “poor”, which was less than 70% of the lower limit value of the present invention. Therefore, the evaluation below the coercivity of the magnetic characteristics was not performed.

比較例のNo.20は、表2に示すように、Sの質量が0.037%と、本発明のSの質量の下限値の0.050%よりも少ないので、表4に示すように、介在物の個数が34個と本発明の40個以上を満足しないので介在物の評価は×であり、被削性の穿孔時間が悪く、本発明の上限値の10.5secよりも多く評価が×である。   Comparative Example No. No. 20 has a mass of S of 0.037% as shown in Table 2, which is less than 0.050% of the lower limit of the mass of S of the present invention. Therefore, as shown in Table 4, the number of inclusions 34 and 40 or more of the present invention are not satisfied, the inclusion evaluation is x, the drilling time of machinability is bad, and the evaluation is x more than the upper limit of 10.5 sec of the present invention.

比較例のNo.21は、表2に示すように、Crの質量が11.1%と、本発明のCrの質量の上限値の10.0%よりも多いので、表4に示すように、磁気特性の保磁力が悪く、本発明の上限の130A/mよりも多く評価が×である。   Comparative Example No. No. 21 has a Cr mass of 11.1% as shown in Table 2, which is more than 10.0% of the upper limit of the Cr mass of the present invention. The magnetic force is poor and the evaluation is x more than the upper limit of 130 A / m of the present invention.

比較例のNo.22は、表2に示すように、Al、Ti、V、Nbの合せた質量が0.819%と、本発明のこれらの合せた質量の上限値の0.800%よりも多いので、表4に示すように、磁気特性の保磁力が150A/mであり、本発明の上限の130A/mを超えており評価が×である。   Comparative Example No. No. 22, as shown in Table 2, the combined mass of Al, Ti, V, and Nb is 0.819%, which is more than 0.800% of the upper limit of the combined mass of the present invention. As shown in FIG. 4, the coercive force of the magnetic characteristics is 150 A / m, which exceeds the upper limit of 130 A / m of the present invention, and the evaluation is x.

比較例のNo.23は、表2に示すように、Nの質量が0.045%と、本発明の0.030%よりも多いので、表4に示すように、磁気特性の保磁力が150A/mであり、本発明の上限の130A/mを超えており評価が×である。   Comparative Example No. 23, as shown in Table 2, the mass of N is 0.045%, which is larger than 0.030% of the present invention. Therefore, as shown in Table 4, the coercive force of the magnetic properties is 150 A / m. The upper limit of 130 A / m of the present invention is exceeded and the evaluation is x.

比較例のNo.24は、表2に示すように、式(1)の値が0.7と、本発明の下限値の1.0よりも小さいので、表4に示すように、熱間加工性の1000℃と1050℃の絞り値が65%、69%と、本発明の絞り値の上限値の70%より少ないので熱間加工性の評価が×である。   Comparative Example No. 24, as shown in Table 2, the value of the formula (1) is 0.7, which is smaller than the lower limit of 1.0 of the present invention, so as shown in Table 4, the hot workability of 1000 ° C. The squeezing value at 1050 ° C. is 65% and 69%, which is less than 70% of the upper limit value of the squeezing value of the present invention.

比較例のNo.25は、表2に示すように、式(1)の値が5.5と、本発明の上限値の5.0よりも大きいので、表4に示すように、耐食性の点状錆数が27と、本発明の耐食性の点状錆数の上限値の20よりも大きいので耐食性の評価が×である。   Comparative Example No. 25, as shown in Table 2, the value of the formula (1) is 5.5, which is larger than the upper limit of 5.0 of the present invention. 27, which is larger than the upper limit 20 of the number of point-like rusts of corrosion resistance of the present invention, the evaluation of corrosion resistance is x.

比較例のNo.26は、表2に示すように、式(2)の値が27と、本発明の下限値の30よりも小さいので、表4に示すように、耐鋼塊割れ性の鋼塊割れ率が13%と、本発明の鋼塊割れ率の上限値の10%よりも大きいので耐鋼塊割れ性の評価が×である。   Comparative Example No. 26, as shown in Table 2, the value of the formula (2) is 27, which is smaller than the lower limit of 30 of the present invention. Therefore, as shown in Table 4, the steel ingot cracking resistance is high. Since it is 13% and is larger than 10% of the upper limit value of the steel ingot cracking ratio of the present invention, the evaluation of the steel ingot cracking resistance is x.

比較例のNo.27からは、発明例2の比較例である。比較例のNo.27は、表2に示すように、化学成分のTeの質量が0.045%と、発明例2の上限値の質量の0.030%よりも多いので、表4に示すように、熱間加工性の絞り値の1000℃、1050℃、1100℃の値が57%、62%、64%と、いずれも本発明の熱間加工性の各温度の絞り値の70%よりも小さいので熱間加工性の評価が×である。   Comparative Example No. 27 is a comparative example of Invention Example 2. Comparative Example No. 27, as shown in Table 2, since the mass of Te of the chemical component is 0.045%, which is more than 0.030% of the mass of the upper limit value of Invention Example 2, The workability drawing values of 1000 ° C., 1050 ° C., and 1100 ° C. are 57%, 62%, and 64%, which are smaller than 70% of the drawing values at each temperature of the hot workability of the present invention. Evaluation of inter-workability is x.

比較例のNo.28は、表2に示すように、式(3)の値が0.12で、本発明の下限値の0.15より小さいので、表4に示すように、熱間加工性の絞り値の1000℃、1100℃の値が64%、69%と、いずれも本発明の熱間加工性の各温度の絞り値の70%よりも小さいので熱間加工性の評価が×である。   Comparative Example No. 28, as shown in Table 2, the value of the expression (3) is 0.12, which is smaller than the lower limit of 0.15 of the present invention. Since the values at 1000 ° C. and 1100 ° C. are 64% and 69%, respectively, which are smaller than 70% of the drawing value at each temperature of the hot workability of the present invention, the evaluation of hot workability is x.

比較例のNo.29は、表2に示すように、式(4)の値が1.02で、本発明の上限値の0.95より大きいので、表4に示すように、熱間加工性の絞り値の1000℃の値が66%と、本発明の熱間加工性の各温度の絞り値の70%よりも小さいので熱間加工性の評価が×である。   Comparative Example No. 29, as shown in Table 2, the value of the formula (4) is 1.02, which is larger than the upper limit value of 0.95 of the present invention. Since the value at 1000 ° C. is 66%, which is smaller than 70% of the drawing value at each temperature of the hot workability of the present invention, the evaluation of hot workability is x.

比較例のNo.30は、表2に示すように、Mnの質量が0.58%で、本発明のMnの質量の上限値の0.50%より大きいので、表4に示すように、磁気特性の保磁力が133A/mと、本発明の磁気特性の保磁力の130A/mよりも大きいので磁気特性の評価が×である。   Comparative Example No. No. 30 has a mass of Mn of 0.58% as shown in Table 2, which is larger than 0.50% of the upper limit of the mass of Mn of the present invention. Is 133 A / m, which is larger than the coercive force 130 A / m of the magnetic characteristics of the present invention, and the evaluation of the magnetic characteristics is x.

比較例のNo.31は、表2に示すように、Cの質量が3.8%で、本発明のCの質量の上限値の3.5%より大きいので、表4に示すように、磁気特性の保磁力が142A/mと、本発明の磁気特性の保磁力の130A/mよりも大きいので磁気特性の評価が×である。   Comparative Example No. No. 31 has a mass of C of 3.8% as shown in Table 2, which is larger than 3.5% of the upper limit of the mass of C of the present invention. Is 142 A / m, which is larger than 130 A / m of the coercive force of the magnetic characteristics of the present invention, and the evaluation of the magnetic characteristics is x.

比較例のNo.32は、表2に示すように、Crの質量が10.4%で、本発明のCrの質量の上限値の10.0%より大きいので、表4に示すように、磁気特性の保磁力が149A/mと、本発明の磁気特性の保磁力の130A/mよりも大きいので磁気特性の評価が×である。   Comparative Example No. 32, as shown in Table 2, the mass of Cr is 10.4%, which is larger than 10.0% of the upper limit of the mass of Cr of the present invention. Is 149 A / m, which is larger than the coercive force 130 A / m of the magnetic characteristics of the present invention, and the evaluation of the magnetic characteristics is x.

比較例のNo.33は、表2に示すように、Nの質量が0.036%で、本発明のNの質量の上限値の0.030%より大きいので、表4に示すように、磁気特性の保磁力が149A/mと、本発明の磁気特性の保磁力の130A/mよりも大きいので磁気特性の評価が×である。   Comparative Example No. 33, as shown in Table 2, the mass of N is 0.036%, which is larger than 0.030% of the upper limit of the mass of N of the present invention. Is 149 A / m, which is larger than the coercive force 130 A / m of the magnetic characteristics of the present invention, and the evaluation of the magnetic characteristics is x.

比較例のNo.34は、表2に示すように、式(1)の値が5.3で、本発明の式(1)の値の上限値の5.0より大きいので、表4に示すように、耐食性の点状錆数が24と、本発明の耐食性の点状錆数の上限値の20個よりも大きいので磁気特性の評価が×である。   Comparative Example No. 34, as shown in Table 2, the value of the formula (1) is 5.3, which is larger than the upper limit of 5.0 of the value of the formula (1) of the present invention. The number of spot-like rusts is 24, which is larger than the upper limit value of the corrosion-resistant point-like rust number of 20 according to the present invention, so the evaluation of the magnetic properties is x.

比較例のNo.35は、表2に示すように、式(2)の値が28で、本発明の式(2)の値の下限値の30より小さいので、表4に示すように、耐鋼塊割れ性の鋼塊割れ率が16と、本発明の耐鋼塊割れ性の鋼塊割れ率の上限値の10よりも大きいので耐鋼塊割れ性の評価が×である。   Comparative Example No. 35, as shown in Table 2, the value of the formula (2) is 28, which is smaller than the lower limit of 30 of the value of the formula (2) of the present invention. The steel ingot cracking rate is 16 and is larger than 10 of the upper limit value of the steel ingot cracking resistance of the present invention, so the evaluation of the steel ingot cracking resistance is x.

比較例のNo.36は、表2に示すように、Sの質量が0.023%と、本発明のSの質量の下限値の0.050%よりも少ないので、表4に示すように、介在物の個数が25個と本発明の30個以上を満足しないので介在物の評価は×であり、被削性の穿孔時間が悪く、本発明の上限値の10.5secよりも多く評価が×である。   Comparative Example No. 36, as shown in Table 2, because the mass of S is 0.023%, which is less than 0.050% of the lower limit of the mass of S of the present invention, as shown in Table 4, the number of inclusions However, the inclusion evaluation is x, the machinability drilling time is poor, and the evaluation is x more than the upper limit of 10.5 sec of the present invention.

比較例のNo.37は、参考例であり、鉛添加鋼であって、表2に示すように、Pbの質量で0.12%含有しているが、表4に示すように、106μm2中に観測された長さ300μm2以下のPb介在物の個数は観測されず評価は×である。なお、耐鋼塊割れ性、熱間加工性、磁気特性、被削性および耐食性の評価はいずれも○である。 Comparative Example No. 37 is a reference example, which is a lead-added steel containing 0.12% by mass of Pb as shown in Table 2 , but observed in 10 6 μm 2 as shown in Table 4. The number of Pb inclusions having a length of 300 μm 2 or less was not observed, and the evaluation was x. The evaluations of steel ingot cracking resistance, hot workability, magnetic properties, machinability and corrosion resistance are all good.

Claims (2)

質量%で、C:0.030%以下、Si:0.5〜3.5%、Mn:0.05〜0.50%、P:0.030%以下、S:0.050〜0.200%、Cr:6.0〜10.0%、N:0.030%以下を含有し、さらにAl、Ti、VおよびNbの中の1種または2種以上を合計で0.005〜0.800%含有し、残部Feおよび不可避不純物からなる鋼であり、該鋼中に、快削性付与化合物として長径400μm以下の(Cr、Mn)硫化物が106μm2の範囲に40個以上分散して存在し、式(1)の大きさは1.2〜5.0であり、かつ式(2)の大きさは30以上であることを特徴とする耐鋼塊割れ性および熱間加工性の製造性に優れる快削電磁鋼。
ただし、
式(1):Mn/S
式(2):8Si+8Al+Cr+4Ti+4V+2Nb+2(Mn/S)−16(C+N)
In mass%, C: 0.030% or less, Si: 0.5-3.5%, Mn: 0.05-0.50%, P: 0.030% or less, S: 0.050-0. 200%, Cr: 6.0 to 10.0%, N: 0.030% or less, and further, one or more of Al, Ti, V and Nb in total 0.005 to 0 .800% steel, the balance being Fe and inevitable impurities, and 40 or more (Cr, Mn) sulfides having a major axis of 400 μm or less as a free-cutting property imparting compound in the range of 10 6 μm 2 Steel ingot cracking resistance and hot, characterized by being dispersed, the size of formula (1) being 1.2 to 5.0, and the size of formula (2) being 30 or more Free-cutting electrical steel with excellent processability and manufacturability.
However,
Formula (1): Mn / S
Formula (2): 8Si + 8Al + Cr + 4Ti + 4V + 2Nb + 2 (Mn / S) -16 (C + N)
請求項1の化学成分を有し、かつ、式(1)および式(2)の大きさに加えて、質量%で、Te:0.030%以下を含有し、残部Feおよび不可避不純物からなる鋼であり、該鋼中に、快削性付与化合物としては(Cr、Mn)硫化物とその周りを囲むように存在するTe化合物からなる長径300μm以下の複合介在物であり、106μm2の範囲に30個以上分散して存在し、式(3)は0.15以上であり、式(4)は0.95以下であることを特徴とする耐鋼塊割れ性および熱間加工性の製造性に優れる快削電磁鋼。
ただし
式(3):Te/S
式(4):55Te−{2Al+2Ti+4V+4Nb+(Mn/20S)
It has the chemical component of claim 1 and contains, in addition to the magnitudes of the formulas (1) and (2), by mass%, Te: 0.030% or less, and consists of the balance Fe and inevitable impurities. It is a steel, and in the steel, as a free-cutting property imparting compound, (Cr, Mn) is a composite inclusion having a major axis of 300 μm or less made of a sulfide and a Te compound existing so as to surround it. 10 6 μm 2 The steel ingot cracking resistance and hot workability are characterized in that 30 or more of them are dispersed in the range of formula (3), the formula (3) is 0.15 or more, and the formula (4) is 0.95 or less. Free cutting electrical steel with excellent manufacturability.
However, Formula (3): Te / S
Formula (4): 55Te- {2Al + 2Ti + 4V + 4Nb + (Mn / 20S)
JP2016251223A 2016-12-26 2016-12-26 Free-cutting electrical steel with excellent manufacturability Active JP6846925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016251223A JP6846925B2 (en) 2016-12-26 2016-12-26 Free-cutting electrical steel with excellent manufacturability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016251223A JP6846925B2 (en) 2016-12-26 2016-12-26 Free-cutting electrical steel with excellent manufacturability

Publications (2)

Publication Number Publication Date
JP2018104753A true JP2018104753A (en) 2018-07-05
JP6846925B2 JP6846925B2 (en) 2021-03-24

Family

ID=62786702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016251223A Active JP6846925B2 (en) 2016-12-26 2016-12-26 Free-cutting electrical steel with excellent manufacturability

Country Status (1)

Country Link
JP (1) JP6846925B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073101A (en) * 1999-09-01 2001-03-21 Sanyo Special Steel Co Ltd Electromagnetic material having high magnetic flux density and high specific resistance and excellent in machinability and cold forgeability
JP2006152354A (en) * 2004-11-26 2006-06-15 Kiyohito Ishida Free-cutting soft magnetic stainless steel
JP2007051343A (en) * 2005-08-18 2007-03-01 Kobe Steel Ltd Soft magnetic steel having excellent magnetic property in high magnetic field and excellent machinability, and soft magnetic steel component having excellent magnetic property in high magnetic field
JP2013028855A (en) * 2011-07-29 2013-02-07 Sanyo Special Steel Co Ltd Magnetic steel high in intrinsic resistance and excellent in machinability and magnetization characteristic
CN105483532A (en) * 2015-12-04 2016-04-13 北京科技大学 Method for improving performance of carbon structural steel containing residual antimony
JP2016113667A (en) * 2014-12-15 2016-06-23 山陽特殊製鋼株式会社 Non-lead soft magnetic material excellent processability and corrosion resistance
US20160333451A1 (en) * 2015-05-15 2016-11-17 Nucor Corporation Lead free steel and method of manufacturing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073101A (en) * 1999-09-01 2001-03-21 Sanyo Special Steel Co Ltd Electromagnetic material having high magnetic flux density and high specific resistance and excellent in machinability and cold forgeability
JP2006152354A (en) * 2004-11-26 2006-06-15 Kiyohito Ishida Free-cutting soft magnetic stainless steel
JP2007051343A (en) * 2005-08-18 2007-03-01 Kobe Steel Ltd Soft magnetic steel having excellent magnetic property in high magnetic field and excellent machinability, and soft magnetic steel component having excellent magnetic property in high magnetic field
JP2013028855A (en) * 2011-07-29 2013-02-07 Sanyo Special Steel Co Ltd Magnetic steel high in intrinsic resistance and excellent in machinability and magnetization characteristic
JP2016113667A (en) * 2014-12-15 2016-06-23 山陽特殊製鋼株式会社 Non-lead soft magnetic material excellent processability and corrosion resistance
US20160333451A1 (en) * 2015-05-15 2016-11-17 Nucor Corporation Lead free steel and method of manufacturing
CN105483532A (en) * 2015-12-04 2016-04-13 北京科技大学 Method for improving performance of carbon structural steel containing residual antimony

Also Published As

Publication number Publication date
JP6846925B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
JP6004653B2 (en) Ferritic stainless steel wire, steel wire, and manufacturing method thereof
US8137613B2 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
JP6338031B1 (en) Sulfuric acid dew-point corrosion steel
JP6338032B1 (en) Sulfuric acid dew-point corrosion steel
WO2017149571A1 (en) Low-alloy, high-strength seamless steel pipe for oil well
WO2018038195A1 (en) Sulfuric acid dew point corrosion-resistant steel
WO2017149570A1 (en) Low-alloy, high-strength seamless steel pipe for oil well
JP6108116B2 (en) Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same
WO2016079920A1 (en) High-strength stainless steel seamless pipe for oil wells
JP6782601B2 (en) High-strength stainless steel wire with excellent warmth relaxation characteristics, its manufacturing method, and spring parts
JP6207408B2 (en) Stainless steel with excellent machinability, hardness, wear resistance and corrosion resistance
WO2017149572A1 (en) Low-alloy, high-strength thick-walled seamless steel pipe for oil well
JP6120303B2 (en) Free-cutting stainless steel with double-phase inclusions
WO2017104202A1 (en) Ferrite-based free-machining stainless steel and method for producing same
JP4441295B2 (en) Manufacturing method of high strength steel for welding and high strength steel for welding with excellent corrosion resistance and machinability
JP2008248271A (en) High strength stainless steel and high strength stainless steel wire using the same
WO2019069998A1 (en) Austenitic stainless steel
JP6152930B1 (en) Low alloy high strength thick wall seamless steel pipe for oil wells
JP5474615B2 (en) Martensitic stainless free-cutting steel bar wire with excellent forgeability
JP6395588B2 (en) Lead-free soft magnetic material with excellent workability and corrosion resistance
JP7623400B2 (en) Stainless steel bars and electromagnetic parts
JP2018104753A (en) Free-cutting electromagnetic steel excellent in manufacturability
JP5157748B2 (en) Steel plate with small welding deformation
JP2015199971A (en) High strength nonmagnetic stainless steel and stainless steel component
JP4317517B2 (en) High corrosion resistance hot rolled steel sheet with excellent workability and weld heat affected zone toughness and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210302

R150 Certificate of patent or registration of utility model

Ref document number: 6846925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250