JP3817836B2 - EXPOSURE APPARATUS, ITS MANUFACTURING METHOD, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD - Google Patents
EXPOSURE APPARATUS, ITS MANUFACTURING METHOD, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD Download PDFInfo
- Publication number
- JP3817836B2 JP3817836B2 JP15198597A JP15198597A JP3817836B2 JP 3817836 B2 JP3817836 B2 JP 3817836B2 JP 15198597 A JP15198597 A JP 15198597A JP 15198597 A JP15198597 A JP 15198597A JP 3817836 B2 JP3817836 B2 JP 3817836B2
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- liquid
- projection optical
- refractive index
- reticle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70341—Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、レチクル上に設けられたデバイスパターンのを感光性基板上に投影する投影光学系を備えた露光装置及び該露光装置を用いた露光方法並びにデバイス製造方法に関する。さらに詳しくは、本発明は投影光学系と感光性基板との間の光路に液体を充填した液浸型露光装置に関する。本発明は、半導体素子、撮像素子(CCD等)、液晶表示素子、または薄膜磁気ヘッド等を製造する際に好適なものである。
【0002】
【従来の技術】
光学系の最終面と像面との間の空間を、ワーキングディスタンスと言うが、従来の露光装置の投影光学系ではワーキングディスタンスは空気で満たされていた。ところで、ICやLSIを製造する過程に於いてシリコンウエハに露光するパターンは、その微細化が常に望まれていて、そのためには露光に用いる光の波長を短くするか、あるいは像側の開口数を大きくする必要がある。光の波長が短くなるにつれ、満足できる結像性能を得つつ露光に満足な光量を確保できるだけの透過率を持つガラス材料は少なくなってくる。
【0003】
そこで像面までの最終媒質を、空気より屈折率の大きい、液体にすることで像側の開口数を大きくすることが提案されていて、そのように液体を用いた投影光学系を持つ露光装置は、液浸型露光装置と呼ばれている。
さて、露光装置においては、投影光学系の結像性能を補正するために、投影光学系の最も物体側の光路或いは最も像側の光路中に、結像性能を調整するための結像性能補正部材を交換可能に設ける技術が知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、液浸型露光装置では、投影光学系と感光性基板との間の光路(ワーキングディスタンス)に液体を満たす構成であるため、結像性能を補正するための部材を配置することが困難である。また、このような結像性能補正部材は、有限の数、現実的な装置の構成を考えると数個程度しか準備することができないため、離散的にしか結像性能を補正できない問題点がある。
【0005】
また、投影光学系の結像性能は所定の許容範囲に収める必要があるが、上述のように結像性能の補正が離散的にしかできなければ、この所定の許容範囲内に収めることが困難となる。特に、露光パターンの微細化や露光面積の増大が求められると、この結像性能の許容範囲が狭くなり、また、レチクルと感光性基板とを走査させつつ露光を行う走査露光方法を行う場合にも結像性能特性の変動幅の許容範囲が狭くなっており、離散的な補正では対応しきれない。
【0006】
また、上述のような結像性能補正部材の交換時において、投影光学系自体の振動が発生するため、結像性能へ悪影響が生じる恐れもある。
そこで、本発明は、連続的な結像性能の補正を振動を伴うことなく可能とすることを第1の目的とする。
また、本発明は、投影光学系の開口数の増大と結像性能を補正することとの両立を第2の目的とする。
【0007】
【課題を解決するための手段】
上述の第1の目的を達成するために、本発明による露光装置は、レチクル上に設けられたパターンを照明する照明光学系と、このパターンの像を感光性基板上に形成する投影光学系とを有し、投影光学系と感光性基板との間の光路中の少なくとも一部分に位置する液体を介して露光を行う露光装置であって、前記液体に添加剤を供給して、前記液体の屈折率を調整する屈折率調整手段を有するものである。
【0008】
ここで、上記請求項2に掲げた好ましい態様によれば、屈折率調整手段は、前記投影光学系の結像性能を補正するように液体の屈折率を調整するものである。
また、本発明による露光装置は、レチクル上に設けられたパターンを照明する照明光学系と、このパターンの像を感光性基板上に形成する投影光学系とを有し、投影光学系と感光性基板との間の光路中の少なくとも一部分に位置する液体を介して露光を行う露光装置であって、投影光学系の結像性能を測定する結像性能測定手段と、前記結像性能を補正するように液体の屈折率を調整する屈折率調整手段とを備えるものである。
【0009】
また、本発明による露光装置は、レチクル上に設けられたパターンを照明する照明光学系と、このパターンの像を感光性基板上に形成する投影光学系とを有し、投影光学系と感光性基板との間の光路中の少なくとも一部分に位置する液体を介して露光を行う露光装置であって、投影光学系の結像性能の変動の要因の状態を検知する変動要因検知手段と、前記結像性能を補正するように液体の屈折率を調整する屈折率調整手段とを備えるものである。
この構成に基づいて、請求項5に掲げた好ましい態様によれば、照明光学系は、前記レチクルに対する照明条件を変更可能に構成され、変動要因検知手段は、照明条件の状態を検知し、屈折率調整手段は、照明条件の変更に応じて、結像性能を補正するように液体の屈折率を調整するものである。
【0010】
そして、請求項6に掲げた好ましい態様によれば、変動要因検知手段は、レチクルの種類を判別するものであり、屈折率調整手段は、レチクルの種類に応じて、結像性能を補正するように液体の屈折率を調整するものである。
また、上述の第2の目的を達成するためには、投影光学系と感光性基板との間の光路の全てを液体で満たすことが好ましい。このとき、本発明による露光装置は、投影光学系と感光性基板との間の光路を前記液体で満たすための側壁と、液体を前記感光性基板ホルダーへ供給すると共に前記感光性基板ホルダーから回収するための供給・回収ユニットとを備え、感光性基板を保持する感光性基板ホルダーをさらに有することが好ましい。
【0011】
また、屈折率調整手段は、液体に屈折率を調整するための添加剤を供給する添加剤供給ユニットと、液体から前記添加剤を回収するための添加剤回収ユニットとを有することが好ましい。
【0012】
【発明の実施の形態】
上述の構成のごとき本発明においては、投影光学系と感光性基板との間の光路中に位置する液体の屈折率を調整することができるため、この屈折率の変化により投影光学系の結像性能を補正することができる。ここで、屈折率調整の手法としては、液体が多物質の混合液体であるとすると、この混合液体の屈折率nは、ローレンツ・ローレンス(Lorentz-Lorenz)の式に従い、
【0013】
【数1】
【0014】
となる。
但し、
【0015】
【数2】
【0016】
である。
例えば液体を水溶液とすると、この水溶液の屈折率が水溶液自体の濃度に応じて変化するため、水溶液へ添加する物質の濃度を増減させれば良い。
これにより、投影光学系の結像性能を補償できる屈折率の値となるように、液体の屈折率を変化させれば、投影光学系の結像性能は良好なものとなる。
【0017】
ここで、屈折率の調整は、例えば投影光学系の収差などの結像性能を測定し、その結果に応じて屈折率を調整しても良く、投影光学系の結像性能の変動に対応している要因の変動を検知して、その結果に応じて屈折率を調整しても良い。
前者の投影光学系の結像性能を測定する手法においては、露光装置の製造時に投影光学系の収差などを測定し、この収差を補償する屈折率の値を液体の屈折率の初期値に設定しても良い。このように製造時の調整の一部として屈折率を調整すれば、製造・調整が容易となる利点がある。また、露光装置自体に収差測定機構などを設けておき、この収差測定機構による収差測定結果に応じて、液体の屈折率を変更しても良い。
【0018】
一方、後者の結像性能の変動に対応する要因の変動としては、レチクルの種類、照明条件の状態、投影光学系を通過する露光エネルギー量などが挙げられる。ここで、レチクルを照明する際の照明条件(σ値、変形照明か否かなど)は、レチクル上に設けられるパターンの種類によって最適なものが決まり、この照明条件が変わると、投影光学系の収差を初めとする結像性能が変化する。そこで、例えばレチクルの種類、照明条件などの要因ごとに、この要因の変動に伴って変化する結像性能を補償するための屈折率の値を予めメモリーなどに記憶させておき、この要因の変動を検知し、記憶された関係に基づいて液体の屈折率を調整すれば良い。また、投影光学系を通過する露光エネルギー量の大小により投影光学系の結像性能が変化する、いわゆる照射変動があるが、この場合においても、露光エネルギー量と、この露光エネルギー量の大小によって変化する結像性能を補償するための屈折率の値を予めメモリーなどに記憶させておき、この要因の変動を検知し、記憶された関係に基づいて液体の屈折率を調整すれば良い。なお、この手法において、メモリーに記憶させる代わりに、所定の計算式で算出しても良い。
【0019】
このように、液体の屈折率を調整することで、投影光学系の結像性能のうち、特に球面収差、像面湾曲の補正に効果的である。
以下、図面を参照して、本発明にかかる実施の形態について説明する。
[第1の実施の形態]
図1は、本発明にかかる第1の実施の形態による露光装置を概略的に示す図である。尚、図1では、XYZ座標系を採用している。
【0020】
図1において、光源Sは、例えば波長248nmの露光光を供給し、この光源Sからの露光光は、照明光学系IL及び反射鏡Mを介してレチクルRをほぼ均一な照度分布のもとで照明する。ここで、本例では光源Sとして、KrFエキシマレーザ光源を用いているが、その代わりに、193nmの露光光を供給するArFエキシマレーザ光源やg線、i線等を供給する高圧水銀ランプ等を用いても良い。また、図1では不図示ではあるが照明光学系ILは、面光源を形成するためのオプティカルインテグレータと、この面光源からの光を集光して被照射面を重畳的に均一照明するためのコンデンサ光学系と、オプティカルインテグレータにより形成される面光源の位置に配置されて面光源の形状を可変にするための可変開口絞りとを有するものである。ここで、面光源の形状としては、光軸から偏心した複数の面光源を持つもの、輪帯形状のもの、円形状であってその大きさがことなるものなどがある。このような照明光学系ILとしては、例えば米国特許第5,329,094号公報や米国特許第5,576,801号公報に開示されているものを用いることができる。
【0021】
そして、レチクルRを通過・回折した露光光は、投影光学系Tを経てウエハW上に達し、ウエハ上には、レチクルRの像が形成される。
ここで、レチクルRは、レチクルローダーRLによって保持され、レチクルローダーRLは任意の時にローダーテーブルLT上を駆動装置T1により、X軸及びY軸上で任意の速度で移動できるように構成されている。ここで、レチクルローダーRLのローダーテーブルLT上での移動速度は、速度センサ−SSで検知され、この速度センサーSSからの出力は、第1制御部CPU1へ伝達される。
【0022】
また、ウエハWは、ウエハテーブルWTにより保持されている。このウエハテーブルWTには、液体LQを溜めるための側壁が設けられている。本例では、この側壁により、ウエハWから投影光学系Tまでの光路の全てが液体LQで満たされる構成となっている。このウエハテーブルWTは、駆動装置T2によりホルダーテーブルHT上でX軸方向及びY軸方向に任意の速度で移動できるように構成されている。
【0023】
ここで、上記の第1制御部CPU1は、レチクルローダーRLのローダーテーブルLT上での移動速度と、投影光学系Tの露光倍率βとからウエハテーブルWTのホルダーテーブル上での移動速度を算出し、駆動装置T2へ伝達する。駆動装置は、第1制御部CPU1から伝達された移動速度に基づいて、ウエハテーブルWTを移動させる。
【0024】
図2は、このウエハテーブルWTの構成を詳細に表した図である。この図2において、投影光学系Tの最もウエハW側の光学部材と、投影光学系Tの金枠との間は、液体LQが浸透してこないように密着しているか、パッキングされている。また、ウエハテーブルWTの底部には、複数の開口が設けられており、これらの開口に接続されている配管Vから減圧することにより、ウエハWはウエハテーブルWTに吸着されている。そして、ウエハテーブルWTには、電極D1,D2が設けられており、これらの電極D1、D2のそれぞれの周囲には、
イオン交換膜I1,I2が設けられている。これらのイオン交換膜I1,I2により、電極D1,D2の周囲と、露光光が液体LQを通過する領域とが区切られる。ここで、電極D1の周囲の雰囲気はイオン交換膜I1と隔壁K1とにより密閉空間となっており、この密閉空間には排気管H1が接続されている。また、電極D2の周囲の雰囲気はイオン交換膜I2と隔壁K2とにより密閉空間となっており、この密閉空間には排気管H2が接続されている。これらの排気管H1、H2は、ともに混合器Kに接続されている。この混合器Kには、電磁弁DVを備えた導入管LDの一端が接続されており、この導入管LDの他端は、ウエハテーブルWTの近傍に位置している。
【0025】
電極D1,D2への印可電圧は図示なき電源供給部から供給され、電源供給部が供給する印可電圧は、第2制御部CPU2により制御される。また、電磁弁DVの開閉に関してもは、第2制御部CPU2が制御する。本例では、これらの電極D1,D2、イオン交換膜I1,I2、隔壁K1,K2、排気管H1,H2、混合器K、電磁弁DV、導入管LD、図示なき電源供給部、第2制御部CPU2が屈折率調整手段を構成している。
【0026】
以下、屈折率調整手段の動作について説明する。以下の説明において、液体LQは、純水に添加剤として塩化水素を加えたものであるとしている。
まず、液体LQの屈折率を下げる場合、第2制御部CPU2は、電源供給部へ指令を送り、電極D1及び電極D2の間に所定の電圧を所定の時間だけ加印する。このとき、陽極となる電極からは酸素気体が発生し、陰極となる電極からは水素と塩素との混合気体が発生する。このとき、液体LQにおける塩化水素濃度が下がるため、上記(1)式からもわかるように、液体LQの屈折率が低下する。ここで、各々の電極D1,D2の近傍で発生した気体は、イオン交換膜I1,I2を通過しないため、排気管H1,H2を介して回収することが可能である。この回収された気体は、混合器Kへ送られる。混合器Kでは、回収された気体(酸素気体、水素気体、塩化水素気体)が混ぜ合わせられ、これより、液体LQよりも高濃度の添加物水溶液が生成される。
【0027】
また、液体LQの屈折率を上げる場合、第2制御部CPU2は、電磁弁DVを開いて高濃度の添加物水溶液を液体LQへ加えるように、電磁弁DVへ指令を送る。これにより、液体LQの屈折率が上昇する。
この構成により、液体LQの屈折率を可変にできる。
さて、第2制御部CPU2に接続されているメモリーM1には、種々の照明条件ごとに対応して屈折率の値がテーブルの形で記憶されている。ここで、屈折率の値は、ある照明条件下において投影光学系Tで生じる収差を補正するために必要な液体LQの屈折率の値である。また、このメモリーM1には、ある時点における液体LQ中の添加物濃度の値が、常に更新される形で保管されている。
【0028】
また、上記の照明光学系ILは、この照明光学系ILが形成する面光源の形状に関する情報を第2制御部CPU2へ伝達するために、第2制御部CPU2と接続されている。ここで、照明条件−本例では面光源の形状−が変化すると、この情報は第2制御部CPU2へ伝達される。このとき、第2制御部CPU2は、伝達された照明条件に対応する屈折率の値をメモリーM1から検索し、その屈折率を実現するための添加物の濃度を上記(1)式から計算する。次に第2制御部CPU2は、メモリーM1に保管されている現在の添加物濃度と、計算された添加物濃度とに従って、現在の添加物濃度を計算された添加物濃度とするように、電極D1,D2あるいは電磁弁DVを制御する。
【0029】
これにより、液体LQの屈折率の値は、液体LQを含めたときの投影光学系Tの収差が補正されるものとなる。
[第2の実施の形態]
第2の実施の形態は、第1の実施の形態における添加物をエチルアルコールとした点が大きく異なる。このエチルアルコールは、感光性基板としてのレジストが塗布されたウエハWのレジスト層を溶解せず、投影光学系Tにおける最もウエハW側の光学部材(液体LQと接する光学部材)及びこの光学部材に施された光学コートへの影響が少ない利点がある。
【0030】
また、第2の実施の形態においては、屈折率調整手段の構成が第1の実施の形態のものとは異なる。以下、図3を参照して屈折率調整手段の構成につき説明する。なお、図3において、図2に示したものと同じ機能を有する部材には、同じ符号を付してある。
第2の実施の形態によるウエハテーブルWTを示す図3において、第1の実施の形態のものとは異なる点は、添加物を液体LQへ供給するための添加物供給管LSと、純水を液体LQへ供給するための純水供給管WSと、液体LQがウエハテーブルWTから溢れないように液体LQを排出する排出管Lとを有する点である。
【0031】
ここで、添加物供給管LS、純水供給管WS及び排出管Lには、添加物及び純水の供給量を調整するための電磁弁DVLS,DVWS及び液体LQの排出量を調整するための電磁弁DVLがそれぞれ設けられており、これらの電磁弁DVLS,DVWS,DVLの開閉は、第2制御部CPU2により制御されている。
第2の実施の形態における屈折率調整時の動作について説明する。
【0032】
まず、液体LQの屈折率を上げる場合、第2制御部CPU2は電磁弁DVLSを制御して、所定の量だけ添加物を液体LQへ加える。このとき、排出管Lから液体LQを所定の量だけ排出する。この排出する液体LQの量は、加えられた添加物の量と同じであることが好ましい。これにより、液体LQ中の添加物濃度が高まり、その屈折率が上昇する。
【0033】
また、液体LQの屈折率を下げる場合、第2制御部CPU2は電磁弁DVWSを制御して、所定の量だけ純水を液体LQへ加える。このとき、排出管Lから液体LQを所定の量だけ排出する。この排出する液体LQの量は、加えられた純水の量と同じであることが好ましい。これにより、液体LQ中の添加物濃度が低くなり、その屈折率が低下する。
【0034】
ここで、加えられる添加物及び純水の量、排出する液体LQの量は、第2制御部CPU2により制御される。なお、メモリーM1内に照明条件の種類に対応して屈折率の値が記憶される点、ある時点における液体LQの添加物濃度の値が保管される点は、上述の第1の実施の形態と同様であり、これらの情報に基づいて、投影光学系Tの収差を補正できる屈折率を実現するための添加物濃度を計算する点も第1の実施の形態と同様である。
【0035】
このようにして、第2の実施の形態における第2制御部CPU2は、メモリーM1に保管されている現在の添加物濃度と、計算された添加物濃度とに従って、現在の添加物濃度を計算された添加物濃度とするように、電磁弁DVLS,DVWS,DVLの開閉を制御する。
これにより、液体LQの屈折率の値は、液体LQを含めたときの投影光学系Tの収差が補正されるものとなる。
[第3の実施の形態]
次に、図4を参照して第3の実施の形態について説明する。第3の実施の形態による露光装置は、収差測定装置を備えている点で上述の第1及び第2の実施の形態とは異なる。なお、図4において、上述の図1〜図3の例と同じ機能を有する部材には同じ符号を付してあり、図1と同様のXYZ座標系を採用している。
【0036】
図4において、光源Sは、波長248nmの露光光を供給し、この光源Sからの露光光は、ビーム整形光学系11により所定形状の断面に整えられた後、第1フライアイレンズ12に入射する。第1フライアイレンズ12の射出側には、複数の光源像からなる2次光源が形成される。この2次光源からの露光光は、リレーレンズ系13F,13Rを経て第2フライアイレンズ15へ入射する。このリレーレンズ系は前群13F及び後群13Rから構成され、これらの前群13F及び後群13Rの間には、被照射面上でのスペックルを防止するための振動ミラー14が配置されている。
【0037】
さて、第2フライアイレンズ15の射出面側には、第1フライアイレンズによる2次光源の像が複数形成され、これが3次光源となる。この3次光源が形成される位置には、所定の形状あるいは所定の大きさを持つ複数の開口絞りを設定できる可変開口絞り16が配置されている。この可変開口絞り16は、例えば図5に示すように、石英などで構成された透明基板上にパターニングされた6つの開口絞り16a〜16eをターレット状に設けたものである。ここで、円形開口を持つ2つの開口絞り16a,16bは、σ値(投影光学系の開口数に対する照明光学系の開口数)を変更するための絞りであり、輪帯形状を持つ2つの開口絞り16c,16dは、互いに輪帯比の異なる絞りである。そして、残りの2つの開口絞り16e,16fは、4つの偏心した開口を有する絞りである。この可変開口絞り16は、可変開口絞り駆動ユニット17により、複数の開口絞り16a〜16fのうち何れか一つが光路内に位置するように駆動される。
【0038】
図4に戻って、可変開口絞り16からの露光光は、コンデンサレンズ系18により集光されてレチクルブラインド19上を重畳的に照明する。レチクルブラインド19は、リレー光学系20F,20Rに関してレチクルRのパターン形成面と共役に配置されており、レチクルブラインド19の開口形状によりレチクルR上での照明領域の形状が決定される。レチクルブラインド19からの露光光は、リレー光学系の前群20F、反射鏡M及びリレー光学系の後群20Rを介してレチクルR上の所定の位置に実質的に均一な照度分布の照明領域を形成する。
【0039】
なお、前述の第1及び第2の実施の形態における照明光学系ILは、この実施の形態に示したビーム整形光学系11〜リレー光学系20F,20Rを適用することもできる。
さて、レチクルRは、レチクルローダ−RL上に載置されており、このレチクルローダ−RLは、ホルダーテーブルLT上で図中XY方向及びZ軸を中心とした回転方向(θ方向)に移動可能となっている。このレチクルローダ−RLには、移動鏡RIMが設けられており、レチクル干渉計RIは、レチクルローダ−RLのXY方向及びθ方向の位置を検出する。また、レチクルローダ−RLは、レチクルローダ−駆動ユニットRLDによりXY方向及びθ方向へ駆動される。ここで、レチクル干渉計RIからの出力は、第1制御部CPU1へ伝達され、第1制御部CPU1は、レチクルローダ−駆動ユニットRLDを制御する構成となっている。
【0040】
また、図示なきレチクルストッカーからの搬送路の途中には、レチクルRに設けられたバーコードを読みとるためのバーコードリーダーBRが設けられている。このバーコードリーダーBRが読みとったレチクルRの種類に関する情報は、第2制御部CPU2へ伝達される。ここで、第2制御部CPU2に接続されているメモリーM1には、レチクルRの種類ごとに最適な照明条件に関する情報と、レチクルRの種類ごとに最適な液体LQの屈折率の値とが記憶されている。
【0041】
レチクルRの下側には、所定の縮小倍率|β|を有する投影光学系Tが設けられており、この投影光学系Tの最もウエハ面側の光学部材とウエハWとの間には、液体LQが介在している。投影光学系Tは、この液体LQを介してウエハ面上にレチクルRの縮小像を形成する。
ウエハWは、ウエハテーブルWTに吸着固定されており、このウエハテーブルWTは、ウエハテーブルWT自体のZ軸方向への移動やティルト(Z軸に対する傾き)を行わせるためのZアクチュエータZD1,ZD2,ZD3を介して、定盤に対してXY方向に移動可能なウエハステージWTSに取り付けられている。このウエハステージWTSは、ウエハステージ駆動ユニットWDにより駆動される。また、ウエハテーブルの側壁は鏡面加工が施されており、この部分がウエハ干渉計WIの移動鏡となっている。ここで、ウエハステージ駆動ユニットWDの駆動は上述の第1制御部CPU1で制御され、ウエハ干渉計WIからの出力は第1制御部CPU1へ伝達される構成となっている。
【0042】
また、投影光学系Tには、投影光学系TとウエハWとの間のZ方向の距離を測定するためのフォーカスセンサAFが設けられている。このフォーカスセンサAFは、投影光学系TにおけるウエハW側に近い光学素子を介してウエハ面上に光を照射し、かつウエハで反射された光を上記光学素子を介して受光し、その受光位置により投影光学系TとウエハWとの間のZ方向の距離を測定するものである。このようなフォーカスセンサAFの構成は、例えば特開平6-66543号公報に開示されている。
【0043】
さて、第3の実施の形態においても、添加物保管部LSTに貯蔵される高濃度の添加物水溶液を液体LQへ供給するための添加物供給管LSと、純水保管部WSTに貯蔵される純水を液体LQへ供給するための純水供給管WSとを備えており、添加物供給管LS及び純水供給管WSには、添加物水溶液及び純水の供給量を調整するための電磁弁DVLS,DVWSが設けられている。また、ウエハテーブルWTには、液体LQがウエハテーブルから溢れないように液体LQを排出するための排出管Lが設けられており、この排出管Lには、液体LQの排出量を調整するための電磁弁が設けられている。これらの電磁弁DVLS,DVWS,DVLの開閉は、上述の第2の実施の形態と同様に、第2制御部CPU2により制御されている。
【0044】
また、ウエハテーブルWT上には、投影光学系の収差を測定するための収差測定部ASと、液体LQの添加物濃度を検出するための添加物濃度検出部DSとが設けられている。ここで、収差測定部ASとしては、例えば特開平6-84757号公報に開示されているものを用いることができる。ここで、収差測定部AS及び添加物濃度検出部DSからの出力は、第2制御部CPU2へ伝達される。また、添加物濃度検出部DSからの出力は、第2制御部CPU2を介してメモリーM1へある時点における液体LQの添加物濃度の値として保管される。
【0045】
次に、第3の実施の形態の動作について説明する。
まず、図示なきレチクルストッカーからレチクルRが取り出されてレチクルローダ−RL上に載置される途中に、バーコードリーダーBRは、レチクルRに設けられているバーコードを読み取り、その情報を第2制御部CPU2へ伝達する。第2制御部CPU2は、メモリーM1に記憶されているレチクルRの種類に対応した照明条件に関する情報を読み出し、その情報に従って、可変開口絞り駆動ユニット17を制御して開口絞り16a〜16fのうちの所定の一つを光路内に位置させる。また、第2制御部CPU2は、メモリーM1に記憶されている液体LQの屈折率の値に基づいて、その屈折率を実現するための添加物の濃度を上記(1)式から計算する。その後、添加物濃度検出部DSにより検出されてメモリーM1に保管されている現在の添加物濃度と、計算された添加物濃度とに従って、現在の添加物濃度を計算された添加物濃度とするように、電磁弁DVLS,DVWS,DVLの開閉を制御する。
【0046】
これにより、液体LQの屈折率の値は、液体LQを含めたときの投影光学系Tの収差が補正されるものとなる。この後、フォーカスセンサAFによりウエハWのZ方向の位置及びティルトを検出して、ウエハWが所要の位置になるようにZアクチュエータZD1,ZD2,ZD3を駆動する。この状態において、光源Sからの露光光を照明光学系を介してレチクルRへ導き、第1制御部CPU1は、レチクル干渉計RI及びウエハ干渉計WIによりレチクルR及びウエハWの位置を検出しつつ、レチクルローダ−駆動ユニットRLD及びウエハステージ駆動ユニットWDを駆動させ、レチクルR及びウエハWを投影光学系Tの投影倍率|β|の速度比の元で移動させる。これにより、レチクルR上のパターンは、良好な結像状態のもとでウエハW上へ転写される。
【0047】
さて、投影光学系Tの結像性能(収差など)は、常に一定ではなく、温度変化や大気圧変化、投影光学系Tが露光光を吸収することによる温度上昇などにより変化する場合がある。そこで、第3の実施の形態では、収差測定部ASにより実際の投影光学系Tの収差(結像性能)を測定し、この測定結果に基づいて液体LQの屈折率の値を調整する構成としている。
【0048】
具体的には、第3の実施の形態では、メモリーM1内に投影光学系の収差値に対応させた形で、その収差を補正できる液体LQの屈折率の値が記憶されている。そして、収差測定部ASにより検出された投影光学系Tの収差は、第2制御部CPU2へ伝達される。第2制御部CPU2は、メモリーM1内に記憶されている液体LQの屈折率の値を読み出し、この屈折率の値になるように添加物濃度を上記(1)式より求め、液体LQがその添加物濃度となるように電磁弁DVLS,DVWS,DVLの開閉を制御する。
【0049】
この構成により、投影光学系Tの環境変化(温度変化、大気圧変動、露光光吸収による変動)があってもその結像性能を良好に維持することができる。なお、この収差測定部ASによる測定は、常時行う必要はなく、所定の周期ごとに行えば良い。
[第4の実施の形態]
次に図6を参照して、第4の実施の形態について説明する。第4の実施の形態は、投影光学系とウエハとの間の光路の全てを液体で満たす構成ではなく、この光路の一部を液体で満たす構成としたものである。
【0050】
図6(a),(b)において、図1〜3に示した第1及び第2の実施の形態と同じ機能を有する部材には同じ符号を伏してある。図6(a),(b)に示す第4の実施の形態では、ウエハホルダ−WTの側壁により液体LQを溜める代わりに、露光光を透過させる材料(例えば石英など)で構成された容器C1,C2中に液体LQを満たす構成が前述の第1及び第2の実施の形態とは異なる。この構成により、前述の第1及び第2の実施の形態が有していた効果のうち、開口数増大または実効的焦点深度拡大の効果はないものの、連続的に投影光学系Tの収差(結像性能)調整が可能となる効果は有している。
【0051】
なお、この第4の実施の形態において、液体LQが入れられている容器C1,C2を投影光学系Tと一体に設けても良い。
以上の第1〜第4の実施の形態では、液体LQとして純水を用いたが純水に限られることはない。
【0052】
【発明の効果】
以上に示したように本発明によれば、投影光学系の結像性能を振動なく連続的に調整をすることができる。また、開口数の増大(或いは実効的な焦点深度の拡大)と結像性能の調整とを両立させることが可能となる。
【図面の簡単な説明】
【図1】本発明の第1及び第2の実施の形態にかかる露光装置を全体的に示す概略図である。
【図2】本発明の第1の実施の形態にかかる露光装置の要部を示す断面図である。
【図3】本発明の第2の実施の形態にかかる露光装置の要部を示す断面図である。
【図4】本発明の第3の実施の形態にかかる露光装置を示す概略図である。
【図5】本発明の第3の実施の形態にかかる露光装置の一部を示す概略図である。
【図6】本発明の第4の実施の形態にかかる露光装置の要部を示す断面図である。
【符号の説明】
S…光源 T2…駆動装置
IL…照明光学系 M1…メモリー
M…反射板 V…減圧管
T…投影光学系 D1、D2…電極
W…ウエハ I1,I2…イオン交換膜
LQ…液体 K1,K2…隔壁
R…レチクル H1,H2…配管
RL…レチクルローダー L…排出管
LT…ローダーテーブル LD…導入管
SS…センサー WS…純水供給管
WT…ウエハテーブル LS…添加物供給管
T1…駆動装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exposure apparatus provided with a projection optical system for projecting a device pattern provided on a reticle onto a photosensitive substrate, an exposure method using the exposure apparatus, and a device manufacturing method. More particularly, the present invention relates to an immersion type exposure apparatus in which a liquid is filled in an optical path between a projection optical system and a photosensitive substrate. The present invention is suitable for manufacturing a semiconductor element, an image pickup element (CCD or the like), a liquid crystal display element, a thin film magnetic head, or the like.
[0002]
[Prior art]
The space between the final surface of the optical system and the image plane is called working distance. In the projection optical system of the conventional exposure apparatus, the working distance is filled with air. By the way, in the process of manufacturing an IC or LSI, it is always desired to make a pattern exposed on a silicon wafer finer. For this purpose, the wavelength of light used for exposure is shortened, or the numerical aperture on the image side. Need to be larger. As the wavelength of light becomes shorter, the number of glass materials having a transmittance sufficient to secure a sufficient amount of light for exposure while obtaining satisfactory imaging performance decreases.
[0003]
Therefore, it has been proposed to increase the numerical aperture on the image side by making the final medium up to the image plane a liquid having a refractive index greater than that of air, and an exposure apparatus having a projection optical system using such a liquid. Is called an immersion type exposure apparatus.
In the exposure apparatus, in order to correct the imaging performance of the projection optical system, the imaging performance correction for adjusting the imaging performance in the most object side optical path or the most image side optical path of the projection optical system. A technique is known in which members are replaceably provided.
[0004]
[Problems to be solved by the invention]
However, since the immersion type exposure apparatus is configured to fill the liquid in the optical path (working distance) between the projection optical system and the photosensitive substrate, it is difficult to arrange a member for correcting the imaging performance. is there. In addition, since there are only a limited number of such imaging performance correction members that can be prepared in consideration of a realistic apparatus configuration, there is a problem that the imaging performance can be corrected only discretely. .
[0005]
In addition, the imaging performance of the projection optical system needs to be within a predetermined allowable range. However, if the imaging performance can be corrected only discretely as described above, it is difficult to keep the imaging performance within the predetermined allowable range. It becomes. In particular, when a finer exposure pattern or an increased exposure area is required, the allowable range of the imaging performance is narrowed, and when performing a scanning exposure method in which exposure is performed while scanning a reticle and a photosensitive substrate. However, the allowable range of fluctuation range of the imaging performance characteristics is narrow, and it cannot be handled by discrete correction.
[0006]
Further, when the imaging performance correcting member is replaced as described above, the projection optical system itself vibrates, which may adversely affect the imaging performance.
Therefore, a first object of the present invention is to enable continuous image forming performance correction without vibration.
The second object of the present invention is to achieve both the increase in the numerical aperture of the projection optical system and the correction of the imaging performance.
[0007]
[Means for Solving the Problems]
In order to achieve the first object, an exposure apparatus according to the present invention includes an illumination optical system that illuminates a pattern provided on a reticle, and a projection optical system that forms an image of the pattern on a photosensitive substrate. An exposure apparatus that performs exposure through a liquid located in at least a part of an optical path between the projection optical system and the photosensitive substrate, Supplying an additive to the liquid; It has a refractive index adjusting means for adjusting the refractive index of the liquid.
[0008]
Here, according to a preferred aspect recited in claim 2, the refractive index adjusting means adjusts the refractive index of the liquid so as to correct the imaging performance of the projection optical system.
An exposure apparatus according to the present invention includes an illumination optical system that illuminates a pattern provided on a reticle, and a projection optical system that forms an image of the pattern on a photosensitive substrate. An exposure apparatus that performs exposure through a liquid located in at least a part of an optical path between a substrate and an image forming apparatus, an image forming performance measuring unit that measures an image forming performance of a projection optical system, and the image forming performance is corrected. In this way, a refractive index adjusting means for adjusting the refractive index of the liquid is provided.
[0009]
An exposure apparatus according to the present invention includes an illumination optical system that illuminates a pattern provided on a reticle, and a projection optical system that forms an image of the pattern on a photosensitive substrate. An exposure apparatus that performs exposure through a liquid located in at least a part of an optical path between the substrate and a substrate, the variation factor detecting means for detecting a state of a factor of variation in imaging performance of the projection optical system, and the connection And a refractive index adjusting means for adjusting the refractive index of the liquid so as to correct the image performance.
Based on this configuration, according to a preferred aspect recited in claim 5, the illumination optical system is configured to be able to change the illumination condition for the reticle, and the variation factor detecting means detects the condition of the illumination condition and refracts the light. The rate adjusting means adjusts the refractive index of the liquid so as to correct the imaging performance according to a change in illumination conditions.
[0010]
According to a preferred aspect of the present invention, the variation factor detecting means determines the type of the reticle, and the refractive index adjusting means corrects the imaging performance according to the type of the reticle. The refractive index of the liquid is adjusted.
In order to achieve the second object described above, it is preferable to fill the entire optical path between the projection optical system and the photosensitive substrate with a liquid. At this time, the exposure apparatus according to the present invention supplies a side wall for filling the optical path between the projection optical system and the photosensitive substrate with the liquid, supplies the liquid to the photosensitive substrate holder, and collects the liquid from the photosensitive substrate holder. It is preferable to further include a photosensitive substrate holder that includes a supply / recovery unit for holding the photosensitive substrate.
[0011]
The refractive index adjusting means preferably includes an additive supply unit for supplying an additive for adjusting the refractive index to the liquid, and an additive recovery unit for recovering the additive from the liquid.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention having the above-described configuration, since the refractive index of the liquid located in the optical path between the projection optical system and the photosensitive substrate can be adjusted, the change in the refractive index changes the image of the projection optical system. The performance can be corrected. Here, as a method of adjusting the refractive index, if the liquid is a mixed liquid of many substances, the refractive index n of the mixed liquid is in accordance with the Lorentz-Lorenz equation,
[0013]
[Expression 1]
[0014]
It becomes.
However,
[0015]
[Expression 2]
[0016]
It is.
For example, when the liquid is an aqueous solution, the refractive index of the aqueous solution changes according to the concentration of the aqueous solution itself. Therefore, the concentration of the substance added to the aqueous solution may be increased or decreased.
Thus, if the refractive index of the liquid is changed so that the refractive index value can compensate for the imaging performance of the projection optical system, the imaging performance of the projection optical system will be good.
[0017]
Here, the adjustment of the refractive index may be performed by measuring the imaging performance such as the aberration of the projection optical system, and adjusting the refractive index according to the result, corresponding to the fluctuation of the imaging performance of the projection optical system. The refractive index may be adjusted according to the detection result.
In the former method of measuring the imaging performance of the projection optical system, the aberration of the projection optical system is measured when the exposure apparatus is manufactured, and the refractive index value that compensates for this aberration is set to the initial value of the refractive index of the liquid. You may do it. Thus, if the refractive index is adjusted as part of the adjustment at the time of manufacture, there is an advantage that the manufacture and adjustment becomes easy. Further, an aberration measuring mechanism or the like may be provided in the exposure apparatus itself, and the refractive index of the liquid may be changed according to the aberration measurement result by the aberration measuring mechanism.
[0018]
On the other hand, variations in factors corresponding to the latter variation in imaging performance include the type of reticle, the state of illumination conditions, the amount of exposure energy passing through the projection optical system, and the like. Here, the illumination conditions for illuminating the reticle (σ value, modified illumination, etc.) are determined optimally depending on the type of pattern provided on the reticle, and if this illumination condition changes, the projection optical system Imaging performance including aberration changes. For this reason, for example, for each factor such as the type of reticle and illumination conditions, the refractive index value for compensating for the imaging performance that changes with the variation of this factor is stored in advance in a memory or the like. And the refractive index of the liquid may be adjusted based on the stored relationship. In addition, there is so-called irradiation fluctuation that changes the imaging performance of the projection optical system depending on the amount of exposure energy passing through the projection optical system. Even in this case, it varies depending on the amount of exposure energy and the amount of exposure energy. The refractive index value for compensating the imaging performance to be compensated may be stored in advance in a memory or the like, the variation of this factor is detected, and the refractive index of the liquid may be adjusted based on the stored relationship. In this method, it may be calculated by a predetermined calculation formula instead of storing in the memory.
[0019]
In this manner, adjusting the refractive index of the liquid is effective for correcting spherical aberration and field curvature, among other imaging performances of the projection optical system.
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First Embodiment]
FIG. 1 schematically shows an exposure apparatus according to the first embodiment of the present invention. In FIG. 1, the XYZ coordinate system is adopted.
[0020]
In FIG. 1, a light source S supplies, for example, exposure light having a wavelength of 248 nm. The exposure light from the light source S passes through a reticle R through an illumination optical system IL and a reflecting mirror M under a substantially uniform illuminance distribution. Illuminate. Here, in this example, a KrF excimer laser light source is used as the light source S. Instead, an ArF excimer laser light source that supplies 193 nm exposure light, a high-pressure mercury lamp that supplies g-line, i-line, and the like are used. It may be used. Although not shown in FIG. 1, the illumination optical system IL is an optical integrator for forming a surface light source and a light for condensing and uniformly illuminating the irradiated surface by condensing light from the surface light source. It has a condenser optical system and a variable aperture stop that is arranged at the position of the surface light source formed by the optical integrator and makes the shape of the surface light source variable. Here, as the shape of the surface light source, there are a surface light source having a plurality of surface light sources decentered from the optical axis, a ring-shaped shape, and a circular shape having a different size. As such an illumination optical system IL, for example, those disclosed in US Pat. No. 5,329,094 and US Pat. No. 5,576,801 can be used.
[0021]
Then, the exposure light that has passed through and diffracted through the reticle R reaches the wafer W via the projection optical system T, and an image of the reticle R is formed on the wafer.
Here, the reticle R is held by the reticle loader RL, and the reticle loader RL is configured to be able to move at any speed on the loader table LT at any speed on the loader table LT by the driving device T1. . Here, the moving speed of the reticle loader RL on the loader table LT is detected by the speed sensor SS, and the output from the speed sensor SS is transmitted to the first control unit CPU1.
[0022]
The wafer W is held by a wafer table WT. The wafer table WT is provided with a side wall for storing the liquid LQ. In this example, the side wall is configured so that the entire optical path from the wafer W to the projection optical system T is filled with the liquid LQ. The wafer table WT is configured to be movable at an arbitrary speed in the X-axis direction and the Y-axis direction on the holder table HT by the driving device T2.
[0023]
Here, the first control unit CPU1 calculates the moving speed of the wafer table WT on the holder table from the moving speed of the reticle loader RL on the loader table LT and the exposure magnification β of the projection optical system T. And transmitted to the driving device T2. The driving device moves the wafer table WT based on the moving speed transmitted from the first control unit CPU1.
[0024]
FIG. 2 is a diagram showing the configuration of the wafer table WT in detail. In FIG. 2, the optical member closest to the wafer W of the projection optical system T and the metal frame of the projection optical system T are in close contact or packed so as not to penetrate the liquid LQ. A plurality of openings are provided at the bottom of wafer table WT, and wafer W is adsorbed to wafer table WT by reducing the pressure from piping V connected to these openings. The wafer table WT is provided with electrodes D1 and D2, and around each of these electrodes D1 and D2,
Ion exchange membranes I1 and I2 are provided. By these ion exchange membranes I1 and I2, the periphery of the electrodes D1 and D2 is separated from the region where the exposure light passes through the liquid LQ. Here, the atmosphere around the electrode D1 is a sealed space by the ion exchange membrane I1 and the partition wall K1, and an exhaust pipe H1 is connected to the sealed space. The atmosphere around the electrode D2 is a sealed space by the ion exchange membrane I2 and the partition wall K2, and an exhaust pipe H2 is connected to the sealed space. These exhaust pipes H1 and H2 are both connected to the mixer K. One end of an introduction pipe LD having an electromagnetic valve DV is connected to the mixer K, and the other end of the introduction pipe LD is located in the vicinity of the wafer table WT.
[0025]
The applied voltage to the electrodes D1 and D2 is supplied from a power supply unit (not shown), and the applied voltage supplied from the power supply unit is controlled by the second control unit CPU2. Further, the second control unit CPU2 controls the opening / closing of the electromagnetic valve DV. In this example, these electrodes D1 and D2, ion exchange membranes I1 and I2, partition walls K1 and K2, exhaust pipes H1 and H2, mixer K, electromagnetic valve DV, introduction pipe LD, power supply unit not shown, second control The unit CPU2 constitutes a refractive index adjusting means.
[0026]
Hereinafter, the operation of the refractive index adjusting means will be described. In the following description, the liquid LQ is obtained by adding hydrogen chloride as an additive to pure water.
First, when lowering the refractive index of the liquid LQ, the second control unit CPU2 sends a command to the power supply unit, and applies a predetermined voltage between the electrode D1 and the electrode D2 for a predetermined time. At this time, oxygen gas is generated from the electrode serving as the anode, and a mixed gas of hydrogen and chlorine is generated from the electrode serving as the cathode. At this time, since the hydrogen chloride concentration in the liquid LQ is lowered, the refractive index of the liquid LQ is lowered as can be seen from the above equation (1). Here, the gas generated in the vicinity of the electrodes D1 and D2 does not pass through the ion exchange membranes I1 and I2, and can be recovered through the exhaust pipes H1 and H2. The recovered gas is sent to the mixer K. In the mixer K, the recovered gases (oxygen gas, hydrogen gas, hydrogen chloride gas) are mixed together, and thereby an additive aqueous solution having a concentration higher than that of the liquid LQ is generated.
[0027]
Further, when increasing the refractive index of the liquid LQ, the second control unit CPU2 sends a command to the electromagnetic valve DV so as to open the electromagnetic valve DV and add the high-concentration additive aqueous solution to the liquid LQ. As a result, the refractive index of the liquid LQ increases.
With this configuration, the refractive index of the liquid LQ can be made variable.
In the memory M1 connected to the second control unit CPU2, the refractive index values are stored in the form of a table corresponding to various illumination conditions. Here, the value of the refractive index is a value of the refractive index of the liquid LQ necessary for correcting the aberration generated in the projection optical system T under a certain illumination condition. The memory M1 stores the value of the additive concentration in the liquid LQ at a certain point in a constantly updated form.
[0028]
The illumination optical system IL is connected to the second control unit CPU2 in order to transmit information related to the shape of the surface light source formed by the illumination optical system IL to the second control unit CPU2. Here, when the illumination condition—in this example, the shape of the surface light source—changes, this information is transmitted to the second control unit CPU2. At this time, the second control unit CPU2 retrieves the value of the refractive index corresponding to the transmitted illumination condition from the memory M1, and calculates the concentration of the additive for realizing the refractive index from the above equation (1). . Next, the second control unit CPU2 sets the current additive concentration to the calculated additive concentration according to the current additive concentration stored in the memory M1 and the calculated additive concentration. D1, D2 or solenoid valve DV is controlled.
[0029]
Thereby, the value of the refractive index of the liquid LQ corrects the aberration of the projection optical system T when the liquid LQ is included.
[Second Embodiment]
The second embodiment is greatly different in that the additive in the first embodiment is ethyl alcohol. The ethyl alcohol does not dissolve the resist layer of the wafer W coated with a resist as a photosensitive substrate, and the optical member closest to the wafer W in the projection optical system T (an optical member in contact with the liquid LQ) and the optical member. There is an advantage that there is little influence on the applied optical coat.
[0030]
Further, in the second embodiment, the configuration of the refractive index adjusting means is different from that of the first embodiment. Hereinafter, the configuration of the refractive index adjusting means will be described with reference to FIG. In FIG. 3, members having the same functions as those shown in FIG.
In FIG. 3 showing the wafer table WT according to the second embodiment, the difference from the first embodiment is that an additive supply pipe LS for supplying the additive to the liquid LQ and pure water are supplied. The pure water supply pipe WS for supplying the liquid LQ and the discharge pipe L for discharging the liquid LQ so that the liquid LQ does not overflow from the wafer table WT are provided.
[0031]
Here, the additive supply pipe LS, the pure water supply pipe WS and the discharge pipe L are provided for adjusting the discharge amounts of the electromagnetic valves DVLS and DVWS and the liquid LQ for adjusting the supply amounts of the additive and pure water. A solenoid valve DVL is provided, and the opening and closing of these solenoid valves DVLS, DVWS, DVL is controlled by the second control unit CPU2.
The operation at the time of refractive index adjustment in the second embodiment will be described.
[0032]
First, when increasing the refractive index of the liquid LQ, the second control unit CPU2 controls the electromagnetic valve DVLS to add an additive to the liquid LQ by a predetermined amount. At this time, the liquid LQ is discharged from the discharge pipe L by a predetermined amount. The amount of liquid LQ discharged is preferably the same as the amount of additive added. Thereby, the additive concentration in the liquid LQ increases, and the refractive index thereof increases.
[0033]
When lowering the refractive index of the liquid LQ, the second control unit CPU2 controls the electromagnetic valve DVWS to add pure water to the liquid LQ by a predetermined amount. At this time, the liquid LQ is discharged from the discharge pipe L by a predetermined amount. The amount of liquid LQ to be discharged is preferably the same as the amount of pure water added. Thereby, the additive concentration in the liquid LQ is lowered, and the refractive index is lowered.
[0034]
Here, the amount of additive and pure water to be added and the amount of liquid LQ to be discharged are controlled by the second controller CPU2. The point that the value of the refractive index is stored in the memory M1 corresponding to the type of illumination condition, and the value of the additive concentration of the liquid LQ at a certain point in time is stored in the first embodiment described above. Similar to the first embodiment, the additive concentration for realizing the refractive index capable of correcting the aberration of the projection optical system T is calculated based on these pieces of information.
[0035]
In this way, the second control unit CPU2 in the second embodiment calculates the current additive concentration according to the current additive concentration stored in the memory M1 and the calculated additive concentration. The opening and closing of the solenoid valves DVLS, DVWS, DVL are controlled so as to obtain the additive concentration.
Thereby, the value of the refractive index of the liquid LQ corrects the aberration of the projection optical system T when the liquid LQ is included.
[Third Embodiment]
Next, a third embodiment will be described with reference to FIG. The exposure apparatus according to the third embodiment is different from the first and second embodiments described above in that it includes an aberration measuring apparatus. In FIG. 4, members having the same functions as those in the examples of FIGS. 1 to 3 described above are denoted by the same reference numerals, and the same XYZ coordinate system as in FIG. 1 is adopted.
[0036]
In FIG. 4, a light source S supplies exposure light having a wavelength of 248 nm, and the exposure light from the light source S is adjusted to a predetermined shape by the beam shaping
[0037]
Now, on the exit surface side of the second fly-
[0038]
Returning to FIG. 4, the exposure light from the
[0039]
In addition, the beam shaping
The reticle R is placed on a reticle loader RL, and the reticle loader RL can move on the holder table LT in the XY direction and the rotation direction (θ direction) about the Z axis in the figure. It has become. The reticle loader-RL is provided with a moving mirror RIM, and the reticle interferometer RI detects the positions of the reticle loader-RL in the XY direction and the θ direction. The reticle loader RL is driven in the XY direction and the θ direction by the reticle loader drive unit RLD. Here, the output from the reticle interferometer RI is transmitted to the first control unit CPU1, and the first control unit CPU1 is configured to control the reticle loader-driving unit RLD.
[0040]
In addition, a barcode reader BR for reading a barcode provided on the reticle R is provided in the middle of the conveyance path from the reticle stocker (not shown). Information regarding the type of reticle R read by the barcode reader BR is transmitted to the second control unit CPU2. Here, in the memory M1 connected to the second control unit CPU2, information on the optimum illumination condition for each type of reticle R and the optimum value of the refractive index of the liquid LQ for each type of reticle R are stored. Has been.
[0041]
A projection optical system T having a predetermined reduction magnification | β | is provided below the reticle R. A liquid between the optical member closest to the wafer surface of the projection optical system T and the wafer W is provided. LQ intervenes. The projection optical system T forms a reduced image of the reticle R on the wafer surface through the liquid LQ.
The wafer W is attracted and fixed to the wafer table WT, and the wafer table WT is moved in the Z-axis direction and tilted (tilt with respect to the Z-axis) by the Z actuators ZD1, ZD2, and the like. It is attached to a wafer stage WTS that can move in the XY direction with respect to the surface plate via ZD3. Wafer stage WTS is driven by wafer stage drive unit WD. Further, the side wall of the wafer table is mirror-finished, and this portion serves as a movable mirror of the wafer interferometer WI. Here, the driving of the wafer stage driving unit WD is controlled by the above-described first control unit CPU1, and the output from the wafer interferometer WI is transmitted to the first control unit CPU1.
[0042]
Further, the projection optical system T is provided with a focus sensor AF for measuring the distance in the Z direction between the projection optical system T and the wafer W. The focus sensor AF irradiates light on the wafer surface via an optical element close to the wafer W in the projection optical system T, and receives light reflected by the wafer via the optical element, and the light receiving position. Thus, the distance in the Z direction between the projection optical system T and the wafer W is measured. Such a configuration of the focus sensor AF is disclosed in, for example, Japanese Patent Laid-Open No. 6-66543.
[0043]
In the third embodiment, the additive supply pipe LS for supplying the high concentration additive aqueous solution stored in the additive storage unit LST to the liquid LQ and the pure water storage unit WST are stored. And a pure water supply pipe WS for supplying pure water to the liquid LQ. The additive supply pipe LS and the pure water supply pipe WS are provided with an electromagnetic for adjusting the supply amount of the additive aqueous solution and pure water. Valves DVLS and DVWS are provided. Further, the wafer table WT is provided with a discharge pipe L for discharging the liquid LQ so that the liquid LQ does not overflow from the wafer table, and this discharge pipe L is for adjusting the discharge amount of the liquid LQ. The solenoid valve is provided. The opening / closing of these solenoid valves DVLS, DVWS, DVL is controlled by the second control unit CPU2 as in the second embodiment described above.
[0044]
On wafer table WT, an aberration measuring unit AS for measuring the aberration of the projection optical system and an additive concentration detecting unit DS for detecting the additive concentration of liquid LQ are provided. Here, as the aberration measuring unit AS, for example, one disclosed in Japanese Patent Laid-Open No. 6-84757 can be used. Here, the outputs from the aberration measuring section AS and additive concentration detecting section DS are transmitted to the second control section CPU2. Further, the output from the additive concentration detection unit DS is stored as the value of the additive concentration of the liquid LQ at a certain point in time in the memory M1 via the second control unit CPU2.
[0045]
Next, the operation of the third embodiment will be described.
First, while the reticle R is taken out from a reticle stocker (not shown) and placed on the reticle loader RL, the barcode reader BR reads a barcode provided on the reticle R and performs second control on the information. To the CPU 2. The second control unit CPU2 reads information on the illumination condition corresponding to the type of the reticle R stored in the memory M1, and controls the variable aperture stop driving
[0046]
Thereby, the value of the refractive index of the liquid LQ corrects the aberration of the projection optical system T when the liquid LQ is included. Thereafter, the position and tilt of the wafer W in the Z direction are detected by the focus sensor AF, and the Z actuators ZD1, ZD2, and ZD3 are driven so that the wafer W becomes a required position. In this state, the exposure light from the light source S is guided to the reticle R via the illumination optical system, and the first control unit CPU1 detects the positions of the reticle R and the wafer W using the reticle interferometer RI and the wafer interferometer WI. Then, the reticle loader drive unit RLD and the wafer stage drive unit WD are driven, and the reticle R and the wafer W are moved under the speed ratio of the projection magnification | β | of the projection optical system T. As a result, the pattern on the reticle R is transferred onto the wafer W under a good imaging state.
[0047]
Now, the imaging performance (aberration and the like) of the projection optical system T is not always constant, and may change due to temperature change, atmospheric pressure change, temperature rise caused by the projection optical system T absorbing exposure light, and the like. Therefore, in the third embodiment, the aberration measurement unit AS measures the aberration (imaging performance) of the actual projection optical system T, and adjusts the refractive index value of the liquid LQ based on the measurement result. Yes.
[0048]
Specifically, in the third embodiment, the value of the refractive index of the liquid LQ that can correct the aberration is stored in the memory M1 in a form corresponding to the aberration value of the projection optical system. Then, the aberration of the projection optical system T detected by the aberration measuring unit AS is transmitted to the second control unit CPU2. The second control unit CPU2 reads the refractive index value of the liquid LQ stored in the memory M1, and obtains the additive concentration from the above equation (1) so that the refractive index value is obtained. The opening and closing of the solenoid valves DVLS, DVWS, and DVL are controlled so that the additive concentration is obtained.
[0049]
With this configuration, even if there is a change in the environment of the projection optical system T (temperature change, atmospheric pressure fluctuation, fluctuation due to exposure light absorption), it is possible to maintain good imaging performance. Note that the measurement by the aberration measuring unit AS does not have to be performed at all times, and may be performed every predetermined period.
[Fourth Embodiment]
Next, a fourth embodiment will be described with reference to FIG. In the fourth embodiment, not all of the optical path between the projection optical system and the wafer is filled with liquid, but a part of this optical path is filled with liquid.
[0050]
6 (a) and 6 (b), members having the same functions as those in the first and second embodiments shown in FIGS. In the fourth embodiment shown in FIGS. 6 (a) and 6 (b), instead of storing the liquid LQ by the side wall of the wafer holder-WT, the container C1, which is made of a material (for example, quartz) that transmits the exposure light, The configuration that fills the liquid LQ in C2 is different from the first and second embodiments described above. With this configuration, among the effects of the first and second embodiments described above, although there is no effect of increasing the numerical aperture or increasing the effective depth of focus, the aberration (result) of the projection optical system T is continuously increased. (Image performance) adjustment is possible.
[0051]
In the fourth embodiment, the containers C1 and C2 containing the liquid LQ may be provided integrally with the projection optical system T.
In the above first to fourth embodiments, pure water is used as the liquid LQ, but it is not limited to pure water.
[0052]
【The invention's effect】
As described above, according to the present invention, the imaging performance of the projection optical system can be continuously adjusted without vibration. Further, it is possible to achieve both an increase in numerical aperture (or an effective increase in depth of focus) and adjustment of imaging performance.
[Brief description of the drawings]
FIG. 1 is a schematic view generally showing an exposure apparatus according to first and second embodiments of the present invention.
FIG. 2 is a cross-sectional view showing a main part of the exposure apparatus according to the first embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a main part of an exposure apparatus according to a second embodiment of the present invention.
FIG. 4 is a schematic view showing an exposure apparatus according to a third embodiment of the present invention.
FIG. 5 is a schematic view showing a part of an exposure apparatus according to a third embodiment of the present invention.
FIG. 6 is a sectional view showing the main part of an exposure apparatus according to a fourth embodiment of the present invention.
[Explanation of symbols]
S: Light source T2: Drive device
IL ... Illumination optics M1 ... Memory
M ... reflector V ... decompression tube
T ... Projection optical system D1, D2 ... Electrode
W ... Wafer I1, I2 ... Ion exchange membrane
LQ ... Liquid K1, K2 ... Bulkhead
R ... Reticle H1, H2 ... Piping
RL ... reticle loader L ... discharge pipe
LT ... loader table LD ... introducing pipe
SS ... Sensor WS ... Pure water supply pipe
WT ... Wafer table LS ... Additive supply pipe
T1 ... Drive device
Claims (17)
前記液体に添加剤を供給して、前記液体の屈折率を調整する屈折率調整手段を有することを特徴とする露光装置。An illumination optical system that illuminates a pattern provided on a reticle; and a projection optical system that forms an image of the pattern on a photosensitive substrate; and an optical path between the projection optical system and the photosensitive substrate. In an exposure apparatus for performing exposure through a liquid located in at least a part of
An exposure apparatus comprising: a refractive index adjusting unit that supplies an additive to the liquid to adjust a refractive index of the liquid.
前記投影光学系の結像性能を測定する結像性能測定手段と、
前記投影光学系の結像性能を補正するように前記液体の屈折率を調整する屈折率調整手段とを有することを特徴とする露光装置。 An illumination optical system that illuminates a pattern provided on a reticle; and a projection optical system that forms an image of the pattern on a photosensitive substrate; and an optical path between the projection optical system and the photosensitive substrate. In an exposure apparatus for performing exposure through a liquid located in at least a part of
Imaging performance measuring means for measuring imaging performance of the projection optical system;
An exposure apparatus comprising: a refractive index adjusting unit that adjusts a refractive index of the liquid so as to correct an imaging performance of the projection optical system.
前記投影光学系の結像性能の変動の要因の状態を検知する変動要因検知手段と、
前記投影光学系の結像性能を補正するように前記液体の屈折率を調整する屈折率調整手段とを有することを特徴とする露光装置。 An illumination optical system that illuminates a pattern provided on a reticle; and a projection optical system that forms an image of the pattern on a photosensitive substrate; and an optical path between the projection optical system and the photosensitive substrate. In an exposure apparatus for performing exposure through a liquid located in at least a part of
Fluctuation factor detection means for detecting the state of the factor of fluctuation in the imaging performance of the projection optical system;
An exposure apparatus comprising: a refractive index adjusting unit that adjusts a refractive index of the liquid so as to correct an imaging performance of the projection optical system.
前記変動要因検知手段は、前記照明条件の状態を検知し、
前記屈折率調整手段は、前記照明条件の変更に応じて、前記結像性能を補正するように前記液体の屈折率を調整することを特徴とする請求項4記載の露光装置。The illumination optical system is configured to be able to change illumination conditions for the reticle,
The variation factor detection means detects the state of the illumination condition,
The exposure apparatus according to claim 4, wherein the refractive index adjusting unit adjusts the refractive index of the liquid so as to correct the imaging performance in accordance with the change in the illumination condition.
前記屈折率調整手段は、前記レチクルの種類に応じて、前記結像性能を補正するように前記液体の屈折率を調整することを特徴とする請求項4記載の露光装置。The variation factor detection means is for determining the type of the reticle,
5. The exposure apparatus according to claim 4, wherein the refractive index adjusting unit adjusts the refractive index of the liquid so as to correct the imaging performance according to the type of the reticle.
該感光性基板ホルダーは、前記投影光学系と前記感光性基板との間の光路を前記液体で満たすための側壁と、前記液体を前記感光性基板ホルダーへ供給すると共に前記感光性基板ホルダーから回収するための供給・回収ユニットとを備えることを特徴とする請求項1乃至7の何れか一項記載の露光装置。The photosensitive substrate holder includes a sidewall for filling an optical path between the projection optical system and the photosensitive substrate with the liquid, and supplies the liquid to the photosensitive substrate holder and collects it from the photosensitive substrate holder. An exposure apparatus according to any one of claims 1 to 7, further comprising a supply / recovery unit.
前記投影光学系の結像性能を補正するために、前記液体に添加剤を供給して、前記液体の屈折率を調整する工程を含むことを特徴とする露光方法。Illuminating the reticle under a predetermined illumination condition; and transferring the pattern provided on the reticle onto a photosensitive substrate using a projection optical system, the light from the projection optical system being predetermined In the exposure method for leading to the photosensitive substrate through the liquid of
An exposure method comprising the step of supplying an additive to the liquid to adjust the refractive index of the liquid in order to correct the imaging performance of the projection optical system.
前記レチクル及び前記照明条件のうち少なくとも一方が変更されたときに、前記液体の屈折率を変更することを特徴とするデバイス製造方法。Illuminating the reticle under a predetermined illumination condition, and transferring the device pattern provided on the reticle onto a photosensitive substrate using a projection optical system, the light from the projection optical system being In a device manufacturing method for leading to the photosensitive substrate through a predetermined liquid,
A device manufacturing method, wherein a refractive index of the liquid is changed when at least one of the reticle and the illumination condition is changed.
前記投影光学系の結像性能を測定する工程と、
該測定された結像性能に基づいて、前記液体の屈折率の初期値を定める工程とを含むことを特徴とする露光装置の製造方法。An illumination optical system that illuminates a pattern provided on a reticle; and a projection optical system that forms an image of the pattern on a photosensitive substrate; and an optical path between the projection optical system and the photosensitive substrate. In an exposure apparatus manufacturing method for performing exposure through a liquid located in at least a part of
Measuring the imaging performance of the projection optical system;
And a step of determining an initial value of the refractive index of the liquid based on the measured imaging performance.
前記液体に添加剤を加えて、前記液体の屈折率を変更することを特徴とするデバイス製造方法。 A device manufacturing method, wherein an additive is added to the liquid to change a refractive index of the liquid.
前記液体の屈折率の調整は、前記投影光学系の結像性能を補正するように行われる請求項12乃至15の何れか一項記載のデバイス製造方法。 The device manufacturing method according to claim 12, wherein the adjustment of the refractive index of the liquid is performed so as to correct an imaging performance of the projection optical system.
前記液体の屈折率の調整は、前記投影光学系の結像性能を補正するように行われる請求項12乃至15の何れか一項記載のデバイス製造方法。 The device manufacturing method according to claim 12, wherein the adjustment of the refractive index of the liquid is performed so as to correct an imaging performance of the projection optical system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15198597A JP3817836B2 (en) | 1997-06-10 | 1997-06-10 | EXPOSURE APPARATUS, ITS MANUFACTURING METHOD, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15198597A JP3817836B2 (en) | 1997-06-10 | 1997-06-10 | EXPOSURE APPARATUS, ITS MANUFACTURING METHOD, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10340846A JPH10340846A (en) | 1998-12-22 |
JP3817836B2 true JP3817836B2 (en) | 2006-09-06 |
Family
ID=15530548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15198597A Expired - Lifetime JP3817836B2 (en) | 1997-06-10 | 1997-06-10 | EXPOSURE APPARATUS, ITS MANUFACTURING METHOD, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3817836B2 (en) |
Families Citing this family (323)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2747999A (en) * | 1998-03-26 | 1999-10-18 | Nikon Corporation | Projection exposure method and system |
EP1203756B1 (en) * | 2000-02-18 | 2019-03-27 | Nikon Corporation | Optical glass and projection aligner using the same |
US7369968B2 (en) | 2000-06-16 | 2008-05-06 | Verisae, Inc. | Enterprise energy management system |
US7512523B2 (en) | 2000-06-16 | 2009-03-31 | Verisae, Inc. | Refrigerant loss tracking and repair |
AU2001269902A1 (en) | 2000-06-16 | 2001-12-24 | Verisae | Enterprise asset management system and method |
US7474218B2 (en) | 2000-06-16 | 2009-01-06 | Verisae, Inc. | Method and system of asset identification and tracking for enterprise asset management |
KR100588124B1 (en) | 2002-11-12 | 2006-06-09 | 에이에스엠엘 네델란즈 비.브이. | Lithographic Apparatus and Device Manufacturing Method |
EP1420300B1 (en) * | 2002-11-12 | 2015-07-29 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7110081B2 (en) | 2002-11-12 | 2006-09-19 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US10503084B2 (en) | 2002-11-12 | 2019-12-10 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
SG121822A1 (en) | 2002-11-12 | 2006-05-26 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
US7372541B2 (en) | 2002-11-12 | 2008-05-13 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9482966B2 (en) | 2002-11-12 | 2016-11-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
DE60335595D1 (en) | 2002-11-12 | 2011-02-17 | Asml Netherlands Bv | Immersion lithographic apparatus and method of making a device |
SG2010050110A (en) | 2002-11-12 | 2014-06-27 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
CN101470360B (en) | 2002-11-12 | 2013-07-24 | Asml荷兰有限公司 | Immersion lithographic apparatus and device manufacturing method |
SG131766A1 (en) | 2002-11-18 | 2007-05-28 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
DE60319658T2 (en) | 2002-11-29 | 2009-04-02 | Asml Netherlands B.V. | Lithographic apparatus and method of making a device |
US7440871B2 (en) | 2002-12-09 | 2008-10-21 | Verisae, Inc. | Method and system for tracking and reporting emissions |
US7877235B2 (en) | 2003-01-31 | 2011-01-25 | Verisae, Inc. | Method and system for tracking and managing various operating parameters of enterprise assets |
US7948604B2 (en) | 2002-12-10 | 2011-05-24 | Nikon Corporation | Exposure apparatus and method for producing device |
JP4352874B2 (en) | 2002-12-10 | 2009-10-28 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
JP4529433B2 (en) * | 2002-12-10 | 2010-08-25 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
SG157962A1 (en) | 2002-12-10 | 2010-01-29 | Nikon Corp | Exposure apparatus and method for producing device |
AU2003302831A1 (en) * | 2002-12-10 | 2004-06-30 | Nikon Corporation | Exposure method, exposure apparatus and method for manufacturing device |
EP1571696A4 (en) * | 2002-12-10 | 2008-03-26 | Nikon Corp | Exposure apparatus and method for manufacturing device |
JP4525062B2 (en) * | 2002-12-10 | 2010-08-18 | 株式会社ニコン | Exposure apparatus, device manufacturing method, and exposure system |
DE10257766A1 (en) | 2002-12-10 | 2004-07-15 | Carl Zeiss Smt Ag | Method for setting a desired optical property of a projection lens and microlithographic projection exposure system |
KR20050085026A (en) | 2002-12-10 | 2005-08-29 | 가부시키가이샤 니콘 | Optical device and projection exposure apparatus using such optical device |
EP1571694A4 (en) * | 2002-12-10 | 2008-10-15 | Nikon Corp | Exposure apparatus and method for manufacturing device |
JP4595320B2 (en) * | 2002-12-10 | 2010-12-08 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
KR20050085235A (en) | 2002-12-10 | 2005-08-29 | 가부시키가이샤 니콘 | Exposure system and device producing method |
AU2003289272A1 (en) * | 2002-12-10 | 2004-06-30 | Nikon Corporation | Surface position detection apparatus, exposure method, and device porducing method |
EP1429190B1 (en) | 2002-12-10 | 2012-05-09 | Canon Kabushiki Kaisha | Exposure apparatus and method |
WO2004053956A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure apparatus, exposure method and method for manufacturing device |
SG152063A1 (en) * | 2002-12-10 | 2009-05-29 | Nikon Corp | Exposure apparatus and method for producing device |
CN106873316A (en) * | 2003-02-26 | 2017-06-20 | 株式会社尼康 | Exposure device, exposure method and device making method |
SG10201809095SA (en) | 2003-02-26 | 2018-11-29 | Nikon Corp | Exposure apparatus, exposure method, and method for producing device |
JP2005101498A (en) * | 2003-03-04 | 2005-04-14 | Tokyo Ohka Kogyo Co Ltd | Immersion liquid for liquid immersion lithography process, and resist-pattern forming method using immersion liquid |
CN1799004A (en) * | 2003-03-04 | 2006-07-05 | 皮瑟莱根特科技有限责任公司 | Applications of semiconductor nano-sized particles for photolithography |
JP4353179B2 (en) * | 2003-03-25 | 2009-10-28 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
ATE426914T1 (en) * | 2003-04-07 | 2009-04-15 | Nikon Corp | EXPOSURE APPARATUS AND METHOD FOR PRODUCING AN APPARATUS |
JP4488004B2 (en) | 2003-04-09 | 2010-06-23 | 株式会社ニコン | Immersion lithography fluid control system |
EP3226073A3 (en) | 2003-04-09 | 2017-10-11 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device |
JP4488005B2 (en) * | 2003-04-10 | 2010-06-23 | 株式会社ニコン | Outflow passage for collecting liquid for an immersion lithographic apparatus |
KR101745223B1 (en) | 2003-04-10 | 2017-06-08 | 가부시키가이샤 니콘 | Environmental system including a transport region for an immersion lithography apparatus |
EP1611485B1 (en) * | 2003-04-10 | 2015-06-03 | Nikon Corporation | Environmental system including vacuum scavenge for an immersion lithography apparatus |
SG2012031738A (en) * | 2003-04-11 | 2015-07-30 | Nippon Kogaku Kk | Apparatus having an immersion fluid system configured to maintain immersion fluid in a gap adjacent an optical assembly |
JP4582089B2 (en) | 2003-04-11 | 2010-11-17 | 株式会社ニコン | Liquid jet recovery system for immersion lithography |
DE602004024295D1 (en) | 2003-04-11 | 2010-01-07 | Nippon Kogaku Kk | CLEANING PROCEDURE FOR OPTICS IN IMMERSION SLITHOGRAPHY |
TWI237307B (en) * | 2003-05-01 | 2005-08-01 | Nikon Corp | Optical projection system, light exposing apparatus and light exposing method |
JP4146755B2 (en) | 2003-05-09 | 2008-09-10 | 松下電器産業株式会社 | Pattern formation method |
TWI295414B (en) | 2003-05-13 | 2008-04-01 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
EP2282233A1 (en) * | 2003-05-13 | 2011-02-09 | ASML Netherlands BV | Lithographic apparatus |
JP4552853B2 (en) * | 2003-05-15 | 2010-09-29 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
JP4770129B2 (en) * | 2003-05-23 | 2011-09-14 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
TWI503865B (en) * | 2003-05-23 | 2015-10-11 | 尼康股份有限公司 | A method of manufacturing an exposure apparatus and an element |
TWI511181B (en) * | 2003-05-23 | 2015-12-01 | 尼康股份有限公司 | Exposure method and exposure apparatus, and device manufacturing method |
KR101915914B1 (en) | 2003-05-28 | 2018-11-06 | 가부시키가이샤 니콘 | Exposure method, exposure device, and device manufacturing method |
TWI442694B (en) | 2003-05-30 | 2014-06-21 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
US7213963B2 (en) | 2003-06-09 | 2007-05-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP2261741A3 (en) | 2003-06-11 | 2011-05-25 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7317504B2 (en) | 2004-04-08 | 2008-01-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP3104396B1 (en) | 2003-06-13 | 2018-03-21 | Nikon Corporation | Exposure method, substrate stage, exposure apparatus, and device manufacturing method |
JP4437474B2 (en) | 2003-06-19 | 2010-03-24 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
US6867844B2 (en) | 2003-06-19 | 2005-03-15 | Asml Holding N.V. | Immersion photolithography system and method using microchannel nozzles |
EP1498778A1 (en) | 2003-06-27 | 2005-01-19 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
DE60308161T2 (en) * | 2003-06-27 | 2007-08-09 | Asml Netherlands B.V. | Lithographic apparatus and method for making an article |
EP1494079B1 (en) * | 2003-06-27 | 2008-01-02 | ASML Netherlands B.V. | Lithographic Apparatus |
EP1975721A1 (en) | 2003-06-30 | 2008-10-01 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP1494074A1 (en) | 2003-06-30 | 2005-01-05 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
KR101209540B1 (en) * | 2003-07-09 | 2012-12-07 | 가부시키가이샤 니콘 | Exposure apparatus and method for manufacturing device |
EP2264532B1 (en) * | 2003-07-09 | 2012-10-31 | Nikon Corporation | Exposure apparatus and device manufacturing method |
ATE489724T1 (en) * | 2003-07-09 | 2010-12-15 | Nikon Corp | EXPOSURE DEVICE AND METHOD FOR PRODUCING COMPONENTS |
SG109000A1 (en) | 2003-07-16 | 2005-02-28 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
EP1500982A1 (en) | 2003-07-24 | 2005-01-26 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
WO2005015315A2 (en) * | 2003-07-24 | 2005-02-17 | Carl Zeiss Smt Ag | Microlithographic projection exposure system, and method for introducing an immersion liquid into an immersion chamber |
KR20190002749A (en) | 2003-07-28 | 2019-01-08 | 가부시키가이샤 니콘 | Exposure apparatus, device producing method, and exposure apparatus controlling method |
US7175968B2 (en) | 2003-07-28 | 2007-02-13 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method and a substrate |
EP1503244A1 (en) | 2003-07-28 | 2005-02-02 | ASML Netherlands B.V. | Lithographic projection apparatus and device manufacturing method |
US7326522B2 (en) | 2004-02-11 | 2008-02-05 | Asml Netherlands B.V. | Device manufacturing method and a substrate |
US7779781B2 (en) | 2003-07-31 | 2010-08-24 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
KR101381563B1 (en) | 2003-08-21 | 2014-04-04 | 가부시키가이샤 니콘 | Exposure apparatus, exposure method, and device producing method |
SG133590A1 (en) | 2003-08-26 | 2007-07-30 | Nikon Corp | Optical element and exposure device |
US6954256B2 (en) | 2003-08-29 | 2005-10-11 | Asml Netherlands B.V. | Gradient immersion lithography |
TWI245163B (en) | 2003-08-29 | 2005-12-11 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
TWI263859B (en) | 2003-08-29 | 2006-10-11 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
EP2261740B1 (en) | 2003-08-29 | 2014-07-09 | ASML Netherlands BV | Lithographic apparatus |
EP1659620A4 (en) * | 2003-08-29 | 2008-01-30 | Nikon Corp | Liquid recovery apparatus, exposure apparatus, exposure method, and device production method |
EP1510870A1 (en) * | 2003-08-29 | 2005-03-02 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP1667210A4 (en) | 2003-09-03 | 2008-11-05 | Nikon Corp | Exposure apparatus and device producing method |
KR101288140B1 (en) | 2003-09-03 | 2013-07-19 | 가부시키가이샤 니콘 | Apparatus and method for providing fluid for immersion lithography |
EP1667211B1 (en) | 2003-09-26 | 2015-09-09 | Nikon Corporation | Projection exposure apparatus, cleaning and maintenance methods for a projection exposure apparatus, and method of producing a device |
DE60302897T2 (en) | 2003-09-29 | 2006-08-03 | Asml Netherlands B.V. | Lithographic apparatus and method of making a device |
US7158211B2 (en) | 2003-09-29 | 2007-01-02 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
TWI574302B (en) | 2003-09-29 | 2017-03-11 | An exposure apparatus and an exposure method, and an element manufacturing method | |
EP1519230A1 (en) | 2003-09-29 | 2005-03-30 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP4438748B2 (en) * | 2003-09-29 | 2010-03-24 | 株式会社ニコン | Projection exposure apparatus, projection exposure method, and device manufacturing method |
JP2005136374A (en) * | 2003-10-06 | 2005-05-26 | Matsushita Electric Ind Co Ltd | Semiconductor manufacturing apparatus and pattern formation method using the same |
TW201738932A (en) * | 2003-10-09 | 2017-11-01 | Nippon Kogaku Kk | Exposure apparatus, exposure method, and device producing method |
JP4524601B2 (en) * | 2003-10-09 | 2010-08-18 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
EP1524558A1 (en) | 2003-10-15 | 2005-04-20 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP1524557A1 (en) * | 2003-10-15 | 2005-04-20 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7352433B2 (en) | 2003-10-28 | 2008-04-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP1528432B1 (en) * | 2003-10-28 | 2010-03-10 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP1679738A4 (en) | 2003-10-28 | 2008-08-06 | Nikon Corp | Exposure apparatus, exposure method, and device producing method |
TWI628698B (en) | 2003-10-28 | 2018-07-01 | 尼康股份有限公司 | Optical illumination device, exposure device, exposure method and device manufacturing method |
US7411653B2 (en) | 2003-10-28 | 2008-08-12 | Asml Netherlands B.V. | Lithographic apparatus |
US7113259B2 (en) | 2003-10-31 | 2006-09-26 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
KR101117429B1 (en) | 2003-10-31 | 2012-04-16 | 가부시키가이샤 니콘 | Exposure apparatus and devce producing method |
EP1530086A1 (en) * | 2003-11-05 | 2005-05-11 | DSM IP Assets B.V. | A method and an apparatus for producing micro-chips |
US20070105050A1 (en) * | 2003-11-05 | 2007-05-10 | Dsm Ip Assets B.V. | Method and apparatus for producing microchips |
US7528929B2 (en) | 2003-11-14 | 2009-05-05 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
TWI612338B (en) | 2003-11-20 | 2018-01-21 | 尼康股份有限公司 | Optical illuminating apparatus, exposure device, exposure method, and device manufacturing method |
US7545481B2 (en) | 2003-11-24 | 2009-06-09 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7125652B2 (en) * | 2003-12-03 | 2006-10-24 | Advanced Micro Devices, Inc. | Immersion lithographic process using a conforming immersion medium |
KR101525367B1 (en) | 2003-12-03 | 2015-06-09 | 가부시키가이샤 니콘 | Exposure apparatus, exposure method, device producing method, and optical component |
JP2005175016A (en) | 2003-12-08 | 2005-06-30 | Canon Inc | Substrate holding device, exposure device using the same, and method of manufacturing device |
KR101547037B1 (en) * | 2003-12-15 | 2015-08-24 | 가부시키가이샤 니콘 | Stage system, exposure apparatus and exposure method |
JP4323946B2 (en) * | 2003-12-19 | 2009-09-02 | キヤノン株式会社 | Exposure equipment |
US7460206B2 (en) | 2003-12-19 | 2008-12-02 | Carl Zeiss Smt Ag | Projection objective for immersion lithography |
US7394521B2 (en) | 2003-12-23 | 2008-07-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7589818B2 (en) | 2003-12-23 | 2009-09-15 | Asml Netherlands B.V. | Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus |
KR101911681B1 (en) | 2004-01-05 | 2018-10-25 | 가부시키가이샤 니콘 | Exposure apparatus, exposure method, and device producing method |
WO2005071491A2 (en) | 2004-01-20 | 2005-08-04 | Carl Zeiss Smt Ag | Exposure apparatus and measuring device for a projection lens |
TWI259319B (en) * | 2004-01-23 | 2006-08-01 | Air Prod & Chem | Immersion lithography fluids |
US20050161644A1 (en) * | 2004-01-23 | 2005-07-28 | Peng Zhang | Immersion lithography fluids |
US7697110B2 (en) | 2004-01-26 | 2010-04-13 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US7589822B2 (en) | 2004-02-02 | 2009-09-15 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
KR101377815B1 (en) | 2004-02-03 | 2014-03-26 | 가부시키가이샤 니콘 | Exposure apparatus and method of producing device |
EP1723467A2 (en) * | 2004-02-03 | 2006-11-22 | Rochester Institute of Technology | Method of photolithography using a fluid and a system thereof |
EP3208658B1 (en) | 2004-02-04 | 2018-06-06 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing a device |
JP5167572B2 (en) * | 2004-02-04 | 2013-03-21 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
TWI379344B (en) | 2004-02-06 | 2012-12-11 | Nikon Corp | Polarization changing device, optical illumination apparatus, light-exposure apparatus and light-exposure method |
US7050146B2 (en) | 2004-02-09 | 2006-05-23 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP4529141B2 (en) * | 2004-02-09 | 2010-08-25 | 好彦 岡本 | Exposure apparatus and method of manufacturing semiconductor device using the same |
EP2256790A3 (en) | 2004-02-10 | 2012-10-10 | Nikon Corporation | exposure apparatus, device manufacturing method and maintenance method |
WO2005081290A1 (en) * | 2004-02-19 | 2005-09-01 | Nikon Corporation | Exposure apparatus and method of producing the device |
JP4974049B2 (en) * | 2004-02-20 | 2012-07-11 | 株式会社ニコン | Exposure method, exposure apparatus, and device manufacturing method |
US8023100B2 (en) | 2004-02-20 | 2011-09-20 | Nikon Corporation | Exposure apparatus, supply method and recovery method, exposure method, and device producing method |
JP2005259870A (en) * | 2004-03-10 | 2005-09-22 | Nikon Corp | Substrate retainer, stage device, exposing device and exposing method |
TWI518744B (en) | 2004-03-25 | 2016-01-21 | 尼康股份有限公司 | Exposure apparatus,exposure method,and device manufacturing method |
US7227619B2 (en) * | 2004-04-01 | 2007-06-05 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7034917B2 (en) | 2004-04-01 | 2006-04-25 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method and device manufactured thereby |
US7295283B2 (en) | 2004-04-02 | 2007-11-13 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7898642B2 (en) | 2004-04-14 | 2011-03-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
KR101258033B1 (en) | 2004-04-19 | 2013-04-24 | 가부시키가이샤 니콘 | Exposure apparatus and device producing method |
JPWO2005106930A1 (en) * | 2004-04-27 | 2008-03-21 | 株式会社ニコン | Exposure method, exposure apparatus, and device manufacturing method |
US7379159B2 (en) | 2004-05-03 | 2008-05-27 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7616383B2 (en) | 2004-05-18 | 2009-11-10 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7486381B2 (en) | 2004-05-21 | 2009-02-03 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP1774405B1 (en) | 2004-06-04 | 2014-08-06 | Carl Zeiss SMT GmbH | System for measuring the image quality of an optical imaging system |
US20080192226A1 (en) | 2004-06-07 | 2008-08-14 | Nikon Corporation | Stage Unit, Exposure Apparatus, and Exposure Method |
JP2005353762A (en) | 2004-06-09 | 2005-12-22 | Matsushita Electric Ind Co Ltd | Semiconductor manufacturing device and pattern forming method |
KR20160137690A (en) | 2004-06-09 | 2016-11-30 | 가부시키가이샤 니콘 | Substrate holding device, exposure apparatus having same, exposure method, method for producing device, and liquid repellent plate |
CN105911821B (en) | 2004-06-09 | 2019-03-15 | 株式会社尼康 | Exposure device |
US8508713B2 (en) | 2004-06-10 | 2013-08-13 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US8373843B2 (en) | 2004-06-10 | 2013-02-12 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
SG153820A1 (en) | 2004-06-10 | 2009-07-29 | Nikon Corp | Exposure apparatus, exposure method, and device producing method |
US8717533B2 (en) | 2004-06-10 | 2014-05-06 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
WO2005122221A1 (en) | 2004-06-10 | 2005-12-22 | Nikon Corporation | Exposure equipment, exposure method and device manufacturing method |
US7481867B2 (en) | 2004-06-16 | 2009-01-27 | Edwards Limited | Vacuum system for immersion photolithography |
US8698998B2 (en) | 2004-06-21 | 2014-04-15 | Nikon Corporation | Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device |
US8368870B2 (en) | 2004-06-21 | 2013-02-05 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US20060001851A1 (en) * | 2004-07-01 | 2006-01-05 | Grant Robert B | Immersion photolithography system |
JP2006024715A (en) | 2004-07-07 | 2006-01-26 | Toshiba Corp | Lithography apparatus and pattern forming method |
US7463330B2 (en) | 2004-07-07 | 2008-12-09 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP2006024692A (en) | 2004-07-07 | 2006-01-26 | Toshiba Corp | Forming method of resist pattern |
CN100533661C (en) | 2004-07-12 | 2009-08-26 | 株式会社尼康 | Determination method of exposure conditions, exposure method, exposure device and components manufacturing method |
US8384874B2 (en) * | 2004-07-12 | 2013-02-26 | Nikon Corporation | Immersion exposure apparatus and device manufacturing method to detect if liquid on base member |
US7161663B2 (en) | 2004-07-22 | 2007-01-09 | Asml Netherlands B.V. | Lithographic apparatus |
US7224427B2 (en) * | 2004-08-03 | 2007-05-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Megasonic immersion lithography exposure apparatus and method |
KR101337007B1 (en) | 2004-08-03 | 2013-12-06 | 가부시키가이샤 니콘 | Exposure equipment, exposure method and device manufacturing method |
US7304715B2 (en) | 2004-08-13 | 2007-12-04 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
KR20070048164A (en) * | 2004-08-18 | 2007-05-08 | 가부시키가이샤 니콘 | Exposure apparatus and device manufacturing method |
US7701550B2 (en) | 2004-08-19 | 2010-04-20 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP2325866A1 (en) | 2004-09-17 | 2011-05-25 | Nikon Corporation | Substrate holding device, exposure apparatus and device manufacturing method |
WO2006030902A1 (en) | 2004-09-17 | 2006-03-23 | Nikon Corporation | Exposure apparatus, exposure method, and method for manufacturing device |
US7133114B2 (en) | 2004-09-20 | 2006-11-07 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7522261B2 (en) | 2004-09-24 | 2009-04-21 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7355674B2 (en) | 2004-09-28 | 2008-04-08 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method and computer program product |
US7894040B2 (en) | 2004-10-05 | 2011-02-22 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7209213B2 (en) | 2004-10-07 | 2007-04-24 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP4961709B2 (en) * | 2004-10-13 | 2012-06-27 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
TW200628995A (en) * | 2004-10-13 | 2006-08-16 | Nikon Corp | Exposure device, exposure method, and device manufacturing method |
CN100477083C (en) | 2004-10-13 | 2009-04-08 | 株式会社尼康 | Exposing device, exposing method, and assembly manufacturing method |
JP2006190971A (en) * | 2004-10-13 | 2006-07-20 | Nikon Corp | Exposure apparatus, exposure method, and device manufacturing method |
EP2426700B1 (en) | 2004-10-15 | 2018-01-10 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US7119876B2 (en) | 2004-10-18 | 2006-10-10 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7379155B2 (en) | 2004-10-18 | 2008-05-27 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP4665712B2 (en) | 2004-10-26 | 2011-04-06 | 株式会社ニコン | Substrate processing method, exposure apparatus and device manufacturing method |
KR101318037B1 (en) | 2004-11-01 | 2013-10-14 | 가부시키가이샤 니콘 | Exposure apparatus and device producing method |
JP4565270B2 (en) | 2004-11-11 | 2010-10-20 | 株式会社ニコン | Exposure method, device manufacturing method |
US7414699B2 (en) | 2004-11-12 | 2008-08-19 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7423720B2 (en) | 2004-11-12 | 2008-09-09 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7583357B2 (en) | 2004-11-12 | 2009-09-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7251013B2 (en) | 2004-11-12 | 2007-07-31 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7411657B2 (en) | 2004-11-17 | 2008-08-12 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
TWI649790B (en) * | 2004-11-18 | 2019-02-01 | 日商尼康股份有限公司 | Position measurement method, position control method, measurement method, loading method, exposure method and exposure device, and element manufacturing method |
JP4980922B2 (en) * | 2004-11-18 | 2012-07-18 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Microlithography projection exposure apparatus and method for correcting field curvature of a microlithography projection exposure apparatus |
US7145630B2 (en) | 2004-11-23 | 2006-12-05 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7161654B2 (en) | 2004-12-02 | 2007-01-09 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7446850B2 (en) | 2004-12-03 | 2008-11-04 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
KR101339887B1 (en) | 2004-12-06 | 2013-12-10 | 가부시키가이샤 니콘 | Maintenance method, maintenance apparatus, exposure apparatus and device manufacturing method |
US7248334B2 (en) | 2004-12-07 | 2007-07-24 | Asml Netherlands B.V. | Sensor shield |
US7397533B2 (en) | 2004-12-07 | 2008-07-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7196770B2 (en) | 2004-12-07 | 2007-03-27 | Asml Netherlands B.V. | Prewetting of substrate before immersion exposure |
US7365827B2 (en) | 2004-12-08 | 2008-04-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP4752473B2 (en) | 2004-12-09 | 2011-08-17 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
US7352440B2 (en) | 2004-12-10 | 2008-04-01 | Asml Netherlands B.V. | Substrate placement in immersion lithography |
CN100576444C (en) | 2004-12-15 | 2009-12-30 | 株式会社尼康 | Substrate holding apparatus, exposure device and device making method |
US7403261B2 (en) | 2004-12-15 | 2008-07-22 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7880860B2 (en) | 2004-12-20 | 2011-02-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7528931B2 (en) | 2004-12-20 | 2009-05-05 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7405805B2 (en) | 2004-12-28 | 2008-07-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7491661B2 (en) | 2004-12-28 | 2009-02-17 | Asml Netherlands B.V. | Device manufacturing method, top coat material and substrate |
US20060147821A1 (en) | 2004-12-30 | 2006-07-06 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7450217B2 (en) | 2005-01-12 | 2008-11-11 | Asml Netherlands B.V. | Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby |
CN1804724A (en) * | 2005-01-14 | 2006-07-19 | 朱晓 | Oil-immersed exposure method for chip photolithography process |
DE602006012746D1 (en) | 2005-01-14 | 2010-04-22 | Asml Netherlands Bv | Lithographic apparatus and manufacturing method |
KR101942138B1 (en) | 2005-01-31 | 2019-01-24 | 가부시키가이샤 니콘 | Exposure apparatus and method for manufacturing device |
KR100938271B1 (en) * | 2005-02-10 | 2010-01-22 | 에이에스엠엘 네델란즈 비.브이. | Immersion Liquid, Exposure Apparatus, and Exposure Process |
US7378025B2 (en) | 2005-02-22 | 2008-05-27 | Asml Netherlands B.V. | Fluid filtration method, fluid filtered thereby, lithographic apparatus and device manufacturing method |
US8018573B2 (en) | 2005-02-22 | 2011-09-13 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7224431B2 (en) | 2005-02-22 | 2007-05-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7428038B2 (en) | 2005-02-28 | 2008-09-23 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method and apparatus for de-gassing a liquid |
US7282701B2 (en) | 2005-02-28 | 2007-10-16 | Asml Netherlands B.V. | Sensor for use in a lithographic apparatus |
US7324185B2 (en) | 2005-03-04 | 2008-01-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7684010B2 (en) | 2005-03-09 | 2010-03-23 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method, seal structure, method of removing an object and a method of sealing |
EP1879217A4 (en) | 2005-03-18 | 2010-06-09 | Nikon Corp | Exposure method, exposure apparatus, device manufacturing method and exposure apparatus evaluating method |
TWI424260B (en) | 2005-03-18 | 2014-01-21 | 尼康股份有限公司 | A board member, a substrate holding device, an exposure apparatus and an exposure method, and a device manufacturing method |
US7330238B2 (en) | 2005-03-28 | 2008-02-12 | Asml Netherlands, B.V. | Lithographic apparatus, immersion projection apparatus and device manufacturing method |
WO2006106832A1 (en) | 2005-03-30 | 2006-10-12 | Nikon Corporation | Method for determining exposure conditions, exposure method, exposure device, and apparatus for producing device |
US7411654B2 (en) | 2005-04-05 | 2008-08-12 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
USRE43576E1 (en) | 2005-04-08 | 2012-08-14 | Asml Netherlands B.V. | Dual stage lithographic apparatus and device manufacturing method |
US7291850B2 (en) | 2005-04-08 | 2007-11-06 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
WO2006112436A1 (en) | 2005-04-18 | 2006-10-26 | Nikon Corporation | Exposure device, exposure method, and device manufacturing method |
US20060232753A1 (en) | 2005-04-19 | 2006-10-19 | Asml Holding N.V. | Liquid immersion lithography system with tilted liquid flow |
KR101466533B1 (en) | 2005-04-25 | 2014-11-27 | 가부시키가이샤 니콘 | Exposure method, exposure apparatus and liquid supplying method |
KR20070122445A (en) | 2005-04-28 | 2007-12-31 | 가부시키가이샤 니콘 | Exposure method and exposure apparatus, and device manufacturing method |
US7317507B2 (en) | 2005-05-03 | 2008-01-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8248577B2 (en) | 2005-05-03 | 2012-08-21 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7433016B2 (en) | 2005-05-03 | 2008-10-07 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP2006319064A (en) | 2005-05-11 | 2006-11-24 | Canon Inc | Measuring device, exposure method and aligner |
KR101544336B1 (en) | 2005-05-12 | 2015-08-12 | 가부시키가이샤 니콘 | Projection optical system, exposure apparatus and exposure method |
WO2006122578A1 (en) * | 2005-05-17 | 2006-11-23 | Freescale Semiconductor, Inc. | Contaminant removal apparatus and method therefor |
US8253924B2 (en) | 2005-05-24 | 2012-08-28 | Nikon Corporation | Exposure method, exposure apparatus and device manufacturing method |
WO2006133800A1 (en) | 2005-06-14 | 2006-12-21 | Carl Zeiss Smt Ag | Lithography projection objective, and a method for correcting image defects of the same |
US7751027B2 (en) | 2005-06-21 | 2010-07-06 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7652746B2 (en) | 2005-06-21 | 2010-01-26 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7924416B2 (en) | 2005-06-22 | 2011-04-12 | Nikon Corporation | Measurement apparatus, exposure apparatus, and device manufacturing method |
US7468779B2 (en) | 2005-06-28 | 2008-12-23 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7834974B2 (en) | 2005-06-28 | 2010-11-16 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7474379B2 (en) | 2005-06-28 | 2009-01-06 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7291569B2 (en) * | 2005-06-29 | 2007-11-06 | Infineon Technologies Ag | Fluids for immersion lithography systems |
US7522258B2 (en) | 2005-06-29 | 2009-04-21 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method utilizing movement of clean air to reduce contamination |
US8179517B2 (en) | 2005-06-30 | 2012-05-15 | Nikon Corporation | Exposure apparatus and method, maintenance method for exposure apparatus, and device manufacturing method |
US7535644B2 (en) | 2005-08-12 | 2009-05-19 | Asml Netherlands B.V. | Lens element, lithographic apparatus, device manufacturing method, and device manufactured thereby |
US8054445B2 (en) | 2005-08-16 | 2011-11-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8070145B2 (en) | 2005-08-26 | 2011-12-06 | Nikon Corporation | Holding unit, assembly system, sputtering unit, and processing method and processing unit |
US7812926B2 (en) | 2005-08-31 | 2010-10-12 | Nikon Corporation | Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice |
JP2007073587A (en) * | 2005-09-05 | 2007-03-22 | Nikon Corp | Exposure method, aligner, and method of manufacturing device |
JP5055579B2 (en) | 2005-09-09 | 2012-10-24 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
US8111374B2 (en) | 2005-09-09 | 2012-02-07 | Nikon Corporation | Analysis method, exposure method, and device manufacturing method |
US7411658B2 (en) | 2005-10-06 | 2008-08-12 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP2007103841A (en) * | 2005-10-07 | 2007-04-19 | Toshiba Corp | Manufacture of semiconductor device |
US7804577B2 (en) | 2005-11-16 | 2010-09-28 | Asml Netherlands B.V. | Lithographic apparatus |
US7656501B2 (en) | 2005-11-16 | 2010-02-02 | Asml Netherlands B.V. | Lithographic apparatus |
US7864292B2 (en) | 2005-11-16 | 2011-01-04 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7803516B2 (en) | 2005-11-21 | 2010-09-28 | Nikon Corporation | Exposure method, device manufacturing method using the same, exposure apparatus, and substrate processing method and apparatus |
US7633073B2 (en) * | 2005-11-23 | 2009-12-15 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7773195B2 (en) | 2005-11-29 | 2010-08-10 | Asml Holding N.V. | System and method to increase surface tension and contact angle in immersion lithography |
US8125610B2 (en) | 2005-12-02 | 2012-02-28 | ASML Metherlands B.V. | Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus |
US7420194B2 (en) * | 2005-12-27 | 2008-09-02 | Asml Netherlands B.V. | Lithographic apparatus and substrate edge seal |
US8411271B2 (en) | 2005-12-28 | 2013-04-02 | Nikon Corporation | Pattern forming method, pattern forming apparatus, and device manufacturing method |
US7839483B2 (en) | 2005-12-28 | 2010-11-23 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method and a control system |
US7649611B2 (en) | 2005-12-30 | 2010-01-19 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP4667252B2 (en) | 2006-01-16 | 2011-04-06 | 株式会社Sokudo | Substrate processing equipment |
SG2014011563A (en) | 2006-01-19 | 2014-05-29 | Nippon Kogaku Kk | Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method |
US8134681B2 (en) | 2006-02-17 | 2012-03-13 | Nikon Corporation | Adjustment method, substrate processing method, substrate processing apparatus, exposure apparatus, inspection apparatus, measurement and/or inspection system, processing apparatus, computer system, program and information recording medium |
EP2003679B1 (en) | 2006-02-21 | 2016-11-16 | Nikon Corporation | Exposure apparatus, exposure method and device manufacturing method |
WO2007097466A1 (en) | 2006-02-21 | 2007-08-30 | Nikon Corporation | Measuring device and method, processing device and method, pattern forming device and method, exposing device and method, and device fabricating method |
CN101385121B (en) | 2006-02-21 | 2011-04-20 | 株式会社尼康 | Pattern forming apparatus, pattern forming method, mobile object driving system, mobile body driving method, exposure apparatus, exposure method and device manufacturing method |
US8045134B2 (en) | 2006-03-13 | 2011-10-25 | Asml Netherlands B.V. | Lithographic apparatus, control system and device manufacturing method |
EP1995768A4 (en) | 2006-03-13 | 2013-02-06 | Nikon Corp | Exposure apparatus, maintenance method, exposure method and device manufacturing method |
JP4826755B2 (en) * | 2006-03-28 | 2011-11-30 | 株式会社ニコン | Exposure apparatus, exposure apparatus adjustment method, and device manufacturing method |
US9477158B2 (en) | 2006-04-14 | 2016-10-25 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
DE102006021797A1 (en) | 2006-05-09 | 2007-11-15 | Carl Zeiss Smt Ag | Optical imaging device with thermal damping |
WO2007129753A1 (en) | 2006-05-10 | 2007-11-15 | Nikon Corporation | Exposure apparatus and device manufacturing method |
KR101523388B1 (en) | 2006-08-30 | 2015-05-27 | 가부시키가이샤 니콘 | Exposure apparatus, device manufacturing method, cleaning method and member for cleaning |
CN104460241B (en) | 2006-08-31 | 2017-04-05 | 株式会社尼康 | Movable body drive system and method, patterning device and method, exposure device and method, assembly manufacture method |
KR101585370B1 (en) | 2006-08-31 | 2016-01-14 | 가부시키가이샤 니콘 | Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
KR101565272B1 (en) | 2006-08-31 | 2015-11-02 | 가부시키가이샤 니콘 | Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method |
TWI434326B (en) | 2006-09-01 | 2014-04-11 | 尼康股份有限公司 | Mobile body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, component manufacturing method, and correcting method |
KR101442449B1 (en) | 2006-09-01 | 2014-09-22 | 가부시키가이샤 니콘 | Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method |
US7872730B2 (en) | 2006-09-15 | 2011-01-18 | Nikon Corporation | Immersion exposure apparatus and immersion exposure method, and device manufacturing method |
US7973910B2 (en) | 2006-11-17 | 2011-07-05 | Nikon Corporation | Stage apparatus and exposure apparatus |
US8045135B2 (en) | 2006-11-22 | 2011-10-25 | Asml Netherlands B.V. | Lithographic apparatus with a fluid combining unit and related device manufacturing method |
US8013975B2 (en) | 2006-12-01 | 2011-09-06 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US8040490B2 (en) | 2006-12-01 | 2011-10-18 | Nikon Corporation | Liquid immersion exposure apparatus, exposure method, and method for producing device |
US20080156356A1 (en) | 2006-12-05 | 2008-07-03 | Nikon Corporation | Cleaning liquid, cleaning method, liquid generating apparatus, exposure apparatus, and device fabricating method |
US9632425B2 (en) | 2006-12-07 | 2017-04-25 | Asml Holding N.V. | Lithographic apparatus, a dryer and a method of removing liquid from a surface |
US8634053B2 (en) | 2006-12-07 | 2014-01-21 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7791709B2 (en) | 2006-12-08 | 2010-09-07 | Asml Netherlands B.V. | Substrate support and lithographic process |
JP2010519722A (en) * | 2007-02-23 | 2010-06-03 | 株式会社ニコン | Exposure method, exposure apparatus, device manufacturing method, and immersion exposure substrate |
US7900641B2 (en) | 2007-05-04 | 2011-03-08 | Asml Netherlands B.V. | Cleaning device and a lithographic apparatus cleaning method |
US8947629B2 (en) | 2007-05-04 | 2015-02-03 | Asml Netherlands B.V. | Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method |
US8164736B2 (en) | 2007-05-29 | 2012-04-24 | Nikon Corporation | Exposure method, exposure apparatus, and method for producing device |
JP5267029B2 (en) | 2007-10-12 | 2013-08-21 | 株式会社ニコン | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
US8379187B2 (en) | 2007-10-24 | 2013-02-19 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9116346B2 (en) | 2007-11-06 | 2015-08-25 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
JP2009152497A (en) * | 2007-12-21 | 2009-07-09 | Nikon Corp | Liquid immersion system, exposure apparatus, exposure method, and device manufacturing method |
EP2128703A1 (en) | 2008-05-28 | 2009-12-02 | ASML Netherlands BV | Lithographic Apparatus and a Method of Operating the Apparatus |
NL2003363A (en) | 2008-09-10 | 2010-03-15 | Asml Netherlands Bv | Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method. |
JP5127742B2 (en) * | 2009-02-18 | 2013-01-23 | パナソニック株式会社 | Pattern formation method |
US8159065B2 (en) | 2009-03-06 | 2012-04-17 | Hynix Semiconductor Inc. | Semiconductor package having an internal cooling system |
WO2010103822A1 (en) | 2009-03-10 | 2010-09-16 | 株式会社ニコン | Exposure apparatus, exposure method and device manufacturing method |
JP5246174B2 (en) * | 2010-01-25 | 2013-07-24 | 株式会社ニコン | Channel forming member, exposure apparatus, and device manufacturing method |
EP2381310B1 (en) | 2010-04-22 | 2015-05-06 | ASML Netherlands BV | Fluid handling structure and lithographic apparatus |
US8703368B2 (en) * | 2012-07-16 | 2014-04-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lithography process |
CN104216233B (en) * | 2013-06-05 | 2016-08-10 | 中芯国际集成电路制造(上海)有限公司 | Exposure method |
CN103439869B (en) * | 2013-09-02 | 2016-01-27 | 上海华力微电子有限公司 | The method of measurement pattern density |
CN104570615B (en) * | 2013-10-29 | 2017-01-18 | 上海微电子装备有限公司 | Scanning exposure device |
-
1997
- 1997-06-10 JP JP15198597A patent/JP3817836B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10340846A (en) | 1998-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3817836B2 (en) | EXPOSURE APPARATUS, ITS MANUFACTURING METHOD, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD | |
US7616290B2 (en) | Exposure apparatus and method | |
TWI479271B (en) | An exposure apparatus and an exposure method, and an element manufacturing method | |
US8125613B2 (en) | Exposure apparatus, exposure method, and device manufacturing method | |
US5812242A (en) | Projection exposure apparatus including a temperature control system for the lens elements of the optical system | |
US8089608B2 (en) | Exposure apparatus, exposure method, and device manufacturing method | |
JPWO2007000984A1 (en) | Exposure method, exposure apparatus, and device manufacturing method | |
JPWO2002063664A1 (en) | Exposure apparatus, exposure method, and device manufacturing method | |
KR20010089453A (en) | Exposure method and device | |
JPWO2006106836A1 (en) | Exposure method, exposure apparatus, and device manufacturing method | |
WO2002103766A1 (en) | Scanning exposure method and scanning exposure system, and device production method | |
JP2003092253A (en) | Illumination optical system, projection aligner, and manufacturing method of microdevice | |
WO2006126522A1 (en) | Exposure method, exposure apparatus and device manufacturing method | |
JP4470433B2 (en) | Exposure apparatus, exposure method, and device manufacturing method | |
WO2006106832A1 (en) | Method for determining exposure conditions, exposure method, exposure device, and apparatus for producing device | |
WO2006025408A1 (en) | Exposure apparatus and device manufacturing method | |
WO1999018604A1 (en) | Projection exposure method and apparatus | |
TW403937B (en) | Exposure device and method of manufacturing semiconductor device | |
JPH0784357A (en) | Exposure mask and projecting exposure method | |
US7733461B2 (en) | Exposure apparatus | |
JP2006261607A (en) | Oil immersion exposure device, manufacturing method thereof, and oil immersion exposure method device | |
JP5055549B2 (en) | Immersion exposure equipment | |
JP2008171974A (en) | Light volume controller, exposure device, and device manufacturing method | |
US20090091715A1 (en) | Exposure apparatus, exposure method, and device manufacturing method | |
JPH1167651A (en) | Projection aligner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040609 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060414 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060523 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060605 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090623 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20170623 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |