[go: up one dir, main page]

JP3990974B2 - ピークファクタ低減装置 - Google Patents

ピークファクタ低減装置 Download PDF

Info

Publication number
JP3990974B2
JP3990974B2 JP2002341670A JP2002341670A JP3990974B2 JP 3990974 B2 JP3990974 B2 JP 3990974B2 JP 2002341670 A JP2002341670 A JP 2002341670A JP 2002341670 A JP2002341670 A JP 2002341670A JP 3990974 B2 JP3990974 B2 JP 3990974B2
Authority
JP
Japan
Prior art keywords
circuit
output signal
signal
complex
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002341670A
Other languages
English (en)
Other versions
JP2004179813A (ja
Inventor
一行 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Communication Technologies Ltd
Original Assignee
Hitachi Communication Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Communication Technologies Ltd filed Critical Hitachi Communication Technologies Ltd
Priority to JP2002341670A priority Critical patent/JP3990974B2/ja
Priority to KR20030019369A priority patent/KR100996082B1/ko
Priority to US10/412,247 priority patent/US6999733B2/en
Priority to CNB031107559A priority patent/CN1297165C/zh
Publication of JP2004179813A publication Critical patent/JP2004179813A/ja
Application granted granted Critical
Publication of JP3990974B2 publication Critical patent/JP3990974B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70706Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation with means for reducing the peak-to-average power ratio

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は移動体通信基地局等に用いられる無線送信機のベースバンド信号処理装置、とりわけピークファクタの大きな正規分布に従う信号を取り扱う必要があるCDMA基地局用ベースバンド信号処理装置に関する。
【0002】
【従来の技術】
近年、移動体通信方式として周波数資源の利用効率が高く、広帯域・高多重通信が可能なCDMAが注目されている。CDMA方式では、何チャネルものベースバンド信号が、各々直交する拡散符号によって擬似的に無相関な信号へと拡散され、符号多重化されて送信されるため、多重数が増えると送信I、Q信号は正規分布に近づくことが知られている。正規性を呈する信号は、生起確率は低いながらも平均送信電力に対して10dB以上大きな瞬時ピーク振幅が発生する。このような信号の瞬時最大電力と平均電力の比を、一般的にピークファクタという。
【0003】
正規性信号を無線送信機で送信する場合、大きな瞬時ピーク振幅に対してまでも十分な線形性が確保されていないと、送信周波数帯域外に非線形歪が発生して他システムに対する妨害波となる。その発生量は電波法規によって厳しく規制されている。
【0004】
このような状況下では無線送信機、とりわけ最終段の電力増幅器は平均送信電力を飽和出力電力から十分に下げた状態で運転せざるを得ず、電力効率を十分に上げることができなくなり、結果として装置サイズやランニングコストの増大につながるという点が問題となる。
【0005】
このような問題点を解決するため、電力増幅器を高度に線形化して大出力運転を可能とする、いわゆる歪補償と呼ばれる技術が各種考案されているが、その一方で、ベースバンド信号の分布形そのものを変化させてピーク振幅の発生量を抑えることで増幅器の大出力運転を可能とする方法も存在する。
【0006】
後者の技術の場合、本質的に信号品質が劣化するのであるが、ピーク振幅の発生頻度は確率的に見れば十分低いため信号品質劣化への影響は僅かであり、適用システムに応じて定められた規格以内の劣化であれば許容される。
【0007】
最も簡易な一例としては、リミッタ回路を用いてピーク振幅を切り落とす方法が考えられるが、これでは信号に滑らかでない折れ点が生じるため、スペクトルの広がりを発生させることになる。次の方法として、リミッタ回路出力をフィルタで帯域制限する方法も考えられるが、フィルタによる畳み込みの作用で、ピーク振幅が再生されてしまう場合が生じる。このような問題を解決する技術の従来例として、特許文献1に記載された方式が挙げられる。
【0008】
まず、従来技術について図10を用いて説明する。従来技術の動作波形例を示したものが図11である。入力された白色正規性信号は、まずリミッタ1001によって大振幅成分が切り取られる。これをフィルタ1006で帯域制限する場合、フィルタ1006による平滑化の際に、リミッタ1001で切り取った振幅以上のピーク振幅が再生されてしまう場合がある。これは、フィルタ1006における畳み込みの作用による。そこで、フィルタ1006と同一または類似した特性を持つフィルタ1002を参照フィルタとして用い、この出力信号を振幅制御部1004へと供給する。振幅制御部1004の出力信号は、参照フィルタ1002で再生されたピーク振幅に関して、振幅制御部1004の設定値以上の値を検出すると、設定値を超えた分の振幅に基づき、後段のフィルタ1006で畳み込みが発生する期間、すなわちフィルタ1006のタップ長に相当する期間だけ出力値を低下させる。一方、対向する遅延器1003は、参照フィルタ1002で発生する信号遅延を補正する。遅延された信号は、振幅制御部1004出力に基づき、乗算器1005でその利得が制御されるため、振幅制御部の出力値を適切に設定することにより、フィルタ1006によって再生されるピーク振幅がしきい値を超えないようにすることができる。
【特許文献1】
特開平10−126309号公報
【発明が解決しようとする課題】
以上説明したように、従来の技術では、リミッタ1001による大振幅の切り取りと、振幅制御回路1004による利得低下の2段階の操作でピーク振幅を抑圧する。しかしながら、後者の操作では実際にピーク振幅が発生する時間間隔は極めて僅かであるにも関わらず、畳み込みの影響を阻止するためフィルタ1006のタップ長に相当する期間だけ一律に利得を低下させているため、信号品質の劣化に対する影響が大きなものとなる点が問題となる。また、従来技術においては複数の変調信号と搬送波から成るマルチキャリア信号に対しては考慮がなされていない。
【0009】
【課題を解決するための手段】
本発明は、上記従来技術の問題点を解決するために考案されたものである。本発明では、従来技術のようにフィルタのタップ長に相当する一定区間に渡って一律に信号を変化させるのではなく、ピーク振幅のごく近傍にのみエネルギが集中するような補正信号を生成し、これに基づいてピーク振幅の消去を行うため、信号品質の劣化に対する影響を小さく抑えることができる。
【0010】
具体的には図1に示すように、入力信号を参照フィルタ101へ入力し、帯域制限を行った場合に発生するピーク振幅を観測する。次に振幅制御部104によって参照フィルタ101出力が設定値A0を超過した部分の波形を抽出する。次に抽出波形が極大となる時刻に極大値に比例した振幅を有するインパルス信号を発生させ、入力信号を遅延器102で遅延させてインパルス信号とタイミングを合わせておき、遅延器102出力からインパルス信号を加算器103によって信号減算を行い出力する。
【0011】
これを最終的に帯域制限フィルタ105によって帯域制限すると、線形回路の重ねの理に基づき入力信号によって発生するピーク振幅と、インパルス信号によって発生するインパルス応答振幅の位置と振幅が合致し、位相は反転しているため、ピークを超過した振幅成分が消去されピークファクタを設定値に制限することができる。
【0012】
また、上記処理においてインパルス信号の相殺を行った結果として、ピーク制限が不完全で誤差成分が残留するような場合においても、図2に示すようにピークファクタ低減装置を多段縦続接続することによって、ピーク制限効果を一層高めることができる。
【0013】
【発明の実施の形態】
以下、本発明の詳細を図3に示す第1の実施例と、図6に示すインパルス発生回路の実施例に基づき説明する。図3は本発明によるピークファクタ低減装置を用いたベースバンド信号処理部を表す。
【0014】
図3のピークファクタ低減装置では、まず一様スペクトルを有する正規性ベースバンド複素入力信号の実部Iiと虚部Qiのそれぞれを参照フィルタ101aと101bによって帯域制限する。参照フィルタ101aと101bのインパルス応答は、帯域制限フィルタ105a、105bのインパルス応答と同一もしくは極めて類似しているものとする。参照フィルタ101aと101bで帯域制限された信号はまだ正規性を有している。
【0015】
次に、絶対値回路201では帯域制限された複素信号から実部、虚部の自乗和を計算しその平方根を取ることで瞬時振幅成分を生成する。デッドゾーン回路203では図4の入出力特性に基づき、絶対値回路201出力信号から設定値A0以上の振幅成分を出力する。デッドゾーン回路203を実現するには、例えば、入力信号から設定値A0を減算し、負の出力を強制的にゼロに変更すればよい。デッドゾーン回路203出力はインパルス発生回路へと供給される。
【0016】
インパルス発生回路200の入力信号Rdedは、複素信号の瞬時振幅のピーク部分の波形を抽出したものなので、山形の孤立波が連続するような波形となっている。
【0017】
この波形を微分回路601で微分演算処理する。ここでの微分演算処理とは、連続する2サンプルの差を計算することであり、インパルス応答列が[1、-1]であるような簡単なFIRディジタルフィルタで実現できる。この結果、信号が増加する区間においては正の出力値、減少する区間においては負の出力値が得られる。この出力Rdifを遅延器603で1サンプル遅延し、乗算器604によって元の信号との積をとると、Rdifが正から負に転じた瞬間のサンプルのみが負の出力となり、他は全てゼロまたは正の出力となる。
【0018】
次に負値判定器605によってこれを判定し、負値が入力された場合にのみ正値の単位振幅、すなわち1を出力すれば、これはインパルス信号となる。負値判定器605は、例えば符号ビットを取り出すといった操作で実現できる。負値判定器605出力は、利得回路606によって固定値max(fir)で正規化することで信号Rnegを得る。固定値max(fir)は、図5に示すように帯域制限フィルタ105のインパルス応答の最大値であり、予めプリセットしておけばよい。
【0019】
次に入力信号Rdedを遅延器602で1サンプル遅延させた出力RudlとRnegとの積を乗算器607で求めることで、ピーク振幅に極大値が生じる位置に、極大値に比例する振幅を有するインパルス信号が得られる。
【0020】
一方、参照フィルタ101aと101b出力から絶対値回路201出力を除算器202aと202bで除することで、複素信号If+j Qfの余弦成分と正弦成分が求められる。これを遅延器204aと204bでインパルス発生回路200の処理遅延に相当する時間だけ遅延させてタイミングを合わせておき、乗算器205aと205bでインパルス発生回路200出力信号との積を求めることで複素数化がなされ、複素インパルス信号Ip+j Qpを生成することができる。
【0021】
次に、入力信号をフィルタ101a、101b、インパルス発生回路200の処理遅延に相当する時間だけ遅延器102aと102bで遅延させてタイミングを合わせておき、加算器103aと103bによって複素インパルス信号を減算することでピークファクタ低減処理が完了する。
【0022】
最後に、ピークファクタ低減処理部出力信号を帯域制限フィルタ105aと105bによって帯域制限すると、線形回路における重ねの理に基づき、入力信号が帯域制限されて出現するピーク振幅成分と、複素インパルス信号が帯域制限されて出現するインパルス応答成分の波高値と位置が合致し、位相が反転するため、ピークを超過した振幅成分が抑圧されピークファクタを設定値に制限する効果が得られる。
【0023】
なお、図3に示した振幅制御部104は種々の変形が可能であり、その一例を図15に示す。図15では、図3における除算器202a、202bに代わり、逆数回路1501で逆数を求めた結果をデッドゾーン回路203の出力に乗算器1502で乗算する構成であるが、このように変形しても図3と同様の効果を得ることが可能である。
【0024】
ここで、図7を用いて図15の動作を説明する。図7は図15をシミュレーションすることによって得られた波形の一部である。この例では、デッドゾーン回路の設定値A0を約2.3に設定しており、絶対値回路201出力においては、2箇所において設定値A0超過振幅P1、P2が発生している。
【0025】
次に、インパルス発生回路200の入力は、デッドゾーン回路203で得られる設定値超過分波形を、元の振幅r1、r2で正規化した波形となっている。遅延器602出力は、これを1サンプル遅延させた波形である。
【0026】
微分回路601では、インパルス発生回路200の入力を時間微分した波形が得られる。遅延器603出力は、これを1サンプル遅延させた波形である。
【0027】
利得回路606出力では、微分回路601出力と遅延器603出力が異符号となる位置に波高値1/max(fir)のインパルス信号が得られる。これに遅延器602出力を乗じると、インパルス発生回路の出力信号が得られる。
【0028】
インパルス発生回路200出力信号を、振幅制御部の入力信号If+jQfを遅延させた信号に乗じると、複素信号(If+jQf)P/r/max(fir)となり複素化がなされる。いま、この複素化したインパルス信号を帯域制限フィルタ105で処理した場合を考えると、その出力ではmax(fir)が相殺され、(If+jQf)P/rとなる。さらにその振幅波高値ではrが相殺されPとなり、デッドゾーン回路203の設定値超過振幅Pと一致している。したがって、帯域制限フィルタ105で帯域制限処理を行う前に、加算器103によって予め入力を遅延させた信号と減算しておくことで、線形回路の重ねの理に基づきピーク振幅成分を消去することが可能となる。
【0029】
次に、図8を用いて本発明の第2の実施例について説明する。本実施例では、図3の第1の実施例において、インパルス発生回路200と、これに対応する遅延器204aと204bを省略し、利得回路606による振幅の正規化処理のみを行う場合を示している。
【0030】
図3において複素入力信号のピーク振幅がデッドゾーン回路203の設定値A0に近接しているような場合は、デッドゾーン回路出力はピーク振幅のごく近傍の1サンプル分しか出力されない。したがってデッドゾーン回路出力がすでにインパルス信号となっているため、振幅の正規化処理を行うだけでよく、インパルス発生回路200を省略することで構成を簡略化できる。
【0031】
次に、図9を用いて本発明の第3の実施例について説明する。本実施例は本発明によるピークファクタ低減処理部に、参照フィルタ101a、101b出力の絶対値をとる絶対値回路901aと901bと、絶対値回路901aと901bの和をとる加算器902と、デッドゾーン回路203と同一の設定値A0に基づいて加算器902出力がA0以下であれば振幅制御部104を休止させる制御を行う制御回路903を付加した構成である。
【0032】
振幅制御部104では、絶対値回路201によって複素信号If+jQfの瞬時振幅成分を求めている。このとき、複素信号に関して三角不等式|If|+|Qf|≧|If+jQf|が成立するので、A0≧|If|+|Qf|であればA0≧|If+jQf|が成り立つため絶対値回路201の出力はゼロであり、この状態では振幅制御部を動作させる必要がないため休止させておけばよい。入力信号が正規性であるとすれば全体の動作時間に対して振幅制御部104の動作する必要がある時間比率はごく僅かである。したがって、本発明によりピークファクタ低減処理部での消費電力を低減することが可能となる。
【0033】
次に図12を用いて本発明の第4の実施例を説明する。図12に示す本発明による無線送信機は、少なくとも1つ以上のディジタル変調信号を拡散符号を用いて拡散する拡散部1201と、拡散された信号を多重化する多重化部1202と、多重化部出力信号をオーバサンプルするインタポレータ1203と、本発明によるピークファクタ低減装置100と、ピークファクタ低減装置出力信号を帯域制限する帯域制限フィルタ105と、ディジタル出力信号をアナログ信号に変換するディジタル‐アナログ変換器1204と、アナログ出力信号の平滑化を行うフィルタ1205と、信号帯域をベースバンドから高周波へ変換する周波数変調部1206と、所定の電力まで信号増幅を行う電力増幅器1207と、制御部1208から構成される。
【0034】
ディジタル変調信号が拡散・多重化された結果として、正規分布に従う信号である場合、10dB以上のピークファクタを有することになる。
【0035】
このような性質の信号を、本発明のピークファクタ低減装置100を用いること無しにバックオフ(飽和出力と平均出力の比)が一例として10dBであるような電力増幅器1207で送信する場合、10dBを超過する振幅成分は電力増幅器で飽和するため、出力信号には飽和歪が発生することになる。このとき、一般的に信号のスペクトルが広がるため、広がった部分のスペクトルが送信帯域外、例えば隣接チャネルに対する妨害波となる。この妨害波は送信帯域に極めて近接しているため、フィルタによる除去が困難である。そのため、電力増幅器1207は平均出力を信号のピークファクタに応じて下げ、低歪の状態で運転する必要があり、装置の高効率化を阻害する。
【0036】
一方、本発明の実施例によれば、ピークファクタ低減装置100の働きによってあらかじめピークファクタを10dB以内に低減することで、電力増幅器1207においては振幅が飽和出力に達することがなく、飽和歪の発生を防止することができるため、装置を高効率で運転することが可能となる。
【0037】
また、制御部1208よりピークファクタ低減装置の設定値A0を供給することにより、搭載する電力増幅器1207の特性に応じたきめ細かい制御が可能となる。
【0038】
次に図13を用いて本発明の第5の実施例を説明する。図13に示す本発明による無線送信機は、図12の実施例における帯域制限フィルタ105とディジタル−アナログ変換器1204の間に、電力増幅器1207の非線形入出力特性の逆関数を入出力特性として有するディジタルプリディストーション装置1200を配置することを特徴とする。電力増幅器1207の入出力特性には、出力の飽和以外に単調増加領域で非直線性を有する場合が多い。このような電力増幅器を使用する場合、図12の実施例によって飽和歪の発生を防止することができるが、非直線性に基づく歪が発生する。そのため、電力増幅器1207の非線形入出力特性の逆関数を入出力特性として有するディジタルプリディストーション装置1200を帯域制限フィルタ105とディジタル−アナログ変換器1204の間に配置することにより、飽和歪に対してはピークファクタ低減装置100、非直線歪に対してはディジタルプリディストーション装置1200が作用するため、結果としてピークファクタ以下の振幅成分に対して完全な線形化が可能となり、歪の発生を原理的に防止することができる。
【0039】
ここで、本発明によるピークファクタ低減装置と従来技術のシミュレーション結果について図14を用いて説明する。入力信号は16384ポイントの複素正規分布信号を4倍オーバーサンプルした信号とし、フィルタにはCDMAベースバンドフィルタ用に設計された74タップのフィルタを用い、無処理すなわちオーバーサンプルの後直ちに帯域制限した場合と、従来技術と、本発明に関して、得られた複素信号の絶対値をプロットした。本発明については図2に示す構成を用い、段数は2段で初段には図3の構成、後段には図8の構成を用いている。信号品質の劣化に関しては、本発明と従来技術のどちらも、
sqrt[Σ{(Io-Ii)^2+(Qo-Qi)^2}/N]/ sqrt[Σ{Ii^2+Qi^2}/N]
で表される変調精度が3%の条件に統一した。シミュレーションの結果、従来技術におけるピークファクタが7.90dBであるのに対し、本発明では7.40dBで0.5dBの改善効果が得られ、本発明の有効性が確認された。
【0040】
次に、図16を用いて本発明の第6の実施例を説明する。図16は本発明によるピークファクタ低減装置をマルチキャリアシステムへ拡張した場合の実施例であり、等離調3キャリアシステム時の例を具体的に説明するが、本発明は離調周波数およびキャリア数を特に限定するものではない。
【0041】
まず、3系統のベースバンド複素入力信号をそれぞれ分岐させ、一方を参照フィルタによって帯域制限する。ただし、後段のキャリア重畳によってサンプルレートが不足するのを防止するため、さらにオーバサンプル回路1601による、インタポレーションによりサンプルレートを増加させるオーバサンプル処理と、平滑フィルタ1602による、不要なイメージ周波数を除去する平滑化処理を行う。
【0042】
次に振幅制御部では、マルチキャリア化した信号の振幅成分が設定値A0を超過した部分の波形を抽出し、これが極大となる時点に振幅成分によって波高値を正規化したインパルス信号を発生させる。このインパルス信号に入力信号を乗じることで、複素インパルス信号が得られる。
【0043】
ここで、振幅制御部の構成例について図17を用いて説明する。振幅制御部では、平滑フィルタ出力信号を直交変調器1701によって複素乗算し、キャリア重畳器1702によって加算合成することでマルチキャリア化された単一の複素信号へ変換する。次に、図15と全く同様にその振幅(abs)を取り出す。この振幅情報は、図4に示す入出力特性を有するデッドゾーン回路dzによって、設定値A0の超過分波形のみを取り出した後、振幅の逆数(rcp)を乗じることで正規化を行う。インパルス発生回路impは、正規化されたデッドゾーン回路dz出力波形が極大となる時刻に極大値に比例した振幅を持つインパルス信号を発生させる。インパルス発生回路は図6と同様の構成を用いるが、利得回路606の利得は、帯域制限フィルタ101のインパルス応答最大値をmax(fir)、オーバサンプル回路1601でのオーバサンプルレートをn、平滑フィルタ1602のインパルス応答最大値をmax(fil)として、1/(max(fir) max(fil) n)に設定する。
【0044】
インパルス発生回路出力を入力信号を1サンプル遅延させた信号に乗じると、ピーク振幅に極大値が生じる時刻に、極大値に比例する振幅を有するインパルス信号が得られる。
【0045】
次に、入力信号を遅延器1609で遅延させた信号とインパルス信号減算を行うのであるが、入力信号を遅延させた信号と複素インパルス信号とはサンプルレートが異なっており、そのまま減算することはできないため、ダウンサンプルにより複素インパルス信号のサンプルレートを落とす必要がある。しかしながら、単なるダウンサンプルでは信号がインパルスであるため、パルス発生位置によっては取りこぼしが発生する恐れがある。
【0046】
この対策として、入力複素信号のサンプルレートを予め上げておくとすれば、帯域制限フィルタは高いサンプルレートに対して実現しなくてはならず、フィルタのタップ長をほぼオーバサンプル率倍に増加させる必要が生じ、実現が難しくなってしまう。そのため、多重化部1603を用いた多重化処理をダウンサンプル処理前段に加えることで取りこぼしの問題を回避した。これを図18を用いて説明する。
【0047】
まず、図18(a)は複素インパルス信号である。本来実部、虚部からなる3系統の信号であるため、6個の要素をもつのだが、簡略化して図示している。この複素インパルス信号をタップ係数が[1 1 … 1](n個)であるようなfirフィルタから成る多重化部1603で処理すると、図18(b)に示すように複素インパルス信号がn個連続して出力される。これをダウンサンプル回路1604で1/nにダウンサンプルすると、図18(c)に示すようにn個のうち必ず1つだけを拾うため、取りこぼしの問題を回避することができる。
【0048】
次に図16では、入力信号を遅延器1609で参照フィルタからダウンサンプル1604に至る経路の処理遅延時間だけ遅延させてインパルス信号とタイミングを合わせておき、遅延器1609出力から複素インパルス信号を減算する。
【0049】
この減算結果を最終的に帯域制限フィルタによって帯域制限し、さらにオーバサンプル回路1605によるオーバサンプル処理と平滑フィルタ1606による平滑化処理を行う。搬送波信号を遅延器1610と1611によって、振幅制御部から平滑フィルタ1606へ至る経路の処理遅延時間だけ遅延させておき、平滑フィルタ出力信号を直交変調器1607によって複素乗算し、キャリア重畳器1608によって加算合成することですると、線形回路の重ねの理に基づき3キャリア合成信号のピーク振幅と、インパルス信号によって発生するインパルス応答振幅の位置と振幅が合致し、位相は反転しているため、出力においてはピークを超過した振幅成分が抑圧されピークファクタを設定値に制限することができる。
【0050】
なお、本実施例に示したマルチキャリアシステムへ拡張したピークファクタ低減装置においても、図2と同様にして多段縦続構成にすることにより、ピーク制限効果を一層高めることができる。
【0051】
【発明の効果】
以上説明したように、従来技術ではフィルタのタップ長に相当する期間だけ一律に信号を変化させていたのに対し、本発明ではインパルス性の信号を用いるためピーク振幅を消去する際にはピーク振幅のごく近傍にしか影響を与えず、信号品質の劣化に対する影響を小さく抑えることができる。したがって、従来技術と同等の信号品質劣化では、ピークファクタの低減効果をより大きくできる。また、本発明により、マルチキャリア信号についてもピークファクタの低減が可能となる。
【図面の簡単な説明】
【図1】本発明の第1原理図。
【図2】本発明の第2原理図。
【図3】本発明の第1の実施例。
【図4】デッドゾーン回路203の入出力特性。
【図5】フィルタのインパルス応答例。
【図6】インパルス発生回路の実施例。
【図7】インパルス発生回路の動作波形例。
【図8】本発明の第2の実施例。
【図9】本発明の第3の実施例。
【図10】従来技術。
【図11】従来技術の動作波形例。
【図12】本発明の第4の実施例。
【図13】本発明の第5の実施例。
【図14】シミュレーション結果。
【図15】振幅制御部の変形例。
【図16】本発明の第6の実施例。
【図17】本発明の第6の実施例における振幅制御部。
【図18】本発明の第6の実施例における多重化部の作用。
【符号の説明】
100…ピークファクタ低減装置、101…参照フィルタ、102…遅延器、103…加算器、104…振幅制御部、105…帯域制限フィルタ、101a、102b…参照フィルタ、102a、102b…遅延器、103a、103b…加算器、105a、105b…帯域制限フィルタ、200…インパルス発生回路、201…絶対値回路、202a、202b…除算器、203…デッドゾーン回路、204a、204b…遅延器、205a、205b…乗算器、601…微分回路、602、603…遅延器、604、607…乗算器、605…負値判定器、606…利得回路、901a、901b…絶対値回路、902…加算器、903…制御回路、1001…リミッタ回路、1002…参照フィルタ、1003…遅延器、1004…振幅制御部、1005…乗算器、1006…帯域制限フィルタ、1200…ディジタルプリディストーション装置、1201…拡散部、1202…多重化部、1203…インタポレータ、1204…ディジタル‐アナログ変換器、1205…フィルタ、1206…周波数変調部、1207…電力増幅器、1208…制御部、1208…ベースバンド信号処理部、1501…逆数回路、1502…乗算器、1601、1605…オーバサンプル回路、1602、1606…平滑フィルタ、1603…多重化部、1604…ダウンサンプル回路、1607、1701…直交変調器、1608、1702…キャリア重畳部、1609、1610、1611…遅延器。

Claims (8)

  1. 一様スペクトルを有する2種類の白色ベースバンド信号をそれぞれ実部、虚部とする複素入力信号を帯域制限する参照フィルタと、
    前記参照フィルタの伝播遅延に相当する時間だけ複素入力信号を遅延させる第1の遅延器と、
    前記参照フィルタ出力信号の振幅成分が設定値を超過した場合に超過分に比例する振幅を有する複素インパルス信号を出力する振幅制御部と、
    前記第1の遅延器の出力信号から前記振幅制御部出力信号を減算する減算器とを有し、
    前記振幅制御部は、
    参照フィルタ出力信号の実部、虚部に基づき絶対値を出力する絶対値回路と、
    上記絶対値回路出力信号の設定値超過分を出力するデッドゾーン回路と、
    前記絶対値回路出力信号の逆数を出力する逆数回路と、
    前記デッドゾーン回路出力信号と前記逆数回路出力信号とを乗算した結果に比例した振幅のインパルス信号を発生するインパルス発生回路と、
    該振幅制御部への入力信号を前記インパルス発生回路の処理遅延に応じて遅延させる第2の遅延器と、
    前記インパルス発生回路出力信号を前記第2の遅延器の出力信号に乗ずる第1の乗算器とを有することを特徴とするピークファクタ低減装置。
  2. 2種類のベースバンド信号をそれぞれ実部、虚部とする複数系統の複素入力信号を帯域制限する参照フィルタと、
    前記参照フィルタの出力信号のサンプルレートをインタポレーションにより増加させて出力するオーバサンプル回路と
    前記オーバサンプル回路出力信号に含まれる不要なイメージ周波数を除去する平滑フィルタと、
    複数系統の前記平滑フィルタ出力信号を、複素搬送波信号を用いて複素乗算し、実部及び虚部をそれぞれ加算合成した信号の振幅成分が設定値を超過した場合に超過分に比例する振幅を有する複素インパルス信号を出力する振幅制御部と、
    前記複素インパルス信号の連続する数を前記オーバサンプル回路のオーバサンプル比だけ時間的に増倍させる多重化部と、
    前記多重化部出力信号を前記オーバサンプル回路のサンプルレート増加率だけ間引くことでサンプルレートを低減させるダウンサンプル回路と、
    前記複数系統の複素入力信号を、前記参照フィルタから前記ダウンサンプル回路までの処理系で生じる伝搬遅延に相当する時間だけ遅延させる第1の遅延器と、
    前記第1の遅延器の出力信号から前記ダウンサンプル回路出力信号を減算する減算器とを有することを特徴とするピークファクタ低減装置。
  3. 請求項2記載のピークファクタ低減装置であって、
    前記振幅制御部は、
    複数系統の平滑フィルタ出力信号と複素搬送波信号について複素乗算を行う直交変調器と、
    直交変調器出力を加算合成するキャリア重畳器と,
    キャリア重畳器出力信号の実部、虚部に基づき絶対値を出力する絶対値回路と、
    前記絶対値回路出力信号の設定値超過分を出力するデッドゾーン回路と、
    前記絶対値回路出力信号の逆数を出力する逆数回路と、
    前記デッドゾーン回路出力信号と前記逆数回路出力信号とを乗算した結果に比例した振幅のインパルス信号を発生するインパルス発生回路と、
    該振幅制御部への入力信号を前記インパルス発生回路の処理遅延に応じて遅延させる第2の遅延器と、
    前記インパルス発生回路出力信号を前記第2の遅延器の出力信号に乗ずる第2の乗算器とを有することを特徴とするピークファクタ低減装置。
  4. 請求項1または3記載のピークファクタ低減装置であって、
    前記インパルス発生回路が、
    前記デッドゾーン回路出力信号を1サンプル遅延させる第3の遅延器と、
    前記デッドゾーン回路出力信号の連続する2サンプルの差分をとることで波形微分演算を行う微分回路と、
    前記微分回路出力信号を1サンプル遅延させる第4の遅延器と、
    前記微分回路出力信号と第4の遅延器の出力信号のサンプルごとの積をとる第3の乗算器と、
    前記第3乗算器出力が負値の場合に単位振幅を有するインパルス信号を出力する負値判定器と、
    前記負値判定器出力信号を参照フィルタのインパルス応答最大値で正規化する利得回路と、
    前記利得回路出力信号と第3の遅延器の出力信号のサンプルごとの積をとる第4の乗算器とから構成されることを特徴とするピークファクタ低減装置。
  5. 請求項1−4のうちいずれかに記載のピークファクタ低減装置を多段縦続接続することを特徴とするピークファクタ低減装置。
  6. 2種類のベースバンド信号をそれぞれ実部、虚部とする複数系統の複素入力信号を帯域制限する参照フィルタと、
    前記参照フィルタの出力信号のサンプルレートをインタポレーションにより増加させて出力する第1のオーバサンプル回路と
    前記第1のオーバサンプル回路出力信号に含まれる不要なイメージ周波数を除去する第1の平滑フィルタと、
    複数系統の前記第1の平滑フィルタ出力信号を、複素搬送波信号を用いて複素乗算し、実部及び虚部をそれぞれ加算合成した信号の振幅成分が設定値を超過した場合に超過分に比例する振幅を有する複素インパルス信号を出力する振幅制御部と、
    前記複素インパルス信号の連続する数を前記第1のオーバサンプル回路のオーバサンプル比だけ時間的に増倍させる多重化部と、
    前記多重化部出力信号を前記第1のオーバサンプル回路のサンプルレート増加率だけ間引くことでサンプルレートを低減させるダウンサンプル回路と、
    前記複数系統の複素入力信号を、前記参照フィルタから前記ダウンサンプル回路までの処理系で生じる伝搬遅延に相当する時間だけ遅延させる遅延器と、
    前記遅延器出力信号から前記ダウンサンプル回路出力信号を減算する減算器とを有することを特徴とするピークファクタ低減装置と、
    前記ピークファクタ低減装置の出力信号を帯域制限する帯域制限フィルタと、
    前記帯域制限フィルタの出力信号のサンプルレートをインタポレーションにより増加させる第2のオーバサンプル回路と、
    前記第2のオーバサンプル回路出力信号に含まれる不要なイメージ周波数を除去する第2の平滑フィルタと、
    多系統の平滑フィルタ出力信号を、複素搬送波信号を用いて複素乗算する直交変調器と、
    多系統の直交変調器出力信号を実部毎、虚部毎に加算合成するキャリア重畳器とを有することを特徴とするベースバンド信号処理装置。
  7. 1つ以上のディジタル変調信号を拡散符号を用いて拡散する拡散部と、
    拡散された信号を多重化する多重化部と、
    前記多重化部の出力信号をオーバサンプルするインタポレータと、
    前記インタポレータの出力信号を入力とし、2種類のベースバンド信号をそれぞれ実部、虚部とする複数系統の複素入力信号を帯域制限する参照フィルタと、前記参照フィルタの出力信号のサンプルレートをインタポレーションにより増加させて出力する第1のオーバサンプル回路と、前記第1のオーバサンプル回路出力信号に含まれる不要なイメージ周波数を除去する第1の平滑フィルタと、複数系統の前記第1の平滑フィルタ出力信号を、複素搬送波信号を用いて複素乗算し、実部及び虚部をそれぞれ加算合成した信号の振幅成分が設定値を超過した場合に超過分に比例する振幅を有する複素インパルス信号を出力する振幅制御部と、前記複素インパルス信号の連続する数を前記第1のオーバサンプル回路のオーバサンプル比だけ時間的に増倍させる多重化部と、前記多重化部出力信号を前記第1のオーバサンプル回路のサンプルレート増加率だけ間引くことでサンプルレートを低減させるダウンサンプル回路と、前記複数系統の複素入力信号を、前記帯域制御フィルタから前記ダウンサンプル回路までの処理系で生じる伝搬遅延に相当する時間だけ遅延させる遅延器と、前記遅延器出力信号から前記振幅制御部出力信号を減算する減算器とを有するピークファクタ低減装置と、
    前記ピークファクタ低減装置の出力信号を帯域制限する帯域制限フィルタと、
    前記帯域制限フィルタの出力信号のサンプルレートをインタポレーションにより増加させる第2のオーバサンプル回路と、
    前記第2のオーバサンプル回路出力信号に含まれる不要なイメージ周波数を除去する第2の平滑フィルタと、
    多系統の平滑フィルタ出力信号を、複素搬送波信号を用いて複素乗算する直交変調器と、
    多系統の直交変調器出力信号を実部毎、虚部毎に加算合成するキャリア重畳器と、
    前記キャリア重畳器の出力であるディジタル出力信号をアナログ信号に変換して出力するディジタル−アナログ変換器と、
    前記アナログ出力信号の平滑化を行うフィルタと、周波数変換部と、電力増幅器と、制御部とを有し、
    前記振幅制御部が、前記参照フィルタ出力信号の実部、虚部に基づき絶対値を出力する絶対値回路と、絶対値回路出力信号の所定値超過分を出力するデッドゾーン回路とを有し、前記制御部が前記ピークファクタ低減装置に対して前記デッドゾーン回路の設定値信号を供給することを特徴とする無線送信機。
  8. 請求項7記載の無線送信機であって、前記ディジタル−アナログ変換器よりも前段に、前記電力増幅器の非線形入出力特性の逆関数を入出力特性とするディジタルプリディストーション装置を配置することを特徴とする無線送信機。
JP2002341670A 2002-11-26 2002-11-26 ピークファクタ低減装置 Expired - Fee Related JP3990974B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002341670A JP3990974B2 (ja) 2002-11-26 2002-11-26 ピークファクタ低減装置
KR20030019369A KR100996082B1 (ko) 2002-11-26 2003-03-28 피크팩터 저감장치
US10/412,247 US6999733B2 (en) 2002-11-26 2003-04-14 Peak factor reduction device
CNB031107559A CN1297165C (zh) 2002-11-26 2003-04-15 峰值系数降低装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002341670A JP3990974B2 (ja) 2002-11-26 2002-11-26 ピークファクタ低減装置

Publications (2)

Publication Number Publication Date
JP2004179813A JP2004179813A (ja) 2004-06-24
JP3990974B2 true JP3990974B2 (ja) 2007-10-17

Family

ID=32321976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002341670A Expired - Fee Related JP3990974B2 (ja) 2002-11-26 2002-11-26 ピークファクタ低減装置

Country Status (4)

Country Link
US (1) US6999733B2 (ja)
JP (1) JP3990974B2 (ja)
KR (1) KR100996082B1 (ja)
CN (1) CN1297165C (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050765A (ja) * 2008-08-22 2010-03-04 Japan Radio Co Ltd ピークリミッタ回路

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7295816B2 (en) * 2003-06-30 2007-11-13 Crestcom, Inc. Methods and apparatus for controlling signals
US7251463B2 (en) * 2003-06-30 2007-07-31 Crestcom, Inc. Methods and apparatus for controlling signals
US7142831B2 (en) * 2003-12-18 2006-11-28 Kiomars Anvari Crest factor reduction and amplitude pre-distortion for multi-carrier signals
JP2006042050A (ja) * 2004-07-28 2006-02-09 Nec Corp 送信装置およびピーク低減方法
JP4469685B2 (ja) * 2004-08-25 2010-05-26 富士通株式会社 出力電力誤差吸収回路及び同回路を有するマルチキャリア送信機
JP2008512907A (ja) * 2004-09-07 2008-04-24 フリースケール セミコンダクター インコーポレイテッド 装置およびその制御インターフェース
JP4823013B2 (ja) * 2006-10-18 2011-11-24 株式会社日立製作所 ピークファクタ低減装置およびベースバンド信号処理装置
CN100508512C (zh) * 2005-01-11 2009-07-01 联发科技股份有限公司 应用于正交频分复用系统的脉冲噪声抑制装置及其方法
JP4774953B2 (ja) * 2005-11-28 2011-09-21 株式会社日立製作所 時間インターリーブad変換器
JP4625410B2 (ja) * 2006-01-19 2011-02-02 株式会社日立国際電気 送信機
US7783260B2 (en) * 2006-04-27 2010-08-24 Crestcom, Inc. Method and apparatus for adaptively controlling signals
JP4750652B2 (ja) * 2006-08-30 2011-08-17 株式会社エヌ・ティ・ティ・ドコモ マルチキャリア方式で信号を伝送するための装置及び方法
KR101314254B1 (ko) 2007-02-16 2013-10-02 삼성전자주식회사 Ofdm 송수신 시스템 및 그 방법
JP4823107B2 (ja) * 2007-03-09 2011-11-24 株式会社日立製作所 Ofdm変調装置
JP5125797B2 (ja) * 2008-06-19 2013-01-23 富士通株式会社 振幅抑圧装置および信号送信装置
JP5262361B2 (ja) * 2008-07-03 2013-08-14 富士通株式会社 ピーク抑圧復元方法、送信装置、受信装置、およびピーク抑圧復元システム
US8259846B2 (en) * 2008-07-30 2012-09-04 Motorola Mobility Llc Apparatus and method for generating a multicarrier communication signal having a reduced crest factor
US8103226B2 (en) * 2008-10-28 2012-01-24 Skyworks Solutions, Inc. Power amplifier saturation detection
JP5175751B2 (ja) * 2009-01-21 2013-04-03 株式会社日立製作所 ピークファクタ低減装置および基地局
JP5433327B2 (ja) 2009-07-10 2014-03-05 株式会社日立製作所 ピークファクタ低減装置および基地局
US8824574B2 (en) * 2009-09-11 2014-09-02 Crestcom, Inc. Transmitting unit that reduces PAPR and method therefor
US8185065B2 (en) * 2009-10-15 2012-05-22 Crestcom, Inc. Transmitting unit that reduces PAPR using out-of-band distortion and method therefor
JP5406132B2 (ja) * 2010-07-08 2014-02-05 株式会社日立製作所 ピークファクタ低減装置および無線送信機
JP5990422B2 (ja) * 2012-07-24 2016-09-14 日本無線株式会社 ピーク抑圧回路
US9014319B1 (en) * 2013-11-22 2015-04-21 Xilinx, Inc. Cancellation pulse crest factor reduction
US9806929B2 (en) 2014-12-12 2017-10-31 Intel IP Corporation Communication device with power amplifier crest factor reduction
EP3363171B1 (en) * 2015-10-15 2020-06-03 Telefonaktiebolaget LM Ericsson (PUBL) Method and peak reduction unit for limiting a peak or group of peaks of an aggregated baseband carrier signal in a radio transmitter.
US9848342B1 (en) 2016-07-20 2017-12-19 Ccip, Llc Excursion compensation in multipath communication systems having performance requirements parameters
US11032112B2 (en) * 2019-10-18 2021-06-08 Motorola Solutions, Inc. Multi-carrier crest factor reduction
US11190383B2 (en) * 2020-03-04 2021-11-30 Qualcomm Incorporated Reducing peak-to-average power ratio (PAPR) using peak suppression information messages
US11550027B2 (en) * 2020-05-04 2023-01-10 Nxp B.V. Predistortion technique for joint radar/communication systems
CN112698081B (zh) * 2020-12-10 2023-06-23 北京大华无线电仪器有限责任公司 一种用于交流正弦负载的电流峰值因数计算控制方法
US12007465B2 (en) 2021-10-19 2024-06-11 Nxp B.V. Radar apparatus and method with content embedded in the radar signal

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3548657B2 (ja) 1996-10-17 2004-07-28 株式会社日立製作所 多重信号の送信装置
US6449302B2 (en) * 2000-04-19 2002-09-10 Powerwave Technologies, Inc. System and method for peak power reduction in spread spectrum communications systems
AUPQ820000A0 (en) * 2000-06-20 2000-07-13 Berangi, R. Peak power reduction schemes for multi-code cdma and critically sampled complex gaussian signals
CN1131629C (zh) * 2001-01-18 2003-12-17 清华大学 降低多载波通信系统中信号的峰均功率比的方法和装置
US7095798B2 (en) * 2001-08-02 2006-08-22 Powerwave Technologies, Inc. System and method for post filtering peak power reduction in multi-carrier communications systems
KR101476873B1 (ko) * 2001-08-23 2014-12-26 애플 인크. Co-set와 강하게 코딩된 co-set 식별자를 조합하여 직교 진폭 변조를 행하기 위한 시스템 및 방법
JP3702829B2 (ja) 2001-10-16 2005-10-05 株式会社日立製作所 ピークファクタ低減装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050765A (ja) * 2008-08-22 2010-03-04 Japan Radio Co Ltd ピークリミッタ回路

Also Published As

Publication number Publication date
CN1503586A (zh) 2004-06-09
US6999733B2 (en) 2006-02-14
KR100996082B1 (ko) 2010-11-22
US20040100210A1 (en) 2004-05-27
CN1297165C (zh) 2007-01-24
KR20040047516A (ko) 2004-06-05
JP2004179813A (ja) 2004-06-24

Similar Documents

Publication Publication Date Title
JP3990974B2 (ja) ピークファクタ低減装置
US7839951B2 (en) Dynamic crest factor reduction system
US7466966B2 (en) Method for clipping a wideband radio signal and corresponding transmitter
US7817746B2 (en) Peak factor reduction unit and baseband signal processing device
EP2087586B1 (en) Switched modulation of a radio-frequency amplifier
JP4653724B2 (ja) 信号の帯域外電力を抑圧する送信機
CN101645862B (zh) 一种降低信号峰均比的方法及装置
JP4646845B2 (ja) 送信機
US20040076247A1 (en) Peak-to-average power ratio modifier
EP1360760B1 (en) Amplitude limitation
WO2008018200A1 (fr) Émetteur
WO2003005594A1 (en) System and method for post filtering peak power reduction in communications systems
JP5011317B2 (ja) 信号のピーク・トゥ・アベレージ電力比の低減
JP3702829B2 (ja) ピークファクタ低減装置
JP4288458B2 (ja) 振幅制限回路及びcdma通信装置
EP1331743A1 (en) A method and an electronic circuit for clipping of signals, especially CDMA or OFDM signals, with multiple inputs and outputs
US7639077B2 (en) Method and apparatus for pre-conditioning an electrical signal
EP1405427B1 (en) System and method for post filtering peak power reduction in communications systems
WO2006068554A1 (en) Multi-step non-linear time-discrete processing
JP2013062732A (ja) ピークファクタ低減装置および基地局、無線システム
WO2001099279A1 (en) Signal peak reduction circuit for non-constant envelope modulation signals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees