JP3786426B2 - 光磁気記録媒体及びその再生方法 - Google Patents
光磁気記録媒体及びその再生方法 Download PDFInfo
- Publication number
- JP3786426B2 JP3786426B2 JP52266597A JP52266597A JP3786426B2 JP 3786426 B2 JP3786426 B2 JP 3786426B2 JP 52266597 A JP52266597 A JP 52266597A JP 52266597 A JP52266597 A JP 52266597A JP 3786426 B2 JP3786426 B2 JP 3786426B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- magneto
- optical recording
- auxiliary magnetic
- magnetic film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10502—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed
- G11B11/10515—Reproducing
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10582—Record carriers characterised by the selection of the material or by the structure or form
- G11B11/10584—Record carriers characterised by the selection of the material or by the structure or form characterised by the form, e.g. comprising mechanical protection elements
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10582—Record carriers characterised by the selection of the material or by the structure or form
- G11B11/10586—Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
- G11B11/10589—Details
- G11B11/10593—Details for improving read-out properties, e.g. polarisation of light
Description
技術分野
本発明は、光磁気記録媒体及びその再生方法に関し、更に詳しくは、再生光スポットよりも極めて小さい微小記録磁区を拡大して再生することができる高密度記録に適した光磁気記録媒体及びその再生方法に関する。
背景技術
光磁気記録媒体は記録情報の書き換えが可能であり、記憶容量が大きく、しかも信頼性が高い記録媒体であるため、コンピュータメモリ等として実用化され始めている。しかし、情報量の増大と装置のコンパクト化に伴い、より一層の高密度記録再生技術が要請されている。光磁気記録媒体に情報を記録するには、レーザー光を光磁気記録媒体に照射しながら、記録信号に応じた極性の磁界を昇温した部分に印加する磁界変調法が用いられている。この方法は、オーバーライト記録が可能であり、しかも、高密度な記録、例えば、0.15μmの最短マーク長での記録が達成されている。また、一定の印加磁界の下で記録信号に応じてパワー変調した光を照射して記録する光変調記録方式も実用化されている。
ところで、高密度に記録された記録マークを再生するために、再生光ビームのスポット径によって決まる光学的再生分解能が問題となる。例えば、スポット径が1μmの再生光を用いて磁区長0.15μmの微小マークを識別して再生することは不可能である。このような再生光の光学的スポット径による再生分解能の制約をなくすためのの1つのアプローチとして、例えば、Journal of Magnetic Society of Japan, Vol. 17 Supplement No. S1, pp. 201 (1993) に記載されているような磁気超解像技術(MSR)が提案されている。これは、光磁気記録媒体に再生光が照射された時に再生光スポット内部の磁性膜に温度分布が生じることを利用して、スポット内に磁気的マスクを発生させ、信号の再生に寄与する実効的なスポット径を縮小させたものである。この技術を用いれば、実際の再生光スポット径を縮小させずに、再生分解能を向上させることができる。しかし、この手法では、磁気的マスクにより実効的なスポット径を小さくする為、再生出力に寄与する光量が低下し、その分、再生C/Nが低下してしまう。この結局、充分なC/Nを得ることは困難となる。
特開平1−143041号公報には、室温で互いに磁気的に結合した第1磁性膜、第2磁性膜及び第3磁性膜を有し、第1,第2及び第3磁性膜のキュリー温度をTC1,TC2及びTC3とするとき、TC2>室温で且つTC2<TC1,TC3とされ、第1磁性膜の保磁力HC1は第2磁性膜のキュリー温度TC2近傍で充分小さく、第3磁性膜の保磁力HC3は室温からTC2より高い所要の温度TPBまでの温度範囲で所要の磁場よりも充分大きい光磁気記録媒体を用いて、第1磁性膜の記録磁区を拡大させて再生を行う光磁気記録媒体の再生方法が開示されている。この方法は、再生光照射時の媒体の温度上昇を利用し、第1及び第3磁性膜の磁気的結合を遮断させ、その状態で記録磁区に働く反磁界と外部印加磁界とにより第1磁性膜の磁区を拡大させている。なお、この技術では、再生時の読み出し部の温度よりも低くキュリー温度を設定した第2磁性膜を用いているが、本発明ではそのような磁気特性の磁性膜は用いていない。
本発明は、特開平1−143041号公報に記載された方法と異なる方法で前記従来技術の問題点を解決するとともに、微小磁区が記録された場合でも充分なC/Nで再生信号が得られる光磁気記録媒体及びその信号再生方法を提供することを目的とする。
発明の開示
本発明の第1の態様に従えば、光磁気記録膜と補助磁性膜とを備え、再生光を照射したときに上記光磁気記録膜の記録磁区を上記補助磁性膜に磁気的に転写させて信号再生を行う光磁気記録媒体において、
上記補助磁性膜が臨界温度を超えると面内磁化膜から垂直磁化膜に転移する少なくとも一層の磁性膜であり且つ上記光磁気記録膜が室温以上の温度で垂直磁化膜であり、
上記補助磁性膜の磁気特性を利用して再生時に上記補助磁性膜に上記光磁気記録膜の記録磁区よりも大きな磁区を転写させることができる光磁気記録媒体が提供される。
本発明の光磁気記録媒体はさらに下記2つのタイプの光磁気記録媒体に分類することができる。第1のタイプの光磁気記録媒体は、図2A及図2Bに示したように、光磁気記録膜6上に第1補助磁性膜5及び第2補助磁性膜4が順次積層された構造を有し、光磁気記録膜6、第1補助磁性膜5及び第2補助磁性膜4が、光磁気記録膜、第1補助磁性膜及び第2補助磁性膜のキュリー温度をそれぞれTC0、TC1及びTC2とし、第1補助磁性膜及び第2補助磁性膜の上記臨界温度をそれぞれTCR1及びTCR2としたときに、室温<TCR2<TCR1<TC0,TC1,TC2となる関係を満たす磁気特性を有する。第1補助磁性膜5及び第2補助磁性膜4は、図3に示すように室温から室温以上のある臨界温度(TCR)までは面内磁化膜であり、TCR以上では垂直磁化膜になるという磁気特性を有している。光磁気記録膜6は室温以上で垂直磁化膜である。
第1のタイプの光磁気記録媒体の動作(再生)原理を以下に説明する。図2Aに、光変調記録方式等により光磁気記録膜6に記録磁区を書き込んだ後、再生前の各層の磁化状態を示す。この媒体に、磁性膜の最高到達温度が、所望の温度になるような適当なパワーの再生光を照射すると、まず、第1補助磁性膜5中の温度がTCR1以上となった領域に、光磁気記録膜6中の垂直磁化の磁区22が転写される。その際に、図8に示した再生光が照射された場合の媒体内の温度プロファイルを考慮して、光磁気記録膜6中の磁区と同じ大きさかまたはそれより小さい磁区21が第1補助磁性膜5に転写されるように再生パワー及びTCR1を設定する。
次いで第1補助磁性膜5に転写された磁区21は第2補助磁性膜4に転写される。本発明では、第1及び第2補助磁性膜はそれらの臨界温度がTCR2<TCR1となるように設定されているため、図8の媒体内の温度プロファイルに示すように、第2補助磁性膜中の垂直磁化状態となりうる領域は、第1補助磁性膜中のそれよりも径が大きくなる。このため、図2Bに示すように、第2補助磁性膜4中の転写磁区23は第2補助磁性膜中の垂直磁化状態となりうる領域内の垂直磁気異方性と第1補助磁性膜5中の垂直磁化からの交換結合力とにより拡大される。この磁区拡大は、第1補助磁性膜5中の図2BのWで示した領域の面内磁化が光磁気記録膜6の磁区Sから第2補助磁性膜4への交換結合力を弱めていることからも促進されているといえる。上記磁区拡大により、面内磁化の磁気的マスクによる再生出力に寄与する光量の低下を低減し、高C/N比の再生が可能となる。
第2補助磁性膜4の磁区23の拡大の効果は、第2補助磁性膜4中の転写磁区が再生光スポット径以上に拡大されたときに最大になる。この状態では、光磁気記録膜6中に記録された磁区の大きさや形状に関係しない、第2補助磁性膜4の性能指数と再生ビーム光のみによって決まる極めて大きい再生出力が得られる。再生後、即ち再生レーザー光の照射部が移動した後は、読み出し部はTCR2以下に冷却され、第1と第2の各補助磁性膜は面内磁化状態となり、図2Aの状態に戻る。以上のような再生動作時の温度においても、光磁気記録膜6の保磁力は充分大きいために、磁化として記録された情報は完全に保持されている。
本発明の第2のタイプの光磁気記録媒体は、図7に示すように、補助磁性膜8と光磁気記録膜10との間に非磁性膜9を備え、光磁気記録膜10及び補助磁性膜8が、光磁気記録膜及び補助磁性膜のキュリー温度をそれぞれTCO、TCとし、補助磁性膜の上記臨界温度をそれぞれTCRとしたときに、室温<TCR<TCO,TCとなる関係を満たす磁気特性を有することを特徴とする。
第2のタイプの光磁気記録媒体の再生原理を説明する。図6Aに光変調記録方式等により図7に示した媒体の光磁気記録膜10に記録磁区を書き込んだ後、再生を行う前の補助磁性膜8、非磁性膜9及び光磁気記録膜10の磁化状態を概略的に示す。この光磁気記録媒体に、磁性膜の最高到達温度が、所望の温度になるような適当なパワーの再生光を照射すると、補助磁性膜8中に、TCR以上となり垂直磁化状態となりうる領域が発生する。その領域の大きさが光磁気記録膜10に記録されている磁区Mの径以上、好ましくは再生光スポット径以上となるようにTCR及び再生パワーが設定されている。また、補助磁性膜8は、その保磁力が、TCR以上の領域内の温度分布に対応して図9に示すような分布をし、最高到達温度となる領域及びその近傍でその値が充分小さくなるような磁気特性を有している。
光磁気記録膜10はTCR以上の領域内の温度分布に対応して図9に示すような磁化の分布を有し、最高到達温度となる領域及びその近傍でその値が充分大きくなるような磁気特性を有している。各磁性膜の磁気特性を上記のように設定したため、光磁気記録膜10中の温度が高く且つ磁化が充分大きい領域の磁区Mのみが、磁区Mの領域で作用する光磁気記録膜10と補助磁性膜8間の大きな静磁結合力により、補助磁性膜8中の温度が高く且つ保磁力が充分小さい領域に転写される。これにより、まず充分な再生分解能が得られる。
次いで、補助磁性膜8に転写された磁区63は、TCR以上の領域内の垂直磁気異方性と転写された磁区からの交換結合力により、図6Bに示したように拡大すると考えられる。この磁区拡大により第1のタイプの光磁気記録媒体と同様に再生信号が増大され、C/Nが向上する。再生後、即ち再生レーザー光が移動した後、読み出し部はTCR以下に冷却され、補助磁性膜8は面内磁化膜となり、図6Aの状態に戻る。
本発明の第2の態様に従えば、室温以上の温度で垂直磁化膜である光磁気記録膜を有する光磁気記録媒体に再生光を照射して磁気光学効果の大きさを検出することによって記録された信号を再生する光磁気記録媒体の再生方法において、
上記光磁気記録媒体として、光磁気記録膜上に第1補助磁性膜及び第2補助磁性膜が順次積層され、第1補助磁性膜及び第2補助磁性膜は臨界温度を超えると面内磁化膜から垂直磁化膜に転移する磁性膜であって、上記光磁気記録膜、第1補助磁性膜及び第2補助磁性膜が、該光磁気記録膜、第1補助磁性膜及び第2補助磁性膜のキュリー温度をそれぞれTC0、TC1及びTC2とし、第1補助磁性膜及び第2補助磁性膜の上記臨界温度をそれぞれTCR1及びTCR2としたときに、室温<TCR2<TCR1<TC0,TC1,TC2となる関係を満たす磁気特性を有する光磁気記録媒体を用い、
上記光磁気記録媒体に、再生クロックと同一周期または整数倍の周期でパワー変調された再生光を照射することによって記録信号を再生することを特徴とする光磁気記録媒体の再生方法が提供される。
また、本発明の第3の態様に従えば、室温以上の温度で垂直磁化膜である光磁気記録膜を有する光磁気記録媒体に再生光を照射して磁気光学効果の大きさを検出することによって記録された信号を再生する光磁気記録媒体の再生方法において、
上記光磁気記録媒体として、臨界温度を超えると面内磁化膜から垂直磁化膜に転移する補助磁性膜を非磁性膜を介して光磁気記録膜上に備え、上記光磁気記録膜及び補助磁性膜が、該光磁気記録膜及び補助磁性膜のキュリー温度をそれぞれTC0、TCとし、補助磁性膜の上記臨界温度をそれぞれTCRとしたときに、室温<TCR<TC0,TCとなる関係を満たす磁気特性を有する光磁気記録媒体を用い、
上記光磁気記録媒体に、再生クロックと同一周期または整数倍の周期でパワー変調された再生光を照射することによって記録信号を再生することを特徴とする光磁気記録媒体の再生方法が提供される。
上記再生光が、再生クロックと同一周期または整数倍の周期で再生光パワーPr1及びPr2にパワー変調されており、上記Pr1及びPr2の一方の再生光がパワーが上記補助磁性膜の磁区拡大を生じさせるパワーであることが望ましい。
ここで、本発明の第3の態様に従う再生方法の原理説明を図11の再生方法の模式図を用いて説明する。この再生方法では図6に示した第2のタイプの光磁気記録媒体を使用する。最初に、光磁気記録媒体に第2のタイプの光磁気記録媒体に光変調記録方式等を用いて図11(a)に示したような所定の記録パターンを記録する。図中、記録マークは、最短マークピッチDPで記録し、記録マーク長DLはDL=DP/2となるように設定する。再生時には、再生用レーザー光として、2種類の再生パワーPr2、Pr1に変調したパルスレーザー光を、図11(b)に示したように、記録マーク位置に同期した周期DPであり且つ高パワーPr2の発光幅がDLとなるように照射する。低い再生パワーPr1の光は常に消去状態(記録マークがない部分)に、高い再生パワーPr2の光は記録状態(記録マークが存在する部分)と消去状態に照射される。図11(b)に示したような再生パルスレーザーを照射して得られた再生信号波形を図11(c)に示す。これに対して同トラックを一定の再生光パワーの連続光で再生したときの再生波形を図11(d)に示す。ここで、Pr2とPr1のうち、Pr2は後述するように補助磁性膜8の磁区拡大が生じるような記録パワーとし、Pr1は磁区拡大が消滅するパワーとなるように選択する。このように再生パワーを選択することにより、パルス光再生で観測される記録状態と消去状態との間の振幅Hp1を、一定レーザー光再生での振幅Hdcに対して、Hp1>Hdcとすることができ、しかも、光磁気記録膜の各磁区に記録された磁化情報を隣接する磁区からの影響を受けることなく独立して拡大再生することができる。
【図面の簡単な説明】
図1は、本発明の第1のタイプに属する光磁気記録媒体の積層構造を概念的に示す断面図である。
図2Aは本発明の第1のタイプに属する光磁気記録媒体の再生前の各層の磁化状態を示す概念図であり、図2Bは図2Aに示した光磁気記録媒体の再生時の各層の磁化状態を示す概念図である。
図3は、本発明の光磁気記録媒体を構成する補助磁性膜の磁気特性を示す図である。
図4は、本発明の実施例1で製造した光磁気記録媒体及び従来型の光磁気記録媒体における再生C/Nと記録マーク長の関係を示すグラフである。
図5Aは従来型の光磁気記録媒体の積層構造を示す断面図であり、図5Bは磁気超解像型の光磁気記録媒体の積層構造を示す断面図である。
図6Aは本発明の第2のタイプに属する光磁気記録媒体の再生前の各層の磁化状態を示す概念図であり、図6Bは図6Aに示した光磁気記録媒体の再生時の各層の磁化状態を示す概念図である。
図7は、本発明の第2のタイプに属する光磁気記録媒体の積層構造を概念的に示す図である。
図8は、本発明の第1のタイプの光磁気記録媒体に再生光を照射したときの読み出し部の温度プロファイルを示すグラフである。
図9は、本発明の第2のタイプの光磁気記録媒体の補助磁性膜の温度及び保磁力のプロファイル並びに光磁気記録膜の磁化のプロファイルを示すグラフである。
図10は、本発明の実施例2で製造した光磁気記録媒体の補助磁性膜のカー効果の温度特性を示すグラフである。
図11は、本発明の光磁気記録媒体の再生方法の原理を説明するタイミングチャートである。
図12A〜12Eは、本発明の実施例2の光磁気記録媒体を種々の再生パワーの連続光で再生した場合にオシロスコープ上で観測された再生信号波形を示すグラフである。
図13A〜図13Cは、図12Aに示した信号波形が得られる際の光磁気記録媒体の各層の磁化状態を説明する概念図である。
図14A〜図14Cは、図12Cに示した信号波形が得られる際の光磁気記録媒体の各層の磁化状態を説明する概念図である。
図15A〜図15Cは、図12Eに示した信号波形が得られる際の光磁気記録媒体の各層の磁化状態を説明する概念図である。
図16は、実施例2の予備実験で決定した再生パワーPr1及びPr2で変調された再生用パルス光の記録マークに対する照射タイミングを示す図である。
図17は、図16に示した再生用パルス光を用いて再生することによって得られた再生信号波形を示すグラフである。
発明を実施するための最良の形態
以下、本発明の光磁気記録媒体及びその再生方法の具体例を添付の図面を用いて詳細に説明する。
実施例1
〔第1のタイプに属する光磁気記録媒体の製造〕
本発明の第1のタイプに属する光磁気記録媒体の構造の一例を図1を参照しながら説明する。図1に示すように、第1のタイプに属する光磁気記録媒体11は片面に所望のプリフォーマットパターン2が形成された透明基板1とプリフォーマットパターン2上に形成された誘電体膜3と、誘電体膜3上に形成された第2の補助磁性膜4と、第2の補助磁性膜4上に形成された第1の補助磁性膜5と、第1の補助磁性膜5上に形成された光磁気記録膜6と、光磁気記録膜6上に形成された保護膜7とからなる。
図1に示した構造において、透明基板1としては、例えばポリカーボネートやアモルファスポレオレフィンなどの透明樹脂材料を所望の形状に成形したものや、所望の形状に形成されたガラス板の片面に所望のプリフォーマットパターン2が転写された透明樹脂膜を密着したものなど光透過性のある任意の基板を用いることができる。誘電体膜3は、膜内で再生用光ビームを多重干渉させ、見かけ上のカー回転角を増加するために設けられるものであって、透明基板1よりも屈折率が大きい、例えばSiNからなる無機誘電体にて形成することができる。保護膜7は、基板1と保護膜7との間に積層される膜体3〜6を腐食等の化学的な悪影響から保護するためのものであって、例えば、SiN膜よりなる。光磁気記録膜6は室温以上の温度で垂直磁気異方性を示す垂直磁化膜であり、例えば、TbFeCo、DyFeCo、TbDyFeCoなどの希土類と遷移金属の非晶質合金が最も好ましいが、Pt膜とCo膜の交互積層体やガーネット系酸化物磁性体などの他の知られた光磁気記録材料を用いることもできる。
第1補助磁性膜5及び第2補助磁性膜4は、図3に示すように、室温(R.T.)から室温以上のある臨界温度(TCR)までは面内磁化膜であり、TCR以上では垂直磁化膜に転移する磁気特性を有する。なお、本明細書において室温とは光磁気記録媒体が通常使用される雰囲気温度を示し、使用場所に応じて異なり、特に特定の温度に限定されるものではない。図3は、膜面に垂直な方向に外部磁界を印加した場合のカー効果のヒステリシスループから求めたθKR/θKS(θKR:残留カー回転角、θKS:飽和カー回転角)の温度依存性を示したものである。補助磁性膜の材料としては、例えばGdFeCo、GdFe、GdTbFeCo、GdDyFeCoなどの希土類と遷移金属の非晶質合金が最も好ましい。
誘電体膜3、第2補助磁性膜4、第1の補助磁性膜5、光磁気記録膜6及び保護膜7は、例えば、マグネトロンスパッタ装置による連続スパッタリング等のドライプロセスにより形成することができる。
以下に、図1に示した第1のタイプに属する光磁気記録媒体、即ち光磁気ディスクサンプルの作製例を示す。サンプルは、プリフォーマットパターンを有するガラス基板上に、SiN膜よりなる誘電体膜と、Gd25Fe56Co19膜(II)よりなる第2補助磁性膜と、Gd28Fe53Co19(I)膜よりなる第1補助磁性膜と、Tb21Fe66Co13膜よりなる光磁気記録膜と、SiN膜よりなる保護膜とを順次スパッタリング法により被着形成して作製した。この場合の各補助磁性膜及び光磁気記録膜の厚さ並びに磁気特性を表1に示す。表中のTCはキュリー温度を表し、TCRは、補助磁性膜の面内磁化膜が垂直磁化膜に変化する臨界的な温度を表わす。
上記のように作製したディスクのデータ記録領域に、レーザービームを一定周期のパルス状に照射しながら外部磁界を記録信号に応じて変調させて記録を行う光磁界変調方式を用いて、テスト信号を記録した。記録光パルスのデューティー比は50%であった。種々の記録マーク長の記録マークが形成されるようにテスト信号を与えた。次いで、対物レンズの開口数NA=0.55、レーザー波長780nmのピックアップを用い、線速度7.5m/sec、再生パワー2.5mW、再生時外部印加磁界をゼロとして種々の長さの記録マークを再生した。再生CN比(C:キャリアレベル、N:ノイズレベル)の記録磁区長依存性の測定結果を図4に示す。図4中には、比較のために、2種類の従来型の光磁気記録媒体のデータも併せて示す。点線のデータは、図5Aに示した従来型の光磁気記録媒体の再生データであり、単層の光磁気記録膜16としてTbFeCoを用いている。また一点破線のデータは、図5Bに示したようなTbFeCo光磁気記録膜16とGdFeCo第1補助磁性膜15の2層磁性膜によって構成した磁気超解像(MSR)ディスクについての結果である。図4の結果より、本実施例に係るサンプルディスク(データは実線)では、記録マーク長0.2μmにおいても、2種類の従来ディスクに比べ著しく高い再生C/Nが得られることがわかる。従って、本発明を用いれば、従来の再生限界を超えた極めて微小な記録マークの再生が可能となり、記録密度を向上させることができる。
本実施例では、光磁気記録膜6、第1補助磁性膜5及び第2補助磁性膜の3つの磁性膜の膜間を接触させて積層し各膜間を交換結合させたが、光磁気記録膜6と第1補助磁性膜5との間に、または、第1補助磁性膜5と第2補助磁性膜4との間に、若しくはその両方に非磁性膜を挿入し、磁性膜間を静磁結合させてもよい。
また、本実施例では、2層の補助磁性膜を用いたが、各層のTCR(面内磁化膜から垂直磁化膜に変化する臨界の温度)をTCR1>TCR2>...>TCRn>室温(但し、TCRiは第i補助磁性膜のTcr)と設定したn(n≧3)層の補助磁性膜を順次積層して用いてもよい。但し、この場合、第1補助磁性膜が光磁気記録膜6側に設けられ、第n補助磁性膜が誘電体膜3側に設けられる。
また、再生用光ビームが照射された時の媒体の温度プロファイルを所望の形状にするために、あるいは、温度プロファイルの線速度依存性を小さくするため、適当な熱伝導率の熱制御膜を光磁気記録媒体11の保護膜7上に設けてもよい。
また、本実施例では、通常のDCレーザー光で再生を行ったが、後述する実施例2のように最短マーク長に対応する周波数のパルスレーザー光で再生を行い、さらに良好な再生C/Nを得ることも可能である。
また、更に良好な再生CN比を得るために、再生光を照射したときの媒体の最高到達温度でカー回転角θkが第2補助磁性膜4のθk以上であり、且つ室温以上で垂直磁化膜である再生用磁性膜を誘電体膜3と第2補助磁性膜4との間に付加してもよい。
実施例2
この実施例では、本発明の第2のタイプの光磁気記録媒体に属する媒体及びかかる媒体を用いて再生用レーザー光をパルス状に変化させながら再生を行う再生方法の具体例を示す。光磁気記録媒体として図7に示した構造の媒体を用いる。
〔第2のタイプの光磁気記録媒体の製造〕
図7に示した光磁気記録媒体70の透明基板1としてガラス基板を用いた。ガラス基板の片面上には、プリフォーマットパターンが転写された透明樹脂膜2が形成されている。誘電体膜3はSiNからなり、再生用レーザー光を多重干渉させて見かけ上のカー回転角を増加させる膜厚で形成されている。補助磁性膜8は、希土類と遷移金属のフェリ磁性非晶質合金GdFeCoからなり、室温から室温以上のある臨界温度TCRまでは面内磁気異方性を示し、TCR以上では垂直磁気異方性を示す。非磁性膜9はSiNからなり、補助磁性膜8と光磁気記録膜10とを静磁結合させるために挿入されている。光磁気記録膜6は希土類と遷移金属のフェリ磁性非晶質合金TbFeCoからなり、室温からキュリー温度までは垂直磁気異方性を有する。保護膜7はSiNからなり、基板1と保護膜7の間に積層された薄膜を腐食等の化学的な悪影響から保護するために設けられている。
誘電体膜3、補助磁性膜8、非磁性膜9、光磁気記録膜10及び保護膜7は、それぞれマグネトロンスパッタ装置を用いた連続スパッタリングにより下記膜厚になるように製膜した。誘電体膜3は60nm、補助磁性膜8は60nm、非磁性膜9は20nm、光磁気記録膜10は50nm、保護膜7は60nmとした。
光磁気記録膜10を構成するTbFeCoの組成は原子%比率でTb21Fe66Co13であり、室温からそのキュリー温度TC0=270℃まで遷移金属の磁化成分が希土類の磁化成分よりも優勢な特性を示す。一方、補助磁性膜8を構成するGdFeCoの組成は原子%比率でGd28Fe53Co19であり、単層膜で図10のようなカー回転角の温度特性を示す。
図10の横軸は温度、縦軸はカー回転角の温度に対するヒステリシスから求めたGdFeCo補助磁性膜8の残留カー回転角θKRと飽和カー回転角θkSとの比θkR/θkSを示す。このグラフより補助磁性膜8が面内磁化膜から垂直磁化膜になる臨界温度TCRは約200℃である。また、補助磁性膜8はキュリー温度TCが300℃以上であり、室温Troomからキュリー温度までの間に補償温度Tcompを有し、Tcompは約230℃である。補助磁性膜8の臨界温度TCR、補償温度Tcomp及びキュリー温度TCと光磁気記録膜10のキュリー温度TC0の関係は次のようになる。Troom<TCR<Tcomp<TC0<TC。この条件を満たすことによって後述するパワー変調したパルス光を用いた再生が極めて容易となる。
上記のような構造の光磁気記録媒体70を用いて、図11との関係で本発明の原理説明で説明したような再生方法を実行する。
〔再生用レーザーパルス強度決定のための予備実験〕
本発明の再生方法ではレーザーパワーを高パワーPr2及び低パワーPr1にパワー変調したパルス光を用いて記録磁区の拡大再生を行う。このため、最初に予備実験を行って光磁気記録媒体70に記録されたデータを再生するためのPr2及びPr1の最適レーザーパワーを決定する。この予備実験では、レーザー光波長680nm、開口数0.55の光学系を有する光磁気ドライブを用い、記録及び再生レーザー光を基板1側(補助磁性膜8側)から照射する。再生レーザー光は後述するように連続光を用い、種々のパワーに変更してそれぞれ再生信号波形を観測することとする。
予め初期化した光磁気記録媒体70の半径40mmに位置するトラックに線速5.0m/sで、記録パワー4.5mWのレーザー光を周期640ns、パルス幅213nsで変調し、記録磁界500Oeを印加しながら光変調記録を行った。これにより、トラック上に3.2μmピッチで長さ約1.6μmの記録マークを連続的に記録した。
次いで、記録マークが記録されたトラックを種々の再生パワーPrの連続光で再生した。再生用パワーの最適変調条件を求めるために、連続光のパワーPrの値をPr=1.0mW、1.5mW、1.9mW、2.0mW及び2.1mWの5段階に変更してそれぞれ再生信号を求めた。なお、再生時には光磁気記録媒体70に磁界を積極的に印加しなかったが、光学ヘッドのアクチュエータから漏れ磁界(約80Oe)が記録方向に発生していた。
上記各再生パワーPrで光磁気記録媒体70の記録トラックを再生したときの再生波形を図12A〜Eに示す。このとき、再生波形自体にトリガーをかけて波形をオシロスコープで観察した。図12Aは再生光パワーPr=1.0mWのときの再生波形を示し、記録マークのパターンに応じて再生信号が立ち上がっているのがわかる。グラフ上、ベースラインが消去状態を示し、立ち上がっているピーク信号が記録状態を示す。記録状態と消去状態間の振幅は50mVであった。さらに再生光パワーをPr=1.5mWに上げると、図12Bに示すように、信号振幅が約200mVに増大した。図12Bの波形から、波形の一部の領域では隣接するピーク信号が記録状態側でつながっていることがわかる。
図12Cは、再生パワーがPr=1.9mWの再生信号波形であり、ピーク信号が記録状態側(図の上方)で完全につながった波形を示している。これは、後述するように補助磁性膜にて磁区拡大が起こり、かかる拡大された磁区が再生光スポットによるトラックの走査とともにトラック上を移動していることを示す。さらに、再生光パワーを上げてPr=2.0mWにすると、図12Dに示すように、つながっていたピーク信号が途切れ始める。この場合、ピーク信号のつながり部とベースラインとの振幅Hploは約350mVであった。さらに、再生光パワーをPr=2.1mWまで上げると、図12Eに示すようにピーク信号が完全に途切れ、記録マークパターンに応じて波形となる。図12Eにおいて、記録状態と消去状態の振幅は200mVであった。
ここで、図12A〜図12Eの再生波形が得られる場合の補助磁性膜8及び非磁性膜9を介して積層された光磁気記録膜10の磁化状態を図13〜15の概念図を用いて説明する。図13は、図12Aの信号波形が得られる場合(再生光パワーPr=1.0mW)における再生光スポット80と、それが照射されている補助磁性膜8及び光磁気記録膜10の磁化の向きの関係を示している。最初に、図13Aに示したように再生光スポット80が照射された補助磁性膜8はその温度がその臨界温度TCR以上に上昇する領域で垂直磁化となるとともに、光磁気記録膜10の磁化が静磁結合により補助磁性膜の領域83aに転写される。図13Bに示したように再生光スポット80が記録方向に磁化が向いた磁区(記録磁区)82の直下に来ると、記録磁区82の磁化が静磁結合により補助磁性膜8に転写される。この場合、再生光パワーPrが1.0mWと低いため、光スポット80内の補助磁性膜8の中央部、すなわち領域83bだけが臨界温度TCRを超えることになり、補助磁性膜8の転写された領域83bの記録磁区82の幅よりも拡大しない。このため、図12Aに示したように再生信号強度は小さい。再生光スポット80が記録磁区82を通り過ぎると転写領域83cは、その直上の光磁気記録膜10の磁区からの転写により直上の光磁気記録膜10の磁区と同じ磁化の向きを有する。
図14は、図12Cの信号波形が得られる場合(再生光パワーPr=1.9mW)における再生光スポット80と、それが照射されている補助磁性膜8及び光磁気記録膜10の磁化の向きの関係を示している。この場合、再生光パワーが1.9mWと比較的大きいため、図14Aに示したように再生光スポット80が照射された補助磁性膜8のスポット内全域の領域85aが臨界温度TCR以上に上昇して垂直磁化となる。そして、光磁気記録膜10からの静磁結合により光磁気記録膜10の磁区が領域85aに転写される。再生光スポット80の走査により、図14Bに示したように再生光スポット80が記録磁区82の直下に来ると、記録磁区82の磁化が転写される。この場合、臨界温度TCR以上に上昇した補助磁性膜8の領域85bは記録磁区82よりもその幅が大きいために、記録磁区82は補助磁性膜8内で拡大されて転写されたことになる。この磁区拡大により大きな信号波形が得られる。さらに、再生光スポット80が記録磁区82を通り過ぎた後も領域85cは85bと同じ磁化状態を維持しているため、図12Cに示したような再生信号ピークがつながった波形が得られる。
図14の場合、再生光スポット80が記録磁区82を通り過ぎた後も領域85cが領域85bと同じ磁化状態を維持している理由は以下のように考えられる。再生レーザビームが照射されることにより補助磁性層8は臨界温度以上に昇温して垂直磁化膜となり、垂直方向の保磁力Hcを有するようになる。また、再生の際に、補助磁性膜8には光ヘッドのアクチュエータ等からの漏洩磁界による外部磁界Hexと、補助磁性膜8の臨界温度にて光磁気記録膜10の磁化が発生する静磁界Hsが印加される。その大きさは磁化方向によりHex+Hs、Hex−Hsとなる。外部磁界Hex及び静磁界Hsの合成磁界と補助磁性膜8の保磁力Hcの大きさの関係において、Hex+Hs>Hc、Hex−Hs<Hcになるときに、図14Cに示したように一旦補助磁性膜に転写された磁区は光磁気記録膜10に記録磁区の存在しない領域に再生スポットが進行しても再反転をおこさない。上記Hcは補助磁性膜8が垂直磁化状態での垂直方向の保磁力であり、図13の場合には、低再生パワーにより転写を受ける補助磁性層の温度が比較的低いため補助磁性層のHcは図14の場合よりも低くなり、補助磁性膜8に転写された磁区は光磁気記録膜10に記録磁区の存在しない領域に再生スポットが進行すると再反転をおこす(図13C)。
図15は、図12Eの信号波形が得られる場合(再生光パワーPr=2.1mW)における再生光スポット80と、それが照射されている補助磁性膜8及び光磁気記録膜10の磁化の向きの関係を示している。この場合、再生光パワーが2.1mWと大きいため、再生光スポット80が照射された補助磁性膜8のスポット内の前方部の領域87aは臨界温度TCR以上に上昇するために垂直磁化を示すが、スポット内の中央及び後方部は前方部よりも加熱されて補助磁性膜8のキュリー温度TCを超えるために磁化が消失した状態になっていると考えられる。このため、図15Aに示したように再生光スポット80内の補助磁性膜の前方部の領域87aのみが静磁結合により直上の光磁気記録膜10から磁区転写を受ける。次いで、再生光スポット80によるトラックの走査により記録磁区82の直下に来ると、記録磁区82の磁化が補助磁性膜8の前方部の比較的温度の低い領域87bにのみに転写される。従って、磁区拡大は起こらず、再生信号強度は図12Cの場合のような大きな信号は得られない。再生光スポット80が記録磁区82を通り過ぎると転写領域87cには、光磁気記録膜10からの静磁結合により直上の光磁気記録膜10の磁区と同じ向きの磁化が転写される。これは、高再生パワーにより転写を受ける補助磁性膜8の温度がキュリー温度を超える部分が存在するために補助磁性膜8のHcは図14の場合よりも低くなり、補助磁性膜8に転写された磁区は光磁気記録膜10に記録磁区の存在しない領域に再生スポットが進行すると再反転をおこすためである。
図12C及び図14に示した場合には、上述のように補助磁性膜8内で磁区拡大が起こっているために、再生信号強度が増大する。そして、記録磁区82から拡大された磁区85bは再生光スポット80ともに拡大したまま移動する。しかしながら、図14Cにおいて記録磁区82と隣接する磁区84の直下に再生光スポット80の中心が来たときには、記録磁区82の拡大磁区85cを消去して、磁区84を拡大再生する必要がある。一方、図13(図12Aに対応)及び図15(図12Eに対応)にそれぞれ示したように再生パワーPrが比較的小さい場合(再生光パワーPr=1.0mW)及び比較的大きい場合(再生光パワーPr=2.1mW)には、再生光スポット80が記録磁区82を通り過ぎた後に、記録磁区82から転写された磁区83bは消滅し、再生光スポット80の直上に存在する光磁気記録膜10の磁区(図中、消去方向)が転写されている。従って、再生光として、磁区拡大が生じる再生光パワーPr=1.9mWと磁区拡大が生じない再生光パワーPr=2.1mW(または1.0mW)の間を再生クロック周期またはその整数倍の周期でパワー変調したパルス光を用いることによって、磁区拡大により再生信号を増大して得ることができ且つ再生光スポットの中心が光磁気記録膜の記録磁区から隣の記録磁区上に移動したときに当該記録磁区から転写されて拡大された磁区を消滅させることができる。
上記の予備実験の結果より再生用レーザー光を、図12CでのPr=1.9mWと図12EでのPr=2.1mWとの間で強度変調したパルス光として与えれば、再生信号は図12Cと図12Eで得られた再生信号強度の差として検出されることになる。これは図12DのHp10=350mVに相当すると考えられ、図12A及び12Eで得られた振幅に比べて一層大きな振幅での再生が可能であることを示唆している。このため以下の再生光パルスを用いた再生実験において高パワーPr2をPr2=2.1mW、低パワーPr1をPr1=1.9mWにそれぞれ設定することにする。
〔パワー変調したパルス光による光磁気記録媒体の再生〕
本実施例で製造した光磁気記録媒体70を初期化した後、半径40mmに位置するトラックに線速5.0m/sで、記録パワー6.3mWのレーザー光を周期320ns、パルス幅53.3nsで変調し、記録磁界500Oeで光変調記録を行った。これは3.2μmピッチで約1.6μmの記録マークを連続的に記録したことに相当する。
こうして記録された光磁気記録媒体70の記録トラックに、上記予備実験で決定された再生光レーザーパワーPr2=2.1mW、Pr1=1.9mWにパワー変調されたパルスレーザーを照射して再生する。再生用レーザーパルスは図16に示すように、記録マークの前端から10nsのパルス幅でPr2=2.1mW、その後150nsのパルス幅でPr1=1.9mWとなるように調整した。再生時には積極的に磁界を印加しなかったが、光学ヘッドのアクチュエーターから漏れ磁界(約80Oe)が記録方向に発生していた。
得られた再生信号波形を図17に示す。記録マークに対応して振幅約220mVの再生信号が得られた。また、同じ条件で記録したマークパターンを一定の再生パワーPr=1.0mW及びPr=2.1mWの連続光で再生したところ、それぞれ振幅100mW及び170mWであった。これらの結果より、再生光をパルス状にパワー変調して再生を行うことで、記録磁区を再生クロックに同期した形で拡大して転写するとともにその直後に消滅させることができ、拡大時にはより高いC/Nで再生を行うことができることがわかる。
本実施例では、高パワーPr2=2.1mW、低パワーPr1=1.9mWの各パルスレーザー強度を選択し、低パワーパルスを拡大磁区発生用、高パワーパルスを拡大磁区消滅用にそれぞれ用いた。しかしながら、高パワーパルスを拡大磁区発生用としてPr2=1.9mW、低パワーパルスを拡大磁区消滅用としてPr1=1.0mWにすることも可能である。原理説明で用いた図11に示した例では後者の場合を示す。さらに、高パワーパルスと低パワーパルスのパルス幅の比、すなわち、デューティーは図11や図16に示した場合に限定されず、増大された再生信号を得るために適宜変更することができる。
本実施例2で製造した光磁気記録媒体においても、再生用光ビームが照射された時の媒体の温度プロファイルを所望の形状にするために、あるいは、温度プロファイルの線速度依存性を小さくするため、適当な熱伝導率の熱制御層を光磁気記録媒体の保護膜上に設けてもよい。また、更に良好な再生CN比を得るために、再生光を照射したときの媒体の最高到達温度でカー回転角θkが補助磁性膜のθk以上であり、且つ室温以上で垂直磁化膜である再生用磁性膜を誘電体膜3と補助磁性膜8との間に付加してもよい。
実施例1ではパルス光を照射しながら記録信号に応じて印加磁界の極性を変調する光磁界変調方式を用い、実施例2ではDC磁界を印加しながら記録信号に応じて光強度を変調する光変調方式を用いてそれぞれ記録を行ったが、通常のDC光を用いた磁界変調記録方式、光変調記録方式並びに光磁界変調方式のいずれの方式を用いてもかまわない。
産業上の利用可能性
本発明の光磁気記録媒体は、室温以上で垂直磁化膜である光磁気記録膜と、室温からある臨界温度(TCR)までは面内磁化膜でありTCR以上で垂直磁化膜となる1層以上の補助磁性膜を用い、それらの磁性膜の磁気特性が所定の関係になるように調整したため、記録磁区を拡大して再生することが可能となり、再生信号強度を増大して良好なC/Nをえることができる。本発明の方法は、通常のマスク機能を備えた磁気超解像型の光磁気記録媒体に比べて磁気的マスクによる再生出力に寄与する光量の低下が少ないかまたは光量が低下しない超解像再生が可能となった。本発明の光磁気記録媒体及びその再生方法を用いれば、再生光スポット径に比べて極めて微小な記録マークも独立して再生することができるため、光磁気記録媒体の記録密度を著しく向上させることができる。
本発明は、光磁気記録媒体及びその再生方法に関し、更に詳しくは、再生光スポットよりも極めて小さい微小記録磁区を拡大して再生することができる高密度記録に適した光磁気記録媒体及びその再生方法に関する。
背景技術
光磁気記録媒体は記録情報の書き換えが可能であり、記憶容量が大きく、しかも信頼性が高い記録媒体であるため、コンピュータメモリ等として実用化され始めている。しかし、情報量の増大と装置のコンパクト化に伴い、より一層の高密度記録再生技術が要請されている。光磁気記録媒体に情報を記録するには、レーザー光を光磁気記録媒体に照射しながら、記録信号に応じた極性の磁界を昇温した部分に印加する磁界変調法が用いられている。この方法は、オーバーライト記録が可能であり、しかも、高密度な記録、例えば、0.15μmの最短マーク長での記録が達成されている。また、一定の印加磁界の下で記録信号に応じてパワー変調した光を照射して記録する光変調記録方式も実用化されている。
ところで、高密度に記録された記録マークを再生するために、再生光ビームのスポット径によって決まる光学的再生分解能が問題となる。例えば、スポット径が1μmの再生光を用いて磁区長0.15μmの微小マークを識別して再生することは不可能である。このような再生光の光学的スポット径による再生分解能の制約をなくすためのの1つのアプローチとして、例えば、Journal of Magnetic Society of Japan, Vol. 17 Supplement No. S1, pp. 201 (1993) に記載されているような磁気超解像技術(MSR)が提案されている。これは、光磁気記録媒体に再生光が照射された時に再生光スポット内部の磁性膜に温度分布が生じることを利用して、スポット内に磁気的マスクを発生させ、信号の再生に寄与する実効的なスポット径を縮小させたものである。この技術を用いれば、実際の再生光スポット径を縮小させずに、再生分解能を向上させることができる。しかし、この手法では、磁気的マスクにより実効的なスポット径を小さくする為、再生出力に寄与する光量が低下し、その分、再生C/Nが低下してしまう。この結局、充分なC/Nを得ることは困難となる。
特開平1−143041号公報には、室温で互いに磁気的に結合した第1磁性膜、第2磁性膜及び第3磁性膜を有し、第1,第2及び第3磁性膜のキュリー温度をTC1,TC2及びTC3とするとき、TC2>室温で且つTC2<TC1,TC3とされ、第1磁性膜の保磁力HC1は第2磁性膜のキュリー温度TC2近傍で充分小さく、第3磁性膜の保磁力HC3は室温からTC2より高い所要の温度TPBまでの温度範囲で所要の磁場よりも充分大きい光磁気記録媒体を用いて、第1磁性膜の記録磁区を拡大させて再生を行う光磁気記録媒体の再生方法が開示されている。この方法は、再生光照射時の媒体の温度上昇を利用し、第1及び第3磁性膜の磁気的結合を遮断させ、その状態で記録磁区に働く反磁界と外部印加磁界とにより第1磁性膜の磁区を拡大させている。なお、この技術では、再生時の読み出し部の温度よりも低くキュリー温度を設定した第2磁性膜を用いているが、本発明ではそのような磁気特性の磁性膜は用いていない。
本発明は、特開平1−143041号公報に記載された方法と異なる方法で前記従来技術の問題点を解決するとともに、微小磁区が記録された場合でも充分なC/Nで再生信号が得られる光磁気記録媒体及びその信号再生方法を提供することを目的とする。
発明の開示
本発明の第1の態様に従えば、光磁気記録膜と補助磁性膜とを備え、再生光を照射したときに上記光磁気記録膜の記録磁区を上記補助磁性膜に磁気的に転写させて信号再生を行う光磁気記録媒体において、
上記補助磁性膜が臨界温度を超えると面内磁化膜から垂直磁化膜に転移する少なくとも一層の磁性膜であり且つ上記光磁気記録膜が室温以上の温度で垂直磁化膜であり、
上記補助磁性膜の磁気特性を利用して再生時に上記補助磁性膜に上記光磁気記録膜の記録磁区よりも大きな磁区を転写させることができる光磁気記録媒体が提供される。
本発明の光磁気記録媒体はさらに下記2つのタイプの光磁気記録媒体に分類することができる。第1のタイプの光磁気記録媒体は、図2A及図2Bに示したように、光磁気記録膜6上に第1補助磁性膜5及び第2補助磁性膜4が順次積層された構造を有し、光磁気記録膜6、第1補助磁性膜5及び第2補助磁性膜4が、光磁気記録膜、第1補助磁性膜及び第2補助磁性膜のキュリー温度をそれぞれTC0、TC1及びTC2とし、第1補助磁性膜及び第2補助磁性膜の上記臨界温度をそれぞれTCR1及びTCR2としたときに、室温<TCR2<TCR1<TC0,TC1,TC2となる関係を満たす磁気特性を有する。第1補助磁性膜5及び第2補助磁性膜4は、図3に示すように室温から室温以上のある臨界温度(TCR)までは面内磁化膜であり、TCR以上では垂直磁化膜になるという磁気特性を有している。光磁気記録膜6は室温以上で垂直磁化膜である。
第1のタイプの光磁気記録媒体の動作(再生)原理を以下に説明する。図2Aに、光変調記録方式等により光磁気記録膜6に記録磁区を書き込んだ後、再生前の各層の磁化状態を示す。この媒体に、磁性膜の最高到達温度が、所望の温度になるような適当なパワーの再生光を照射すると、まず、第1補助磁性膜5中の温度がTCR1以上となった領域に、光磁気記録膜6中の垂直磁化の磁区22が転写される。その際に、図8に示した再生光が照射された場合の媒体内の温度プロファイルを考慮して、光磁気記録膜6中の磁区と同じ大きさかまたはそれより小さい磁区21が第1補助磁性膜5に転写されるように再生パワー及びTCR1を設定する。
次いで第1補助磁性膜5に転写された磁区21は第2補助磁性膜4に転写される。本発明では、第1及び第2補助磁性膜はそれらの臨界温度がTCR2<TCR1となるように設定されているため、図8の媒体内の温度プロファイルに示すように、第2補助磁性膜中の垂直磁化状態となりうる領域は、第1補助磁性膜中のそれよりも径が大きくなる。このため、図2Bに示すように、第2補助磁性膜4中の転写磁区23は第2補助磁性膜中の垂直磁化状態となりうる領域内の垂直磁気異方性と第1補助磁性膜5中の垂直磁化からの交換結合力とにより拡大される。この磁区拡大は、第1補助磁性膜5中の図2BのWで示した領域の面内磁化が光磁気記録膜6の磁区Sから第2補助磁性膜4への交換結合力を弱めていることからも促進されているといえる。上記磁区拡大により、面内磁化の磁気的マスクによる再生出力に寄与する光量の低下を低減し、高C/N比の再生が可能となる。
第2補助磁性膜4の磁区23の拡大の効果は、第2補助磁性膜4中の転写磁区が再生光スポット径以上に拡大されたときに最大になる。この状態では、光磁気記録膜6中に記録された磁区の大きさや形状に関係しない、第2補助磁性膜4の性能指数と再生ビーム光のみによって決まる極めて大きい再生出力が得られる。再生後、即ち再生レーザー光の照射部が移動した後は、読み出し部はTCR2以下に冷却され、第1と第2の各補助磁性膜は面内磁化状態となり、図2Aの状態に戻る。以上のような再生動作時の温度においても、光磁気記録膜6の保磁力は充分大きいために、磁化として記録された情報は完全に保持されている。
本発明の第2のタイプの光磁気記録媒体は、図7に示すように、補助磁性膜8と光磁気記録膜10との間に非磁性膜9を備え、光磁気記録膜10及び補助磁性膜8が、光磁気記録膜及び補助磁性膜のキュリー温度をそれぞれTCO、TCとし、補助磁性膜の上記臨界温度をそれぞれTCRとしたときに、室温<TCR<TCO,TCとなる関係を満たす磁気特性を有することを特徴とする。
第2のタイプの光磁気記録媒体の再生原理を説明する。図6Aに光変調記録方式等により図7に示した媒体の光磁気記録膜10に記録磁区を書き込んだ後、再生を行う前の補助磁性膜8、非磁性膜9及び光磁気記録膜10の磁化状態を概略的に示す。この光磁気記録媒体に、磁性膜の最高到達温度が、所望の温度になるような適当なパワーの再生光を照射すると、補助磁性膜8中に、TCR以上となり垂直磁化状態となりうる領域が発生する。その領域の大きさが光磁気記録膜10に記録されている磁区Mの径以上、好ましくは再生光スポット径以上となるようにTCR及び再生パワーが設定されている。また、補助磁性膜8は、その保磁力が、TCR以上の領域内の温度分布に対応して図9に示すような分布をし、最高到達温度となる領域及びその近傍でその値が充分小さくなるような磁気特性を有している。
光磁気記録膜10はTCR以上の領域内の温度分布に対応して図9に示すような磁化の分布を有し、最高到達温度となる領域及びその近傍でその値が充分大きくなるような磁気特性を有している。各磁性膜の磁気特性を上記のように設定したため、光磁気記録膜10中の温度が高く且つ磁化が充分大きい領域の磁区Mのみが、磁区Mの領域で作用する光磁気記録膜10と補助磁性膜8間の大きな静磁結合力により、補助磁性膜8中の温度が高く且つ保磁力が充分小さい領域に転写される。これにより、まず充分な再生分解能が得られる。
次いで、補助磁性膜8に転写された磁区63は、TCR以上の領域内の垂直磁気異方性と転写された磁区からの交換結合力により、図6Bに示したように拡大すると考えられる。この磁区拡大により第1のタイプの光磁気記録媒体と同様に再生信号が増大され、C/Nが向上する。再生後、即ち再生レーザー光が移動した後、読み出し部はTCR以下に冷却され、補助磁性膜8は面内磁化膜となり、図6Aの状態に戻る。
本発明の第2の態様に従えば、室温以上の温度で垂直磁化膜である光磁気記録膜を有する光磁気記録媒体に再生光を照射して磁気光学効果の大きさを検出することによって記録された信号を再生する光磁気記録媒体の再生方法において、
上記光磁気記録媒体として、光磁気記録膜上に第1補助磁性膜及び第2補助磁性膜が順次積層され、第1補助磁性膜及び第2補助磁性膜は臨界温度を超えると面内磁化膜から垂直磁化膜に転移する磁性膜であって、上記光磁気記録膜、第1補助磁性膜及び第2補助磁性膜が、該光磁気記録膜、第1補助磁性膜及び第2補助磁性膜のキュリー温度をそれぞれTC0、TC1及びTC2とし、第1補助磁性膜及び第2補助磁性膜の上記臨界温度をそれぞれTCR1及びTCR2としたときに、室温<TCR2<TCR1<TC0,TC1,TC2となる関係を満たす磁気特性を有する光磁気記録媒体を用い、
上記光磁気記録媒体に、再生クロックと同一周期または整数倍の周期でパワー変調された再生光を照射することによって記録信号を再生することを特徴とする光磁気記録媒体の再生方法が提供される。
また、本発明の第3の態様に従えば、室温以上の温度で垂直磁化膜である光磁気記録膜を有する光磁気記録媒体に再生光を照射して磁気光学効果の大きさを検出することによって記録された信号を再生する光磁気記録媒体の再生方法において、
上記光磁気記録媒体として、臨界温度を超えると面内磁化膜から垂直磁化膜に転移する補助磁性膜を非磁性膜を介して光磁気記録膜上に備え、上記光磁気記録膜及び補助磁性膜が、該光磁気記録膜及び補助磁性膜のキュリー温度をそれぞれTC0、TCとし、補助磁性膜の上記臨界温度をそれぞれTCRとしたときに、室温<TCR<TC0,TCとなる関係を満たす磁気特性を有する光磁気記録媒体を用い、
上記光磁気記録媒体に、再生クロックと同一周期または整数倍の周期でパワー変調された再生光を照射することによって記録信号を再生することを特徴とする光磁気記録媒体の再生方法が提供される。
上記再生光が、再生クロックと同一周期または整数倍の周期で再生光パワーPr1及びPr2にパワー変調されており、上記Pr1及びPr2の一方の再生光がパワーが上記補助磁性膜の磁区拡大を生じさせるパワーであることが望ましい。
ここで、本発明の第3の態様に従う再生方法の原理説明を図11の再生方法の模式図を用いて説明する。この再生方法では図6に示した第2のタイプの光磁気記録媒体を使用する。最初に、光磁気記録媒体に第2のタイプの光磁気記録媒体に光変調記録方式等を用いて図11(a)に示したような所定の記録パターンを記録する。図中、記録マークは、最短マークピッチDPで記録し、記録マーク長DLはDL=DP/2となるように設定する。再生時には、再生用レーザー光として、2種類の再生パワーPr2、Pr1に変調したパルスレーザー光を、図11(b)に示したように、記録マーク位置に同期した周期DPであり且つ高パワーPr2の発光幅がDLとなるように照射する。低い再生パワーPr1の光は常に消去状態(記録マークがない部分)に、高い再生パワーPr2の光は記録状態(記録マークが存在する部分)と消去状態に照射される。図11(b)に示したような再生パルスレーザーを照射して得られた再生信号波形を図11(c)に示す。これに対して同トラックを一定の再生光パワーの連続光で再生したときの再生波形を図11(d)に示す。ここで、Pr2とPr1のうち、Pr2は後述するように補助磁性膜8の磁区拡大が生じるような記録パワーとし、Pr1は磁区拡大が消滅するパワーとなるように選択する。このように再生パワーを選択することにより、パルス光再生で観測される記録状態と消去状態との間の振幅Hp1を、一定レーザー光再生での振幅Hdcに対して、Hp1>Hdcとすることができ、しかも、光磁気記録膜の各磁区に記録された磁化情報を隣接する磁区からの影響を受けることなく独立して拡大再生することができる。
【図面の簡単な説明】
図1は、本発明の第1のタイプに属する光磁気記録媒体の積層構造を概念的に示す断面図である。
図2Aは本発明の第1のタイプに属する光磁気記録媒体の再生前の各層の磁化状態を示す概念図であり、図2Bは図2Aに示した光磁気記録媒体の再生時の各層の磁化状態を示す概念図である。
図3は、本発明の光磁気記録媒体を構成する補助磁性膜の磁気特性を示す図である。
図4は、本発明の実施例1で製造した光磁気記録媒体及び従来型の光磁気記録媒体における再生C/Nと記録マーク長の関係を示すグラフである。
図5Aは従来型の光磁気記録媒体の積層構造を示す断面図であり、図5Bは磁気超解像型の光磁気記録媒体の積層構造を示す断面図である。
図6Aは本発明の第2のタイプに属する光磁気記録媒体の再生前の各層の磁化状態を示す概念図であり、図6Bは図6Aに示した光磁気記録媒体の再生時の各層の磁化状態を示す概念図である。
図7は、本発明の第2のタイプに属する光磁気記録媒体の積層構造を概念的に示す図である。
図8は、本発明の第1のタイプの光磁気記録媒体に再生光を照射したときの読み出し部の温度プロファイルを示すグラフである。
図9は、本発明の第2のタイプの光磁気記録媒体の補助磁性膜の温度及び保磁力のプロファイル並びに光磁気記録膜の磁化のプロファイルを示すグラフである。
図10は、本発明の実施例2で製造した光磁気記録媒体の補助磁性膜のカー効果の温度特性を示すグラフである。
図11は、本発明の光磁気記録媒体の再生方法の原理を説明するタイミングチャートである。
図12A〜12Eは、本発明の実施例2の光磁気記録媒体を種々の再生パワーの連続光で再生した場合にオシロスコープ上で観測された再生信号波形を示すグラフである。
図13A〜図13Cは、図12Aに示した信号波形が得られる際の光磁気記録媒体の各層の磁化状態を説明する概念図である。
図14A〜図14Cは、図12Cに示した信号波形が得られる際の光磁気記録媒体の各層の磁化状態を説明する概念図である。
図15A〜図15Cは、図12Eに示した信号波形が得られる際の光磁気記録媒体の各層の磁化状態を説明する概念図である。
図16は、実施例2の予備実験で決定した再生パワーPr1及びPr2で変調された再生用パルス光の記録マークに対する照射タイミングを示す図である。
図17は、図16に示した再生用パルス光を用いて再生することによって得られた再生信号波形を示すグラフである。
発明を実施するための最良の形態
以下、本発明の光磁気記録媒体及びその再生方法の具体例を添付の図面を用いて詳細に説明する。
実施例1
〔第1のタイプに属する光磁気記録媒体の製造〕
本発明の第1のタイプに属する光磁気記録媒体の構造の一例を図1を参照しながら説明する。図1に示すように、第1のタイプに属する光磁気記録媒体11は片面に所望のプリフォーマットパターン2が形成された透明基板1とプリフォーマットパターン2上に形成された誘電体膜3と、誘電体膜3上に形成された第2の補助磁性膜4と、第2の補助磁性膜4上に形成された第1の補助磁性膜5と、第1の補助磁性膜5上に形成された光磁気記録膜6と、光磁気記録膜6上に形成された保護膜7とからなる。
図1に示した構造において、透明基板1としては、例えばポリカーボネートやアモルファスポレオレフィンなどの透明樹脂材料を所望の形状に成形したものや、所望の形状に形成されたガラス板の片面に所望のプリフォーマットパターン2が転写された透明樹脂膜を密着したものなど光透過性のある任意の基板を用いることができる。誘電体膜3は、膜内で再生用光ビームを多重干渉させ、見かけ上のカー回転角を増加するために設けられるものであって、透明基板1よりも屈折率が大きい、例えばSiNからなる無機誘電体にて形成することができる。保護膜7は、基板1と保護膜7との間に積層される膜体3〜6を腐食等の化学的な悪影響から保護するためのものであって、例えば、SiN膜よりなる。光磁気記録膜6は室温以上の温度で垂直磁気異方性を示す垂直磁化膜であり、例えば、TbFeCo、DyFeCo、TbDyFeCoなどの希土類と遷移金属の非晶質合金が最も好ましいが、Pt膜とCo膜の交互積層体やガーネット系酸化物磁性体などの他の知られた光磁気記録材料を用いることもできる。
第1補助磁性膜5及び第2補助磁性膜4は、図3に示すように、室温(R.T.)から室温以上のある臨界温度(TCR)までは面内磁化膜であり、TCR以上では垂直磁化膜に転移する磁気特性を有する。なお、本明細書において室温とは光磁気記録媒体が通常使用される雰囲気温度を示し、使用場所に応じて異なり、特に特定の温度に限定されるものではない。図3は、膜面に垂直な方向に外部磁界を印加した場合のカー効果のヒステリシスループから求めたθKR/θKS(θKR:残留カー回転角、θKS:飽和カー回転角)の温度依存性を示したものである。補助磁性膜の材料としては、例えばGdFeCo、GdFe、GdTbFeCo、GdDyFeCoなどの希土類と遷移金属の非晶質合金が最も好ましい。
誘電体膜3、第2補助磁性膜4、第1の補助磁性膜5、光磁気記録膜6及び保護膜7は、例えば、マグネトロンスパッタ装置による連続スパッタリング等のドライプロセスにより形成することができる。
以下に、図1に示した第1のタイプに属する光磁気記録媒体、即ち光磁気ディスクサンプルの作製例を示す。サンプルは、プリフォーマットパターンを有するガラス基板上に、SiN膜よりなる誘電体膜と、Gd25Fe56Co19膜(II)よりなる第2補助磁性膜と、Gd28Fe53Co19(I)膜よりなる第1補助磁性膜と、Tb21Fe66Co13膜よりなる光磁気記録膜と、SiN膜よりなる保護膜とを順次スパッタリング法により被着形成して作製した。この場合の各補助磁性膜及び光磁気記録膜の厚さ並びに磁気特性を表1に示す。表中のTCはキュリー温度を表し、TCRは、補助磁性膜の面内磁化膜が垂直磁化膜に変化する臨界的な温度を表わす。
上記のように作製したディスクのデータ記録領域に、レーザービームを一定周期のパルス状に照射しながら外部磁界を記録信号に応じて変調させて記録を行う光磁界変調方式を用いて、テスト信号を記録した。記録光パルスのデューティー比は50%であった。種々の記録マーク長の記録マークが形成されるようにテスト信号を与えた。次いで、対物レンズの開口数NA=0.55、レーザー波長780nmのピックアップを用い、線速度7.5m/sec、再生パワー2.5mW、再生時外部印加磁界をゼロとして種々の長さの記録マークを再生した。再生CN比(C:キャリアレベル、N:ノイズレベル)の記録磁区長依存性の測定結果を図4に示す。図4中には、比較のために、2種類の従来型の光磁気記録媒体のデータも併せて示す。点線のデータは、図5Aに示した従来型の光磁気記録媒体の再生データであり、単層の光磁気記録膜16としてTbFeCoを用いている。また一点破線のデータは、図5Bに示したようなTbFeCo光磁気記録膜16とGdFeCo第1補助磁性膜15の2層磁性膜によって構成した磁気超解像(MSR)ディスクについての結果である。図4の結果より、本実施例に係るサンプルディスク(データは実線)では、記録マーク長0.2μmにおいても、2種類の従来ディスクに比べ著しく高い再生C/Nが得られることがわかる。従って、本発明を用いれば、従来の再生限界を超えた極めて微小な記録マークの再生が可能となり、記録密度を向上させることができる。
本実施例では、光磁気記録膜6、第1補助磁性膜5及び第2補助磁性膜の3つの磁性膜の膜間を接触させて積層し各膜間を交換結合させたが、光磁気記録膜6と第1補助磁性膜5との間に、または、第1補助磁性膜5と第2補助磁性膜4との間に、若しくはその両方に非磁性膜を挿入し、磁性膜間を静磁結合させてもよい。
また、本実施例では、2層の補助磁性膜を用いたが、各層のTCR(面内磁化膜から垂直磁化膜に変化する臨界の温度)をTCR1>TCR2>...>TCRn>室温(但し、TCRiは第i補助磁性膜のTcr)と設定したn(n≧3)層の補助磁性膜を順次積層して用いてもよい。但し、この場合、第1補助磁性膜が光磁気記録膜6側に設けられ、第n補助磁性膜が誘電体膜3側に設けられる。
また、再生用光ビームが照射された時の媒体の温度プロファイルを所望の形状にするために、あるいは、温度プロファイルの線速度依存性を小さくするため、適当な熱伝導率の熱制御膜を光磁気記録媒体11の保護膜7上に設けてもよい。
また、本実施例では、通常のDCレーザー光で再生を行ったが、後述する実施例2のように最短マーク長に対応する周波数のパルスレーザー光で再生を行い、さらに良好な再生C/Nを得ることも可能である。
また、更に良好な再生CN比を得るために、再生光を照射したときの媒体の最高到達温度でカー回転角θkが第2補助磁性膜4のθk以上であり、且つ室温以上で垂直磁化膜である再生用磁性膜を誘電体膜3と第2補助磁性膜4との間に付加してもよい。
実施例2
この実施例では、本発明の第2のタイプの光磁気記録媒体に属する媒体及びかかる媒体を用いて再生用レーザー光をパルス状に変化させながら再生を行う再生方法の具体例を示す。光磁気記録媒体として図7に示した構造の媒体を用いる。
〔第2のタイプの光磁気記録媒体の製造〕
図7に示した光磁気記録媒体70の透明基板1としてガラス基板を用いた。ガラス基板の片面上には、プリフォーマットパターンが転写された透明樹脂膜2が形成されている。誘電体膜3はSiNからなり、再生用レーザー光を多重干渉させて見かけ上のカー回転角を増加させる膜厚で形成されている。補助磁性膜8は、希土類と遷移金属のフェリ磁性非晶質合金GdFeCoからなり、室温から室温以上のある臨界温度TCRまでは面内磁気異方性を示し、TCR以上では垂直磁気異方性を示す。非磁性膜9はSiNからなり、補助磁性膜8と光磁気記録膜10とを静磁結合させるために挿入されている。光磁気記録膜6は希土類と遷移金属のフェリ磁性非晶質合金TbFeCoからなり、室温からキュリー温度までは垂直磁気異方性を有する。保護膜7はSiNからなり、基板1と保護膜7の間に積層された薄膜を腐食等の化学的な悪影響から保護するために設けられている。
誘電体膜3、補助磁性膜8、非磁性膜9、光磁気記録膜10及び保護膜7は、それぞれマグネトロンスパッタ装置を用いた連続スパッタリングにより下記膜厚になるように製膜した。誘電体膜3は60nm、補助磁性膜8は60nm、非磁性膜9は20nm、光磁気記録膜10は50nm、保護膜7は60nmとした。
光磁気記録膜10を構成するTbFeCoの組成は原子%比率でTb21Fe66Co13であり、室温からそのキュリー温度TC0=270℃まで遷移金属の磁化成分が希土類の磁化成分よりも優勢な特性を示す。一方、補助磁性膜8を構成するGdFeCoの組成は原子%比率でGd28Fe53Co19であり、単層膜で図10のようなカー回転角の温度特性を示す。
図10の横軸は温度、縦軸はカー回転角の温度に対するヒステリシスから求めたGdFeCo補助磁性膜8の残留カー回転角θKRと飽和カー回転角θkSとの比θkR/θkSを示す。このグラフより補助磁性膜8が面内磁化膜から垂直磁化膜になる臨界温度TCRは約200℃である。また、補助磁性膜8はキュリー温度TCが300℃以上であり、室温Troomからキュリー温度までの間に補償温度Tcompを有し、Tcompは約230℃である。補助磁性膜8の臨界温度TCR、補償温度Tcomp及びキュリー温度TCと光磁気記録膜10のキュリー温度TC0の関係は次のようになる。Troom<TCR<Tcomp<TC0<TC。この条件を満たすことによって後述するパワー変調したパルス光を用いた再生が極めて容易となる。
上記のような構造の光磁気記録媒体70を用いて、図11との関係で本発明の原理説明で説明したような再生方法を実行する。
〔再生用レーザーパルス強度決定のための予備実験〕
本発明の再生方法ではレーザーパワーを高パワーPr2及び低パワーPr1にパワー変調したパルス光を用いて記録磁区の拡大再生を行う。このため、最初に予備実験を行って光磁気記録媒体70に記録されたデータを再生するためのPr2及びPr1の最適レーザーパワーを決定する。この予備実験では、レーザー光波長680nm、開口数0.55の光学系を有する光磁気ドライブを用い、記録及び再生レーザー光を基板1側(補助磁性膜8側)から照射する。再生レーザー光は後述するように連続光を用い、種々のパワーに変更してそれぞれ再生信号波形を観測することとする。
予め初期化した光磁気記録媒体70の半径40mmに位置するトラックに線速5.0m/sで、記録パワー4.5mWのレーザー光を周期640ns、パルス幅213nsで変調し、記録磁界500Oeを印加しながら光変調記録を行った。これにより、トラック上に3.2μmピッチで長さ約1.6μmの記録マークを連続的に記録した。
次いで、記録マークが記録されたトラックを種々の再生パワーPrの連続光で再生した。再生用パワーの最適変調条件を求めるために、連続光のパワーPrの値をPr=1.0mW、1.5mW、1.9mW、2.0mW及び2.1mWの5段階に変更してそれぞれ再生信号を求めた。なお、再生時には光磁気記録媒体70に磁界を積極的に印加しなかったが、光学ヘッドのアクチュエータから漏れ磁界(約80Oe)が記録方向に発生していた。
上記各再生パワーPrで光磁気記録媒体70の記録トラックを再生したときの再生波形を図12A〜Eに示す。このとき、再生波形自体にトリガーをかけて波形をオシロスコープで観察した。図12Aは再生光パワーPr=1.0mWのときの再生波形を示し、記録マークのパターンに応じて再生信号が立ち上がっているのがわかる。グラフ上、ベースラインが消去状態を示し、立ち上がっているピーク信号が記録状態を示す。記録状態と消去状態間の振幅は50mVであった。さらに再生光パワーをPr=1.5mWに上げると、図12Bに示すように、信号振幅が約200mVに増大した。図12Bの波形から、波形の一部の領域では隣接するピーク信号が記録状態側でつながっていることがわかる。
図12Cは、再生パワーがPr=1.9mWの再生信号波形であり、ピーク信号が記録状態側(図の上方)で完全につながった波形を示している。これは、後述するように補助磁性膜にて磁区拡大が起こり、かかる拡大された磁区が再生光スポットによるトラックの走査とともにトラック上を移動していることを示す。さらに、再生光パワーを上げてPr=2.0mWにすると、図12Dに示すように、つながっていたピーク信号が途切れ始める。この場合、ピーク信号のつながり部とベースラインとの振幅Hploは約350mVであった。さらに、再生光パワーをPr=2.1mWまで上げると、図12Eに示すようにピーク信号が完全に途切れ、記録マークパターンに応じて波形となる。図12Eにおいて、記録状態と消去状態の振幅は200mVであった。
ここで、図12A〜図12Eの再生波形が得られる場合の補助磁性膜8及び非磁性膜9を介して積層された光磁気記録膜10の磁化状態を図13〜15の概念図を用いて説明する。図13は、図12Aの信号波形が得られる場合(再生光パワーPr=1.0mW)における再生光スポット80と、それが照射されている補助磁性膜8及び光磁気記録膜10の磁化の向きの関係を示している。最初に、図13Aに示したように再生光スポット80が照射された補助磁性膜8はその温度がその臨界温度TCR以上に上昇する領域で垂直磁化となるとともに、光磁気記録膜10の磁化が静磁結合により補助磁性膜の領域83aに転写される。図13Bに示したように再生光スポット80が記録方向に磁化が向いた磁区(記録磁区)82の直下に来ると、記録磁区82の磁化が静磁結合により補助磁性膜8に転写される。この場合、再生光パワーPrが1.0mWと低いため、光スポット80内の補助磁性膜8の中央部、すなわち領域83bだけが臨界温度TCRを超えることになり、補助磁性膜8の転写された領域83bの記録磁区82の幅よりも拡大しない。このため、図12Aに示したように再生信号強度は小さい。再生光スポット80が記録磁区82を通り過ぎると転写領域83cは、その直上の光磁気記録膜10の磁区からの転写により直上の光磁気記録膜10の磁区と同じ磁化の向きを有する。
図14は、図12Cの信号波形が得られる場合(再生光パワーPr=1.9mW)における再生光スポット80と、それが照射されている補助磁性膜8及び光磁気記録膜10の磁化の向きの関係を示している。この場合、再生光パワーが1.9mWと比較的大きいため、図14Aに示したように再生光スポット80が照射された補助磁性膜8のスポット内全域の領域85aが臨界温度TCR以上に上昇して垂直磁化となる。そして、光磁気記録膜10からの静磁結合により光磁気記録膜10の磁区が領域85aに転写される。再生光スポット80の走査により、図14Bに示したように再生光スポット80が記録磁区82の直下に来ると、記録磁区82の磁化が転写される。この場合、臨界温度TCR以上に上昇した補助磁性膜8の領域85bは記録磁区82よりもその幅が大きいために、記録磁区82は補助磁性膜8内で拡大されて転写されたことになる。この磁区拡大により大きな信号波形が得られる。さらに、再生光スポット80が記録磁区82を通り過ぎた後も領域85cは85bと同じ磁化状態を維持しているため、図12Cに示したような再生信号ピークがつながった波形が得られる。
図14の場合、再生光スポット80が記録磁区82を通り過ぎた後も領域85cが領域85bと同じ磁化状態を維持している理由は以下のように考えられる。再生レーザビームが照射されることにより補助磁性層8は臨界温度以上に昇温して垂直磁化膜となり、垂直方向の保磁力Hcを有するようになる。また、再生の際に、補助磁性膜8には光ヘッドのアクチュエータ等からの漏洩磁界による外部磁界Hexと、補助磁性膜8の臨界温度にて光磁気記録膜10の磁化が発生する静磁界Hsが印加される。その大きさは磁化方向によりHex+Hs、Hex−Hsとなる。外部磁界Hex及び静磁界Hsの合成磁界と補助磁性膜8の保磁力Hcの大きさの関係において、Hex+Hs>Hc、Hex−Hs<Hcになるときに、図14Cに示したように一旦補助磁性膜に転写された磁区は光磁気記録膜10に記録磁区の存在しない領域に再生スポットが進行しても再反転をおこさない。上記Hcは補助磁性膜8が垂直磁化状態での垂直方向の保磁力であり、図13の場合には、低再生パワーにより転写を受ける補助磁性層の温度が比較的低いため補助磁性層のHcは図14の場合よりも低くなり、補助磁性膜8に転写された磁区は光磁気記録膜10に記録磁区の存在しない領域に再生スポットが進行すると再反転をおこす(図13C)。
図15は、図12Eの信号波形が得られる場合(再生光パワーPr=2.1mW)における再生光スポット80と、それが照射されている補助磁性膜8及び光磁気記録膜10の磁化の向きの関係を示している。この場合、再生光パワーが2.1mWと大きいため、再生光スポット80が照射された補助磁性膜8のスポット内の前方部の領域87aは臨界温度TCR以上に上昇するために垂直磁化を示すが、スポット内の中央及び後方部は前方部よりも加熱されて補助磁性膜8のキュリー温度TCを超えるために磁化が消失した状態になっていると考えられる。このため、図15Aに示したように再生光スポット80内の補助磁性膜の前方部の領域87aのみが静磁結合により直上の光磁気記録膜10から磁区転写を受ける。次いで、再生光スポット80によるトラックの走査により記録磁区82の直下に来ると、記録磁区82の磁化が補助磁性膜8の前方部の比較的温度の低い領域87bにのみに転写される。従って、磁区拡大は起こらず、再生信号強度は図12Cの場合のような大きな信号は得られない。再生光スポット80が記録磁区82を通り過ぎると転写領域87cには、光磁気記録膜10からの静磁結合により直上の光磁気記録膜10の磁区と同じ向きの磁化が転写される。これは、高再生パワーにより転写を受ける補助磁性膜8の温度がキュリー温度を超える部分が存在するために補助磁性膜8のHcは図14の場合よりも低くなり、補助磁性膜8に転写された磁区は光磁気記録膜10に記録磁区の存在しない領域に再生スポットが進行すると再反転をおこすためである。
図12C及び図14に示した場合には、上述のように補助磁性膜8内で磁区拡大が起こっているために、再生信号強度が増大する。そして、記録磁区82から拡大された磁区85bは再生光スポット80ともに拡大したまま移動する。しかしながら、図14Cにおいて記録磁区82と隣接する磁区84の直下に再生光スポット80の中心が来たときには、記録磁区82の拡大磁区85cを消去して、磁区84を拡大再生する必要がある。一方、図13(図12Aに対応)及び図15(図12Eに対応)にそれぞれ示したように再生パワーPrが比較的小さい場合(再生光パワーPr=1.0mW)及び比較的大きい場合(再生光パワーPr=2.1mW)には、再生光スポット80が記録磁区82を通り過ぎた後に、記録磁区82から転写された磁区83bは消滅し、再生光スポット80の直上に存在する光磁気記録膜10の磁区(図中、消去方向)が転写されている。従って、再生光として、磁区拡大が生じる再生光パワーPr=1.9mWと磁区拡大が生じない再生光パワーPr=2.1mW(または1.0mW)の間を再生クロック周期またはその整数倍の周期でパワー変調したパルス光を用いることによって、磁区拡大により再生信号を増大して得ることができ且つ再生光スポットの中心が光磁気記録膜の記録磁区から隣の記録磁区上に移動したときに当該記録磁区から転写されて拡大された磁区を消滅させることができる。
上記の予備実験の結果より再生用レーザー光を、図12CでのPr=1.9mWと図12EでのPr=2.1mWとの間で強度変調したパルス光として与えれば、再生信号は図12Cと図12Eで得られた再生信号強度の差として検出されることになる。これは図12DのHp10=350mVに相当すると考えられ、図12A及び12Eで得られた振幅に比べて一層大きな振幅での再生が可能であることを示唆している。このため以下の再生光パルスを用いた再生実験において高パワーPr2をPr2=2.1mW、低パワーPr1をPr1=1.9mWにそれぞれ設定することにする。
〔パワー変調したパルス光による光磁気記録媒体の再生〕
本実施例で製造した光磁気記録媒体70を初期化した後、半径40mmに位置するトラックに線速5.0m/sで、記録パワー6.3mWのレーザー光を周期320ns、パルス幅53.3nsで変調し、記録磁界500Oeで光変調記録を行った。これは3.2μmピッチで約1.6μmの記録マークを連続的に記録したことに相当する。
こうして記録された光磁気記録媒体70の記録トラックに、上記予備実験で決定された再生光レーザーパワーPr2=2.1mW、Pr1=1.9mWにパワー変調されたパルスレーザーを照射して再生する。再生用レーザーパルスは図16に示すように、記録マークの前端から10nsのパルス幅でPr2=2.1mW、その後150nsのパルス幅でPr1=1.9mWとなるように調整した。再生時には積極的に磁界を印加しなかったが、光学ヘッドのアクチュエーターから漏れ磁界(約80Oe)が記録方向に発生していた。
得られた再生信号波形を図17に示す。記録マークに対応して振幅約220mVの再生信号が得られた。また、同じ条件で記録したマークパターンを一定の再生パワーPr=1.0mW及びPr=2.1mWの連続光で再生したところ、それぞれ振幅100mW及び170mWであった。これらの結果より、再生光をパルス状にパワー変調して再生を行うことで、記録磁区を再生クロックに同期した形で拡大して転写するとともにその直後に消滅させることができ、拡大時にはより高いC/Nで再生を行うことができることがわかる。
本実施例では、高パワーPr2=2.1mW、低パワーPr1=1.9mWの各パルスレーザー強度を選択し、低パワーパルスを拡大磁区発生用、高パワーパルスを拡大磁区消滅用にそれぞれ用いた。しかしながら、高パワーパルスを拡大磁区発生用としてPr2=1.9mW、低パワーパルスを拡大磁区消滅用としてPr1=1.0mWにすることも可能である。原理説明で用いた図11に示した例では後者の場合を示す。さらに、高パワーパルスと低パワーパルスのパルス幅の比、すなわち、デューティーは図11や図16に示した場合に限定されず、増大された再生信号を得るために適宜変更することができる。
本実施例2で製造した光磁気記録媒体においても、再生用光ビームが照射された時の媒体の温度プロファイルを所望の形状にするために、あるいは、温度プロファイルの線速度依存性を小さくするため、適当な熱伝導率の熱制御層を光磁気記録媒体の保護膜上に設けてもよい。また、更に良好な再生CN比を得るために、再生光を照射したときの媒体の最高到達温度でカー回転角θkが補助磁性膜のθk以上であり、且つ室温以上で垂直磁化膜である再生用磁性膜を誘電体膜3と補助磁性膜8との間に付加してもよい。
実施例1ではパルス光を照射しながら記録信号に応じて印加磁界の極性を変調する光磁界変調方式を用い、実施例2ではDC磁界を印加しながら記録信号に応じて光強度を変調する光変調方式を用いてそれぞれ記録を行ったが、通常のDC光を用いた磁界変調記録方式、光変調記録方式並びに光磁界変調方式のいずれの方式を用いてもかまわない。
産業上の利用可能性
本発明の光磁気記録媒体は、室温以上で垂直磁化膜である光磁気記録膜と、室温からある臨界温度(TCR)までは面内磁化膜でありTCR以上で垂直磁化膜となる1層以上の補助磁性膜を用い、それらの磁性膜の磁気特性が所定の関係になるように調整したため、記録磁区を拡大して再生することが可能となり、再生信号強度を増大して良好なC/Nをえることができる。本発明の方法は、通常のマスク機能を備えた磁気超解像型の光磁気記録媒体に比べて磁気的マスクによる再生出力に寄与する光量の低下が少ないかまたは光量が低下しない超解像再生が可能となった。本発明の光磁気記録媒体及びその再生方法を用いれば、再生光スポット径に比べて極めて微小な記録マークも独立して再生することができるため、光磁気記録媒体の記録密度を著しく向上させることができる。
Claims (9)
- 光磁気記録膜と、補助磁性膜と、該補助磁性膜と該光磁気記録膜との間に設けられた非磁性膜とを備え、再生光を照射したときに該光磁気記録膜の記録磁区を該補助磁性膜に磁気的に転写させて信号再生を行う光磁気記録媒体において、
該補助磁性膜が臨界温度を超えると面内磁化膜から垂直磁化膜に転移する少なくとも一層の磁性膜であり、
該光磁気記録膜が室温以上の温度で垂直磁化膜であり、且つ、該補助磁性膜のキュリー温度、臨界温度及び補償温度をそれぞれTC、TCR及びTCOMPとし、該光磁気記録膜のキュリー温度をTCOとすると、該光磁気記録膜及び該補助磁性膜が以下の関係を満たし、
i)室温<TCR<TCOMP<TC
ii)TCR<TC0
該補助磁性膜の磁気特性を利用して再生時に、該補助磁性膜に該光磁気記録膜の記録磁区より大きな磁区が転写されることを特徴とする光磁気記録媒体。 - 上記光磁気記録膜上に第1補助磁性膜及び第2補助磁性膜が順次積層された光磁気記録媒体であって、
上記光磁気記録膜、第1補助磁性膜及び第2補助磁性膜のキュリー温度をそれぞれTC0、TC1及びTC2とし、第1補助磁性膜及び第2補助磁性膜の上記臨界温度をそれぞれTCR1及びTCR2としたときに、上記光磁気記録膜、第1補助磁性膜及び第2補助磁性膜が、室温<TCR2<TCR1<TC0,TC1,TC2となる関係を満たすことを特徴とする請求項1に記載の光磁気記録媒体。 - 上記光磁気記録膜が、TbFeCo、DyFeCo及びTbDyFeCoからなる群から選ばれた希土類−遷移金属膜であり、第1及び第2補助磁性膜が、GdFeCo、GdFe、GdTbFeCo及びGdDyFeCoからなる群から選ばれた希土類−遷移金属膜であることを特徴とする請求項2に記載の光磁気記録媒体。
- 上記光磁気記録膜の記録磁区の径以下の大きさの磁区が第1補助磁性膜に転写されるように再生光パワー及び第1補助磁性膜の臨界温度TCR1が決定されていることを特徴とする請求項2に記載の光磁気記録媒体。
- 上記光磁気記録膜が、TbFeCo、DyFeCo及びTbDyFeCoからなる群から選ばれた希土類−遷移金属膜であり、上記補助磁性膜が、GdFeCo、GdFe、GdTbFeCo及びGdDyFeCoからなる群から選ばれた希土類−遷移金属膜であることを特徴とする請求項1に記載の光磁気記録媒体。
- 上記光磁気記録膜と上記補助磁性膜との間に働く静磁結合力により、上記光磁気記録膜の記録磁区が上記補助磁性膜に転写されることを特徴とする請求項1に記載の光磁気記録媒体。
- 上記光磁気記録膜の記録磁区の径以上の大きさの磁区が上記補助磁性膜に転写及び形成されるように再生光パワー及び上記補助磁性膜の臨界温度TCRが決定されていることを特徴とする請求項1に記載の光磁気記録媒体。
- 再生光を照射したときの光磁気記録媒体の最高到達温度におけるカー回転角θkが上記補助磁性膜のカー回転角θk以上であり且つ雰囲気温度以上で垂直磁化膜である再生用磁性膜が、上記補助磁性膜の再生光入射側に形成されていることを特徴とする請求項1に記載の光磁気記録媒体。
- 室温で垂直磁化膜である光磁気記録膜を有する光磁気記録媒体に再生光を照射して磁気光学効果の大きさを検出することにより記録された信号を再生する光磁気記録媒体の再生方法において、
該光磁気記録媒体として、臨界温度を超えると面内磁化膜から垂直磁化膜に転移する補助磁性膜を非磁性膜を介して該光磁気記録膜上に備え、該光磁気記録膜及び該補助磁性膜が、該光磁気記録膜及び該補助磁性膜のキュリー温度をそれぞれTCO及びTCとし、該補助磁性膜の臨界温度をTCRとしたときに、室温<TCR<TCO,TCとなる関係を満たす光磁気記録媒体を用い、
該補助磁性膜が、該補助磁性膜の補償温度をT COMP としたときに、室温<T CR <T COMP <T C となる関係を満たす磁気特性を有し、
該光磁気記録媒体に、再生クロックと同一周期または再生クロックの整数倍の周期で再生光パワーPr1及びPr2にパワー変調された再生光を照射することによって記録信号を再生し、該再生光パワーPr1及びPr2の一方の再生光パワーが該補助磁性膜の磁区拡大を生じさせる再生光パワーであることを特徴とする光磁気記録媒体の再生方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34974695 | 1995-12-20 | ||
PCT/JP1996/003716 WO1997022969A1 (fr) | 1995-12-20 | 1996-12-20 | Support d'enregistrement magneto-optique et procede de reproduction de ce support |
Publications (1)
Publication Number | Publication Date |
---|---|
JP3786426B2 true JP3786426B2 (ja) | 2006-06-14 |
Family
ID=18405826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52266597A Expired - Fee Related JP3786426B2 (ja) | 1995-12-20 | 1996-12-20 | 光磁気記録媒体及びその再生方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US6226234B1 (ja) |
JP (1) | JP3786426B2 (ja) |
KR (1) | KR20000064429A (ja) |
CN (1) | CN1207822A (ja) |
AU (1) | AU1171397A (ja) |
WO (1) | WO1997022969A1 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998002878A1 (fr) * | 1996-07-12 | 1998-01-22 | Hitachi Maxell, Ltd. | Support d'enregistrement magneto-optique, procede de reproduction et dispositif de reproduction |
US20020018404A1 (en) * | 1996-07-12 | 2002-02-14 | Hitachi Maxell, Ltd. | Magneto-optical recording medium having different magnetic domain radii in recording layer and reproduction layer |
AU3459997A (en) | 1996-07-12 | 1998-02-09 | Hitachi Maxell, Ltd. | Magneto-optical recording medium, its reproducing method and reproducer |
KR19990023151A (ko) * | 1997-08-27 | 1999-03-25 | 사토 도리 | 광자기기록매체 및 그 재생방법 |
AU1785399A (en) * | 1998-01-12 | 1999-07-26 | Hitachi Maxell, Ltd. | Method and apparatus for magnetooptic reproduction |
EP0984445A4 (en) * | 1998-01-23 | 2006-07-05 | Sanyo Electric Co | REPRODUCTION METHOD FOR MAGNETO-OPTICAL RECORDING MEDIUM, AND MAGNETO-OPTICAL DISC DEVICE |
JP3436709B2 (ja) * | 1999-06-28 | 2003-08-18 | シャープ株式会社 | 光磁気記録媒体及びその再生方法 |
JPWO2003102943A1 (ja) * | 2002-05-31 | 2005-10-06 | 富士通株式会社 | 光記録媒体及び光記憶装置 |
US7193934B2 (en) | 2002-06-07 | 2007-03-20 | Carnegie Mellon University | Domain position detection magnetic amplifying magneto-optical system |
US20050188397A1 (en) * | 2002-12-24 | 2005-08-25 | Fujitsu Limited | Magneto-optical recording medium and magneto-optical recording medium substrate manufacturing method |
WO2019187356A1 (ja) * | 2018-03-29 | 2019-10-03 | 国立大学法人東京大学 | 記録方法、記録装置、再生方法、再生装置、及び、高速応答素子 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2805746B2 (ja) | 1987-11-30 | 1998-09-30 | ソニー株式会社 | 光磁気記録媒体の信号再生方法 |
JPH04325948A (ja) | 1991-04-25 | 1992-11-16 | Seiko Epson Corp | 光磁気記録再生方法 |
JP2795567B2 (ja) | 1991-11-25 | 1998-09-10 | シャープ株式会社 | 光磁気ディスク及び再生方法 |
JP3072812B2 (ja) | 1993-04-08 | 2000-08-07 | キヤノン株式会社 | 光磁気記録媒体及び該媒体の情報再生方法 |
JP2809991B2 (ja) | 1994-01-14 | 1998-10-15 | 富士通株式会社 | 光磁気記録媒体及び該媒体に記録された情報の再生方法 |
JP3380621B2 (ja) * | 1994-06-24 | 2003-02-24 | 日立マクセル株式会社 | 光磁気記録媒体の再生方法、光磁気記録媒体およびそれを用いた光磁気記録再生装置 |
JP3426034B2 (ja) * | 1994-07-20 | 2003-07-14 | シャープ株式会社 | 光磁気記録媒体および記録再生方法並びに光磁気記録媒体の製造方法 |
JPH08161788A (ja) | 1994-12-06 | 1996-06-21 | So Fukada | 光学装置 |
JP3429877B2 (ja) * | 1994-12-27 | 2003-07-28 | シャープ株式会社 | 光磁気記録媒体およびその再生方法並びに記録方法 |
JP3177395B2 (ja) * | 1995-01-31 | 2001-06-18 | シャープ株式会社 | 光磁気記録媒体及びその再生方法 |
JP3445023B2 (ja) * | 1995-06-08 | 2003-09-08 | シャープ株式会社 | 光磁気記録媒体およびその再生方法並びに記録方法 |
JP3545133B2 (ja) * | 1996-07-23 | 2004-07-21 | シャープ株式会社 | 光磁気記録媒体の再生方法及び光磁気記録媒体 |
JPH10172194A (ja) * | 1996-12-13 | 1998-06-26 | Sanyo Electric Co Ltd | 光磁気記録媒体の再生装置及び再生方法 |
JP3474401B2 (ja) * | 1997-07-15 | 2003-12-08 | シャープ株式会社 | 光磁気記録媒体 |
JP3349403B2 (ja) * | 1997-07-31 | 2002-11-25 | シャープ株式会社 | 光磁気記録媒体 |
-
1996
- 1996-12-20 CN CN96199675A patent/CN1207822A/zh active Pending
- 1996-12-20 JP JP52266597A patent/JP3786426B2/ja not_active Expired - Fee Related
- 1996-12-20 KR KR1019980704554A patent/KR20000064429A/ko not_active Application Discontinuation
- 1996-12-20 US US09/091,480 patent/US6226234B1/en not_active Expired - Fee Related
- 1996-12-20 WO PCT/JP1996/003716 patent/WO1997022969A1/ja not_active Application Discontinuation
- 1996-12-20 AU AU11713/97A patent/AU1171397A/en not_active Abandoned
-
2001
- 2001-03-07 US US09/799,602 patent/US6385140B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
AU1171397A (en) | 1997-07-14 |
WO1997022969A1 (fr) | 1997-06-26 |
US6226234B1 (en) | 2001-05-01 |
CN1207822A (zh) | 1999-02-10 |
US20010012263A1 (en) | 2001-08-09 |
US6385140B2 (en) | 2002-05-07 |
KR20000064429A (ko) | 2000-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5168482A (en) | Magnetooptical recording and playback method employing multi-layer recording medium with record holding layer and playback layer | |
JP2910250B2 (ja) | 光磁気記録媒体 | |
US4882231A (en) | Magneto-optical recording medium | |
JP2969963B2 (ja) | 光磁気記録媒体における信号再生方法 | |
KR20000022390A (ko) | 광자기기록매체, 그 재생방법 및 재생장치 | |
JPH11283289A (ja) | 光磁気記録媒体、その再生方法及び再生装置 | |
US5430696A (en) | Magneto-optical recording medium | |
US5175714A (en) | Method of magneto-optically recording/erasing information and magneto-optical information storage medium including recording and bias layers satisfying certain conditions | |
JP3786426B2 (ja) | 光磁気記録媒体及びその再生方法 | |
JP3477384B2 (ja) | 光磁気記録媒体 | |
JPH04123339A (ja) | 高レベルのマージンが拡大したオーバーライト可能な光磁気記録媒体 | |
KR19990023151A (ko) | 광자기기록매체 및 그 재생방법 | |
US5965285A (en) | Magneto-optical recording medium and reproducing method for the same | |
CA1315880C (en) | Method for reproducing signal from magneto-optical recording medium | |
JPH11110839A (ja) | 光磁気記録媒体 | |
JPH11126381A (ja) | 光磁気記録媒体 | |
JP3792366B2 (ja) | 光磁気記録媒体 | |
JP3412879B2 (ja) | 光磁気記録媒体 | |
JP2766198B2 (ja) | 光磁気記録媒体 | |
JPH04255941A (ja) | 光磁気記録媒体 | |
JPH1139737A (ja) | 光磁気記録媒体及びその記録再生方法 | |
JPH04313833A (ja) | 光磁気記録媒体およびそれを用いた光磁気記録再生方法 | |
KR100531274B1 (ko) | 광자기 디스크 | |
JP3071246B2 (ja) | 光磁気記録方法 | |
JP3328989B2 (ja) | 光磁気記録媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050412 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050613 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060314 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060320 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |