[go: up one dir, main page]

JP4363398B2 - 内燃機関の空燃比制御装置 - Google Patents

内燃機関の空燃比制御装置 Download PDF

Info

Publication number
JP4363398B2
JP4363398B2 JP2005354540A JP2005354540A JP4363398B2 JP 4363398 B2 JP4363398 B2 JP 4363398B2 JP 2005354540 A JP2005354540 A JP 2005354540A JP 2005354540 A JP2005354540 A JP 2005354540A JP 4363398 B2 JP4363398 B2 JP 4363398B2
Authority
JP
Japan
Prior art keywords
air
ratio
fuel
injection
injection ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005354540A
Other languages
English (en)
Other versions
JP2007154840A (ja
Inventor
裕介 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005354540A priority Critical patent/JP4363398B2/ja
Priority to CN2006800461887A priority patent/CN101326356B/zh
Priority to PCT/IB2006/003504 priority patent/WO2007066209A1/en
Priority to US12/083,879 priority patent/US20090056686A1/en
Priority to DE112006003175T priority patent/DE112006003175T5/de
Publication of JP2007154840A publication Critical patent/JP2007154840A/ja
Priority to US12/213,064 priority patent/US7597091B2/en
Application granted granted Critical
Publication of JP4363398B2 publication Critical patent/JP4363398B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D2041/147Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a hydrogen content or concentration of the exhaust gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の空燃比制御装置に関する。
内燃機関においては、排気浄化触媒に良好な浄化作用を発揮させる上で、空燃比を正確に制御する必要がある。空燃比を制御するために、従来より、エアフロメータなどによって検出された吸入空気量に基づいて、噴射すべき燃料の量を算出している。更に、排気通路に設置された空燃比センサの出力に基づいて燃料噴射量を調整することにより、空燃比をフィードバック制御することも行われている。
上記従来の空燃比制御によれば、内燃機関全体としての空燃比を正確に制御することができる。しかしながら、内燃機関全体としては所望の空燃比が得られていたとしても、気筒毎にみると、吸気特性や燃料噴射弁の噴射特性などの違いにより、気筒間で空燃比バラツキを生じることがある。
空燃比が気筒間でばらついていると、内燃機関全体としては理論空燃比になっていたとしても、排気エミッションは悪化する。また、空燃比が気筒間でばらついていると、各気筒の発生するトルクが異なることとなり、トルク変動の原因ともなり得る。よって、気筒間の空燃比バラツキがある場合には、これを検出して、バラツキを修正することが好ましい。
気筒間の空燃比バラツキを検出する手法としては、排気空燃比を検出する空燃比センサを気筒毎に設置する手法が考えられる。しかしながら、この手法を採用する場合には、気筒数分の空燃比センサを設ける必要があるため、コストが大幅にアップする。
特許第2689368号公報には、排気系集合部に一つの広域空燃比センサを設け、気筒から排出された排気ガスがこの空燃比センサに影響を及ぼすまでの遅れをモデル化し、気筒毎の空燃比をオブザーバにより推定する装置が開示されている。
特許第2689368号公報 特開2002−47919号公報
上記公報記載の気筒別空燃比推定装置によれば、一つの空燃比センサで、複数気筒の気筒別空燃比を推定することができる。しかしながら、同公報記載の装置を実施するには、種々の制約がある。
第一の制約としては、各気筒から空燃比センサまでのガス輸送遅れが一定の遅れである必要があり、そのためにはエキゾーズトマニホールド長を全気筒とも均一にしなければならない。ところが、実機のエキゾーズトマニホールド形状を、そのような制約を満足するように設計するのは困難である。特に、V型機関においては、エキゾーズトマニホールド長を各気筒均一にするのは構造上ほとんど不可能である。
第二の制約としては、各気筒の排気ガスが極力混合していない状態で空燃比センサを通過する必要がある。このため、空燃比センサの搭載位置が排気系集合部(合流部)に限定される。
第三の制約としては、極めて短い時間間隔で流れてくる各気筒の排気ガスの各々に対して、空燃比センサが感受性を持たなければならない。すなわち、空燃比センサに極めて素早い応答性が必要とされる。
以上のような種々の制約から、上記公報に記載の気筒別空燃比推定装置を適用するのは、実際上は極めて困難である。
この発明は、上述のような課題を解決するためになされたもので、複数気筒を有する内燃機関における気筒間の空燃比バラツキを、簡単な構成で精度良く修正することができるとともに、設計上の制約が少ない内燃機関の空燃比制御装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、内燃機関の空燃比制御装置であって、
複数気筒の排気通路の合流部より下流側に設置され、排気ガス中の水素濃度に応じた出力を発する水素センサと、
気筒毎に設けられた燃料噴射弁と、
内燃機関全体としての空燃比が一定に維持されている運転状態のときに、その空燃比を一定に維持したままで、気筒間の燃料噴射比率を経時的に変化させる噴射比率変化処理を行う噴射比率変化手段と、
前記噴射比率変化処理の実行中の前記水素センサの出力に基づいて、排気ガス中の水素濃度が前記噴射比率変化処理の実行前よりも低くなるように気筒間の燃料噴射比率を補正する噴射比率補正手段と、
を備えることを特徴とする。
また、第2の発明は、第1の発明において、
前記噴射比率補正手段は、
前記噴射比率変化処理の過程で水素濃度が最小となったときの燃料噴射比率を最適噴射比率として記憶する噴射比率記憶手段と、
前記噴射比率変化処理の終了後、気筒間の燃料噴射比率を前記最適噴射比率に修正する修正手段と、
を含むことを特徴とする。
また、第3の発明は、第1または第2の発明において、
前記噴射比率変化処理は、前記複数気筒から選択される一つの対象気筒の燃料噴射量を徐々に増減させるとともに、全体の空燃比が一定に維持されるように、他気筒の燃料噴射量を逆側に変化させる処理であることを特徴とする。
また、第4の発明は、第1または第2の発明において、
前記噴射比率変化手段は、気筒間の燃料噴射比率の複数のパターンを予め記憶したパターン記憶手段を有し、
前記噴射比率変化処理は、前記複数の燃料噴射比率パターンのうちの一つを順次選択して実際の燃料噴射比率に適用していく処理であることを特徴とする。
また、第5の発明は、第1乃至第4の発明の何れかにおいて、
前記噴射比率変化処理の実行を許可する許可手段を更に備え、
前記許可手段は、気筒間の空燃比バラツキの許容限度に対応する所定の許容水素濃度に比して、前記水素センサで検出された水素濃度が高い場合に、前記噴射比率変化処理の実行を許可することを特徴とする。
また、第6の発明は、第1乃至第5の発明の何れかにおいて、
前記噴射比率補正手段による噴射比率補正実行後の前記水素センサの出力値が、所定の正常範囲に入っていなかった場合に、前記水素センサに出力値異常が発生しているものと判定するセンサ異常判定手段を更に備えることを特徴とする。
また、第7の発明は、内燃機関の空燃比制御装置であって、
複数気筒の排気通路の合流部より下流側に設置され、排気ガス中の水素濃度に応じた出力を発する水素センサと、
前記水素センサの出力に基づいて、気筒間の空燃比バラツキを修正するバラツキ修正制御を行うバラツキ修正手段と、
前記バラツキ修正制御実行後の前記水素センサの出力値が、所定の正常範囲に入っていなかった場合に、前記水素センサに出力値異常が発生しているものと判定するセンサ異常判定手段と、
を備えることを特徴とする。
第1の発明によれば、複数気筒からの排気ガスが混合した混合排気ガス中の水素濃度を検出することができ、更に、その水素濃度が低くなるように、各気筒の燃料噴射比率を補正することができる。内燃機関の排気ガス特性として、気筒間の空燃比バラツキが小さいほど、混合排気ガス中の水素濃度が低くなる、という性質がある。このため、第1の発明によれば、混合排気ガス中の水素濃度が低くなるように各気筒の燃料噴射比率を補正する結果、気筒間の空燃比バラツキを精度良く修正することができる。また、第1の発明によれば、水素センサや空燃比センサの設置個数が複数気筒に一つで済む。このため、低コストで上記効果を得ることができる。更に、エキゾーズトマニホールド形状や水素センサの応答性などについての設計上の制約が少なく、容易に実施することができる。
第2の発明によれば、噴射比率変化処理の過程で水素濃度が最小となったときの燃料噴射比率を最適噴射比率として記憶し、噴射比率変化処理の終了後、気筒間の実際の燃料噴射比率をその最適噴射比率に修正することができる。このため、気筒間の空燃比バラツキを更に高い精度で修正することができる。
第3の発明によれば、複数気筒から選択される一つの対象気筒の燃料噴射量を徐々に増減させるとともに、全体の空燃比が一定に維持されるように、他気筒の燃料噴射量を逆側に変化させることができる。このため、気筒毎に、より高精度に最適噴射比率を探し出すことができる。よって、気筒間の空燃比バラツキを特に高い精度で修正することができる。
第4の発明によれば、噴射比率変化処理の実行時、予め記憶された複数の燃料噴射比率パターンのうちの一つを順次選択して、実際の燃料噴射比率に適用していくことができる。このため、短時間で最適噴射比率を探し出すことができる。
第5の発明によれば、気筒間の空燃比バラツキの許容限度に対応する所定の許容水素濃度に比して、水素センサで検出された水素濃度が高い場合にのみ、噴射比率変化処理の実行を許可することができる。これにより、気筒間の空燃比バラツキが元々ない場合には、修正制御を回避することができ、無駄に修正制御が行われるのを防止することができる。
第6の発明によれば、噴射比率補正実行後の水素センサの出力値が、所定の正常範囲に入っていなかった場合に、水素センサに出力値異常が発生しているものと判定することができる。これにより、水素センサに出力値異常が発生した場合、そのことを速やかに検出することができ、運転者に点検を促すなどの対策をとることができる。
第7の発明によれば、複数気筒からの排気ガスが混合した混合排気ガス中の水素濃度を水素センサにより検出することができ、その水素センサの出力に基づいて、気筒間の空燃比バラツキを修正することができる。第7の発明によれば、水素センサの設置個数が複数気筒に一つで済むため、低コストで上記効果を得ることができる。更に、エキゾーズトマニホールド形状や水素センサの応答性などについての設計上の制約が少なく、容易に実施することができる。更に、第7の発明によれば、空燃比バラツキ修正制御実行後の水素センサの出力値が、所定の正常範囲に入っていなかった場合に、水素センサに出力値異常が発生しているものと判定することができる。これにより、水素センサに出力値異常が発生した場合、そのことを速やかに検出することができ、運転者に点検を促すなどの対策をとることができる。
実施の形態1.
[システム構成の説明]
図1は、本発明の実施の形態1のシステム構成を説明するための図、図2は、図1に示すシステムにおける内燃機関の模式的な平面図である。図1に示すように、本実施形態のシステムは、4サイクル式の内燃機関10を備えている。内燃機関10は、複数の気筒を有しており、図1は、そのうちの一気筒の断面を示している。以下の説明では、内燃機関10は、1番(♯1)〜4番(♯4)の4つの気筒を有する直列4気筒機関であるものとする。
内燃機関10の各気筒には、吸気ポート11および排気ポート12が設けられている。各気筒の吸気ポート11は、図示しないインテークマニホールドを介して、一つの吸気通路13に連通している。また、図2に示すように、各気筒の排気ポート12は、エキゾーズトマニホールド15を介して、一つの排気通路14に連通している。
吸気通路13には、その内部を流れる空気量、すなわち、内燃機関10に流入する吸入空気量を検出するエアフロメータ16が配置されている。エアフロメータ16の下流には、スロットル弁18が配置されている。スロットル弁18は、アクセル開度等に基づいてスロットルモータ20により駆動される電子制御スロットル弁である。スロットル弁18の近傍には、スロットル開度を検出するためのスロットルポジションセンサ22が配置されている。アクセル開度は、アクセルペダルの近傍に設けられたアクセルポジションセンサ24によって検出される。
各気筒の吸気ポート11には、ガソリン等の燃料を噴射するための燃料噴射弁26が配置されている。なお、内燃機関10は、図示のようなポート噴射式のものに限らず、燃料を筒内に直接噴射する筒内噴射式のものでもよい。また、ポート噴射と筒内噴射とを併用するものでもよい。
更に、各気筒には、吸気弁28および排気弁29と、燃焼室内の混合気に点火するため点火プラグ30とが設置されている。
内燃機関10のクランク軸36の近傍には、クランク軸36の回転角を検出するためのクランク角センサ38が取り付けられている。クランク角センサ38は、クランク軸が所定回転角だけ回転する毎に、Hi出力とLo出力を反転させるセンサである。クランク角センサ38の出力によれば、クランク軸の回転位置や、機関回転数NEなどを検知することができる。
内燃機関10の排気通路14には、排気ガスを浄化するための触媒42が配置されている。触媒42の上流には、空燃比センサ44と水素センサ46とが設置されている。空燃比センサ44は、その位置を通る排気ガスの空燃比に応じた信号を出力するセンサである。水素センサ46は、その位置を通る排気ガス中の水素(H)の濃度に応じた信号を出力するセンサである。
図2に示すように、空燃比センサ44および水素センサ46は、エキゾーズトマニホールド15の合流部(集合部)よりも下流側に配置されている。空燃比センサ44および水素センサ46の設置位置には、各気筒から排出された排気ガスが均一に混ざり合った状態の排気ガスが通過する。以下、各気筒から排出された排気ガスが混ざり合ったガスを「混合排気ガス」と称する。
また、図1に示すシステムは、ECU(Electronic Control Unit)50を備えている。ECU50には、上述した各種センサやアクチュエータが接続されている。ECU50は、それらのセンサ出力に基づいて、内燃機関10の運転状態を制御することができる。
[実施の形態1の特徴]
(水素の排出特性)
一般に、内燃機関の排気ガス中には、燃料と空気との燃焼反応により、水素ガスが生成する。図3は、内燃機関からの水素の排出特性を示す図である。図3中、横軸は燃焼に供された混合気の空燃比を表し、縦軸は排気ガス中の水素濃度を表す。図3に示すように、排気ガス中の水素濃度は、理論空燃比よりリーン側においてはゼロに近く、理論空燃比よりリッチ側に行くほど、急激に大きくなるという特性がある。上述した本実施形態のシステムにおいては、水素センサ46により、混合排気ガス中の水素濃度を検出することができる。
(全体空燃比制御)
本実施形態のシステムにおいては、エアフロメータ16によって検出された吸入空気量に基づいて、所望の空燃比を実現するための燃料噴射量を算出することができる。更に、空燃比センサ44によって検出された空燃比に基づいて燃料噴射量を調整することにより、空燃比をフィードバック制御することができる。このような制御によれば、内燃機関10全体としての空燃比(以下、「全体空燃比」と称する)を正確に制御することができる。全体空燃比を制御する場合、通常は、触媒42に良好な排気浄化作用を発揮させるべく、全体空燃比が理論空燃比となるように制御される。以下の説明では、ECU50は、全体空燃比が理論空燃比となるように制御するものとする。
(気筒間の空燃比バラツキ)
上述したように、本実施形態では、全体空燃比を理論空燃比に正確に制御することができる。しかしながら、複数気筒を有する内燃機関10では、一般に、吸気管の長さや形状が気筒間で完全に同じではないため、筒内吸入空気量が気筒間で完全に同じではない。また、燃料噴射弁26の特性にも個体差があるため、燃料噴射量も、気筒間で完全に同じではない。このため、全体空燃比が理論空燃比に制御されている場合であっても、気筒毎の空燃比にはバラツキがあるのが普通である。本実施形態では、以下に説明するように、水素センサ46の出力に基づいて、気筒間の空燃比バラツキを低減することができる。
図4は、気筒間の空燃比バラツキ度合いと、混合排気ガス中の水素濃度との関係を示す図である。前述したように、本実施形態では、水素センサ46により、各気筒からの排気ガスが混合した混合排気ガス中の水素濃度を検出することができる。
全体空燃比が理論空燃比に制御されている場合に、気筒間の空燃比バラツキがあるとすると、燃料リーンになっている気筒と、燃料リッチになっている気筒とが存在することとなる。燃料リッチとなった気筒からは、水素が排出される。よって、この場合には、混合排気ガス中に、ある程度の量の水素が含まれるため、水素センサ46で検出される水素濃度も、ある程度高くなる。そして、気筒間の空燃比バラツキの度合いが大きいほど、燃料リッチとなる気筒は更にリッチ側に偏るので、水素排出量が更に多くなり、混合排気ガス中の水素濃度が高くなる。
これに対し、全体空燃比が理論空燃比に制御されていて、かつ、気筒間の空燃比バラツキがない場合、すなわち、各気筒からの排気ガスの空燃比が何れも正確に理論空燃比になっている場合には、何れの気筒からも水素がほとんど排出されないこととなる。よって、この場合には、混合排気ガス中の水素濃度は極めて低くなるはずである。
以上のことから、図4に示すように、気筒間の空燃比バラツキの度合いが大きいほど、混合排気ガス中の水素濃度が高くなる、という関係が生じる。この関係を利用すれば、気筒間の空燃比バラツキが少ない状態を探し出すことができる。すなわち、定常運転時、全体空燃比を理論空燃比に維持しながら、各気筒の燃料噴射量比率を徐々に変えていく。このことを、以下「噴射比率変化処理」と称する。この噴射比率変化処理の実行中に、水素センサ46で水素濃度を逐次検出する。そして、検出された水素濃度が最小になったときの噴射比率が、気筒間の空燃比バラツキが最も少ない噴射比率であると判断することができる。
図5は、本実施形態における噴射比率変化処理の方法を説明するための図である。図5(A)の棒グラフは、噴射比率変化処理の開始前、途中、および終了後における1番〜4番の各気筒の燃料噴射量を表している。また、図5(B)は、噴射比率変化処理実行中の気筒別空燃比の変化を表し、図5(C)は、噴射比率変化処理実行中の混合排気ガス中の水素濃度変化を表す。
本実施形態の噴射比率変化処理では、ある一つの対象気筒を選択し、その対象気筒の燃料噴射量を徐々に増加または減少させる。それとともに、全体空燃比を一定に保つように、他の気筒の燃料噴射量を減少または増加させる。
図5に示す例は、3番気筒を対象気筒とした場合を表している。ここでは、図5(A)の左側の棒グラフに示すように、噴射比率変化処理の開始前、3番気筒の燃料噴射量が理論空燃比レベルよりも多くなっており、その分、1番、2番、および4番気筒の燃料噴射量が理論空燃比レベルより少なくなっているものとする。また、説明を簡単にするため、1番、2番、および4番気筒の燃料噴射量は互いに等しいものとする。この開始前のとき、3番気筒の燃料噴射量は、1番、2番、および4番気筒の燃料噴射量より「D」だけ多くなっているものとする。
上記開始前の状態では、図5(B)に示すように、3番気筒のみ燃料リッチとなっているので、3番気筒から水素が排出される。このため、図5(C)に示すように、混合排気ガス中の水素濃度は比較的高くなっている。
このような状態から、3番気筒の燃料噴射量を徐々に減少させていく。そして、3番気筒の燃料噴射量の減少量の3分の1ずつを、1番、2番、および4番気筒の燃料噴射量にそれぞれ上乗せする。これにより、全体の燃料噴射量は一定に保たれ、よって、全体空燃比も一定に維持される。
上記のように各気筒の燃料噴射量を徐々に変化させていくと、図5(B)に示すように、3番気筒の空燃比が理論空燃比に近づいていく。これにより、3番気筒から排出される水素の量は少なくなっていく。一方、1番、2番、および4番気筒は、未だ燃料リーンの状態であるので、水素をほとんど排出しない。このため、混合排気ガス中の水素濃度は、3番気筒からの水素排出量が減るのに伴い、低下していく。
そして、図5(A)の中央の棒グラフに示すように、3番気筒の燃料噴射量と、1番、2番、および4番気筒の燃料噴射量とが等しくなると、全気筒が理論空燃比となる。このときは、何れの気筒からも水素がほとんど排出されないので、混合排気ガス中の水素濃度は最小となる。
この状態を超えて、各気筒の燃料噴射量を更に変化させていくと、3番気筒の燃料噴射量は理論空燃比レベルよりも少なくなり、1番、2番、および4番気筒の燃料噴射量は理論空燃比レベルより多くなる。すると、1番、2番、および4番気筒から水素が排出されるようになるので、混合排気ガス中の水素濃度は増加に転じる。
3番気筒の燃料噴射量の変化割合が所定値に達したら、上述の噴射比率変化処理を終了する。この終了時には、図5(C)の右側の棒グラフに示すように、3番気筒の燃料噴射量は、1番、2番、および4番気筒の燃料噴射量より、「D/3」だけ少なくなっている。
以上述べたように、噴射比率変化処理を行う過程で、混合排気ガス中の水素濃度が最小となるときの噴射比率が、気筒間の空燃比のバラツキが最も少なくなる噴射比率に相当する。そこで、本実施形態では、混合排気ガス中の水素濃度が最小となったときの各気筒の燃料噴射量比率(以下、「最適噴射比率」と称する)を記憶しておく。そして、噴射比率変化処理の終了後は、各気筒の実際の燃料噴射比率を、記憶された最適噴射比率に修正する。これにより、気筒間の空燃比のバラツキを修正することができる。
なお、図5に示す例では、噴射比率変化処理開始前に1番、2番、および4番気筒の燃料噴射量が互いに等しいものとしていたので、3番気筒のみを対象気筒として噴射比率変化処理を行うことにより、気筒間の空燃比バラツキをほぼゼロに低減することができた。これに対し、噴射比率変化処理開始前に各気筒の燃料噴射量がバラバラであった場合には、各気筒を順次に対象気筒として噴射比率変化処理を行うことにより、気筒間の空燃比バラツキをほぼゼロまで低減することができる。
[実施の形態1における具体的処理]
図6および図7は、上記の機能を実現するために本実施形態においてECU50が実行するルーチンのフローチャートである。なお、図6に示すルーチンは、後述する噴射比率補正必要フラグがONになっている場合に実行されるものとする。
図6に示すルーチンによれば、まず、内燃機関10が定常運転中であるか否かが判別される(ステップ100)。具体的には、機関回転数NE、負荷率(空気量)、および制御目標空燃比の各々の経時的変動が、実質的に一定と言えるような所定範囲内に収まっている否かが判別される。なお、上記負荷率は、スロットル開度あるいは吸気管負圧に基づいて算出することができる。
内燃機関10の過渡運転中は、空燃比が瞬間的に変化し易いので、気筒間の空燃比バラツキを修正する制御を行うのには適さない。このため、上記ステップ100において内燃機関10が定常運転中でないと判断された場合には、空燃比バラツキ修正制御を行うことなく、そのまま本ルーチンの処理を終了する。
一方、上記ステップ100において内燃機関10が定常運転中であると判断された場合には、次に、空燃比センサ44および水素センサ46により、全体空燃比と、混合排気ガスの水素濃度とをそれぞれ検出する(ステップ102)。
次に、上記ステップ102で検出された水素濃度が、上記ステップ102で検出された全体空燃比の下での許容水素濃度を超えているか否かが判別される(ステップ104)。ここで、許容水素濃度とは、気筒間の空燃比バラツキ度合いの許容限度に対応する水素濃度の値である。許容水素濃度は、全体空燃比の値に応じて異なる。ECU50には、全体空燃比の値と、その全体空燃比の値に対応する許容水素濃度との関係を定めたマップまたは演算式が記憶されている。上記ステップ104では、そのマップまたは演算式を参照して、検出された全体空燃比の下での許容水素濃度を取得した後、上記の判別を行う。
上記ステップ104において、水素センサ46により検出された水素濃度が許容水素濃度以下であった場合には、気筒間の空燃比バラツキの度合いが、現状でも許容限度内に収まっていると判断できる。この場合には、空燃比バラツキ修正制御を行う必要がないので、そのまま本ルーチンの処理を終了する。一方、検出された水素濃度が許容水素濃度を超えていた場合には、気筒間の空燃比バラツキを修正するため、噴射比率を補正する制御が行われる(ステップ106)。
このステップ106においては、図7に示すサブルーチンが実行される。まず、噴射比率変化処理の対象気筒を選択する(ステップ110)。具体的には、例えば1番気筒から4番気筒まで順番に噴射比率変化処理を行うこととされている場合であれば、最初に1番気筒が選択される。そして、次回以降のステップ110の処理においては、2番気筒以降が順番に選択される。
また、前回の空燃比バラツキ修正制御が完遂されずに中断されたような場合には、その中断時に対象気筒となっていた気筒を最初に選択するようにしてもよい。
次に、上記ステップ110で選択された気筒を対象気筒として、最適噴射比率を探索する(ステップ112)。このステップ112では、まず、噴射比率変化処理が実行される。この噴射比率変化処理は、図5を参照して説明したような処理である。すなわち、対象気筒の燃料噴射量を徐々に変化させるとともに、全体空燃比(全体噴射量)を一定に保つべく、他気筒の燃料噴射量を逆側に変化させる。
このとき、対象気筒の燃料噴射量の変化範囲(以下、「探索範囲」と称する)は、探索開始前の噴射量を中心として所定範囲内(例えば±5%の範囲内)とされる。この所定範囲は、起こり得ると想定される空燃比バラツキの度合いに応じて、予め設定されている。あるいは、探索開始前に検出された水素濃度から空燃比バラツキの度合いを推定し、その空燃比バラツキ度合いが包含されるような範囲で、対象気筒の燃料噴射量を変化させるようにしてもよい。
上記ステップ112では、上述のようにして対象気筒の燃料噴射量を徐々に変化させている間、水素センサ46により水素濃度を逐次検出し、水素濃度が最小となったときの気筒間の噴射比率を記憶する。
次に、上記ステップ112で記憶された噴射比率が、上記探索範囲の上限および下限の何れかに該当するか否かが判別される(ステップ114)。その判別が肯定された場合には、水素濃度最小となる最適噴射比率は、上記探索範囲の外にあると判断できる。そこで、この場合には、探索範囲をシフトして、上記ステップ112と同様に、最適噴射比率を再度探索する(ステップ116)。例えば、前回の探索範囲が±5%の範囲であって、水素濃度最小となった噴射比率がその探索範囲の上限値(+5%)に該当していた場合には、上記ステップ116での新たな探索範囲は+5〜+15%とされる。逆に、水素濃度最小となった噴射比率が探索範囲の下限値(−5%)に該当していた場合には、−5〜−15%が新たな探索範囲とされる。
なお、上記ステップ116の処理、すなわち再度の最適噴射比率の探索を行った場合には、上記ステップ114の処理が再度実行される。すなわち、再度の最適噴射比率探索において、水素濃度最小として記憶された噴射比率が、探索範囲の上限および下限の何れかに該当するか否かが判別される。
一方、上記ステップ114で、最適噴射比率探索において水素濃度最小として記憶された噴射比率が、探索範囲の上限および下限の何れにも該当しないと判別された場合には、上記記憶された噴射比率が、最適噴射比率であると判断できる。そこで、この場合には、各気筒の実際の噴射比率を、上記最適噴射比率に修正する(ステップ118)。この処理により、最適噴射比率が実現され、気筒間の空燃比バラツキが低減される。
次に、最適噴射比率探索によって探し出された水素濃度最小値が、許容水素濃度以下であるか否かが判別される(ステップ120)。この許容水素濃度とは、上記ステップ104で説明したのと同じ値である。
上記ステップ120で、上記水素濃度最小値が許容水素濃度を超えている場合には、気筒間の空燃比バラツキが未だ許容限度内に収まっていないと判断できる。この場合には、次に、全気筒に対して最適噴射比率探索および噴射比率補正が終了しているか否かが判別される(ステップ122)。そして、まだ対象気筒とされていない気筒がある場合には、ステップ110以降の処理が再度実行される。これにより、残りの気筒のうちの一つを対象気筒として、更に最適噴射比率探索および噴射比率補正が行われる。
一方、上記ステップ120で、上記水素濃度最小値が許容水素濃度以下であった場合には、気筒間の空燃比バラツキは既に許容限度以下に修正されたと判断できる。この場合には、残りの気筒を対象気筒として最適噴射比率探索を行う必要はないので、今回の噴射比率補正制御を終了する(ステップ124)。なお、上記ステップ122で、全気筒についての最適噴射比率探索および噴射比率補正が終了したと判別された場合にも、これ以上の噴射比率補正は必要ないので、今回の噴射比率補正制御を終了する(ステップ124)。
噴射比率補正制御を終了したら、噴射比率補正必要フラグをOFFにする(ステップ126)。噴射比率補正必要フラグは、他のルーチンの処理により、一定の期間をおいて(例えば所定距離走行後)再びONとされる。噴射比率補正必要フラグがONすると、図6に示すルーチンの実行が許可される。このような処理により、噴射比率補正制御を無駄なく適時に行うことができる。
本実施形態では、以上説明したような噴射比率補正制御を行うことにより、気筒間の空燃比バラツキを低減することができるので、排気エミッションを改善することができる。
特に、本実施形態では、1気筒ずつを対象気筒として他気筒との最適噴射比率を探索するので、気筒間の空燃比バラツキを高い精度で修正することができる。
ところで、上述した実施の形態1においては、ECU50が、上記ステップ112で噴射比率変化処理を実行することにより前記第1の発明における「噴射比率変化手段」が、上記ステップ112で最適噴射比率を記憶するとともに上記ステップ118の処理を実行することにより、前記第1の発明における「噴射比率補正手段」が、それぞれ実現されている。
また、上述した実施の形態1においては、ECU50が、上記ステップ114の処理を実行することにより前記第2の発明における「噴射比率記憶手段」が、上記ステップ118の処理を実行することにより、前記第2の発明における「修正手段」が、それぞれ実現されている。また、ECU50が、上記ステップ104の処理を実行することにより前記第5の発明における「許可手段」が実現されている。
実施の形態2.
[実施の形態2の特徴]
次に、図8および図9を参照して、本発明の実施の形態2について説明するが、上述した実施の形態との相違点を中心に説明し、同様の事項については、その説明を省略または簡略する。本実施形態のシステムは、図1および図2に示すハードウェア構成を用いて、ECU50に、図6および後述する図9に示すルーチンを実行させることにより実現することができる。
本実施形態は、実施の形態1と比べて、噴射比率変化処理の仕方が異なる。本実施形態では、最適噴射比率を探索する際、噴射比率パターンを複数規定した噴射比率マップに従って、各気筒の噴射比率を変化させる。図8の(A)および(B)は、それぞれ、噴射比率マップの一例を示す図である。
図8に示すように、噴射比率マップには、多数の噴射比率パターンが用意されている。各噴射率パターンは、1〜4番の気筒の噴射比率を表す4つの係数で構成されている。噴射比率変化処理を行う際には、噴射比率マップから噴射比率パターンを一つずつ選択していく。そして、全体空燃比制御によって算出された1気筒当たりの燃料噴射量に、選択された噴射比率パターンに規定された係数を乗じた量を、各気筒の噴射量として、各気筒の燃料噴射弁26から噴射させる。
そのようにして、噴射比率パターンを順次切り換えていく間、水素センサ46で水素濃度を検出し、水素濃度が最小となる最適な噴射比率パターンを探し出す。その最適噴射比率パターンが、気筒間の空燃比バラツキが最も小さくなる噴射比率である。よって、以降、その最適噴射比率パターンを採用することにより、気筒間の空燃比バラツキを修正することができる。
噴射比率マップ中の噴射比率パターンの4つの係数は、その平均値が1.0とされている。これにより、噴射比率パターンが切り換わっても、総噴射量は一定であるので、全体空燃比を一定に維持することができる。
実施の形態1では、一つずつの気筒を対象気筒として、その噴射比率を徐々に変化させて、各気筒毎に最適化を行うこととしている。これに対し、本実施形態では、全気筒同時に最適化を行うことができ、また、限られた数の噴射比率パターンのうちから最良のパターンを選択するので、短時間に最適噴射比率を探し出すことができる。
空燃比バラツキの修正精度向上および修正制御の迅速化を図る観点からは、噴射比率マップは、経験的に把握された空燃比バラツキの傾向に応じて、起こり易いバラツキパターンを数多く含むものとされるのが好ましい。
例えば、内燃機関10の吸気特性として、2番気筒および3番気筒の吸気特性が相対的に悪くなり易いことが把握されている場合には、2番気筒および3番気筒の空気量が少なくなり易いので、2番気筒および3番気筒が燃料リッチになり易いと考えられる。この場合には、図8(A)に示すように、2番気筒および3番気筒の噴射係数を1番気筒および4番気筒より小さくした噴射比率パターンを数多く含ませるのが好ましい。
なお、図8(A)に示す噴射比率マップでは、各気筒の噴射係数がほぼ1%刻み(0.01刻み)で、各噴射比率パターンが規定されている。この刻み幅は、1%に限定されるものではない。例えば、気筒間の空燃比バラツキが2%以上なければ混合排気ガス中の水素濃度に有意な影響を与えないことが予め判明している場合には、図8(B)に示す噴射比率マップのように、各噴射比率パターンの刻み幅を2%間隔(0.02間隔)としてもよい。
[実施の形態2における具体的処理]
図9は、上記の機能を実現するために本実施形態においてECU50が実行するルーチンのフローチャートである。本実施形態では、前述した図6に示すルーチン中のステップ106の処理を実行する場合に、前述した図7に示すルーチンに換えて、図9に示すサブルーチンを実行する。
図9に示すルーチンでは、まず、現時点、すなわち噴射比率補正実行前における、適用中の噴射比率パターンの番号と、水素センサ46により検出された水素濃度とを記録する(ステップ130)。次に、噴射比率変化処理を開始するに当たって、最初に選択する噴射比率パターンを噴射比率マップから選択する(ステップ132)。ここで選択する開始パターンとしては、噴射比率補正制御を新たに行う場合には、噴射比率マップ中の配列の最初のパターンを選択すればよい。また、前回に中断した噴射比率補正制御を再開する場合には、その中断時に適用されていたパターンを選択すればよい。
次に、上記ステップ132で選択された開始パターンから始めて、噴射比率マップ中の噴射比率パターンを順番に選択していく(ステップ134)。選択された噴射比率パターンは、各気筒の実際の燃料噴射量に反映される。また、このステップ134では、各気筒の燃料噴射比率が噴射比率マップに従って順次変更されていく間、水素センサ46により水素濃度を逐次検出し、水素濃度が最小となったときの濃度値および噴射比率パターンの番号を記録する。
上記ステップ134で噴射比率マップ中の全パターンを一通り選択した場合、あるいは内燃機関10の運転状態が定常状態から過渡状態へ移行したことなどによって上記ステップ134の処理が中断されたような場合には、次に、ステップ134で記録された水素濃度最小値が、ステップ130で記録された当初の水素濃度と比べて低いかどうかが判別される(ステップ136)。ステップ134での水素濃度最小値の方が低い場合には、当初の噴射比率パターンよりも、ステップ134で記録した噴射比率パターンの方が空燃比バラツキが小さいと判断できる。そこで、この場合には、ステップ134で記録した噴射比率パターンを採用して、以降の各気筒の燃料噴射量を算出する(ステップ138)。
一方、上記ステップ136で、当初の水素濃度の方が低い場合には、ステップ130で記録した当初の噴射比率パターンの方が空燃比バラツキが小さいと判断できる。そこで、この場合には、ステップ130で記録した当初の噴射比率パターンを採用して、以降の各気筒の燃料噴射量を算出する(ステップ140)。
以上で、今回の噴射比率補正制御を終了する(ステップ142)。この噴射比率補正制御により、当初に気筒間の空燃比バラツキがあった場合でも、そのバラツキを修正することができる。
噴射比率補正制御を終了したら、噴射比率補正必要フラグをOFFにする(ステップ144)。噴射比率補正必要フラグは、実施の形態1と同様に、他のルーチンの処理により、一定の期間をおいて再びONとされる。
ところで、上述した実施の形態2においては、ECU50が、上記ステップ134で噴射比率パターンを順次切り換える処理を実行することにより前記第1の発明における「噴射比率変化手段」が、上記ステップ134で水素濃度最小時の噴射比率パターンを記憶するとともに上記ステップ138の処理を実行することにより、前記第1の発明における「噴射比率補正手段」が、それぞれ実現されている。
また、上述した実施の形態2においては、ECU50が、上記ステップ134の処理を実行することにより前記第2の発明における「噴射比率記憶手段」が、上記ステップ138の処理を実行することにより、前記第2の発明における「修正手段」が、それぞれ実現されている。また、ECU50が前記第4の発明における「パターン記憶手段」に相当している。
実施の形態3.
[実施の形態3の特徴]
次に、図10を参照して、本発明の実施の形態3について説明するが、上述した実施の形態との相違点を中心に説明し、同様の事項については、その説明を省略または簡略する。
本実施形態では、実施の形態1または2の制御に加えて、水素センサ46の出力値に異常が発生した場合に、その異常を検出する制御を更に行う。本実施形態は、実施の形態1または2のシステムにおいて、図10に示すルーチンを追加して実行することにより実現することができる。
水素センサ46は、空燃比センサ44と同様、排気ガスに常に晒されるなどの過酷な環境に置かれる。このため、水素センサ46には、出力が異常に上昇したり、逆に出力が異常に低下したりする故障が発生する場合がある。この出力値異常が発生した場合でも、水素濃度に対する感度自体は失われずに残ることが多い。
水素センサ46の出力値異常が発生した場合であっても、水素濃度に対する感度が残っていれば、実施の形態1あるいは実施の形態2の空燃比バラツキ修正制御を行うことは可能である。実施の形態1および2では、水素濃度の絶対値が正確に分からなくても、水素濃度が相対的に低い状態が探し出せればよいからである。
しかしながら、水素センサ46の出力を他の制御(例えば、空燃比センサ44の補正制御や、全体空燃比制御等)に利用している場合には、水素センサ46の出力値異常が発生すると、上記他の制御に狂いを生じるおそれがある。そこで、本実施形態では、次のような方法により、水素センサ46の出力値異常を検出することとした。
気筒間の空燃比バラツキの度合いと、混合排気ガス中の水素濃度との間には、前記図4に示すような関係がある。すなわち、空燃比バラツキが小さいほど、水素濃度は低くなり、空燃比バラツキがない状態では、ある一定の水素濃度に収束する。一方、実施の形態1あるいは2の空燃比バラツキ修正制御が実行された場合には、空燃比バラツキは、ほとんどなくなっている。よって、空燃比バラツキ修正制御の実行後には、排気ガス中の水素濃度は、内燃機関10の運転条件にもよるが、一定の範囲内に収まっているはずであり、水素センサ46が正常であれば、その出力値も一定の範囲内に収まるはずである。
そこで、本実施形態では、水素センサ46の出力値の正常範囲を、内燃機関10の運転条件(機関回転数NE、負荷率、制御目標空燃比)に応じて予め設定しておく。そして、空燃比バラツキ修正制御の実行後に、水素センサ46の出力値がその正常範囲に入っていなかった場合には、水素センサ46の出力値に異常が発生しているものと判定することとした。
[実施の形態3における具体的処理]
図10は、上記の機能を実現するために本実施形態においてECU50が実行するルーチンのフローチャートである。図10に示すルーチンによれば、まず、内燃機関10が定常運転中であるか否かが判別される(ステップ150)。この判別は、前記ステップ100と同様に行えばよい。内燃機関10の過渡運転中は、排気ガス中の水素濃度が瞬間的に変化し易いので、水素センサ46の異常判定を行うのには適さない。このため、上記ステップ150において内燃機関10が定常運転中でないと判断された場合には、そのまま本ルーチンの処理を終了する。
一方、上記ステップ100において内燃機関10が定常運転中であると判断された場合には、次に、気筒間の空燃比バラツキ修正制御を近時に実行した履歴があるか否かが判別される(ステップ152)。実行履歴がない場合には、そのまま本ルーチンの処理を終了する。実行履歴がある場合には、次に、空燃比センサ44に異常がないことを確認する(ステップ154)。
もし空燃比センサ44に異常がある場合には、本システムにおいて全体空燃比を正確に検出できない状態になっているため、水素センサ46の異常を判定するのも困難である。よって、上記ステップ154で空燃比センサ44に異常が認められた場合には、そのまま本ルーチンの処理を終了する。
なお、空燃比センサ44の異常の有無は、公知の手法により検出することができる。例えば、出力値のレンジ外れ、サブ空燃比センサ(Oセンサ)との比較、応答性低下などに基づいて検出することができる。
上記ステップ154で空燃比センサ44に異常がないことが確認された場合には、次に、水素センサ46の出力値が正常範囲に入っているか否かが判別される(ステップ156)。具体的には、まず、内燃機関10の現在の運転条件として機関回転数NE、負荷率、および制御目標空燃比が取得され、その運転条件に応じた水素センサ46出力値の正常範囲が取得される。次いで、その正常範囲に、水素センサ46の現在の出力値が入っているか否かが判別される。
上記ステップ156で、水素センサ46の出力値が正常範囲に入っている場合には、水素センサ46は正常であると判定される(ステップ158)。これに対し、水素センサ46の出力値が正常範囲に入っていない場合には、水素センサ46は出力値が異常であると判定される(ステップ160)。水素センサ46が異常であると判定された場合には、その旨を運転者に報知し、点検を促すのが好ましい。
上述した実施の形態3においては、ECU50が、上記ステップ156の処理を実行することにより前記第6および第7の発明における「センサ異常判定手段」が実現されている。
図11は、V型8気筒の内燃機関60を示す模式的な平面図である。内燃機関60のようなV型機関の場合、エキゾーズトマニホールド62は、図11に示すように、各気筒の排気通路がまず片バンク毎に合流し、その下流で両バンクの排気通路が合流する構造になっているのが普通である。このようなV型機関に本発明を適用する場合、全気筒の排気通路が合流した部分より下流に空燃比センサ44および水素センサ46を一組設置してもよいが、図11に示すように、空燃比センサ44および水素センサ46を片バンク毎に一組ずつ設置しても良い。この場合には、上述した本発明の制御を片バンク毎に行えばよい。
本発明の実施の形態1のシステム構成を説明するための図である。 図1に示すシステムにおける内燃機関の模式的な平面図である。 内燃機関からの水素の排出特性を示す図である。 気筒間の空燃比バラツキ度合いと、混合排気ガス中の水素濃度との関係を示す図である。 実施の形態1における噴射比率変化処理の方法を説明するための図である。 本発明の実施の形態1において実行されるルーチンのフローチャートである。 本発明の実施の形態1において実行されるルーチンのフローチャートである。 本発明の実施の形態2における噴射比率マップの一例を示す図である。 本発明の実施の形態2において実行されるルーチンのフローチャートである。 本発明の実施の形態3において実行されるルーチンのフローチャートである。 V型8気筒の内燃機関を示す模式的な平面図である。
符号の説明
10 内燃機関
11 吸気ポート
12 排気ポート
13 吸気通路
14 排気通路
15 エキゾーズトマニホールド
16 エアフロメータ
18 スロットル弁
20 スロットルモータ
22 スロットルポジションセンサ
24 アクセルポジションセンサ
26 燃料噴射弁
42 触媒
44 空燃比センサ
46 水素センサ
50 ECU(Electronic Control Unit)

Claims (6)

  1. 複数気筒の排気通路の合流部より下流側に設置され、排気ガス中の水素濃度に応じた出力を発する水素センサと、
    気筒毎に設けられた燃料噴射弁と、
    内燃機関全体としての空燃比が一定に維持されている運転状態のときに、その空燃比を一定に維持したままで、気筒間の燃料噴射比率を経時的に変化させる噴射比率変化処理を行う噴射比率変化手段と、
    前記噴射比率変化処理の実行中の前記水素センサの出力に基づいて、排気ガス中の水素濃度が前記噴射比率変化処理の実行前よりも低くなるように気筒間の燃料噴射比率を補正する噴射比率補正手段と、
    を備えることを特徴とする内燃機関の空燃比制御装置。
  2. 前記噴射比率補正手段は、
    前記噴射比率変化処理の過程で水素濃度が最小となったときの燃料噴射比率を最適噴射比率として記憶する噴射比率記憶手段と、
    前記噴射比率変化処理の終了後、気筒間の燃料噴射比率を前記最適噴射比率に修正する修正手段と、
    を含むことを特徴とする請求項1記載の内燃機関の空燃比制御装置。
  3. 前記噴射比率変化処理は、前記複数気筒から選択される一つの対象気筒の燃料噴射量を徐々に増減させるとともに、全体の空燃比が一定に維持されるように、他気筒の燃料噴射量を逆側に変化させる処理であることを特徴とする請求項1または2記載の内燃機関の空燃比制御装置。
  4. 前記噴射比率変化手段は、気筒間の燃料噴射比率の複数のパターンを予め記憶したパターン記憶手段を有し、
    前記噴射比率変化処理は、前記複数の燃料噴射比率パターンのうちの一つを順次選択して実際の燃料噴射比率に適用していく処理であることを特徴とする請求項1または2記載の内燃機関の空燃比制御装置。
  5. 前記噴射比率変化処理の実行を許可する許可手段を更に備え、
    前記許可手段は、気筒間の空燃比バラツキの許容限度に対応する所定の許容水素濃度に比して、前記水素センサで検出された水素濃度が高い場合に、前記噴射比率変化処理の実行を許可することを特徴とする請求項1乃至4の何れか1項記載の内燃機関の空燃比制御装置。
  6. 前記噴射比率補正手段による噴射比率補正実行後の前記水素センサの出力値が、所定の正常範囲に入っていなかった場合に、前記水素センサに出力値異常が発生しているものと判定するセンサ異常判定手段を更に備えることを特徴とする請求項1乃至5の何れか1項記載の内燃機関の空燃比制御装置。
JP2005354540A 2005-12-08 2005-12-08 内燃機関の空燃比制御装置 Expired - Fee Related JP4363398B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005354540A JP4363398B2 (ja) 2005-12-08 2005-12-08 内燃機関の空燃比制御装置
CN2006800461887A CN101326356B (zh) 2005-12-08 2006-12-07 用于内燃发动机的空燃比控制装置和方法
PCT/IB2006/003504 WO2007066209A1 (en) 2005-12-08 2006-12-07 Air-fuel ratio control apparatus and method for an internal combustion engine
US12/083,879 US20090056686A1 (en) 2005-12-08 2006-12-07 Air-fuel ratio control apparatus and method for an internal combustion engine
DE112006003175T DE112006003175T5 (de) 2005-12-08 2006-12-07 Luft-Kraftstoff-Verhältnis-Steuerungsvorrichtung und -verfahren für eine Brennkraftmaschine
US12/213,064 US7597091B2 (en) 2005-12-08 2008-06-13 Air-fuel ratio control apparatus and method for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005354540A JP4363398B2 (ja) 2005-12-08 2005-12-08 内燃機関の空燃比制御装置

Publications (2)

Publication Number Publication Date
JP2007154840A JP2007154840A (ja) 2007-06-21
JP4363398B2 true JP4363398B2 (ja) 2009-11-11

Family

ID=37968004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005354540A Expired - Fee Related JP4363398B2 (ja) 2005-12-08 2005-12-08 内燃機関の空燃比制御装置

Country Status (5)

Country Link
US (1) US20090056686A1 (ja)
JP (1) JP4363398B2 (ja)
CN (1) CN101326356B (ja)
DE (1) DE112006003175T5 (ja)
WO (1) WO2007066209A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4935547B2 (ja) * 2007-07-09 2012-05-23 トヨタ自動車株式会社 内燃機関の異常判定装置
JP2008025528A (ja) * 2006-07-25 2008-02-07 Toyota Motor Corp 空燃比センサの検出値補正装置
WO2009013600A2 (en) * 2007-07-24 2009-01-29 Toyota Jidosha Kabushiki Kaisha Apparatus and method for detecting abnormalair-fuel ratio variation among cylinders of multi-cylinder internal combustion engine
JP4788707B2 (ja) 2007-11-27 2011-10-05 トヨタ自動車株式会社 空燃比センサ及び内燃機関の制御装置
JP4496549B2 (ja) * 2008-02-27 2010-07-07 トヨタ自動車株式会社 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
DE102008058008B3 (de) 2008-11-19 2010-02-18 Continental Automotive Gmbh Vorrichtung zum Betreiben einer Brennkraftmaschine
CN102239322B (zh) 2008-12-05 2014-04-30 丰田自动车株式会社 多气缸内燃机的气缸间空燃比不平衡判定装置
EP2392811B1 (en) 2009-01-28 2015-11-11 Toyota Jidosha Kabushiki Kaisha Monitoring device for multicylindered internal-combustion engine
EP2395221B1 (en) 2009-02-03 2015-10-14 Toyota Jidosha Kabushiki Kaisha Inter-cylinder air/fuel ratio imbalance judgmental device for internal-combustion engine
CN102472191B (zh) 2009-07-02 2014-10-08 丰田自动车株式会社 内燃机的气缸间空燃比不平衡判定装置
CN102472193A (zh) 2009-08-06 2012-05-23 丰田自动车株式会社 内燃机的气缸间空燃比不平衡判定装置
JP5333058B2 (ja) 2009-08-27 2013-11-06 トヨタ自動車株式会社 内燃機関の空燃比気筒間インバランス判定装置
US8650943B2 (en) 2009-08-28 2014-02-18 Toyota Jidosha Kabushiki Kaisha Apparatus for determining an air-fuel ratio imbalance among cylinders of an internal combustion engine
WO2011033687A1 (ja) * 2009-09-18 2011-03-24 トヨタ自動車株式会社 内燃機関の空燃比気筒間インバランス判定装置
JP5111529B2 (ja) * 2010-01-22 2013-01-09 日立オートモティブシステムズ株式会社 内燃機関の制御診断装置
WO2011155073A1 (ja) 2010-06-07 2011-12-15 トヨタ自動車株式会社 内燃機関の燃料噴射量制御装置
WO2012008057A1 (ja) 2010-07-15 2012-01-19 トヨタ自動車株式会社 内燃機関の燃料噴射量制御装置
CN103189625B (zh) * 2010-11-17 2015-09-09 丰田自动车株式会社 内燃机控制装置
EP2657495A4 (en) * 2010-12-24 2014-07-30 Toyota Motor Co Ltd DEVICE AND METHOD FOR DETECTING ERRORS IN THE INTERCYLINDRICAL AIR-FUEL RATIO VARIATION
DE102011006363A1 (de) * 2011-03-29 2012-10-04 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
WO2013153610A1 (ja) * 2012-04-09 2013-10-17 トヨタ自動車株式会社 内燃機関の制御装置
US8958972B1 (en) * 2013-08-23 2015-02-17 General Electric Company Method and systems for storing fuel for reduced usage
US9604655B2 (en) * 2013-08-22 2017-03-28 General Electric Company Method and systems for storing fuel for reduced usage
JP6181874B2 (ja) * 2014-07-15 2017-08-16 本田技研工業株式会社 内燃機関の燃料供給装置
JP6330616B2 (ja) * 2014-10-21 2018-05-30 株式会社デンソー 制御装置
JP6926968B2 (ja) * 2017-11-08 2021-08-25 トヨタ自動車株式会社 内燃機関の制御装置
GB2623787B (en) * 2022-10-26 2024-11-20 Phinia Delphi Luxembourg Sarl Method of controlling injection in a hydrogen internal combustion engine
DE102023209185A1 (de) * 2023-09-21 2025-03-27 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Überwachung der Wasserstoffkonzentration im Abgas eines mit Wasserstoff betriebenen Aggregats, Steuergerät

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4125374A (en) * 1977-11-21 1978-11-14 Bendix Autolite Corporation Method and apparatus for determining combustion mixture air/fuel ratio
JP2510250B2 (ja) * 1988-08-30 1996-06-26 日産自動車株式会社 内燃機関の燃焼制御装置
JP2745761B2 (ja) * 1990-02-27 1998-04-28 株式会社デンソー 内燃機関の触媒劣化判定装置
DE4039429A1 (de) * 1990-12-11 1992-06-17 Abb Patent Gmbh Verfahren und vorrichtung zur ueberpruefung eines katalysators
DE4128997A1 (de) * 1991-08-31 1993-03-04 Abb Patent Gmbh Verfahren und vorrichtung zur regelung und pruefung
JP2689368B2 (ja) 1993-09-13 1997-12-10 本田技研工業株式会社 内燃機関の気筒別空燃比推定装置
SE9703754L (sv) * 1997-10-12 1998-09-07 Mecel Ab Sensor och förfarande för reglering av bränsle-luft blandning till en flercylindrig förbränningsmotor
DE10017940C2 (de) * 2000-04-11 2003-01-23 Omg Ag & Co Kg Verfahren zur Überprüfung der Funktionstüchtigkeit eines Stickoxid-Speicherkatalysators
DE10115902C1 (de) * 2001-03-30 2002-07-04 Siemens Ag Lambda-Zylindergleichstellungsverfahren
DE10147491A1 (de) * 2001-09-26 2003-04-24 Bosch Gmbh Robert Verfahren zur Regelung des Kraftstoff/Luftverhältnisses für einen Verbrennungsmotor
CN1225595C (zh) * 2002-12-17 2005-11-02 厦门信源交通器材有限公司 未装设含氧感知器的摩托车引擎降低废气中有害物质的方法
US6816804B1 (en) * 2003-06-04 2004-11-09 Visteon Global Technologies, Inc. System and method for estimating velocity using reliability indexed sensor fusion
US7500470B2 (en) * 2006-05-11 2009-03-10 Gm Global Technology Operations, Inc. Cylinder torque balancing for internal combustion engines

Also Published As

Publication number Publication date
DE112006003175T5 (de) 2008-10-02
WO2007066209A1 (en) 2007-06-14
JP2007154840A (ja) 2007-06-21
US20090056686A1 (en) 2009-03-05
CN101326356B (zh) 2012-10-24
CN101326356A (zh) 2008-12-17

Similar Documents

Publication Publication Date Title
JP4363398B2 (ja) 内燃機関の空燃比制御装置
US7933710B2 (en) Abnormality diagnosis device of internal combustion engine
JP4736058B2 (ja) 内燃機関の空燃比制御装置
JP4748462B2 (ja) 内燃機関の異常診断装置
JP5348190B2 (ja) 内燃機関の制御装置
JP2008121534A (ja) 内燃機関の異常診断装置
JP2010112244A (ja) 制御装置、及び制御方法
JP4314636B2 (ja) 内燃機関の空燃比制御装置
US8443656B2 (en) Inter-cylinder air-fuel ratio imbalance abnormality detection device for multi-cylinder internal combustion engine and abnormality detection method therefor
US8620564B2 (en) Abnormality detection apparatus and abnormality detection method for multi-cylinder internal combustion engine
JP5790523B2 (ja) 空燃比インバランス判定装置
US20120330533A1 (en) Apparatus for and method of detecting abnormal air-fuel ratio variation among cylinders of multi-cylinder internal combustion engine
JP4868173B2 (ja) 内燃機関の異常診断装置
JP2008128160A (ja) 内燃機関の制御装置
JP5691730B2 (ja) 気筒間空燃比ばらつき異常検出装置
US7568476B2 (en) Air-fuel ratio control system for internal combustion engine
JP4871307B2 (ja) エンジンの燃料制御装置
JP2010168905A (ja) 内燃機関の空燃比学習制御装置
JP2008128161A (ja) 内燃機関の制御装置
JP5398994B2 (ja) 内燃機関の運転制御方法
JP4854796B2 (ja) 内燃機関の異常検出装置
JP6361534B2 (ja) 内燃機関の制御装置
JP4258733B2 (ja) 内燃機関の空燃比制御装置
JP2014013017A (ja) 空燃比センサ感受性評価装置および気筒間空燃比ばらつき異常検出装置
JP2014152761A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees