JP3848756B2 - 一缶二水路給湯器 - Google Patents
一缶二水路給湯器 Download PDFInfo
- Publication number
- JP3848756B2 JP3848756B2 JP27050397A JP27050397A JP3848756B2 JP 3848756 B2 JP3848756 B2 JP 3848756B2 JP 27050397 A JP27050397 A JP 27050397A JP 27050397 A JP27050397 A JP 27050397A JP 3848756 B2 JP3848756 B2 JP 3848756B2
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- water supply
- combustion
- heat exchanger
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 643
- 238000002485 combustion reaction Methods 0.000 claims description 276
- 238000003303 reheating Methods 0.000 claims description 83
- 230000007423 decrease Effects 0.000 claims description 22
- 238000010438 heat treatment Methods 0.000 claims description 14
- 230000003134 recirculating effect Effects 0.000 claims description 2
- 239000008400 supply water Substances 0.000 claims 2
- 238000010304 firing Methods 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000009835 boiling Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002737 fuel gas Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 238000003287 bathing Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Landscapes
- Control For Baths (AREA)
Description
【発明の属する技術分野】
本発明は、給湯熱交換器と非給湯側熱交換器とが一体化され、これら給湯熱交換器と非給湯側熱交換器とを共通に燃焼加熱するバーナが設けられている一缶二水路タイプの給湯器に関するものである。
【0002】
【従来の技術】
図5には一缶二水路給湯器(器具)のシステム構成のモデル例が実線により示されており、この器具は、給湯機能と、非給湯側の機能である風呂の湯張りや追い焚き等の風呂機能とを備えたものである。この器具は、器具ケース1内にバーナ3が設けられ、このバーナ3には該バーナ3へ燃料ガスを導くためのガス供給通路4が接続され、このガス供給通路4には通路の開閉を行う電磁弁5,6と、弁開度によって燃料ガスの供給量を制御する比例弁8とが介設されている。
【0003】
上記バーナ3の上方には給湯熱交換器10が設けられ、この給湯熱交換器10の入側には給水通路11の一端側が接続され、給水通路11の他端側は外部配管を介して水供給源に接続されている。給湯熱交換器10の出側には給湯通路12の一端側が接続され、給湯通路12の他端側は外部配管を介して台所やシャワー等の給湯場所に連通されている。
【0004】
上記給湯熱交換器10の上側には非給湯側熱交換器としての追い焚き熱交換器14が給湯熱交換器10と一体的に設けられ、この追い焚き熱交換器14の入側には戻り管15の一端側が接続され、この戻り管15の他端側は外部配管を介して浴槽17に連通されており、追い焚き熱交換器14の出側には通路16の一端側が接続され、通路16の他端側は循環ポンプ18の吸入口に接続されている。循環ポンプ18の吐出口には往管20の一端側が接続され、往管20の他端側は外部配管を介して浴槽17に連通されている。上記戻り管15と追い焚き熱交換器14と通路16と循環ポンプ18と往管20とにより熱媒体としての浴槽17の浴槽湯水を追い焚き循環させるための非給湯側循環通路である追い焚き循環通路21が構成されている。
【0005】
上記給湯通路12と追い焚き循環通路21を連通接続する湯張り通路22が設けられており、この湯張り通路22には通路の開閉を行う注湯制御弁24が介設されている。
【0006】
なお、図5に示す28は給水通路11を流れる通水流量を検出する水量センサを表し、30は給水通路11の湯水温度を検出する入水サーミスタを表し、31は給湯される湯水温度を検出する給湯サーミスタを表し、32は浴槽水位を水圧により検出する水位センサを表し、33は追い焚き循環通路21の湯水温度を風呂温度として検出する風呂温度センサを表している。
【0007】
この一缶二水路給湯器には給湯や、湯張りや、追い焚きや、保温等の器具運転を制御する制御装置35が設けられ、この制御装置35にはリモコン36が信号接続されている。リモコン36には給湯温度を設定する給湯温度設定手段や、風呂の温度を設定する風呂温度設定手段や、風呂の水位を設定する水位設定手段等が設けられている。
【0008】
上記制御装置35は給湯運転を次のように制御する。例えば、給湯通路12の台所やシャワー等の給湯栓(図示せず)が開栓され、水量センサ28が予め定めた給湯運転作動流量以上の通水流量を検知すると、電磁弁5,6を開けてバーナ3に燃料ガスを供給し、バーナ3の燃焼を開始させ、給湯される湯の温度がリモコン36に設定されている給湯設定温度となるように比例弁8の弁開度を制御して(つまり、バーナ3への供給燃料ガス量を制御して)バーナ3の燃焼熱量制御を行い、給水通路11から供給された水を給湯熱交換器10がバーナ3の燃焼火炎の熱により加熱して湯を作り出し、その湯を給湯通路12を介して給湯する。そして、給湯栓が閉められ、水量センサ28が通水停止を検知したときに、電磁弁5,6を閉弁してバーナ3の燃焼を停止し、給湯運転を終了する。
【0009】
また、湯張り運転を行うときには、注湯制御弁24を開弁し、給湯熱交換器10で上記同様に湯を作り出し、その湯を給湯通路12と湯張り通路22と追い焚き循環通路21とを順に介して浴槽17に注湯する。そして、水位センサ32により検出される浴槽水位がリモコン36に設定されている設定水位に達したときに、注湯制御弁24を閉弁しバーナ3の燃焼を停止して湯張り運転を終了する。
【0010】
さらに、追い焚き運転を行うときには、循環ポンプ18を駆動し、浴槽17から戻り管15と追い焚き熱交換器14と通路16と循環ポンプ18と往管20とを順に介して浴槽17に戻る追い焚き循環経路で浴槽湯水を循環させると共に、バーナ3を燃焼させ該バーナ3の燃焼火炎の熱によって追い焚き熱交換器14で浴槽湯水の追い焚きを行い、風呂温度センサ33により検出される風呂温度がリモコン36に設定されている風呂設定温度に達したときにバーナ3の燃焼を停止し、また、循環ポンプ18を停止して追い焚き運転を終了する。この追い焚き運転時には、通常、できるだけ早く風呂を沸き上げることができるように、バーナ3の燃焼熱量を予め定められた最大燃焼熱量近傍に制御してバーナ3の燃焼を行う。
【0011】
さらに、保温機能が備えられている場合には、例えば、上記追い焚き運転の終了後、予め定めた時間間隔(例えば、30分間隔)毎に循環ポンプ18を駆動し、風呂温度センサ33により風呂の温度を検出し、この検出した風呂の温度が風呂設定温度から予め定めた許容温度を越えて低いときには、バーナ3を燃焼させ、浴槽湯水の追い焚きを行って風呂の湯温を設定温度に高めて風呂の保温を行う。
【0012】
【発明が解決しようとする課題】
ところで、給湯運転と追い焚き運転が共に行われる同時燃焼時には、給湯湯温が予め定められた給湯設定温度となるように給湯運転を優先してバーナ3の燃焼熱量の制御が行われる。一缶二水路給湯器では、上記の如く給湯熱交換器10と追い焚き熱交換器14が一体的になっており、バーナ3の燃焼火炎の熱により給湯熱交換器10と追い焚き熱交換器14が共に加熱される構成となっていることから、給湯設定温度が低く設定された場合のように予め定められた最小燃焼熱量近傍の燃焼熱量でバーナ3の燃焼制御が為されると、必然的に、追い焚き熱交換器14の通水が受け取る熱量が非常に少なくなって風呂を沸き上げるまでに多くの時間を要した。
【0013】
この発明は上記課題を解決するためになされたものであり、その目的は、同時燃焼が行われているときに、給湯設定温度の湯を給湯しながら、風呂を沸き上げるのに要する時間が長くなるのを抑制することができる一缶二水路給湯器を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成させるためにこの発明は次のような構成をもって前記課題を解決する手段としている。すなわち、第1の発明は、給水通路から供給された水を加熱し湯を作り出し該湯を給湯通路に送出する給湯熱交換器と、非給湯側循環通路を通して供給された熱媒体を加熱する非給湯側熱交換器と、上記給湯熱交換器と非給湯側熱交換器は一体化され、一体化された給湯熱交換器と非給湯側熱交換器を共通に燃焼加熱するバーナが設けられており、給湯熱交換器により作られた湯を給湯する給湯運転と、非給湯側熱交換器により熱媒体の加熱を行う非給湯側運転とを行うことができる一缶二水路給湯器において、給水通路と給湯通路間を給湯熱交換器を迂回して連通接続するバイパス通路と;該バイパス通路の途中位置に設けられて該バイパス通路の通水流量を弁開度で可変制御することができるバイパス流量制御手段と;給湯運転と非給湯側運転が共に行われる同時燃焼時にはバーナの燃焼熱量を給湯単独運転時の燃焼熱量よりも増加してバーナの燃焼制御を行う同時燃焼時燃焼熱量増加制御部と;該同時燃焼時燃焼熱量増加制御部によりバーナ燃焼熱量が増加制御されているときには、バイパス流量制御手段の弁開度を開方向に制御して上記同時燃焼時燃焼熱量増加制御部の燃焼熱量増加制御による燃焼熱量増加量に対応した給湯熱交換器の出側の湯水温度の上昇分をバイパス通路から給湯通路に流れ出る水によって低下補正する給湯湯温低下補正制御部と;を設けた構成をもって前記課題を解決する手段としている。
【0015】
第2の発明は、給水通路から供給された水を加熱し湯を作り出し該湯を給湯通路に送出する給湯熱交換器と、追い焚き循環通路を通して供給された浴槽水を加熱し追い焚きを行う追い焚き熱交換器と、上記給湯熱交換器と追い焚き熱交換器は一体化され、一体化された給湯熱交換器と追い焚き熱交換器を共通に燃焼加熱するバーナが設けられており、給湯熱交換器により作られた湯を給湯する給湯運転と、追い焚き熱交換器により浴槽水の追い焚きを行う追い焚き運転とを行うことができる一缶二水路給湯器において、給水通路と給湯通路間を給湯熱交換器を迂回して連通接続するバイパス通路と;該バイパス通路の途中位置に設けられて該バイパス通路の通水流量を弁開度で可変制御することができるバイパス流量制御手段と;給湯運転と追い焚き運転が共に行われる同時燃焼時にはバーナの燃焼熱量を給湯単独運転時の燃焼熱量よりも増加してバーナの燃焼制御を行う同時燃焼時燃焼熱量増加制御部と;該同時燃焼時燃焼熱量増加制御部によりバーナ燃焼熱量が増加制御されているときには、バイパス流量制御手段の弁開度を開方向に制御して上記同時燃焼時燃焼熱量増加制御部の燃焼熱量増加制御による燃焼熱量増加量に対応した給湯熱交換器の出側の湯水温度の上昇分をバイパス通路から給湯通路に流れ出る水によって低下補正する給湯湯温低下補正制御部と;を設けた構成をもって前記課題を解決する手段としている。
【0016】
第3の発明は、給水通路から供給された水を加熱し湯を作り出し該湯を給湯通路に送出する給湯熱交換器と、追い焚き循環通路を通して供給された浴槽水を加熱し追い焚きを行う追い焚き熱交換器と、上記給湯熱交換器と追い焚き熱交換器は一体化され、一体化された給湯熱交換器と追い焚き熱交換器を共通に燃焼加熱するバーナが設けられており、給湯熱交換器により作られた湯を給湯する給湯運転と、追い焚き熱交換器により浴槽水の追い焚きを行う追い焚き運転とを行うことができる一缶二水路給湯器において、給水通路と給湯通路間を給湯熱交換器を迂回して連通接続するバイパス通路と;該バイパス通路の通水流量を弁開度でもって可変制御することができるバイパス流量制御手段と;上記バイパス通路から流れ出た水が合流する湯側の流量を弁開度で可変制御することができる湯側流量制御手段と;給湯運転と追い焚き運転が共に行われる同時燃焼時にはバーナの燃焼熱量を給湯単独運転時の燃焼熱量よりも増加してバーナの燃焼制御を行う同時燃焼時燃焼熱量増加制御部と;該同時燃焼時燃焼熱量増加制御部により燃焼熱量が増加制御されているときには、バイパス流量制御手段の弁開度を開方向に制御し、湯側流量制御手段の弁開度を閉方向に制御して上記バイパス通路から流れ出た水と上記湯側の湯とのミキシング後の湯水温度が予め定められた給湯設定温度となる方向にバイパス通路を流れるバイパス流量と湯側の流量との流量比を制御する流量比制御手段と;を設けた構成をもって前記課題を解決する手段としている。
【0017】
第4の発明は、上記第1又は第2又は第3の発明を構成する同時燃焼時燃焼熱量増加制御部は、バーナ燃焼熱量増加制御に伴ってバイパス流量制御手段の弁開度が開方向に制御される状態でバイパス通路から流れ出た水と湯側の湯とのミキシング後の湯水温度を給湯設定温度に制御することが可能な最大の燃焼熱量を予め定めた燃焼熱量の範囲内で求め、この求めた燃焼熱量でバーナの燃焼制御を行う構成と成し、上記ミキシング後の湯水温度を給湯設定温度に制御することが可能な最大の燃焼熱量は、バイパス流量制御弁を予め定まる最大の開度としたときにミキシング後の湯水温度を給湯設定温度にするために求められた燃焼熱量が予め定めた燃焼熱量の範囲内の最大燃焼熱量以下の時にはその求められた燃焼熱量とし、上記求められた燃焼熱量が予め定めた燃焼熱量の範囲内の最大燃焼熱量よりも大きいときにはその予め定めた燃焼熱量の範囲内の最大燃焼熱量とする構成をもって前記課題を解決する手段としている。
【0018】
第5の発明は、給水通路から供給された水を加熱し湯を作り出し該湯を給湯する給湯熱交換器と、追い焚き循環通路を通して供給された浴槽水を加熱し追い焚きを行う追い焚き熱交換器と、上記給湯熱交換器と追い焚き熱交換器は一体化され、一体化された給湯熱交換器と追い焚き熱交換器を共通に燃焼加熱するバーナと、給水の流量と給水の温度との情報から給水を給湯設定温度に高めるのに要するフィードフォワード燃焼熱量と給湯設定温度に対する給湯温度の差分を補正するのに要するフィードバック燃焼熱量とを併用した比例制御により前記バーナの燃焼熱量制御を行う給湯運転制御部とが設けられており、上記給湯運転制御部の燃焼熱量制御により給湯熱交換器によって湯を作り予め定められた給湯設定温度の湯を給湯する給湯運転と、追い焚き熱交換器により浴槽水の追い焚きを行う追い焚き運転とを行うことができる一缶二水路給湯器において、上記追い焚き循環通路を流れる循環湯水の流量を可変制御することが可能な循環ポンプと;給湯運転と追い焚き運転とが共に行われる同時燃焼時には循環ポンプによって追い焚き循環通路の循環流量を追い焚き単独運転時よりも増加させる同時燃焼時循環流量増加制御部と;が設けられている構成をもって前記課題を解決する手段としている。
【0019】
上記構成の発明において、例えば、同時燃焼時燃焼熱量増加制御部は、同時燃焼時には、バーナ燃焼熱量を給湯単独運転時の燃焼熱量よりも増加させてバーナ燃焼制御を行う。この同時燃焼時燃焼熱量増加制御部による燃焼熱量増加制御により給湯熱交換器を流れる通水温度が上昇するので、給湯熱交換器から非給湯側熱交換器(追い焚き熱交換器)に奪われる追い焚き熱交換器の吸熱量が増加し追い焚き熱交換器を流れる通水が受け取る熱量が増加して風呂の沸き上がりに要する時間が長くなるのが抑制される。
【0020】
また、上記の如く同時燃焼時燃焼熱量増加制御部による燃焼熱量増加制御により給湯熱交換器から流れ出る湯温は上昇するが、給湯湯温低下補正制御部によってバイパス流量制御手段を開方向に制御することでバイパス通路から給湯通路に水が流れ込んで上記給湯熱交換器から流れ出た湯とミキシングされて湯温が低下し、ほぼ給湯設定温度の湯を給湯することが可能である。
【0021】
また、同時燃焼時に同時燃焼時循環流量増加制御部により追い焚き循環通路の循環流量を循環ポンプによって増加制御する場合には、同時燃焼時に、上記同時燃焼時循環流量増加制御部の循環流量増加制御によって追い焚き熱交換器内を流れる循環流量が増加し、この循環流量の増加に起因して給湯熱交換器から追い焚き熱交換器が奪う吸熱量が増加し、上記同様に、風呂の沸き上がりに要する時間が長くなるのが抑制される。
【0022】
上記のように、給湯熱交換器から追い焚き熱交換器に奪われる熱量が増加すると、給湯熱交換器から流れ出る湯温は低下するが、給湯運転制御により自動的に直ちにバーナ燃焼熱量が増加されて上記湯温の低下分は補償されるので、給湯設定温度の湯が供給される。
【0023】
【発明の実施の形態】
以下に、この発明に係る実施形態例を図面に基づき説明する。
【0024】
第1の実施形態例の一缶二水路給湯器は前記図5に示すシステム構成を有し、図1にはこの実施形態例において特徴的な制御構成がブロック図により示されている。なお、この実施形態例の説明において、図5の器具のシステム構成の説明は前述したのでその重複説明は省略する。
【0025】
この第1の実施形態例において特徴的な制御装置35は、図1に示すように、給湯運転制御部37と同時燃焼監視部38と追い焚き運転制御部40と同時燃焼時循環流量増加制御部41と循環流量可変制御部42とを有して構成されている。
【0026】
給湯運転制御部37には前述したような給湯運転を制御するための給湯運転のシーケンスプログラムが予め定め与えられており、給湯運転制御部37は水量センサ28や入水サーミスタ30や給湯サーミスタ31やリモコン36に設定されている給湯設定温度等の情報を取り込み、上記給湯運転のシーケンスプログラムに従って給湯運転を行う。この実施形態例では、給湯運転制御部37は、水量センサ28により検出される流量Qtlの水を入水サーミスタ30により検出される入水温度Tinからリモコン36に設定されている給湯設定温度Tstに高めるのに要するフィードフォワード燃焼熱量Pff(Pff=Qtl・(Tst−Tin)・η(ηは熱効率))と、給湯設定温度Tstに対する給湯熱交換器10から流れ出た給湯サーミスタ31により検出される給湯温度Tout の差分を補正するのに要するフィードバック燃焼熱量Pfb(Pfb=Qtl・(Tst−Tout )・η)とを併用した比例制御によりバーナ3の燃焼熱量制御を行う。
【0027】
追い焚き運転制御部40には追い焚き運転を制御するためのシーケンスプログラムが予め定め与えられており、追い焚き運転制御部40は、追い焚き指令がリモコン36等から発せられると、後述する循環流量可変制御部42によって循環ポンプ18を予め定めた追い焚き単独運転時の駆動量で駆動させ、上記追い焚き運転のシーケンスプログラムに従って前記したような追い焚き運転を行う。
【0028】
循環流量可変制御部42は前記追い焚き運転制御部40から循環ポンプ駆動開始指令を受けると、電力供給源(例えば、商用電源)から循環ポンプ18に電力を供給して循環ポンプ18を駆動させ、また、循環ポンプ18の停止指令を受けると循環ポンプ18への電力供給をストップして循環ポンプ18を停止させると共に、次に示すように循環ポンプ18への供給電力量を可変制御することで追い焚き循環通路11を流れる循環流量を可変制御できる構成を有している。
【0029】
循環ポンプ18への供給電力量が増加すると循環ポンプ18の駆動量が増加して追い焚き循環通路21の循環流量が増加し、また、反対に、循環ポンプ18への供給電力量が減少すると循環ポンプ18の駆動量が減少して追い焚き循環通路21の循環流量が減少することから、循環流量可変制御部42は、循環ポンプ18への供給電力量(つまり、電圧)を例えば位相制御手法等により可変制御して追い焚き循環通路21の循環流量を可変制御している。
【0030】
この実施形態例では、循環流量可変制御部42は、追い焚き運転制御部40から循環ポンプ18の駆動指令を受けると、予め定めた追い焚き単独運転時のポンプ供給電圧(例えば、80V)を循環ポンプ18へ供給して循環ポンプ18を駆動させる。
【0031】
同時燃焼監視部38は、上記給湯運転制御部37と追い焚き運転制御部40の各動作情報を取り込み、該情報に基づき器具が同時燃焼を行っているか否かを監視する。つまり、水量センサ28が給水通路11の通水を検知し、かつ、循環ポンプ18が駆動しているときには、同時燃焼が行われていると検知し、それ以外のときには同時燃焼は行われていないと検知する。この同時燃焼監視部38により同時燃焼が行われていると検知されているときには、給湯運転が優先して行われる。
【0032】
同時燃焼時循環流量増加制御部41は、上記同時燃焼監視部38の監視情報を時々刻々と取り込み、この監視情報に基づき同時燃焼が行われていると検知したときに、循環流量可変制御部42に循環流量アップ指令を発し、循環流量可変制御部42による循環流量増加制御によって循環ポンプ18の駆動量を増加させて追い焚き循環通路21の循環流量を追い焚き単独運転時よりも増加させる。
【0033】
例えば、循環流量可変制御部42は、追い焚き単独運転時よりも予め定めた増加量だけ循環ポンプ18への供給電力量を増加させ(例えば、追い焚き単独運転時のポンプ供給電圧80Vから100Vに増加させ)、循環ポンプ18の駆動量を増加させて追い焚き循環通路21の循環流量を増加する。
【0034】
上記の如く、同時燃焼時に、追い焚き循環通路21の循環流量を増加させることによって、当然に、追い焚き熱交換器14を流れる通水流量が増加し、この追い焚き熱交換器14の通水流量の増加に起因して追い焚き熱交換器14が給湯熱交換器10から受け取る吸熱量が増加するので、追い焚き熱交換器14の通水が受け取る熱量が増加し浴槽水の温度上昇が早まり、このことによって、同時燃焼時に風呂が沸き上がるまでに要する時間が長くなるのを回避することができる。
【0035】
上記の如く追い焚き循環通路21の循環流量を増加することによって給湯熱交換器10から追い焚き熱交換器14に奪われる熱量が増加するので、給湯熱交換器10の通水が受け取る熱量が減少し給湯熱交換器10から流れ出る湯温が低下するが、その湯温低下を直ちに補償するように前記給湯運転制御部37の比例制御によりバーナ3の燃焼熱量が増加されるので、給湯設定温度の湯を供給することができる。
【0036】
この実施形態例によれば、同時燃焼時には、追い焚き循環通路21の循環流量を追い焚き単独運転時よりも増加させる構成としたので、同時燃焼時に、追い焚き単独運転時と同じ循環流量で追い焚き熱交換器14を湯水が流れている場合と比べて、循環流量の増加によって給湯熱交換器10から追い焚き熱交換器14が奪う吸熱量が増加することから、追い焚き熱交換器14の通水の吸熱量が増加し浴槽水の温度上昇が早くなり風呂が沸き上がるまでに要する時間を短縮することができる。
【0037】
また、この実施形態例では、給湯運転制御部37はフィードフォワード燃焼熱量Pffとフィードバック燃焼熱量Pfbとを併用した比例制御によりバーナ3の燃焼熱量制御を行っているので、上記の如く、同時燃焼時循環流量増加制御部41により追い焚き循環通路21の循環流量が増加して給湯熱交換器10から追い焚き熱交換器14へ奪われる吸熱量が増加し、給湯熱交換器10から流れ出る湯温が低下しても、上記フィードバック燃焼熱量Pfbが増加してバーナ3の燃焼熱量が増加制御されることから、上記湯温の低下は直ちに補償され、上記追い焚き循環流量の増加制御の影響を受けることなく給湯設定温度の湯を安定して供給することができる。
【0038】
なお、上記第1の実施形態例では、予め定めた量だけ追い焚き単独運転時のポンプ供給電圧よりも循環ポンプ18へ供給する電圧を増加して追い焚き循環通路21の循環流量を増加させていたが、例えば、風呂温度センサ33により検出される風呂温度と、入水サーミスタ30により検出される入水温度Tinと、給湯設定温度Tstとの組み合わせによって、予め定まる最大燃焼熱量又はその近傍の燃焼熱量でバーナ3の燃焼を行わせたときに給湯設定温度の湯を給湯することができる循環流量を循環ポンプ18の可変可能な駆動量範囲を考慮して求め、その求めた循環流量となるように循環ポンプ18の駆動量を増加させてもよい。
【0039】
以下に、第2の実施形態例を説明する。この実施形態例では、前記図5の実線に示すシステム構成に加えて、同図の点線に示すように、給水通路11と給湯通路12を給湯熱交換器10を迂回して連通接続するバイパス通路25が設けられ、このバイパス通路25にはバイパス流量制御手段26が介設されている。上記バイパス流量制御手段26は上記バイパス通路25を流れる通水流量を弁開度でもって可変制御することが可能な通常閉止状態の流量制御弁であり、弁開度を可変制御するためのギアモータ等の駆動源が備えられている。なお、給湯サーミスタ31は上記バイパス通路25との接続部Xよりも下流側の給湯通路12に接続されており、それ以外の図5のシステム構成は前述したのでその重複説明は省略する。
【0040】
図2にはこの第2の実施形態例において特徴的な制御構成がブロック図により示されており、この図2に示すように、第2の実施形態例に示す制御装置35は、給湯運転を制御する給湯運転制御部37と同時燃焼を監視する同時燃焼監視部38と追い焚き運転を制御する追い焚き運転制御部40とに加えて、給湯湯温低下補正制御部44と、同時燃焼時燃焼熱量増加制御部45とを有して構成されている。なお、上記給湯運転制御部37、同時燃焼監視部38、追い焚き運転制御部40の構成は前記第1の実施形態例に示した給湯運転制御部37、同時燃焼監視部38、追い焚き運転制御部40の構成とそれぞれ同様の構成を有し、ここでは、その重複説明は省略する。
【0041】
同時燃焼時燃焼熱量増加制御部45は同時燃焼監視部38の監視情報を時々刻々と取り込み、この監視情報に基づき同時燃焼が行われていると検知したときには、給湯単独運転時よりも比例弁8の弁開度を開けて給湯単独運転時の燃焼熱量よりもバーナ3の燃焼熱量を増加させる。
【0042】
例えば、同時燃焼時燃焼熱量増加制御部45は、給湯運転制御部37からバーナ3の燃焼熱量の情報を取り込み、該燃焼熱量に対応する比例弁8の比例弁駆動電流(比例弁8の弁開度を制御している電流)よりも予め定めた電流分増加させた比例弁駆動電流を比例弁8に供給し該比例弁8の弁開度を開方向に制御してバーナ3の燃焼熱量を給湯単独運転時よりも増加させる。
【0043】
この燃焼熱量増加制御により、必然的に、追い焚き熱交換器14が燃焼火炎から受け取る熱量が増加すると共に、給湯熱交換器10が燃焼火炎から受け取る熱量も増加し給湯熱交換器10から流れ出る湯温が上昇する。
【0044】
給湯湯温低下補正制御部44は上記同時燃焼時燃焼熱量増加制御部45の動作情報を取り込み、該動作情報により燃焼熱量が増加されたことを検知したときに、次に示すようにバイパス流量制御手段26の弁開度を開方向に制御して上記燃焼熱量増加制御により高められた給湯熱交換器10の出側の湯温の上昇分をバイパス通路25から給水通路11に流れ出る水によって低下補正する。
【0045】
例えば、給湯熱交換器10から流れ出る給湯湯温を検出する給湯出側湯温センサ27を図5の鎖線に示すように設けておき、この給湯出側湯温センサ27により検出される湯温Tdyと給湯設定温度Tstとに基づいて、バイパス流量制御手段26のギアモータ等の駆動源にはV=K・(Tdy−Tst)(ただし、Kは係数)の演算により求まる電圧Vを供給してバイパス流量制御手段26の弁開度を開方向に制御する。
【0046】
なお、上記同時燃焼時燃焼熱量増加制御部45により燃焼熱量増加分に対応した給湯熱交換器10の出側の湯温上昇分をバイパス通路25から流れ出る水によって低下補正するためのバイパス流量制御手段26の弁開度の制御手法は上記以外にも様々な手法が考えられ、ここでは、それら手法のうちの何れの手法を用いてバイパス流量制御手段26の弁開度を制御してもよい。
【0047】
この実施形態例によれば、同時燃焼時には、給湯単独運転時よりもバーナ燃焼熱量を増加させるので、この燃焼熱量増加によって、追い焚き熱交換器14がバーナ3の燃焼火炎から受け取る熱量が増加するだけでなく、上記燃焼熱量増加に伴って給湯熱交換器10を流れる通水の温度も上昇することから、この給湯熱交換器10の通水温度上昇によって給湯熱交換器10から追い焚き熱交換器14が吸熱する熱量が増加し、上記追い焚き熱交換器14が燃焼火炎から受け取る熱量と給湯熱交換器10から受け取る熱量との両方が増加することによって、追い焚き熱交換器14の通水が吸熱する熱量が大幅に増加し、風呂の温度上昇を早めることができ、同時燃焼時に風呂が沸き上がるのに要する時間が長くなることを抑制することができる。
【0048】
また、上記燃焼熱量増加制御により高められた給湯熱交換器10の出側の湯温をバイパス流量制御手段26の弁開度を開方向に制御することで低下補正する構成を備えたので、バーナ3の燃焼熱量が給湯単独運転時よりも増加して給湯熱交換器10の出側の湯温が上昇しても、給湯設定温度の湯を給湯することができる湯温までバイパス通路25から流れ出る水によって下げることができることから、上記の如くバーナ3の燃焼熱量を給湯単独運転時よりも増加させても、給湯設定温度の湯を安定して供給することができる。
【0049】
以下に、第3の実施形態例を説明する。この実施形態例において特徴的なことは、図3に示すように、給水通路11と給湯通路12を給湯熱交換器10を迂回して連通接続するバイパス通路25と、該バイパス通路25に介設されるバイパス流量制御手段26とに加えて、バイパス通路25との接続部Xよりも上流側の給湯通路12に湯側流量制御手段34が設けられていると共に、図4に示すように流量比制御手段46を制御装置35に設けたことを特徴としている。なお、上記以外のシステム構成は前記図5のシステム構成と同様であり、図3ではその図示が省略され、その重複説明も省略する。
【0050】
上記バイパス流量制御手段26は前記第2の実施形態例で述べたバイパス流量制御手段26と同様の構成を有し、通常時には閉止状態に制御される。また、湯側流量制御手段34はバイパス通路25から流れ出た水が合流する湯側の流量Qを弁開度でもって可変制御することができる流量制御弁であり、上記バイパス流量制御手段26と同様に弁開度を制御するためのギアモータ等の駆動源を備えており、通常時には開状態に制御される。
【0051】
この第3の実施形態例に示す制御装置35は、前記第2の実施形態例で述べた給湯湯温低下補正制御部44に代えて、流量比制御手段46を設けた構成を有し、流量比制御手段46以外の構成は前記第2の実施形態例に示した制御装置35の構成と同様であり、図4では流量比制御手段46以外の制御構成要素の図示が省略されており、この実施形態例ではその共通部分の重複説明は省略する。
【0052】
流量比制御手段46は同時燃焼時燃焼熱量増加制御部45の動作情報を時々刻々と取り込み、この動作情報により燃焼熱量増加制御が行われていることを検知したときには、燃焼熱量増加制御により給湯熱交換器10の出側の湯温が上昇していることからバイパス流量制御手段26を開方向に制御してバイパス通路25から給湯通路12に水を流し込んで給湯熱交換器10側からの湯温を低下させると共に、湯側流量制御手段34を閉方向に制御して湯側の流量を減少させ、湯側の湯とバイパス通路25から給湯通路12に流れ出る水とがミキシングした後の湯温が給湯設定温度Tstとなるように湯側の流量Qとバイパス通路25のバイパス流量Qbpの流量比Wを制御する。
【0053】
給湯設定温度の湯を給湯することができるように湯側の流量Qとバイパス流量Qbpの流量比Wを制御する手法は様々な手法が考えられ、この実施形態例では、それら手法のうちの何れの手法を用いて上記流量比制御を行ってもよい。その流量制御手法の一例を以下に説明する。
【0054】
例えば、給湯熱交換器10から流れ出た温度Tdyをもつ流量Qの湯が給湯設定温度Tstに低下するための放出熱量はバイパス通路25から流れ出る入水温度Tinをもつ流量Qbpの水が受け取る熱量と等しく、この熱平衡バランスの関係から湯側の流量Qの湯とバイパス流量Qbpの水とがミキシングした後の湯温が給湯設定温度Tstとなるための湯側の流量Qとバイパス流量Qbpの目標の流量比Wst(Wst=Qbp/Q)を次式(1)により求めることができる。
【0055】
Wst=(Tdy−Tst)/(Tst−Tin)・・・・・(1)
【0056】
上記のことから、給湯熱交換器10から流れ出る湯温を検出する給湯出側湯温センサ27を設けておき、給湯出側湯温センサ27により検出される湯側の湯温Tdyと、リモコン36により設定されている給湯設定温度Tstと、入水サーミスタ30により検出される入水温度Tinと、上式(1)に基づいて、目標流量比Wstを求める。
【0057】
また、湯側の流量Qを検出することができる次に示す湯側流量検出手段を設ける。例えば、バイパス通路25との接続部Yよりも下流側の給水通路11に通水流量を検出することができる湯側流量検出センサを湯側流量検出手段として設け、この湯側流量検出センサにより湯側の流量Qを検出する。又は、バイパス通路25のバイパス流量Qbpを検出することができるバイパス流量検出センサを設け、このバイパス流量検出センサにより検出されるバイパス流量Qbpを水量センサ28により検出される総流量Qtlから差し引いて湯側の流量Q(Q=Qtl−Qbp)を求める湯側流量検出手段を設けてもよい。
【0058】
水量センサ28により検出される総流量Qtlと、上記湯側流量検出手段により検出される湯側の流量Qとに基づき、湯側の流量Qとバイパス流量Qbpの流量比Wを検出する。
【0059】
前記のように求めた目標流量比Wspと、上記検出した流量比Wとに基づき、バイパス流量制御手段26の駆動源にはV26=α・(Wst−W)(αは係数)の演算により求まる電圧V26を供給してバイパス流量制御手段26の弁開度を開方向に制御し、湯側流量制御手段34にはV34=β・(Wst−W)(βは係数)の演算により求まる電圧V34を供給して湯側流量制御手段34の弁開度を閉方向に制御する。
【0060】
同時燃焼時にバーナ3の燃焼熱量が増加制御されたときに、上記のように、バイパス流量制御手段26の弁開度を開方向に制御し、湯側流量制御手段34の弁開度を閉方向に制御して湯側の流量Qとバイパス流量Qbpの流量比Wを制御することによって、給湯湯温をほぼ給湯設定温度に制御することができる。
【0061】
この実施形態例によれば、前記第2の実施形態例と同様に、同時燃焼時には給湯単独運転時よりもバーナ3の燃焼熱量を増加させるので、前記第2の実施形態例と同様に、追い焚き熱交換器14がバーナ3の燃焼火炎から受け取る熱量と給湯熱交換器10から受け取る熱量の両方が増加して追い焚き熱交換器14の通水が受け取る熱量が増加し、風呂が沸き上がるのに要する時間が長くなるのを防止することができる。
【0062】
また、この実施形態例では、バイパス流量制御手段26と湯側流量制御手段34を設け、同時燃焼時に燃焼熱量増加制御が行われたときには、給湯設定温度の湯を給湯することができるように上記バイパス流量制御手段26の弁開度を開方向に、湯側流量制御手段34の弁開度を閉方向にそれぞれ制御して湯側の流量Qとバイパス流量Qbpの流量比を制御する構成としたので、同時燃焼時に燃焼熱量増加制御によって給湯熱交換器10から流れ出る湯温が上昇しても、上記流量比制御により給湯設定温度の湯を安定的に、しかも精度良く供給することができる。さらに、上記バイパス流量制御手段26と湯側流量制御手段34の各弁開度をそれぞれ制御することによって、給湯量の変動を抑制することも可能である。
【0063】
なお、この発明は上記各実施形態例に限定されるものではなく、様々な実施の形態を採り得る。例えば、上記第2や第3の実施形態例では、バイパス流量制御手段26は連続的に又は段階的に弁開度を可変制御することが可能な流量制御弁で構成されていたが、バイパス通路25の通路を開状態又は閉状態のどちらかに制御する電磁弁等をバイパス流量制御手段26として設けてもよい。この場合、通常時にはバイパス流量制御手段26の弁開度を閉止状態に制御し、同時燃焼時には給湯湯温低下補正制御部44によりバイパス流量制御手段26を開状態にし、バイパス通路25から給湯通路12に流れ出る流量Qbpの水によって給湯設定温度Tstに低下させることができる湯側の流量Qの湯の温度を求め、給湯熱交換器10から流れ出る湯温が上記求めた湯温となるようにバーナ3の燃焼熱量を同時燃焼時燃焼熱量増加制御部45によって増加することにより、前記各実施形態例と同様に、同時燃焼時に風呂の沸き上がりが遅くなることを抑制することができ、かつ、給湯設定温度の湯を供給することができる。
【0064】
また、上記第2や第3の実施形態例では、同時燃焼時燃焼熱量増加制御部45による燃焼熱量増加制御によって、給湯単独運転時よりも予め定めた燃焼熱量分だけ増加させていたが、バイパス通路25のバイパス流量制御手段26が開方向に制御される状態でバイパス通路25から流れ出る水と湯側の湯とのミキシング後の湯温を給湯設定温度に制御することが可能な最大の燃焼熱量を予め定めた燃焼熱量の範囲内で求め、この求めた燃焼熱量でバーナ3の燃焼制御を行うようにしてもよい。
【0065】
例えば、バイパス流量制御手段26を予め定まる最大の弁開度に開けたときに、湯側の流量Qの湯と、バイパス通路25から流れ出るバイパス流量Qbpの水とがミキシングした後の湯温が給湯設定温度Tstになるためのバーナ3の燃焼熱量を求め、この求めた燃焼熱量が最大燃焼熱量以下のときには同時燃焼時燃焼熱量増加制御部45により上記求めた燃焼熱量でバーナ燃焼熱量制御を行うと共に、バイパス流量制御手段26を最大弁開度に開制御し、上記求めた燃焼熱量が最大燃焼熱量よりも大きいときには、同時燃焼時燃焼熱量増加制御部45により最大燃焼熱量でバーナ3の燃焼を制御すると共に、前記各実施形態例で述べたように、バイパス流量制御手段26の弁開度や、湯側流量制御手段34が設けられている場合には湯側流量制御手段34の弁開度の制御をも行って、同時燃焼時には、風呂の沸き上がりが遅くなることを防止し、かつ、給湯設定温度の湯を給湯することができるように制御する。
【0066】
さらに、上記第2や第3の実施形態例では、バイパス通路25は1本だけ設けられていたが、複数本設けてもよい。それら複数のバイパス通路25に通路の開閉を行うことができる電磁弁等がバイパス流量制御手段として介設される場合には、上記開弁しているバイパス流量制御手段の数量等によって給湯通路12に流れ込む水量を段階的に可変制御することができるようになる。
【0067】
さらに、上記第2や第3の実施形態例では、バイパス流量制御手段26は通常時には閉止状態であったが、予め定めた微小な弁開度でもって開弁していてもよい。
【0068】
さらに、上記各実施形態例では、図5に示す一缶二水路給湯器を例にして説明したが、この発明は図5に示す一缶二水路給湯器以外の一缶二水路給湯器にも適用することができる。例えば、上記図3の鎖線に示すように、給水通路11と給湯通路12を給湯熱交換器10を迂回して連通接続する開閉弁を持たない常時バイパス通路を設けてもよい。この常時バイパス通路は複数本設けてもよい。このように、常時バイパス通路が設けられる場合には、常時バイパス通路から給湯通路12に流れ出る水を考慮して給湯運転が制御される。
【0069】
また、上記図5に示す一缶二水路給湯器は給湯機能に風呂機能を備えたものであったが、この発明は、給湯機能に風呂機能以外の機能を備えた一缶二水路タイプのものにも適用することが可能である。例えば、上記給湯機能に加えて、図6に示すような暖房機能を備えた一缶二水路タイプの暖房機能付き給湯器にも適用することができる。図6の器具では、給湯熱交換器10に非給湯側熱交換器48が一体的に設けられ、また、タンクからポンプと非給湯側熱交換器8と開閉弁と放熱器を通ってタンクに戻る経路で熱媒体(例えば、エチレングリコールやプロピレングリコール)を循環させるための非給湯側循環通路が形成されている。暖房を行うときには、開閉弁を開弁してポンプを駆動し、該ポンプ駆動によりタンクの熱媒体をポンプを介して非給湯側熱交換器48に供給する。非給湯側熱交換器48に流れ込んだ熱媒体はバーナ燃焼火炎の熱によって加熱され、非給湯側熱交換器48から開閉弁を通って放熱器に至り、放熱器でファン駆動による風によって保有熱量を放熱して上記風を加熱し、この熱風によって室内を暖房する。上記放熱器で放熱した熱媒体はタンクに戻る。なお、図6の器具では、前記図5に示す給湯側のシステム構成を有しているが、図6ではその給湯側のシステム構成の図示を省略している。
【0070】
上記の如く、暖房機能付きの給湯器に本発明を適用した場合には、非給湯側運転である暖房運転と、給湯運転とが共に行われる同時燃焼時に、従来のような給湯運転が優先されたために暖房の風の温度が低下するというような暖房能力の低下の問題を回避することができる上に、もちろん、給湯設定温度の湯を給湯することができる。
【0071】
【発明の効果】
同時燃焼時燃焼熱量増加制御部を備えた構成のものにあっては、同時燃焼時に、同時燃焼時燃焼熱量増加制御部によってバーナ燃焼熱量を給湯単独運転時よりも増加させるので、非給湯側熱交換器又は追い焚き熱交換器がバーナ燃焼火炎から受け取る熱量が増加する上に、上記燃焼熱量増加に起因して給湯熱交換器を流れる湯温が上昇するので給湯熱交換器から非給湯側熱交換器又は追い焚き熱交換器が吸熱する熱量も大幅に増加し、これら熱交換器が受け取る熱量の大幅な増加によって、給湯単独運転時とほぼ同様な燃焼熱量でバーナ燃焼が行われる場合と比べて、例えば、浴槽水の温度上昇が早くなり、風呂が沸き上がるのに要する時間が長くなるのを防止することができる。
【0072】
また、上記構成に加えてバイパス通路と、バイパス流量制御手段と、給湯湯温低下補正制御部とが設けられているものにあっては、上記燃焼熱量増加制御によってバーナの燃焼熱量が増加し給湯熱交換器から流れ出る湯温が上昇するが、上記給湯湯温低下補正制御部によりバイパス流量制御手段が開方向に制御されて上記給湯熱交換器の出側の湯温の上昇分をバイパス通路から給湯通路に流れ出る水によって低下補正するので、給湯設定温度の湯を給湯することができ、同時燃焼時において、例えば、風呂の沸き上がりが遅くなるのを回避することができると共に、給湯設定温度の湯を安定して供給することができるという効果を得ることができる。
【0073】
上記同時燃焼時燃焼熱量増加制御部に加えて、バイパス通路と、バイパス流量制御手段と、湯側流量制御手段と、流量比制御手段とを備えた構成のものにあっては、上記燃焼熱量増加制御により給湯熱交換器の出側の湯温が上昇するが、バイパス流量制御手段の弁開度を開方向に制御し、湯側流量制御手段の弁開度を閉方向に制御してバイパス通路から給湯通路に流れ出る水とバイパス通路から流れ出た水が合流する湯側の湯とのミキシング後の湯水温度が給湯設定温度となる方向にバイパス通路のバイパス流量と湯側の流量の流量比を流量比制御手段によって制御することにより、上記同様に、給湯設定温度の湯を給湯することができ、同時燃焼時において、風呂の沸き上がりが遅くなるのを回避することができると共に、給湯設定温度の湯を安定して供給することができるという効果を得ることができる。
【0074】
上記同時燃焼時燃焼熱量増加制御部は、バイパス流量制御手段の弁開度が開方向に制御される状態でバイパス通路から流れ出る水と湯側の湯とのミキシング後の湯水温度が給湯設定温度に制御することが可能な最大の燃焼熱量を設定の燃焼熱量の範囲内で求め、この求めた燃焼熱量でバーナ燃焼制御を行う構成を備えたものにあっては、同時燃焼時に、可能な限りバーナの予め定まる最大燃焼熱量に近い燃焼熱量、又は、最大燃焼熱量でバーナ燃焼を行わせることができ、同時燃焼時に風呂の沸き上がりが遅くなるのを抑制することができるというより一層の効果を得ることができる。
【0075】
追い焚き循環通路の循環流量を可変制御することが可能な循環ポンプと、同時燃焼時循環流量増加制御部とを設けたものにあっては、同時燃焼時に、同時燃焼時循環流量増加制御部により追い焚き循環流量が循環ポンプによって追い焚き単独運転時よりも増加制御されるので、上記循環流量の増加によって追い焚き熱交換器を流れる通水が給湯熱交換器から吸熱する熱量が増加し、このことによって、同時燃焼時に、風呂の沸き上がりに要する時間が長くなるのを抑制することができる。
【0076】
また、上記の如く、循環流量増加制御に起因して給湯熱交換器から追い焚き熱交換器に吸熱される熱量が増加することによって給湯熱交換器の出側の湯温が低下するが、給湯運転の制御により上記給湯熱交換器の出側の湯温の低下分を補償するためにバーナ燃焼熱量が直ちに増加されるので、上記のように循環流量の増加に伴って給湯熱交換器の出側の湯温が低下しても直ちにバーナの燃焼熱量が増加して給湯設定温度の湯を給湯することができる。
【図面の簡単な説明】
【図1】第1の実施形態例において特徴的な制御構成を示すブロック図である。
【図2】第2の実施形態例において特徴的な制御構成を示すブロック図である。
【図3】第3の実施形態例において特徴的なシステム構成部分を抜き出して示すモデル図である。
【図4】第3の実施形態例において特徴的な流量比制御部の制御構成を示すブロック図である。
【図5】一缶二水路給湯器の一例を示すモデル図である。
【図6】一缶二水路給湯器のその他の一例を示すモデル図である。
【符号の説明】
3 バーナ
10 給湯熱交換器
11 給水通路
12 給湯通路
14 追い焚き熱交換器
18 循環ポンプ
21 追い焚き循環通路
25 バイパス通路
26 バイパス流量制御手段
34 湯側流量制御手段
41 同時燃焼時循環流量増加制御部
44 給湯湯温低下補正制御部
45 同時燃焼時燃焼熱量増加制御部
46 流量比制御手段
Claims (5)
- 給水通路から供給された水を加熱し湯を作り出し該湯を給湯通路に送出する給湯熱交換器と、非給湯側循環通路を通して供給された熱媒体を加熱する非給湯側熱交換器と、上記給湯熱交換器と非給湯側熱交換器は一体化され、一体化された給湯熱交換器と非給湯側熱交換器を共通に燃焼加熱するバーナが設けられており、給湯熱交換器により作られた湯を給湯する給湯運転と、非給湯側熱交換器により熱媒体の加熱を行う非給湯側運転とを行うことができる一缶二水路給湯器において、給水通路と給湯通路間を給湯熱交換器を迂回して連通接続するバイパス通路と;該バイパス通路の途中位置に設けられて該バイパス通路の通水流量を弁開度で可変制御することができるバイパス流量制御手段と;給湯運転と非給湯側運転が共に行われる同時燃焼時にはバーナの燃焼熱量を給湯単独運転時の燃焼熱量よりも増加してバーナの燃焼制御を行う同時燃焼時燃焼熱量増加制御部と;該同時燃焼時燃焼熱量増加制御部によりバーナ燃焼熱量が増加制御されているときには、バイパス流量制御手段の弁開度を開方向に制御して上記同時燃焼時燃焼熱量増加制御部の燃焼熱量増加制御による燃焼熱量増加量に対応した給湯熱交換器の出側の湯水温度の上昇分をバイパス通路から給湯通路に流れ出る水によって低下補正する給湯湯温低下補正制御部と;を設けたことを特徴とする一缶二水路給湯器。
- 給水通路から供給された水を加熱し湯を作り出し該湯を給湯通路に送出する給湯熱交換器と、追い焚き循環通路を通して供給された浴槽水を加熱し追い焚きを行う追い焚き熱交換器と、上記給湯熱交換器と追い焚き熱交換器は一体化され、一体化された給湯熱交換器と追い焚き熱交換器を共通に燃焼加熱するバーナが設けられており、給湯熱交換器により作られた湯を給湯する給湯運転と、追い焚き熱交換器により浴槽水の追い焚きを行う追い焚き運転とを行うことができる一缶二水路給湯器において、給水通路と給湯通路間を給湯熱交換器を迂回して連通接続するバイパス通路と;該バイパス通路の途中位置に設けられて該バイパス通路の通水流量を弁開度で可変制御することができるバイパス流量制御手段と;給湯運転と追い焚き運転が共に行われる同時燃焼時にはバーナの燃焼熱量を給湯単独運転時の燃焼熱量よりも増加してバーナの燃焼制御を行う同時燃焼時燃焼熱量増加制御部と;該同時燃焼時燃焼熱量増加制御部によりバーナ燃焼熱量が増加制御されているときには、バイパス流量制御手段の弁開度を開方向に制御して上記同時燃焼時燃焼熱量増加制御部の燃焼熱量増加制御による燃焼熱量増加量に対応した給湯熱交換器の出側の湯水温度の上昇分をバイパス通路から給湯通路に流れ出る水によって低下補正する給湯湯温低下補正制御部と;を設けたことを特徴とする一缶二水路給湯器。
- 給水通路から供給された水を加熱し湯を作り出し該湯を給湯通路に送出する給湯熱交換器と、追い焚き循環通路を通して供給された浴槽水を加熱し追い焚きを行う追い焚き熱交換器と、上記給湯熱交換器と追い焚き熱交換器は一体化され、一体化された給湯熱交換器と追い焚き熱交換器を共通に燃焼加熱するバーナが設けられており、給湯熱交換器により作られた湯を給湯する給湯運転と、追い焚き熱交換器により浴槽水の追い焚きを行う追い焚き運転とを行うことができる一缶二水路給湯器において、給水通路と給湯通路間を給湯熱交換器を迂回して連通接続するバイパス通路と;該バイパス通路の通水流量を弁開度でもって可変制御することができるバイパス流量制御手段と;上記バイパス通路から流れ出た水が合流する湯側の流量を弁開度で可変制御することができる湯側流量制御手段と;給湯運転と追い焚き運転が共に行われる同時燃焼時にはバーナの燃焼熱量を給湯単独運転時の燃焼熱量よりも増加してバーナの燃焼制御を行う同時燃焼時燃焼熱量増加制御部と;該同時燃焼時燃焼熱量増加制御部により燃焼熱量が増加制御されているときには、バイパス流量制御手段の弁開度を開方向に制御し、湯側流量制御手段の弁開度を閉方向に制御して上記バイパス通路から流れ出た水と上記湯側の湯とのミキシング後の湯水温度が予め定められた給湯設定温度となる方向にバイパス通路を流れるバイパス流量と湯側の流量との流量比を制御する流量比制御手段と;を設けたことを特徴とする一缶二水路給湯器。
- 同時燃焼時燃焼熱量増加制御部は、バーナ燃焼熱量増加制御に伴ってバイパス流量制御手段の弁開度が開方向に制御される状態でバイパス通路から流れ出た水と湯側の湯とのミキシング後の湯水温度を給湯設定温度に制御することが可能な最大の燃焼熱量を予め定めた燃焼熱量の範囲内で求め、この求めた燃焼熱量でバーナの燃焼制御を行う構成と成し、上記ミキシング後の湯水温度を給湯設定温度に制御することが可能な最大の燃焼熱量は、バイパス流量制御弁を予め定まる最大の開度としたときにミキシング後の湯水温度を給湯設定温度にするために求められた燃焼熱量が予め定めた燃焼熱量の範囲内の最大燃焼熱量以下の時にはその求められた燃焼熱量とし、上記求められた燃焼熱量が予め定めた燃焼熱量の範囲内の最大燃焼熱量よりも大きいときにはその予め定めた燃焼熱量の範囲内の最大燃焼熱量とすることを特徴とする請求項1又は請求項2又は請求項3記載の一缶二水路給湯器。
- 給水通路から供給された水を加熱し湯を作り出し該湯を給湯する給湯熱交換器と、追い焚き循環通路を通して供給された浴槽水を加熱し追い焚きを行う追い焚き熱交換器と、上記給湯熱交換器と追い焚き熱交換器は一体化され、一体化された給湯熱交換器と追い焚き熱交換器を共通に燃焼加熱するバーナと、給水の流量と給水の温度との情報から給水を給湯設定温度に高めるのに要するフィードフォワード燃焼熱量と給湯設定温度に対する給湯温度の差分を補正するのに要するフィードバック燃焼熱量とを併用した比例制御により前記バーナの燃焼熱量制御を行う給湯運転制御部とが設けられており、上記給湯運転制御部の燃焼熱量制御により給湯熱交換器によって湯を作り予め定められた給湯設定温度の湯を給湯する給湯運転と、追い焚き熱交換器により浴槽水の追い焚きを行う追い焚き運転とを行うことができる一缶二水路給湯器において、上記追い焚き循環通路を流れる循環湯水の流量を可変制御することが可能な循環ポンプと;給湯運転と追い焚き運転とが共に行われる同時燃焼時には循環ポンプによって追い焚き循環通路の循環流量を追い焚き単独運転時よりも増加させる同時燃焼時循環流量増加制御部と;が設けられていることを特徴とする一缶二水路給湯器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27050397A JP3848756B2 (ja) | 1997-09-17 | 1997-09-17 | 一缶二水路給湯器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27050397A JP3848756B2 (ja) | 1997-09-17 | 1997-09-17 | 一缶二水路給湯器 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1183170A JPH1183170A (ja) | 1999-03-26 |
JP3848756B2 true JP3848756B2 (ja) | 2006-11-22 |
Family
ID=17487169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27050397A Expired - Fee Related JP3848756B2 (ja) | 1997-09-17 | 1997-09-17 | 一缶二水路給湯器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3848756B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113834112B (zh) * | 2021-09-06 | 2024-12-31 | 珠海格力电器股份有限公司 | 换热设备及其控制方法 |
-
1997
- 1997-09-17 JP JP27050397A patent/JP3848756B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1183170A (ja) | 1999-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5140634B2 (ja) | 貯湯式給湯システムとコージェネレーションシステム | |
JP3848756B2 (ja) | 一缶二水路給湯器 | |
JP3972199B2 (ja) | 加熱装置ならびにコージェネレーションシステム | |
JP3730392B2 (ja) | 給湯装置 | |
JP2004125306A (ja) | 貯湯式給湯器 | |
JP2004125307A (ja) | 貯湯式給湯器 | |
JP3872864B2 (ja) | 給湯燃焼装置 | |
JPH11141979A (ja) | 一缶二水路式給湯装置 | |
JP3848728B2 (ja) | 一缶二水路風呂給湯器 | |
JP3859811B2 (ja) | 給湯燃焼装置 | |
JP3908330B2 (ja) | 給湯燃焼装置 | |
JP3862811B2 (ja) | 一缶二水路風呂給湯器 | |
JP3822721B2 (ja) | 一缶二水路風呂給湯器 | |
JP3859829B2 (ja) | 一缶二水路風呂給湯器 | |
JP3754537B2 (ja) | 一缶二水路給湯器 | |
JP2921177B2 (ja) | 風呂釜付給湯機 | |
JP4029249B2 (ja) | 循環水加熱制御方法及び循環水加熱制御装置 | |
JP2921198B2 (ja) | 給湯器付風呂釜の運転制御方法 | |
JP3922795B2 (ja) | 湯張り機能付き給湯器 | |
JP3880119B2 (ja) | 一缶二水路風呂給湯器 | |
JP3859827B2 (ja) | 一缶二水路風呂給湯器 | |
JP2946862B2 (ja) | 給湯器付風呂釜の運転制御方法 | |
JP3776998B2 (ja) | 一缶二水路風呂給湯器 | |
JPH08145463A (ja) | 風呂釜の制御方法 | |
JP3777001B2 (ja) | 一缶二水路式燃焼装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060828 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100901 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110901 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120901 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130901 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |