JP4400065B2 - スイッチング電源装置 - Google Patents
スイッチング電源装置 Download PDFInfo
- Publication number
- JP4400065B2 JP4400065B2 JP2003049009A JP2003049009A JP4400065B2 JP 4400065 B2 JP4400065 B2 JP 4400065B2 JP 2003049009 A JP2003049009 A JP 2003049009A JP 2003049009 A JP2003049009 A JP 2003049009A JP 4400065 B2 JP4400065 B2 JP 4400065B2
- Authority
- JP
- Japan
- Prior art keywords
- switching
- inductance
- load
- circuit
- switch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Dc-Dc Converters (AREA)
Description
【発明の属する技術分野】
本発明は、フルブリッジ型のスイッチング回路を備え、このスイッチング回路内のスイッチを位相シフト制御方式により制御するスイッチング電源装置に関する。
【0002】
【従来の技術】
従来からスイッチング電源装置としてDC−DCコンバータが知られる。代表的にはDC−DCコンバータは、スイッチング回路を用いて直流入力を一旦交流に変換した後、トランスを用いてこれを変圧(昇圧または降圧)し、さらに、出力回路を用いてこれを直流に変換する装置である。これによって、入力電圧とは異なる電圧を持った直流出力を得る。ここで、大容量が要求されるスイッチング電源装置のスイッチング回路としては、フルブリッジ回路が用いられる。この種のスイッチング回路において発生するスイッチング損失を低減可能な駆動方式として位相シフト制御方式が知られる(例えば特許文献1参照)。
【0003】
図9は従来のスイッチング電源装置を示す回路図であり、従来のスイッチング電源装置としては、入力電源1の両端間に接続された入力コンデンサ2と、第1〜第4のスイッチQ1〜Q4からなるスイッチング回路3と、トランス4と、ダイオード51,52からなる整流回路5と、インダクタ61およびコンデンサ62からなる平滑回路6と、スイッチング回路3の動作をコントロールするコントロール回路7とを含む。また、スイッチング回路3とトランス4との間に漏洩インダクタンス8が存在している。各スイッチQ1〜Q4それぞれのソース・ドレイン間には並列に、寄生要素として、ダイオードd1ないしd4と容量c1ないしc4が存在する。9は整流回路5と平滑回路6とを含む出力回路に接続される負荷を示す。
【0004】
コントロール回路7は、位相シフト制御方式によってそのゲートパルスVG1ないしVG4を生成している。スイッチング回路3はコントロール回路7からのそのゲートパルスVG1ないしVG4に応答して動作する。
【0005】
図10は、従来のスイッチング電源装置の動作を示すタイミング図である。図10に示されるように、位相シフト制御においてはゲートパルスVG1とVG2は所定のデッドタイムを挟んで交互にハイレベルとなる。ゲートパルスVG3は、ゲートパルスVG2に対して、位相シフトされ、ゲートパルスVG4は、ゲートパルスVG1に対して、位相シフトされる。トランス4の一次側の電圧VTの波形は、ゲートパルスVG1に対するゲートパルスVG4の位相シフト量、ゲートパルスVG2に対するゲートパルスVG3の位相シフト量によって決まる。具体的には期間t1のようにゲートパルスVG1とVG4がいずれもハイレベルとなっている期間においては第1のスイッチQ1と第4のスイッチQ4とが共にオン状態となっているため、トランスの一次側電圧VTは入力電源の電圧−Vinとなる一方、期間t4のようにゲートパルスVG2とVG3とがいずれもハイレベルとなっている期間においては第2のスイッチQ2と第3のスイッチQ3とが共にオン状態となっているため、トランス4の一次側電圧VTは入力電源の電圧Vinとなる。その他の期間ではトランス4の一次側電圧VTはゼロである。
【0006】
したがって、トランス4の二次側へ伝達される電力は、ゲートパルスVG1に対するゲートパルスVG4の位相シフト量およびゲートパルスVG2に対するゲートパルスVG3の位相シフト量によって決まるから、コントロール回路7はその位相シフトを制御して、入力電源の電圧が大きくなるとき、もしくは負荷が軽くなるときは位相シフト量を増大させ、ゲートパルスVG1,VG4がいずれもハイレベルとなる期間とゲートパルスVG2,VG3がいずれもハイレベルとなる期間を短くする。入力電源の電圧が小さくなるとき、もしくは負荷が重くなるときは位相シフト量を減少させ、ゲートパルスVG1,VG4がいずれもハイレベルとなる期間とゲートパルスVG2,VG3がいずれもハイレベルとなる期間を長くする。
【0007】
上記スイッチング電源装置では、例えば期間t1で示すようにゲートパルスVG1とVG4がいずれもハイレベルとなって第1のスイッチQ1と第4のスイッチQ4とが共にオンになってトランス4の二次側にエネルギを伝達したあとで期間t2で示すようにゲートパルスVG1をローレベルにして第1のスイッチQ1をオフにするときには、漏洩インダクタンス8の励磁エネルギを利用して、第2のスイッチQ2の寄生容量c2に蓄積されている電荷を引き抜くとともに、寄生ダイオードd2を通して電流を流し、次いで、第2のスイッチQ2をオンにすることでゼロボルトスイッチング(以下、ZVSという)を行わせるようになっている。このようなゼロボルトスイッチング動作は、前記漏洩インダクタンス8の励磁エネルギを利用しており、これによって、スイッチング損失の低減が図られ、スイッチング電源装置の効率を向上させている。しかしながら、漏洩インダクタンス8の励磁エネルギはその漏洩インダクタンスの値をLs、そこを流れる電流をIとすると(1/2)Ls・I2であらわされるから、軽負荷時のように電流Iが小さい場合では、ZVSを行うためには、漏洩インダクタンスLsの値を大きくする必要がある。インダクタンスの値を大きくすると、当然、そこで銅損、鉄損などが増えてしまい、スイッチング電源装置の効率が低下する。
【0008】
なお、軽負荷時に、漏洩インダクタンス8が小さいとZVSができなくなる理由を、スイッチQ2、Q3を用いて簡単に説明する。スイッチQ1、Q4でも同様である。漏洩インダクタンス8が小さく負荷9が軽いときは、漏洩インダクタンス8に蓄積されるエネルギーが小さくなるため、スイッチQ2の寄生容量の電荷を引き抜くだけで漏洩インダクタンス8により流れる電流ITは大きく減少し、スイッチQ3の寄生容量の電荷を完全に引き抜く前にゼロとなり、逆に入力電圧Vinによって再チャージされ、一旦下がったスイッチQ3のソース・ドレイン間電圧Vdsは上昇する。これにより、スイッチQ3のZVSができない。更に負荷9が軽くなったり、漏洩インダクタンス8が小さい場合はスイッチQ2の寄生容量も引き抜けず、スイッチQ2,Q3ともZVSができなくなるからである。
【0009】
【特許文献1】
特開2003−18857
【0010】
【発明が解決しようとする課題】
したがって、本発明は、スイッチング電源装置において、軽負荷時にZVSを可能とする一方で漏洩インダクタンスでの銅損や鉄損を抑制してスイッチング電源装置における効率を向上させることを解決すべき課題としている。
【0011】
【課題を解決するための手段】
本発明は、トランスと、入力電源に対して並列に接続される第1および第2のアームを含み、かつ、前記各アームは高電位側と低電位側それぞれの各スイッチの直列構成と各スイッチそれぞれに並列構成とされたダイオードと容量それぞれとを含むフルブリッジ型スイッチング回路と、前記スイッチング回路の一方のアームにおける高電位側と低電位側の両スイッチの接続部と前記トランスの一次側巻線との間の電流通路に存在するインダクタンスと、前記トランスの二次側に設けられる出力回路と、前記スイッチング回路の各スイッチそれぞれの動作タイミングを位相シフト制御するコントロール回路とを備え、前記コントロール回路は、前記出力回路に接続される負荷の状態を検出するとともに、その検出の結果、負荷が軽いときは前記インダクタンスを大きく、負荷が重いときは前記インダクタンスを小さく制御するスイッチング電源装置において、前記スイッチング回路を少なくとも2つ有するとともに、各スイッチング回路は、それぞれの第1のアームと前記トランスの一次側巻線との間に互いにインダクタンス値が大小に相違するインダクタンスが存在している一方、それぞれの第2のアームを互いに共用しており、前記コントロール回路は、前記負荷が軽いときはインダクタンスが大きい側のスイッチング回路を選択し、前記負荷が重いときはインダクタンスが小さい側のスイッチング回路を選択するよう制御することを特徴とする。
【0012】
前記位相シフトコントロール回路とコントロール回路は別々の回路で構成しても同じ回路で構成してもよい。前記スイッチング回路における各スイッチはMOSFETのようにソース・ドレイン間に寄生要素としてのダイオードと容量とを含む素子で構成することができる。
【0013】
本発明によるときは、負荷が軽いときは前記インダクタンスを大きく、負荷が重いときは前記インダクタンスを小さく制御するから、軽負荷時でそのインダクタンスに流れる電流が小さい場合では、そのインダクタンスの値が大きくなるので、そのインダクタンスにおける励磁エネルギを大きく発生させて、ゼロボルトスイッチングを高い信頼性を確保して行わせられる一方、負荷が重い場合では、インダクタンスの値を小さく制御できるようになる。これによって、本発明では、従来とは異なって負荷の増大に伴ない漏洩インダクタンスでの銅損や鉄損などの損失が増えるようなことをなくすことができ、スイッチング電源装置全体の効率が大きく向上する。
【0014】
本発明の好ましい実施態様は、前記コントロール回路が、スイッチのゲートパルス信号を制御することにより、使用するスイッチング回路を選択する。
【0017】
【発明の実施の形態】
以下、本発明の詳細を図面に示す実施の形態に基づいて説明する。
【0018】
図1ないし図6を参照して本発明の参考例に係るスイッチング電源装置を説明する。図1はスイッチング電源装置の回路図を示し、図2は、図1の動作説明に供するタイミングチャート、図3は、図1の各部に流れる電流経路を示す図、図4は負荷とスイッチング電源装置の効率との特性を示す図、図5は、軽負荷時に漏洩インダクタンス小から大へ切り替えたときの各部の電圧波形の変化を示す図、図6は、負荷とスイッチング電源装置の効率との特性を示す図である。なお、図9および図10と対応する部分には同一の符号を付し、その同一の符号に係る部分の説明は省略する。
【0019】
これらの図を参照して、1は入力電源、2は入力コンデンサ、3はスイッチング回路、4はトランス、5は整流回路、6は平滑回路、7はコントロール回路、8は漏洩インダクタンス、9は負荷をそれぞれ示す。スイッチング回路3において、各スイッチQ1ないしQ4はいずれもMOSFETで構成されているとともに、第1と第2のスイッチQ1,Q2とで第1のアームを構成し、第3と第4のスイッチQ3,Q4で第2のアームを構成する。第1と第3のスイッチQ1,Q3は共に高電位側のスイッチを構成し、第2と第4のスイッチQ2,Q4は共に低電位側のスイッチを構成する。各スイッチQ1ないしQ4それぞれのソース・ドレイン間にはそれぞれ並列に寄生のダイオードd1ないしd4と容量c1ないしc4とが接続されている。
【0020】
コントロール回路7は、位相シフト量発生部72、ゲートパルス発生部71、切り替え負荷のデータ保存部73、検出部74および切り替え信号発生部75を備える。コントロール回路7においては、従来のそれと同等の機能を達成するものとして、位相シフト量発生部72が出力コントロール信号に応答して位相シフト量に関する信号を発生し、ゲートパルス発生部71が、前記信号に応答して、各スイッチQ1ないしQ4それぞれのゲートに対するゲートパルスVG1ないしVG4を出力する。
【0021】
本参考例では、このコントロール回路7に対して、さらに、切り替え負荷のデータ保存部73、検出部74および切り替え信号発生部75を備えるとともに、外付けインダクタンス10と、外付けスイッチ11とを備えたことに特徴を有する。
【0022】
外付けインダクタンス10は、スイッチング回路3の一方のアームにおけるスイッチQ3,Q4の相互接続部とトランス4の一次側巻線との間に直列に接続されている。外付けスイッチ11は、好ましくはMOSFETで構成されており、外付けインダクタンス10に並列に接続されている。
【0023】
コントロール回路7において、データ保存部73は、外付けスイッチ11を、負荷9が軽いときはオフ側に、負荷9が重いときはオン側にそれぞれ切り替えるためのデータを記憶している。
【0024】
検出部74は、トランスの一次側巻線に流れる電流ITなどから負荷9の状態を検出する。
【0025】
切り替え信号発生部75は、データ保存部73の保存データと検出部74の検出データとを比較し、負荷9が軽いときは外付けスイッチ11をオフにする切り替え信号を発生して漏洩インダクタンス8に対して外付けインダクタンス10を直列に接続して全体のインダクタンスの値を大きくし、負荷9が重いときは外付けスイッチ11をオンにする切り替え信号を発生して外付けインダクタンス10を短絡して全体のインダクタンスの値を小さく制御するようになっている。
【0026】
ここでコントロール回路7が負荷9の状態を検出する機能を備えることは必ずしも必須ではなく、負荷9の状態を検出する他の回路の出力を利用してもよい。
【0027】
コントロール回路7の各部の構成はマイクロコンピュータ等を含むソフトウエアにより構成してもよい。
【0028】
動作を図2および図3を参照して説明する。
【0029】
図2において、VG1,VG2,VG3,VG4は、それぞれゲートパルス、VTはトランス一次側電圧、ITは電流、Q2VdsはスイッチQ2のソース・ドレイン間電圧,Q3VdsはスイッチQ3のドレイン・ソース間電圧、Q2IdはスイッチQ2のドレイン電流、Q3IdはスイッチQ3のドレイン電流の波形を示す。
【0030】
図3において、各タイミングt1ないしt7での電流ITの流れを示す。図3で漏洩インダクタンス8はトランス4の一次側巻線に含まれるものとする。なお、ゲートパルスVG1ないしVG4の位相シフトに関する動作は図10を参照して説明したから、省略する。
【0031】
期間t1では、スイッチQ1、Q4が共にオンとなっていて、トランスの一次側巻線に図3の(t1)で示すような経路で電流ITが流れ、トランスの二次側にエネルギが伝達される。このとき、スイッチQ2、Q3の寄生容量はほぼ入力電源電圧Vinに充電されている。スイッチQ1がオフすると、漏洩インダクタンス8の逆起電力によって図3の(t2)で示すような経路でスイッチQ2、Q4それぞれの寄生容量を通る電流が流れ、スイッチQ2の寄生容量の電荷を引き抜いていく。このスイッチQ2の寄生容量の電荷が引き抜かれて電荷がほぼ無くなり、スイッチQ2のソース・ドレイン間電圧VdsがゼロV近くになると、電流ITは図3の(t3)で示す経路によりスイッチQ2のダイオードを流れるようになる。これによってスイッチQ2のソース・ドレイン間電圧VdsはVinからほぼ0Vに減少する。このタイミングでスイッチQ2をオンすれZVSができる。
【0032】
次に、スイッチQ4をオフにすると、図3の(t4)で示す経路に従い電流ITはスイッチQ3の寄生容量の電荷を引き抜き、入力電圧Vinに回生する。このとき、図2の期間t4で示すようにスイッチQ3のソース・ドレイン間電圧Vdsが減少し、ほぼ0Vになると、今度は図3の(t5)で示す経路で電流ITはダイオードを流れる。このタイミングでスイッチQ3をオンにすることでZVSができる。スイッチQ3がオンになると、入力電源から電流が漏れインダクタンスの逆起電力を打ち消す方向で流れ、図3の期間t6で示すように徐々に大きくなっていき、漏洩インダクタンス8が入力電圧によって完全に逆方向に励磁されると、図3の期間t7で示すようにトランス二次側にエネルギを伝えるための通常の電流が流れはじめる。スイッチQ1、Q4についてもスイッチQ2,Q3と同じ動作をする。
【0033】
図4を参照して、負荷9が軽い時にスイッチング回路3とトランス4の一次側巻線との間に介在するインダクタンスを小のインダクタンスLs2(漏洩インダクタンス8のみ)から大のインダクタンスLs1(漏洩インダクタンス8と外付けインダクタンス10との合計インダクタンス)に切り替えたときの動作を説明する。図4の横軸は負荷の大きさであり、縦軸はスイッチング電源装置の効率を示す。領域13は負荷9が軽い領域、領域14は負荷9が重い領域であり、15は外付けスイッチ11のオンオフの切り替えに対応する負荷点を示す。Ls1は、インダクタンスが大きい場合、Ls2はインダクタンスが小さい場合を示す。負荷9が軽い領域13ではインダクタンスの大小を問わず負荷9の増大に伴ないスイッチング電源装置の効率が大きくなる。この場合、インダクタンスが大きい方Ls1でスイッチング電源装置の効率が高い。したがって、負荷9が軽い場合は、漏洩インダクタンスを大きく制御するとスイッチング電源装置の効率を高くすることができる。一方、負荷9が重い領域14では大きいインダクタンスLs1の場合では負荷9の増大に伴ない効率が低下していき、小さいインダクタンスLs2の場合では負荷9の増大に伴ない効率が上昇していく。したがって、負荷9が重い場合は、スイッチング回路3とトランス4の一次側巻線との間に介在するインダクタンスを小さく制御すると、そのインダクタンスが大きい場合よりもスイッチング電源装置の効率の低下をより抑制できるようになる。
【0034】
なお、説明のため、小さいインダクタンスLs2の点A2から大きいインダクタンスLs1の点A1に切り替える場合の動作を説明すると、この場合、負荷9が軽い領域13にあるから、インダクタンスを小さいLs2から大きいLs1に切り替えたとき、スイッチQ2、Q3の波形の変化は図5に示すようになる。切り替えのタイミングはゲートパルスVG4がハイレベルになるタイミングで行う。図5で期間t6’のように漏洩インダクタンス8が小さい場合、スイッチQ3のソース・ドレイン間電圧VdsがゼロVに下がらないためZVSができない。しかし、ゲートパルスVG4の立ち上がりと同時にインダクタンスを小から大に切り替えると、期間t1の期間に漏洩インダクタンスに大きなエネルギーが蓄えられ、期間t2でスイッチQ2の電荷を引き抜くことによる電流ITの減少は少なくなり、スイッチQ3の電荷を引き抜くことができる。これにより、図5の漏洩インダクタンス切り替え後に示すようにゲートパルスVG2の立ち上がり以前にスイッチQ2のソース・ドレイン間電圧Vdsは0Vとなり、更にスイッチQ3のソース・ドレイン間電圧VdsもゲートパルスVG3の立ち上がり以前に0VとなりZVSができる。
これらの動作は、スイッチQ1,Q4についても同様である。また、インダクタンスの切り替えタイミングは、ゲートパルスVG3がハイレベルになる瞬間でもよい。この場合、切り替え直後の半周期で、スイッチQ1,Q3のZVSができ、更に半周期遅れてスイッチQ2,Q3のZVSが実現する。
【0035】
次に、負荷が重い時に図6で示すように大きい漏洩インダクタンスLs1の点B1から小さい漏洩インダクタンスLs2の点B2に切り替える。この場合、インダクタンスが小でも大でもZVSが出来ているためその波形は図2に示すものとほとんど変わりない。切り替えのタイミングは、ゲートパルスVG3またはVG4の立ち上がりと同時に行う。
【0036】
図7は本発明の実施形態に係るスイッチング電源装置の回路図であり、図1と対応する部分には同一の符号を付している。この実施形態では、複数のこの例では2つのスイッチング回路31,32を有するとともに、各スイッチング回路31,32は、それぞれの第1のアーム(スイッチQ1,Q2:スイッチQ5,Q6)と前記トランス4の一次側巻線との間に互いにインダクタンス値が大小に相違するインダクタンスLs1,Ls2が存在している一方、それぞれの第2のアーム(スイッチQ3,Q4)を互いに共用している。そして、コントロール回路7は、負荷9が軽いときはインダクタンスが大きい側のスイッチング回路31を選択し、負荷が重いときはインダクタンスが小さい側のスイッチング回路32を選択するよう制御するようになっている。
【0037】
なお、上述した実施形態では、漏洩インダクタンスとして大小2つであったが、それ以上の数の漏洩インダクタンスを切り替えるようにしてもよく、例えば図8で示すように、インダクタンス値の大中小と異なる3つの漏洩インダクタンスLs3(大),Ls4(中),Ls5(小)を用いるとともに、第1の切り替え点として漏洩インダクタンスLs3(大)とLs4(中)との交点とし、第2の切り替え点として漏洩インダクタンスLs4(中)とLs5(小)との交点とする。そして、この交点を適宜設定することによりスイッチング電源装置全体の効率を向上させるようにしてもよい。
【0038】
【発明の効果】
以上説明したように、本発明によれば、漏洩インダクタンスの励磁エネルギを利用してゼロボルトスイッチング動作を行う場合、負荷が軽くても、その漏洩インダクタンスを大きくする必要がなくなる結果、負荷の全領域にわたり、スイッチング損失の低減とそれに伴ないスイッチング電源装置の効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明の参考例に係るスイッチング電源装置の回路図
【図2】図1のスイッチング電源装置の動作説明に供するタイミングチャート
【図3】負荷とスイッチング電源装置の効率との特性を示す図
【図4】図1の動作説明に供するタイミングチャート
【図5】軽負荷時に漏洩インダクタンス小から大へ切り替えたときの各部の電圧波形の変化を示す図
【図6】負荷とスイッチング電源装置の効率との特性を示す図
【図7】本発明の実施形態に係るスイッチング電源装置の回路図
【図8】本発明のさらに他の実施形態に係るスイッチング電源装置の説明に供するもので負荷とスイッチング電源装置の効率との特性を示す図
【図9】従来のスイッチング電源装置の回路図
【図10】図9のスイッチング電源装置の各部の動作に係るタイミングチャート
【符号の説明】
1は入力電源、2は入力コンデンサ、3はスイッチング回路、4はトランス、5は整流回路、6は平滑回路、7はコントロール回路、8は漏洩インダクタンス、9は負荷、10は外付けインダクタンス、11は外付けスイッチ
Claims (2)
- トランスと、
入力電源に対して並列に接続される第1および第2のアームを含むとともに前記各アームは高電位側と低電位側それぞれの各スイッチの直列構成と各スイッチそれぞれに並列構成とされたダイオードと容量それぞれとを含むフルブリッジ型スイッチング回路と、
前記スイッチング回路の一方のアームにおける高電位側と低電位側の両スイッチの相互接続部と前記トランスの一次側巻線との間の電流通路に存在するインダクタンスと、
前記トランスの二次側に設けられる出力回路と、
前記スイッチング回路の各スイッチそれぞれの動作タイミングを位相シフト制御方式により制御するコントロール回路と、
を備え、
前記コントロール回路は、前記出力回路に接続される負荷の状態を検出するとともに、その検出の結果、負荷が軽いときは前記インダクタンスを大きく、負荷が重いときは前記インダクタンスを小さく制御するスイッチング電源装置において、
前記スイッチング回路を少なくとも2つ有するとともに、各スイッチング回路は、それぞれの第1のアームと前記トランスの一次側巻線との間に互いにインダクタンス値が大小に相違するインダクタンスが存在している一方、それぞれの第2のアームを互いに共用しており、
前記コントロール回路は、前記負荷が軽いときはインダクタンスが大きい側のスイッチング回路を選択し、前記負荷が重いときはインダクタンスが小さい側のスイッチング回路を選択するよう制御することを特徴とするスイッチング電源装置。 - 前記コントロール回路は、スイッチのゲートパルス信号を制御することにより、使用するスイッチング回路を選択することを特徴とする請求項1に記載のスイッチング電源装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003049009A JP4400065B2 (ja) | 2003-02-26 | 2003-02-26 | スイッチング電源装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003049009A JP4400065B2 (ja) | 2003-02-26 | 2003-02-26 | スイッチング電源装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004260928A JP2004260928A (ja) | 2004-09-16 |
JP4400065B2 true JP4400065B2 (ja) | 2010-01-20 |
Family
ID=33114819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003049009A Expired - Lifetime JP4400065B2 (ja) | 2003-02-26 | 2003-02-26 | スイッチング電源装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4400065B2 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4587121B2 (ja) * | 2005-05-31 | 2010-11-24 | 株式会社デンソー | 補機付きのエンジンの制御装置 |
JP4529869B2 (ja) * | 2005-10-31 | 2010-08-25 | Tdk株式会社 | スイッチング電源装置 |
JP5241571B2 (ja) * | 2009-03-05 | 2013-07-17 | 富士通テレコムネットワークス株式会社 | スイッチング電源装置 |
JP4790826B2 (ja) | 2009-03-10 | 2011-10-12 | 株式会社日立製作所 | 電源装置およびハードディスク装置 |
JP5530212B2 (ja) * | 2010-02-10 | 2014-06-25 | 株式会社日立製作所 | 電源装置、ハードディスク装置、及び電源装置のスイッチング方法 |
JP5930700B2 (ja) * | 2011-12-21 | 2016-06-08 | 株式会社日立情報通信エンジニアリング | スイッチング電源装置及びその制御方法 |
JP5906418B2 (ja) * | 2012-06-15 | 2016-04-20 | パナソニックIpマネジメント株式会社 | 電力変換装置 |
JP2014176226A (ja) * | 2013-03-11 | 2014-09-22 | Sumitomo Electric Ind Ltd | Dc/dc変換装置及び分散電源システム |
US9831790B2 (en) | 2014-09-17 | 2017-11-28 | Alps Electric Co., Ltd. | DC-to-DC converter |
JP2016067187A (ja) * | 2014-09-17 | 2016-04-28 | アルプス・グリーンデバイス株式会社 | Dc−dcコンバータ |
JP7479313B2 (ja) | 2021-02-10 | 2024-05-08 | ニチコン株式会社 | スイッチング電源装置 |
JP7645986B2 (ja) | 2021-03-08 | 2025-03-14 | Tdk株式会社 | スイッチング電源装置および電力供給システム |
CN114070106B (zh) * | 2021-11-16 | 2024-09-27 | 深圳英飞源技术有限公司 | 一种移相全桥电路及其控制方法 |
-
2003
- 2003-02-26 JP JP2003049009A patent/JP4400065B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004260928A (ja) | 2004-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9487098B2 (en) | Power conversion apparatus | |
JP3400443B2 (ja) | スイッチング電源装置 | |
JP4400065B2 (ja) | スイッチング電源装置 | |
US20080037290A1 (en) | Ac-dc converter and method for driving for ac-dc converter | |
CN103595253A (zh) | 一种降低mosfet开关损耗的新型控制方法 | |
JP2003324956A (ja) | 直列共振型ブリッジインバータ回路の制御方法及び直列共振型ブリッジインバータ回路 | |
US20080252145A1 (en) | Dc/dc power conversion device | |
CN101795076A (zh) | 功率变换器以及控制功率变换器的方法 | |
CN103201939A (zh) | 虚拟参数高压侧mosfet驱动器 | |
JP6902962B2 (ja) | コンバータ | |
US20060119281A1 (en) | Power conversion device | |
WO2001052395A1 (fr) | Procede et appareil permettant d'exciter des elements de commutation d'un dispositif de conversion de puissance commande par le courant | |
JP5241571B2 (ja) | スイッチング電源装置 | |
JP2002238257A (ja) | 共振型dc−dcコンバータの制御方法 | |
TW200840194A (en) | Switching driving circuit for soft switching | |
JP5688629B2 (ja) | ゲート駆動回路 | |
JP4323049B2 (ja) | 電力変換装置 | |
JP4110477B2 (ja) | Dc−dcコンバータ | |
JP2001333576A (ja) | Dc/dcコンバータの制御方法 | |
JP2006500889A (ja) | 複共振dc−dcコンバータ | |
JP2005176540A (ja) | 電圧変換装置 | |
JP3651781B2 (ja) | 補助共振転流回路を用いた電力変換装置 | |
US20080037299A1 (en) | Method for driving dc-ac converter | |
JP2001054279A (ja) | スナバ回路 | |
JP2000224855A (ja) | Dc−dcコンバータ回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050921 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081030 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091006 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4400065 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091019 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131106 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |