JP4294117B2 - Mosコントロールダイオード及びその製造方法 - Google Patents
Mosコントロールダイオード及びその製造方法 Download PDFInfo
- Publication number
- JP4294117B2 JP4294117B2 JP15415998A JP15415998A JP4294117B2 JP 4294117 B2 JP4294117 B2 JP 4294117B2 JP 15415998 A JP15415998 A JP 15415998A JP 15415998 A JP15415998 A JP 15415998A JP 4294117 B2 JP4294117 B2 JP 4294117B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor substrate
- well region
- trench
- control diode
- mos control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 239000004065 semiconductor Substances 0.000 claims description 96
- 239000000758 substrate Substances 0.000 claims description 95
- 239000004020 conductor Substances 0.000 claims description 25
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 25
- 229920005591 polysilicon Polymers 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 19
- 238000005468 ion implantation Methods 0.000 claims description 15
- 238000005530 etching Methods 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 4
- 239000005380 borophosphosilicate glass Substances 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 10
- 239000012535 impurity Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 238000011084 recovery Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 241001354791 Baliga Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D18/00—Thyristors
- H10D18/40—Thyristors with turn-on by field effect
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/211—Gated diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Description
【発明の属する技術分野】
本発明は半導体デバイスのうちパワーデバイスに係り、より詳細には2つの端子を有するMOSコントロールダイオード及びその製造方法に関する。
【0002】
【従来の技術】
半導体デバイスは情報や信号の処理だけでなく、電気回路や電子回路などの電流や電力の制御にも利用される。この中で、電力を制御する目的で用いられるデバイスは信号処理用デバイスに比較して大きい電流や電圧を取扱わなければならない。従って、このような電流や電力を制御する目的で用いられるデバイスを他の信号処理用デバイスと区別して一般的にパワーデバイスと呼ぶ。このようなパワーデバイスは大きい電力を制御するために、電流が流れる面積が広くて、かつ耐電圧を高くとることが容易な縦型構造を有するが、これは信号処理用デバイスとは全く違う構造といえる。
【0003】
最近、電子機器の高機能化及び高効率化が進展して、小型化の可能なスイッチング電源が次第に広く使用されている。また、スイッチング電源としてスイッチング損失の少ないダイオードの使用が一般的に要求されている。このような要求に相応するために初期には、PN接合ダイオードで電流の逆方向回復時間Trrの特性を次の方法、すなわちPN接合に金(Au)や白金(Pt)等の添加物をドーピングしたり、電子や陽子などを粒子照射して、PN接合でシリコン原子の再結合の中心を作る方法で改善して高速スイッチングを実現した。
【0004】
【発明が解決しようとする課題】
しかし、上記のような方法は製造工程が難しくてコスト高になるとともに、逆方向漏洩電流が増加する短所がある。
また、従来のショットキー障壁(schottky barrier)を用いたショットキーダイオードは多数キャリアで動作する素子で、少数キャリアの蓄積効果がないので、逆方向回復時間Trr を改善するための別の追加的な工程を実施しなくても高速スイッチングの実現が可能であるが、このようなショットキーダイオードは逆電圧が低くて逆電流が大きいという短所がある。
従って、最近では多数キャリア素子のMOSFETを利用して高速スイッチングを達成しようという試みが成されている。これに対する研究は、B.JAYANT BALIGA により著述された'Power Semiconductor Device'(1996 by PWS publishing Company 、 a division of Thomson Publishing Inc.) の336 〜343 ページに記述されている。
しかし、MOSFETのようにソース、ドレイン及びゲート電極よりなる3 個の端子を使用してスイッチング素子を構成する場合は、高速のスイッチング速度を達成できるが、集積化の達成が難しいし、このようなパワーデバイスを応用する電力回路が複雑になる問題がある。
【0005】
本発明は上記の点に鑑みなされたもので、その目的は、多数キャリア素子であるMOSFETのゲート電極をドレインと接続させて2つの端子で構成して、逆方向回復時間Trrの特性を改善するための別の追加的な工程を実施しなくてもスイッチング動作が非常に速いし、逆方向漏洩電流が大きい問題点を改善でき、集積化も容易で応用回路を簡素化することもできるMOSコントロールダイオードを提供することにある。
また、本発明は、前記のようなMOSコントロールダイオードを容易に製造できるMOSコントロールダイオードの製造方法を提供することを他の目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決し上記目的を達成するために、本発明の第1のMOSコントロールダイオードは、ドレイン領域としての第1導電型の半導体基板と、この半導体基板の表面に形成され、膜の中間に不連続領域があって互いに連結されてない形状で構成されたゲート酸化膜と、このゲート酸化膜の不連続領域を通じて前記半導体基板と連結されるゲート電極と、前記互いに連結されてない形状のゲート酸化膜の両側の下部半導体基板に形成された第2導電型のベースウェル領域と、このベースウェル領域内に形成された第1導電型のソースウェル領域とを含んでなることを基本構造とする。
【0007】
この第1のMOSコントロールダイオードは、前記ゲート電極を取り囲む絶縁膜と、前記ソースウェル領域と連結され、前記半導体基板上の全体を取り囲む導電物質よりなるソース電極と、前記半導体基板の裏面に導電物質より形成されたドレイン電極を更に具備することができる。望ましくは、前記ゲート電極はポリシリコン層と導電層の複合層であり、前記第1導電型及び第2導電型はN及びP型であるとする。
【0008】
上記課題を解決し上記目的を達成するために発明の第2のMOSコントロールダイオードであるトレンチ型MOSコントロールダイオードは、ドレイン領域としての第1導電型の半導体基板と、この半導体基板に1次イオン注入を遂行して半導体基板の表面側に構成された第2導電型のベースウェル領域と、2次イオン注入により前記第2導電型のベースウェル領域内に構成された第1導電型のソースウェル領域と、前記半導体基板をトレンチ食刻し、それにより形成されたトレンチ内に構成されたゲート電極と、このゲート電極の上部を全て覆い、かつ前記ソースウェル領域の一部を露出させるように前記半導体基板上に構成された絶縁膜とを含んでなることを基本構造とする。
【0009】
このトレンチ型MOSコントロールダイオードにおいて、前記露出されたソースウェル領域と前記絶縁膜上に半導体基板を全て覆うように構成されたソース電極を更に備えることができる。また、ゲート電極の両側壁に構成されたゲート酸化膜と、半導体基板の裏面に導電物質により形成されたドレイン電極を追加して具備することができる。
前記ベースウェル領域より深くて第1導電型の半導体基板の一部に到達するように食刻して構成されたトレンチ及びこのトレンチに形成されるゲート電極は、複数個形成してもよい。また、ゲート電極はトレンチの両側壁と底部に一定の厚さで形成されたポリシリコン層と、前記トレンチを完全に埋め込む導電層の複合層よりなることが好ましい。
【0010】
上記課題を解決し上記目的を達成するために、本発明の第1のMOSコントロールダイオードの製造方法は、まず、第1導電型の半導体基板の表面に膜の中間に不連続領域があって互いに連結されてない形状で構成されたゲート酸化膜を形成する。次に、前記不連続領域を通じて前記半導体基板と接続されるゲート電極を前記ゲート酸化膜の上に形成する。次に、前記ゲート電極をマスクとして1次イオン注入を実施して前記半導体基板内に第2導電型のベースウェル領域を形成する。次に、2次イオン注入を実施して前記ベースウェル領域内に第1導電型のソースウェル領域を形成する。
【0011】
このような製造方法において、前記ソースウェル領域形成工程後、ゲート電極領域以外のゲート酸化膜を除去してもよい。さらに、ゲート電極を全部取り囲む絶縁膜を形成することができる。さらに、前記絶縁膜形成工程後、前記ソースウェル領域と連結され、半導体基板上部を取囲む導電物質よりなるソース電極を形成することができる。さらに、ソース電極形成後、前記半導体基板の裏面に導電物質でドレイン電極を形成することができる。
【0012】
上記課題を解決し上記目的を達成するために、本発明の第2のMOSコントロールダイオードの製造方法であるトレンチ型MOSコントロールダイオードの製造方法は、まず、第1導電型の半導体基板に1次イオン注入を実施して半導体基板の表面側に第2導電型のベースウェル領域を形成する。次に、2次イオン注入を実施して前記ベースウェル領域内に第1導電型のソースウェル領域を形成する。次に、前記ソースウェル領域、前記ベースウェル領域を順次に食刻し、さらに前記半導体基板の一部を食刻してトレンチを形成する。次に、前記トレンチの両側壁にゲート酸化膜を形成する。次に、前記トレンチを埋め込んでゲート電極を形成する。次に、前記ゲート電極が形成された半導体基板上に前記ソースウェル領域の一部を露出させながらゲート電極の上部を全て覆う絶縁膜を形成する。
【0013】
このような製造方法において、前記トレンチおよびゲート酸化膜を含むゲート電極は複数個形成することが望ましい。
また、前記ゲート電極を形成する方法は、前記トレンチの両側壁及び底部にポリシリコン層を形成し、このポリシリコン層が形成された前記トレンチを完全に埋め込む導電物質を堆積させ、この導電物質を半導体基板が露出するようにエッチバックする方法とすることができる。また、前記絶縁膜を形成した後、前記露出されたソースウェル領域と絶縁膜上に導電物質よりなるソース電極を形成し、前記半導体基板の裏面には導電物質よりなるドレイン電極を追加して形成することができる。
【0014】
【発明の実施の形態】
以下、添付した図面を参照して本発明の望ましい実施の形態を詳細に説明する。
<実施の形態1>
まず、図1乃至図3を参照して本発明の第1実施形態によるMOSコントロールダイオードの構造及び動作原理を詳細に説明する。
図1は本発明によるMOSコントロールダイオードのソース電極114にマイナス(−)、ドレイン電極116にプラス(+)を各々印加して順方向バイアスで動作させた時の断面図である。本発明の第1実施形態によるMOSコントロールダイオードは、(a)ドレイン領域として活用されるN型半導体基板100と、(b)この半導体基板100の表面に形成され、膜の中間に不連続領域(除去部)があって互いに連結されてない形状で構成されたゲート酸化膜102と、(c)このゲート酸化膜102の不連続領域を通じて半導体基板100に直接連結されるように構成されたポリシリコン層104及びアルミニウムのような導電層108の複合層よりなるゲート電極と、(d)ゲート酸化膜102両側の半導体基板100に形成されたP型のベースウェル領域106と、(e)このP型のベースウェル領域106内に形成されたN型のソースウェル領域110とを基本構成とする。
【0015】
また、(f)ゲート電極を取り囲むように形成されたBPSGまたはPSG を材質とする絶縁膜112と、(g)前記ソースウェル領域110と連結され、前記半導体基板100上を覆うように形成された導電物質、例えばアルミニウム(Al)よりなるソース電極114と、(h)半導体基板100の裏面に形成され、導電物質、例えばアルミニウム(Al)よりなるドレイン電極116とが追加的に構成されている。
【0016】
前記ゲート酸化膜102の中間に不連続領域が形成されていて、ゲート酸化膜102上にあるゲート電極(ポリシリコン層104と導電層108)は不連続領域を通じて半導体基板100のドレイン領域と連結される。このような構造は3つの端子よりなるMOSFETを2つの端子のダイオードで活用させる重要な要素といえる。しかし、ソースウェル領域110、ベースウェル領域106及び下部半導体基板100はNPN構造を有するので、ソース電極114にマイナス電源を印加し、ドレイン電極116にプラスの電源を印加する場合、ドレイン電極116に印加したプラス電源はそのまま半導体基板100を通してゲート電極に伝えられる。従って、ゲート酸化膜102の下部にチャンネルが生じながらソース電極114とドレイン電極116との間の電位差により電子の流れ122が発生することによってスイッチング動作をする。ここで、参照符号118は順方向バイアスが加わった時、ベースウェル領域106の境界面で形成される空乏層を示す。
【0017】
図2は、前記図1の構造で、ソース電極114とドレイン電極116に印加する順方向バイアス電圧を更に高めた場合に空乏層118が互いに接触したピンチオフ状態を示す断面図である。このようなピンチオフ状態に到達すると、電流はこれ以上増加しなく飽和する。
【0018】
図3は、前記図1の構造で、ソース電極114にプラス電源、ドレイン電極116にマイナス電源を連結して逆方向バイアスを印加した時の断面図である。この時にはソースウェル領域110とP型のベースウェル領域106の境界面で空乏層118が形成される。従って、電流が流れる方向のチャンネルを形成しないことによって逆方向漏洩電流を減らしうる適切な構造といえる。
【0019】
次いで、図4乃至図7を参照して本発明の第1実施形態よるMOSコントロールダイオードの製造方法を説明する。
図4に示すように、ドレイン領域に用いられる第1導電型、例えばN型の半導体基板100の表面にゲート酸化膜102を1000〜2000Åの厚さで形成する。このゲート酸化膜102に写真及び食刻工程によるパターニングを実施して、膜の中間に不連続領域を有して互いに連結されてない形状で構成されたゲート酸化膜102を形成する。次いで、ゲート酸化膜102が形成された半導体基板100上に、ゲート電極として使われる不純物がドーピングされたポリシリコン層104を堆積させ、パターニングを実施して、前記不連続領域を通じて半導体基板100と接続されるポリシリコン層104よりなるゲート電極の一部を形成する。
【0020】
図5に示すように、ゲート電極の一部としての前記ポリシリコン層104をマスクとして、第2導電型(P型)の硼素のような不純物を1次イオン注入して半導体基板100内にP型のベースウェル領域106を形成する。次いで、前記イオン注入済みの結果物にアルミニウムのような導電層108をスパッタリング方法で被着した後、ポリシリコン層104上にだけ残るようにパターニングしてポリシリコン層104と導電層108の複合層よりなるゲート電極を形成する。
【0021】
図6に示すように、前記ゲート電極をマスクとしてN+ 型不純物、例えば濃度が高い燐を2次イオン注入して前記ベースウェル領域106内にソースウェル領域110を形成する。従って、ソースウェル領域110とベースウェル領域106と半導体基板100はNPN構造を有する。
【0022】
図7に示すように、前記ソースウェル領域110を形成した結果物に対して写真及び食刻工程を実施してゲート電極領域以外のゲート酸化膜102を全部除去する。その後、絶縁膜112例えばBPSGまたはPSG 膜を通常の化学気相蒸着(CVD )方法で堆積させる。次いで、前記絶縁膜112にパターニングを実施して絶縁膜112がポリシリコン層104と導電層108の複合層よりなるゲート電極を全て取り囲むように形成する。次いで、前記絶縁膜112が形成された半導体基板上に導電物質、例えばアルミニウム層を積層してソース電極114を形成する。この時、ソース電極114は、前記ゲート酸化膜102を除去したゲート電極の両側の領域でソースウェル領域110と連結される。その後、ドレイン領域の半導体基板100の裏面に導電物質のアルミニウム層を蒸着してドレイン電極116を形成することによって本発明の第1実施形態によるMOSコントロールダイオード形成工程を完了する。
【0023】
<実施の形態2>
まず、図8及び図9を参照して本発明の第2実施形態によるトレンチ型MOSコントロールダイオードの構造及び動作原理を説明する。
図8は本発明の第2実施形態によるトレンチ型MOSコントロールダイオードの構造を示す断面図である。前述した第1実施形態によるMOSコントロールダイオードは、スイッチング動作が非常に速く、かつ逆方向漏洩電流を減少できる長所がある。しかし、電子の流れが発生するチャンネルがゲート酸化膜下を経由して形成されるため導通電圧が多少高まる問題点がある。このような問題を解消できる構造が以下に説明されるトレンチ型MOSコントロールダイオードである。
【0024】
本発明の第2実施形態によるトレンチ型MOSコントロールダイオードの構造は、(A)ドレイン領域としてのN型半導体基板200と、(B)この半導体基板200にP型不純物を1次イオン注入して半導体基板200の表面側に形成されたベースウェル領域206と、(C)N+ 型不純物を2次イオン注入して前記ベースウェル領域206内に形成したソースウェル領域210と、(D)前記半導体基板200をトレンチ食刻し、それによるトレンチを埋め込むように形成したポリシリコン層204と導電層(例えばアルミニウム層)208の複合層よりなるゲート電極と、(E)このゲート電極の上部を覆いながら前記ソースウェル領域210の一部を露出させる酸化膜よりなる絶縁膜212とを基本構成とする。
【0025】
また、前記露出されたソースウェル領域210及び前記絶縁膜212上には、半導体基板200上の全てを覆って導電物質よりなるソース電極214が形成されている。さらに、前記トレンチの両側壁、即ちゲート電極の外側壁にはゲート酸化膜202が、前記半導体基板200の裏面には導電物質のアルミニウムよりなるドレイン電極216が追加されている。ここで、参照符号201は、半導体基板200の裏面側のN型不純物濃度が高いN+ 領域を示す。
【0026】
このトレンチ型MOSコントロールダイオードの特徴は、ゲート電極が従来のようにゲート酸化膜により半導体基板であるドレイン領域と絶縁されなく、トレンチの底を通じて直接半導体基板200と連結されていることである。したがって、ソース電極214にマイナス、ドレイン電極216にプラスの順方向バイアスを印加すると、ドレイン電極216に印加される電源が直接ゲート電極(ポリシリコン層204と導電層208)に伝達されながらチャンネルを通した電子の流れ222を発生させてスイッチング動作をする。反対に逆方向バイアスを印加すると、電子の流れが発生できるチャンネルが形成されなくて漏洩電流を効果的に遮断できる。従って、このようなトレンチ型MOSコントロールダイオードは、多数キャリア素子のMOSFETを変形させて2つの端子を有するスイッチングダイオードで活用することによって、スイッチング動作が非常に速く、かつ逆電流が非常に少なくて漏洩電流を減少できる。さらに、このようなトレンチ型のゲート電極構造はチャンネルがゲート酸化膜下を経由して形成されなく直線的に形成され、集積度を高めうるので順方向の導通電圧を下げることができる長所が付加的に発生する。
【0027】
図9は、図8の構造で、トレンチ型のゲート電極構造を1つの半導体基板200に複数個所定間隔に並べて形成した時の断面図である。ここで、参照符号224は、トレンチに形成されたゲート酸化膜、ポリシリコン層、導電層を示す。このような複数個のゲート電極は、電子が移動する通路の直進性を高めると同時に、導通電圧を低減させる手段となる。従って、高速スイッチングを実現して逆方向漏洩電流を減らすために、多少高まることがある順方向導通電圧を下げることができる。
【0028】
次いで、図10ないし図14を参照して本発明の第2実施形態によるトレンチ型MOSコントロールダイオードの製造方法を説明する。
図10に示すように、N型の半導体基板200にP型不純物の硼素を1次イオン注入して半導体基板200の表面側にベースウェル領域206を形成する。次いで、燐のようなN型不純物を半導体基板200に高いドーズで2次イオン注入して前記ベースウェル領域206内にN+ のソースウェル領域210を形成する。ここで、参照符号201は、ドレイン領域に用いられる半導体基板200の裏面側のN型不純物濃度が高いN+ 領域を示す。
【0029】
図11に示すように、前記2次イオン注入が終わった半導体基板200にゲート電極を形成するために、フォトレジストを塗布し、写真及び食刻工程を実施して半導体基板200にトレンチ220を形成する。この時、トレンチ220は、前記ベースウェル領域206より深くて半導体基板200の一部にまで到達するように食刻される。次いで、トレンチ220が形成された半導体基板200にゲート酸化膜として使われる酸化膜を形成し、反応性イオン食刻(RIE)を実施してトレンチ220の底部及び半導体基板200の表面にある酸化膜を除去する。従って、ゲート酸化膜202はトレンチ220の両側壁にだけ形成されることになる。
【0030】
図12に示すように、ゲート酸化膜202が形成された半導体基板200にゲート電極としてのポリシリコン層204を被着する。このポリシリコン層204はトレンチ220の両側壁および底部ならびに半導体基板200の表面に形成される。その後、ポリシリコン層204の上部に導電層208、例えばアルミニウム層を厚い厚さで形成してトレンチ220を完全に埋め込む。次いで、前記ポリシリコン層204及び導電層208を半導体基板200の表面が露出されるまでエッチバックして、トレンチ200に埋め込んだゲート電極を形成する。
【0031】
図13に示すように、ポリシリコン層204と導電層208の複合層よりなるゲート電極が形成された半導体基板200上に、酸化膜を材質とする絶縁膜212を一定の厚さで形成する。次いで、絶縁膜212をパターニングして、パターニングされた絶縁膜212がゲート電極の上部を全部覆い、かつソースウェル領域210の一部を露出させるようにする。
【0032】
図14に示すように、絶縁膜212が形成された半導体基板200の上部にアルミニウムのような導電物質を被着してソース電極214を形成する。次いで、ドレイン領域として用いられる半導体基板200の裏面に導電物質を被着してドレイン電極216を形成することによって本発明の第2実施形態によるトレンチ型MOSコントロールダイオードの形成工程を完了する。
【0033】
図15は、従来のPN接合ダイオード及び本発明によるMOSコントロールダイオードの電流逆方向の回復時間を説明するための特性図である。図面でY軸は電圧及び電流のレベルを示し、X軸は時間を示す。図面で参照符号300は電圧の波形を示し、302は電流の波形を示す。従来のPN接合ダイオードの場合には、順方向バイアスを印加すると順方向電圧降下Vfの間順方向電流Ifが流れ、逆方向バイアスVrが印加されると逆方向電流が流れるTrr区間(図面の点線部分)が発生する。しかし、本発明によるMOSコントロールダイオードは素子の動作原理上多数キャリアにより作動するので、少数キャリア蓄積効果によるTrr遅延現象がない長所304を有する。
【0034】
以上本発明の実施の形態を説明した。本発明は上述した実施の形態に限らず、本発明が属する技術的な思想内で当分野の通常知識を有する者により多くの変形が可能である。
【0035】
【発明の効果】
以上のように本発明によると、多数キャリア素子のMOSFETを2つの端子を有するダイオードに変形して、逆方向回復時間Trrの特性を改善するための別の工程を追加しなくて高速のスイッチング動作が可能で、かつ逆方向漏洩電流を減らしうるMOSコントロールダイオードを提供できる。また、このMOSコントロールダイオードが2端子なので集積化が容易で応用回路を簡素化するともできる。さらに、本発明によれば上記のようなMOSコントロールダイオードを容易に製造できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態によるMOSコントロールダイオードの構造及び動作原理を説明するための断面図。
【図2】本発明の第1実施形態によるMOSコントロールダイオードの構造及び動作原理を説明するための断面図。
【図3】本発明の第1実施形態によるMOSコントロールダイオードの構造及び動作原理を説明するための断面図。
【図4】本発明の第1実施形態によるMOSコントロールダイオードの製造方法を説明するための断面図。
【図5】本発明の第1実施形態によるMOSコントロールダイオードの製造方法を説明するための断面図。
【図6】本発明の第1実施形態によるMOSコントロールダイオードの製造方法を説明するための断面図。
【図7】本発明の第1実施形態によるMOSコントロールダイオードの製造方法を説明するための断面図。
【図8】本発明の第2実施形態によるトレンチ型MOSコントロールダイオードの構造及び動作原理を説明するための断面図。
【図9】本発明の第2実施形態によるトレンチ型MOSコントロールダイオードの構造及び動作原理を説明するための断面図。
【図10】本発明の第2実施形態によるトレンチ型MOSコントロールダイオードの製造方法を説明するための断面図。
【図11】本発明の第2実施形態によるトレンチ型MOSコントロールダイオードの製造方法を説明するための断面図。
【図12】本発明の第2実施形態によるトレンチ型MOSコントロールダイオードの製造方法を説明するための断面図。
【図13】本発明の第2実施形態によるトレンチ型MOSコントロールダイオードの製造方法を説明するための断面図。
【図14】本発明の第2実施形態によるトレンチ型MOSコントロールダイオードの製造方法を説明するための断面図。
【図15】従来のPN接合ダイオード及び本発明によるMOSコントロールダイオードの電流逆方向回復時間を説明するための特性図。
【符号の説明】
100 半導体基板
102 ゲート酸化膜
104 ポリシリコン層
106 ベースウェル領域
108 導電層
110 ソースウェル領域
112 絶縁膜
114 ソース電極
116 ドレイン電極
Claims (20)
- ドレイン領域としての第1導電型の半導体基板と、
この半導体基板の表面に形成され、膜の中間に不連続領域があって互いに連結されてない形状で構成されたゲート酸化膜と、
このゲート酸化膜の不連続領域を通じて前記半導体基板と連結されるゲート電極と、
前記互いに連結されてない形状のゲート酸化膜の両側の下部半導体基板に形成された第2導電型のベースウェル領域と、
このベースウェル領域内に形成された第1導電型のソースウェル領域と、
前記ゲート電極を取り囲む絶縁膜と、
前記ソースウェル領域と連結され、前記半導体基板上の全体を取り囲む導電物質よりなるソース電極と、
前記半導体基板の裏面に形成され、導電物質よりなるドレイン電極と、
を含み、前記ソース電極から、前記ソースウェル領域、ベースウェル領域、半導体基板を介して、半導体基板裏面の前記ドレイン電極に対して電流パスが生じることを特徴とするMOSコントロールダイオード。 - 前記ゲート電極はポリシリコン層と導電層の複合層よりなることを特徴とする請求項1に記載のMOSコントロールダイオード。
- 前記ゲート酸化膜は厚さが1000〜2000Åの範囲であることを特徴とする請求項1に記載のMOSコントロールダイオード。
- 前記第1導電型はN型であることを特徴とする請求項1に記載のMOSコントロールダイオード。
- 前記第2導電型はP型であることを特徴とする請求項1に記載のMOSコントロールダイオード。
- 前記絶縁膜はPSGまたはBPSGを使用したことを特徴とする請求項1に記載のMOSコントロールダイオード。
- 第1導電型の半導体基板の表面に膜の中間に不連続領域があって互いに連結されてない形状で構成されたゲート酸化膜を形成する工程と、
前記不連続領域を通じて前記半導体基板と接続されるゲート電極を前記ゲート酸化膜の上に形成する工程と、
前記ゲート電極をマスクとして1次イオン注入を実施して前記半導体基板内に第2導電型のベースウェル領域を形成する工程と、
2次イオン注入を実施して前記ベースウェル領域内に第1導電型のソースウェル領域を形成する工程と、
前記ソースウェル領域を形成する工程後に、ゲート電極領域以外のゲート酸化膜を除去する工程と、
前記ゲート電極領域以外のゲート酸化膜を除去する工程後に、前記ゲート電極を全部取り囲む絶縁膜を形成する工程と、
前記絶縁膜を形成する工程後に、前記ソースウェル領域と連結され、半導体基板上部を取り囲む導電物質よりなるソース電極を形成する工程と、
前記ソース電極を形成した後に、前記半導体基板の裏面に導電物質よりなるドレイン電極を形成する工程と、
を含むことを特徴とするMOSコントロールダイオードの製造方法。 - ドレイン領域としての第1導電型の半導体基板と、
この半導体基板に1次イオン注入を遂行して半導体基板の表面側に構成された第2導電型のベースウェル領域と、
2次イオン注入により前記第2導電型のベースウェル領域内に構成された第1導電型のソースウェル領域と、
前記半導体基板に形成され、深さが前記ソースウェル領域とベースウェル領域より深くて、ベースウェル領域下部の第1導電型の半導体基板の一部にまで到達するように構成されたトレンチと、
このトレンチの両側壁に形成されたゲート酸化膜と、
このゲート酸化膜を有する前記トレンチ内に構成されたゲート電極と、
このゲート電極の上部を全て覆い、かつ前記ソースウェル領域の一部を露出させるように前記半導体基板上に構成された絶縁膜と、
を含んでなることを特徴とするトレンチ型MOSコントロールダイオード。 - 前記露出されたソースウェル領域と前記絶縁膜上に半導体基板を全て覆うようにソース電極が追加して構成されたことを特徴とする請求項8に記載のトレンチ型MOSコントロールダイオード。
- 前記ゲート電極はトレンチの両側壁と底部に一定の厚さに形成されたポリシリコン層と、前記トレンチを完全に埋め込む導電層の複合層よりなることを特徴とする請求項8に記載のトレンチ型MOSコントロールダイオード。
- 前記絶縁膜は酸化膜を使用して構成されたことを特徴とする請求項8に記載のトレンチ型MOSコントロールダイオード。
- 前記トレンチおよびゲート電極は半導体基板に複数個形成されることを特徴とする請求項8に記載のトレンチ型MOSコントロールダイオード。
- 前記第1導電型の半導体基板の裏面に導電物質よりなるドレイン電極が追加して構成されたことを特徴とする請求項8に記載のトレンチ型MOSコントロールダイオード。
- 前記第1導電型はN型であることを特徴とする請求項8に記載のトレンチ型MOSコントロールダイオード。
- 前記第2導電型はP型であることを特徴とする請求項8に記載のトレンチ型MOSコントロールダイオード。
- 第1導電型の半導体基板に1次イオン注入を実施して半導体基板の表面側に第2導電型のベースウェル領域を形成する工程と、
2次イオン注入を実施して前記ベースウェル領域内に第1導電型のソースウェル領域を形成する工程と、
前記ソースウェル領域、前記ベースウェル領域を順次に食刻し、さらに前記半導体基板の一部を食刻してトレンチを形成する工程と、
前記トレンチの両側壁にゲート酸化膜を形成する工程と、
前記トレンチを埋め込んでゲート電極を形成する工程と、
前記ゲート電極が形成された半導体基板上に前記ソースウェル領域の一部を露出させながらゲート電極の上部を全て覆う絶縁膜を形成する工程と、
を含むことを特徴とするトレンチ型MOSコントロールダイオードの製造方法。 - 前記トレンチおよびゲート酸化膜を含むゲート電極は複数個形成されることを特徴とする請求項16に記載のトレンチ型MOSコントロールダイオードの製造方法。
- 前記ゲート電極を形成する工程は、
前記トレンチの両側壁及び底部にポリシリコン層を形成する工程と、
前記ポリシリコン層が形成されたトレンチを完全に埋め込む導電物質を堆積させる工程と、
前記導電物質をエッチバックして半導体基板の表面が現れるように平坦化する工程と、
を含むことを特徴とする請求項16に記載のトレンチ型MOSコントロールダイオードの製造方法。 - 前記絶縁膜を形成した後、前記露出されたソースウェル領域と絶縁膜上に導電物質よりなるソース電極を形成する工程を更に具備することを特徴とする請求項16に記載のトレンチ型MOSコントロールダイオードの製造方法。
- 前記ソース電極を形成した後、前記半導体基板の裏面に導電物質よりなるドレイン電極を形成する工程を更に具備することを特徴とする請求項19に記載のトレンチ型MOSコントロールダイオードの製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970046540A KR100304716B1 (ko) | 1997-09-10 | 1997-09-10 | 모스컨트롤다이오드및그제조방법 |
KR1997P-46540 | 1997-09-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1197716A JPH1197716A (ja) | 1999-04-09 |
JP4294117B2 true JP4294117B2 (ja) | 2009-07-08 |
Family
ID=19521101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15415998A Expired - Fee Related JP4294117B2 (ja) | 1997-09-10 | 1998-06-03 | Mosコントロールダイオード及びその製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US6674123B2 (ja) |
JP (1) | JP4294117B2 (ja) |
KR (1) | KR100304716B1 (ja) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10060428B4 (de) * | 2000-12-05 | 2006-07-06 | Infineon Technologies Ag | Mittels Feldeffekt steuerbares in beide Richtungen sperrendes Halbleiterbauelement und Verfahren zu dessen Herstellung |
DE10063443B4 (de) * | 2000-12-20 | 2005-03-03 | Infineon Technologies Ag | Verfahren zur Herstellung einer Elektrode eines mittels Feldeffekt steuerbaren Halbleiterbauelements und mittels Feldeffekt steuerbares Halbleiterbauelement |
US6893923B2 (en) * | 2001-03-21 | 2005-05-17 | International Rectifier Corporation | Reduced mask count process for manufacture of mosgated device |
CN1520616A (zh) * | 2001-04-11 | 2004-08-11 | ��˹�������뵼�幫˾ | 具有防止基区穿通的横向延伸基区屏蔽区的功率半导体器件及其制造方法 |
US6633063B2 (en) * | 2001-05-04 | 2003-10-14 | Semiconductor Components Industries Llc | Low voltage transient voltage suppressor and method of making |
US7023041B2 (en) | 2003-01-13 | 2006-04-04 | International Business Machines Corporation | Trench capacitor vertical structure |
US7224205B2 (en) * | 2004-07-07 | 2007-05-29 | Semi Solutions, Llc | Apparatus and method for improving drive-strength and leakage of deep submicron MOS transistors |
US7683433B2 (en) * | 2004-07-07 | 2010-03-23 | Semi Solution, Llc | Apparatus and method for improving drive-strength and leakage of deep submicron MOS transistors |
US8247840B2 (en) * | 2004-07-07 | 2012-08-21 | Semi Solutions, Llc | Apparatus and method for improved leakage current of silicon on insulator transistors using a forward biased diode |
US7375402B2 (en) * | 2004-07-07 | 2008-05-20 | Semi Solutions, Llc | Method and apparatus for increasing stability of MOS memory cells |
JP4913336B2 (ja) * | 2004-09-28 | 2012-04-11 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
US7651905B2 (en) * | 2005-01-12 | 2010-01-26 | Semi Solutions, Llc | Apparatus and method for reducing gate leakage in deep sub-micron MOS transistors using semi-rectifying contacts |
US7898297B2 (en) * | 2005-01-04 | 2011-03-01 | Semi Solution, Llc | Method and apparatus for dynamic threshold voltage control of MOS transistors in dynamic logic circuits |
DE102005019157A1 (de) * | 2005-04-25 | 2006-10-26 | Robert Bosch Gmbh | Anordnung von MOSFETs zur Steuerung von demselben |
US7863689B2 (en) * | 2006-09-19 | 2011-01-04 | Semi Solutions, Llc. | Apparatus for using a well current source to effect a dynamic threshold voltage of a MOS transistor |
US20100013009A1 (en) * | 2007-12-14 | 2010-01-21 | James Pan | Structure and Method for Forming Trench Gate Transistors with Low Gate Resistance |
US8207784B2 (en) * | 2008-02-12 | 2012-06-26 | Semi Solutions, Llc | Method and apparatus for MOSFET drain-source leakage reduction |
KR101556929B1 (ko) * | 2009-03-23 | 2015-10-02 | 삼성전자주식회사 | 다이오드 구조체 및 이를 포함하는 저항성 메모리 소자 |
CN101834210A (zh) * | 2010-04-28 | 2010-09-15 | 复旦大学 | 一种凹陷沟道的pnpn场效应晶体管及其制备方法 |
CN107888056B (zh) | 2013-07-10 | 2020-04-17 | 株式会社电装 | 驱动控制装置 |
US9755043B2 (en) * | 2014-12-04 | 2017-09-05 | Shuk-Wa FUNG | Trench gate power semiconductor field effect transistor |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54112179A (en) | 1978-02-23 | 1979-09-01 | Sony Corp | Semiconductor device |
GB2089118A (en) * | 1980-12-10 | 1982-06-16 | Philips Electronic Associated | Field-effect semiconductor device |
JPS598375A (ja) * | 1982-07-05 | 1984-01-17 | Matsushita Electronics Corp | 縦型構造電界効果トランジスタ |
US4568958A (en) * | 1984-01-03 | 1986-02-04 | General Electric Company | Inversion-mode insulated-gate gallium arsenide field-effect transistors |
JPH02146775A (ja) * | 1988-11-28 | 1990-06-05 | Nec Corp | 絶縁ゲート電界効果トランジスタ |
JPH02230765A (ja) * | 1989-03-03 | 1990-09-13 | Seiko Epson Corp | Mos型ダイナミックメモリ素子 |
JPH07105453B2 (ja) * | 1989-07-13 | 1995-11-13 | 株式会社東芝 | 半導体記憶装置のセル構造 |
JPH03109775A (ja) * | 1989-09-25 | 1991-05-09 | Hitachi Ltd | 絶縁ゲート型半導体装置 |
JPH03219677A (ja) * | 1990-01-24 | 1991-09-27 | Fujitsu Ltd | 半導体装置 |
JPH0493084A (ja) * | 1990-08-08 | 1992-03-25 | Matsushita Electron Corp | 半導体装置およびその製造方法 |
JP2941405B2 (ja) * | 1990-10-25 | 1999-08-25 | 株式会社東芝 | 半導体装置 |
JPH04338678A (ja) | 1991-05-15 | 1992-11-25 | Matsushita Electric Works Ltd | 半導体装置 |
JPH05335582A (ja) * | 1992-05-27 | 1993-12-17 | Omron Corp | 縦型mosfet装置およびその製造方法 |
US5558313A (en) * | 1992-07-24 | 1996-09-24 | Siliconix Inorporated | Trench field effect transistor with reduced punch-through susceptibility and low RDSon |
US5430315A (en) * | 1993-07-22 | 1995-07-04 | Rumennik; Vladimir | Bi-directional power trench MOS field effect transistor having low on-state resistance and low leakage current |
JPH07106570A (ja) | 1993-10-05 | 1995-04-21 | Mitsubishi Electric Corp | 半導体装置およびその製造方法 |
JPH08204179A (ja) * | 1995-01-26 | 1996-08-09 | Fuji Electric Co Ltd | 炭化ケイ素トレンチmosfet |
US5689128A (en) * | 1995-08-21 | 1997-11-18 | Siliconix Incorporated | High density trenched DMOS transistor |
KR100192966B1 (ko) * | 1995-12-22 | 1999-07-01 | 윤종용 | 모스 콘트롤 다이오드 및 그 제조방법 |
US5812441A (en) | 1996-10-21 | 1998-09-22 | Micron Technology, Inc. | MOS diode for use in a non-volatile memory cell |
-
1997
- 1997-09-10 KR KR1019970046540A patent/KR100304716B1/ko not_active IP Right Cessation
-
1998
- 1998-06-03 JP JP15415998A patent/JP4294117B2/ja not_active Expired - Fee Related
-
2002
- 2002-01-28 US US10/059,937 patent/US6674123B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
KR100304716B1 (ko) | 2001-11-02 |
US6674123B2 (en) | 2004-01-06 |
JPH1197716A (ja) | 1999-04-09 |
KR19990025080A (ko) | 1999-04-06 |
US20020088989A1 (en) | 2002-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4294117B2 (ja) | Mosコントロールダイオード及びその製造方法 | |
CN102856182B (zh) | 制造绝缘栅极半导体装置的方法及结构 | |
US9385202B2 (en) | Semiconductor device having a patterned gate dielectric | |
US6174773B1 (en) | Method of manufacturing vertical trench misfet | |
JP7024626B2 (ja) | 半導体装置、半導体装置の製造方法 | |
US6815769B2 (en) | Power semiconductor component, IGBT and field-effect transistor | |
US6737704B1 (en) | Transistor and method of manufacturing the same | |
US5897343A (en) | Method of making a power switching trench MOSFET having aligned source regions | |
EP1065710B1 (en) | Semiconductor device having a trench gate and method of manufacturing the same | |
JPH09246552A (ja) | 重畳されたフィールドプレート構造を有する電力半導体装置およびその製造方法 | |
US8471331B2 (en) | Method of making an insulated gate semiconductor device with source-substrate connection and structure | |
US20200020798A1 (en) | Power mosfet with an integrated pseudo-schottky diode in source contact trench | |
EP1425791A2 (en) | Trench dmos transistor with embedded trench schottky rectifier | |
EP1630872B1 (en) | Semiconductor device and its manufacturing method | |
JP2004511910A (ja) | トレンチショットキー整流器が組み込まれたトレンチ二重拡散金属酸化膜半導体トランジスタ | |
JP4456013B2 (ja) | 半導体装置 | |
JP2001308327A (ja) | 絶縁ゲート型半導体装置 | |
US20210273091A1 (en) | Split trench gate super junction power device | |
CN108701713A (zh) | 在垂直功率半导体装置中的源极-栅极区域架构 | |
JPH06196705A (ja) | 逆導通型絶縁ゲートバイポーラトランジスタ及びその製造方法 | |
JPH06169087A (ja) | ショットキーバリアダイオード | |
US5751022A (en) | Thyristor | |
US5728593A (en) | Power insulated-gate transistor having three terminals and a manufacturing method thereof | |
JP2006049455A (ja) | トレンチ型絶縁ゲート半導体装置 | |
KR100518506B1 (ko) | 트랜치 게이트형 전력용 모스 소자 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080527 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090303 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090331 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090408 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120417 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130417 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140417 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |