[go: up one dir, main page]

JP3681596B2 - 直流電源装置 - Google Patents

直流電源装置 Download PDF

Info

Publication number
JP3681596B2
JP3681596B2 JP36607199A JP36607199A JP3681596B2 JP 3681596 B2 JP3681596 B2 JP 3681596B2 JP 36607199 A JP36607199 A JP 36607199A JP 36607199 A JP36607199 A JP 36607199A JP 3681596 B2 JP3681596 B2 JP 3681596B2
Authority
JP
Japan
Prior art keywords
switch
reactor
diode
power supply
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36607199A
Other languages
English (en)
Other versions
JP2001186768A (ja
Inventor
治義 森
政男 津田
康宏 藪西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP36607199A priority Critical patent/JP3681596B2/ja
Publication of JP2001186768A publication Critical patent/JP2001186768A/ja
Application granted granted Critical
Publication of JP3681596B2 publication Critical patent/JP3681596B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、交流を直流に変換する整流装置等の直流電源装置に関するものであり、特に半導体スイッチング素子から発生するノイズと半導体スイッチング素子の損失を低減する技術に関する。
【0002】
【従来の技術】
図13は、従来の整流装置を示す回路図であり、電気学会技術報告 第635号に示された昇圧形単相AC−DCコンバータ(昇圧形交流−直流変換器)である。
図において、1は交流電源、2は交流電源1を整流して直流に変換するダイオード整流器で、ダイオード3、4、5、6で構成される。7はリアクトル、8はリアクトル7に流れる電流を制御すると共に、直流回路に接続されたコンデンサ10及び負荷11の電圧を制御する昇圧回路用スイッチである。12は昇圧回路用スイッチを構成し、交流電源1をリアクトル7を介して短絡させるスイッチ、13は昇圧回路用スイッチを構成するダイオードで、スイッチ12が開路したときにリアクトル7の電流を直流出力に流し込むよう動作する。
【0003】
図14は、従来の整流装置の動作を示すタイミングチャートであり、図14(a)は入力電圧波形、図14(b)は交流電源1に流れる入力電流波形、図14(c)〜図14(i)は時刻T1からT5までの図14(b)の拡大波形、図14(h)はスイッチ12のオンオフ状態を示している。
【0004】
次に、動作について図14の波形を併用して説明する。
図14において、図には示されていない制御回路によって、負荷11の両端電圧を制御しながら図14(b)の入力電流を図14(a)の入力電圧に同期した正弦波に近づくようにスイッチ12をオンオフ制御する。一般に、図13に示す回路構成の場合は、負荷11の両端電圧は、入力電圧のピーク値よりも高くなるように設定されている。リアクトル7に流れる電流は、入力電流波形を整流した波形になる。図14(c)、図14(d)、図14(g)、図14(i)は、時刻T1からT5までの拡大波形であり、各々ダイオード13の電流、スイッチ12の電流、ダイオード13の電圧、ダイオード13の瞬時損失を示したものである。
【0005】
図13において、交流電源1の正弦波電圧波形は、整流器2によって正の電圧に変換される。スイッチ12は、この整流された電圧を、リアクトル7を介して開閉する。スイッチ12が閉路中はリアクトル7の電流は図14(d)の時刻T1からT4に示すようにスイッチ12を通って増加し、開路中は図14(d)の時刻T4からT5に示すように、リアクトル7はダイオード13を通って直流電源に接続されるため電流は減少する。時刻T5以降は時刻T1からT5までの現象が繰り返される。
【0006】
この回路において、直流回路に設けられたコンデンサ10、ダイオード13、スイッチ12の回路インダクタンスは、スイッチ12のスイッチング時の電圧サージを抑制するために、極力小さく設計される。一方、ダイオード13は、スイッチ12がターンオンし、ダイオード13がターンオフする時(図14の時刻T1からT3)、上記回路インダクタンスが小さいほど逆回復電流(図14(c)のIrr)が大きくなり、また逆回復時の電流変化率(図14(c)の時刻T2からT3)も大きくなるために、スイッチング損失(図14(i))及び発生ノイズが大きくなる。
【0007】
【発明が解決しようとする課題】
従来の整流装置は、以上のように構成されているので、スイッチング時のサージ電圧を少なくしようとすると、ダイオード13がオフするときの逆回復電流が増加し、スイッチング損失及び発生ノイズが増加するなどの問題点があった。
【0008】
この発明は、上記のような問題点を解決するためになされたものであり、ダイオードがオフする時の逆回復電流を抑制して、スイッチの損失及び発生ノイズを低減することができる直流電源装置を得ることを第一の目的とする。
また、運転継続性を強化した直流電源装置を得ることを第二の目的にしている。
【0009】
【課題を解決するための手段】
この発明に係わる直流電源装置においては、第一のスイッチと第一のダイオードが第一の直列接続点を介して直列に接続された第一の直列回路と、この第一の直列回路に並列に接続されると共に、第二のスイッチと第二のダイオードが第二の直列接続点を介して直列に接続された第二の直列回路と、電源と第一の直列回路及び第二の直列回路に接続され、第一のスイッチまたは第二のスイッチが閉路したとき、電源から電流が入力されると共に、閉路したスイッチが開路したとき、直流電流を負荷に出力する第一のリアクトルと、電源と第一の直列接続点との間に接続された第二のリアクトルと、電源と第二の直列接続点との間に接続された第三のリアクトルを備え、第一のスイッチ及び第二のスイッチは、いずれか一方が閉路するよう制御され、さらに、第二のリアクトル及び第三のリアクトルのリアクタンスL2は、電源の入力電圧のピーク値をVin、負荷への出力電圧をVD、第 一のダイオード及び第二のダイオードの通電時順電圧降下をVF1、第一のダイオード及び第二のダイオードの電流が流れ始める電圧をVF0、第一のリアクトルのリアクタンスをL1としたとき、(VF1−VF0)≦(VD−Vin)L2/(L1+L2)の関係にあるものである
【0010】
また、第一のスイッチと第一のダイオードが第一の直列接続点を介して直列に接続された第一の直列回路と、この第一の直列回路に並列に接続されると共に、第二のスイッチと第二のダイオードが第二の直列接続点を介して直列に接続された第二の直列回路と、第一のスイッチまたは第二のスイッチが閉路したとき、電源から電流が入力されるよう接続されると共に、上記閉路した第一のスイッチまたは第二のスイッチが開路したとき、それぞれ第一のダイオードまたは第二のダイオードを介して直流電流を負荷に出力するよう接続された第一のリアクトルと、この第一のリアクトルと第一の直列接続点との間に接続された第二のリアクトルと、第一のリアクトルと第二の直列接続点との間に接続された第三のリアクトルを備え、第一のスイッチ及び第二のスイッチは、いずれか一方が閉路するよう制御され、さらに、第二のリアクトル及び第三のリアクトルのリアクタンスL2は、電源の入力電圧のピーク値をVin、負荷への出力電圧をVD、第一のダイオード及び第二のダイオードの通電時順電圧降下をVF1、第一のダイオード及び第二のダイオードの電流が流れ始める電圧をVF0、第一のリアクトルのリアクタンスをL1としたとき、(VF1−VF0)≦(VD−Vin)L2/(L1+L2)の関係にあるものである
【0011】
さらにまた、ダイオードを用いて構成され、交流電源を整流して直流に変換する整流器を備え、第一のリアクトルは整流器の出力側に挿入されているものである。
また、ダイオードを用いて構成され、交流電源を整流して直流に変換する整流器を備え、第一のリアクトルは整流器の入力側に挿入されているものである。
【0012】
また、第一の直列回路及び第二の直列回路は、電源の正の半サイクルと電源の負の半サイクルとに対応して、それぞれ二組のスイッチとダイオードの直列回路によって形成されているものである。
加えて、第一のリアクトルは、電源の正の半サイクルと電源の負の半サイクルとに対応して、二つ設けられているものである。
また、ダイオードを用いて構成され、交流電源を整流して直流に変換するハーフブリッジの整流器を備えたものである。
また、第一の直列回路に並列に接続されると共に互いに直列に接続された二つのコンデンサを備え、二つのコンデンサは、電源の正の半サイクルと電源の負の半サイクルとに対応しているものである。
【0013】
また、第一のスイッチと第二のスイッチは、交互に閉路されるものである。
また、第二のリアクトル及び第三のリアクトルは、それぞれ電流に対して線形のリアクタンスを有するリアクトルと、このリアクトルに直列に接続された過飽和リアクトルによって構成されているものである。
【0014】
また、整流器を構成するダイオードの一部は、サイリスタによって代替されているものである。
加えて、負荷電流を検出して予め設定されている設定値と比較して過負荷を検出する過負荷検出回路と、この過負荷検出回路によって過負荷が検出されたとき、第一のスイッチ及び第二のスイッチを同時にスイッチングさせる制御信号を形成する第一の信号合成器を備えたものである。
【0015】
また、負荷電流を検出して予め設定されている設定値と比較して過負荷を検出する過負荷検出回路と、第一のスイッチ及び第二のスイッチのスイッチング周波数を切換えるスイッチング周波数切換回路を備え、過負荷検出回路によって過負荷が検出されたとき、スイッチング周波数切換回路は、第一のスイッチ及び第二のスイッチのスイッチング周波数を低下させるものである。
【0016】
また、第一のスイッチの異常を検出する第一の異常検出回路と、第二のスイッチの異常を検出する第二の異常検出回路と、第一の異常検出回路及び第二の異常検出回路のいずれか一方により、異常が検出されたとき、過負荷検出回路の過負荷検出レベルを切換える過負荷検出レベル切換回路を備えたものである。
【0017】
さらに、第一のスイッチの異常を検出する第一の異常検出回路と、第二のスイッチの異常を検出する第二の異常検出回路と、第一の異常検出回路及び第二の異常検出回路のいずれか一方により、異常が検出されたとき、異常でない方のスイッチをスイッチングさせるよう制御信号を形成する第二の信号合成器を備えたものである。
【0018】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図に基づいて説明する。
図1は、この発明の実施の形態1による直流電源装置を示す回路図である。
図1において、1は交流電源、2は交流電源1を整流して直流に変換するダイオード整流器で、ダイオード3、4、5、6によって構成される。7は第一のリアクトル、8はリアクトル7に流れる電流を制御すると共に直流回路に接続されたコンデンサ10及び負荷11の電圧を制御する第一の直列回路である昇圧回路用スイッチであり、交流電源1をリアクトル7を介して短絡させる第一のスイッチ12と、このスイッチ12と第一の直列接続点を介して直列に接続されスイッチ12が開路したときにリアクトル7の電流を直流出力に流し込むよう動作する第一のダイオード13によって構成される。15は昇圧回路用スイッチ8と並列に接続された昇圧回路用スイッチ8と同様の第二の直列回路である昇圧回路用スイッチで、昇圧回路用スイッチ8と同様に、第二のスイッチ16と、このスイッチ16と第二の直列接続点を介して直列に接続された第二のダイオード17によって構成されている。ここで、スイッチ12、16は半導体スイッチング素子によって形成されている。
18はリアクトル7と昇圧回路用スイッチ8の第一の直列接続点の間に設けられた第二のリアクトル、19はリアクトル7と昇圧回路用スイッチ15の第二の直列接続点の間に設けられた第三のリアクトルである。リアクトル18、19は昇圧回路用スイッチ8及び昇圧回路用スイッチ15間で電流を移行するときに、ダイオードがオフするときの電流の変化率を抑制するために設けられている。
【0019】
図2は、この発明の実施の形態1による直流電源装置の動作を示すタイミングチャートであり、図2(a)は入力電圧波形、図2(b)は交流電源1に流れる入力電流波形である。図2(c)〜図2(l)は時刻T1からT9までの図2(b)の拡大波形であり、図2(c)はダイオード13の電流、図2(d)はスイッチ12の電流、図2(e)はダイオード17の電流、図2(f)はスイッチ16の電流、図2(g)はダイオード13の電圧、図2(h)はダイオード17の電圧、図2(i)はダイオード13の瞬時損失、図2(j)はダイオード17の瞬時損失である。図2(k)はスイッチ12のオンオフ状態、図2(l)はスイッチ16のオンオフ状態を示している。
【0020】
次に、動作について図を用いて説明する。
図2において、図示されていない制御回路によって、負荷11の両端電圧を制御しながら、図2(b)の入力電流を、図2(a)の入力電圧に同期した正弦波に近づくように、スイッチ12及びスイッチ16を交互にオンオフ制御する。
一般に、図1に示す回路構成の場合は、負荷11の両端電圧は、入力電圧のピーク値よりも高くなるように設定されている。リアクトル7に流れる電流は、入力電流波形を整流した波形になる。
【0021】
図1において、交流電源1の正弦波電圧波形は、整流器2によって正の電圧に変換される。スイッチ16は、この整流された電圧をリアクトル7を介して開閉する。スイッチ16が閉路中は、リアクトル7の電流は図2(f)の時刻T1からT4に示すようにスイッチ16を通じて増加し、スイッチ16が開路中は、図2(e)の時刻T4からT5に示すように、リアクトル7はダイオード17を通じて負荷11に接続されるため、リアクトル7の電流は減少する。
時刻T5以降は、時刻T1からT5までのスイッチ16の代わりにスイッチ12が開閉する。時刻T5においてスイッチ12が閉路すると、それまでダイオード17に流れていた電流は、時刻T5からT7の間にリアクトル18、19を通じてスイッチ12に移行する。時刻T5からT6までのダイオード17の電流変化率は、リアクトル18、19のリアクタンスで直流電圧VDを除した値になる。
時刻T7以降は、リアクトル7の電流は、図2(d)の時刻T7からT8に示すようにスイッチ12を通じて増加し、スイッチ12が開路する時刻T8からT9の間は、リアクトル7はダイオード13を通じて負荷11に接続されるため、図2(c)に示すようにリアクトル7の電流は減少する。時刻T9以降は、時刻T1からT9までの現象が繰り返される。
【0022】
この回路において、スイッチ16もしくはスイッチ12をオンした時のダイオード13とダイオード17の電流変化率は、リアクトル18、19のインダクタンスで決定できるため、従来とは異なり、ターンオフ時のdi/dtに依存するダイオードの逆回復電流(Irr)を直流回路のインダクタンス(直流回路に設けられたコンデンサ10と、ダイオード13またはダイオード17と、スイッチ12またはスイッチ16の回路インダクタンス)に関係なく決定できる。
【0023】
なお、たとえばダイオード13に電流が流れている時は、順電圧降下が発生する。リアクトル18、19が無い場合は、ダイオード17に順方向電圧が印加されるので、ダイオード17にも電流が流れてしまう。しかしながら、たとえばダイオード13に電流が流れている場合には、リアクトル18には、直流電圧VDと交流入力電圧Vinとの差の電圧をリアクトル7(インダクタンスL1)とリアクトル18で分圧した電圧((VD−Vin)*L2/(L1+L2))が、ダイオード17に逆バイアスをかける方向に印加されるため、このリアクトル18に印加される電圧を、ダイオード17の通流時の順電圧降下VF1とダイオード17に電流が流れ始める電圧VF0との差電圧(VF1−VF0)よりも大きくすることで、電流が流れていない方のダイオード17へ電流が移行することを防ぐことができる。
【0024】
すなわち、下記(1)式の関係でリアクトル18及びリアクトル19のインダクタンスL2を選べばよい。
(VF1−VF0)≦(VD−Vin)*L2/(L1+L2)・・・(1)
ただし、
Vin:入力電圧のピーク値(V)
VD:直流出力電圧(V)
VF1:スイッチと直列に接続されたダイオードの通電時順電圧降下(V)
VF0:電流が流れ始めるダイオードの電圧(V)
L1:リアクトル7のリアクタンス(H)
L2:リアクトル18またはリアクトル19のリアクタンス(H)
である。
【0025】
実施の形態1によれば、昇圧回路用スイッチ8、15を並列に設け、それぞれとリアクトル7の間にリアクトル18、19を設けたので、ダイオードがオフする時の電流の変化率を抑制することができ、スイッチング損失及び発生ノイズを低減することができる。
【0026】
実施の形態2.
図3は、この発明の実施の形態2による直流電源装置を示す回路図である。
図において、1〜19は図1におけるものと同一のものである。
実施の形態1では、リアクトル7を直流側に設ける構成としたが、実施の形態2では、リアクトル7を交流電源1側に設けている。
【0027】
直流電源装置におけるリアクトル7は、物理的に大きく、また発熱が大きいために、部品と離して配置されることが多いと共に、ダイオード3、4、5、6及びスイッチとダイオードの直列回路8、15は、冷却片上にまとめて配置されることが多いことから、図3に示すように、交流電源1側にリアクトル7を配置することで、冷却片からリアクトル7までの往復配線をなくすことができる。
【0028】
したがって、実施の形態2では、作業時間の短縮と低コスト化を図ることができる。
【0029】
実施の形態3.
図4は、この発明の実施の形態3による直流電源装置を示す回路図である。
図において、1、2、8、10、11、15、18、19は図1におけるものと同一のものである。7a、7bはリアクトル、12a、12bは昇圧回路用スイッチ8を構成し半導体スイッチング素子によって形成されるスイッチ、13a、13bは昇圧回路用スイッチ8を構成するダイオード、16a、16bは、昇圧回路用スイッチ15を構成し、半導体スイッチング素子によって形成されるスイッチ、17a、17bは昇圧回路用スイッチ15を構成するダイオードである。
【0030】
図4のスイッチ12a、16aとダイオード13a、17a及びリアクトル7aは、交流電源の正の半サイクルで電流を流すために使用し、スイッチ12b、16bとダイオード13b、17bとリアクトル7bは、交流電源の負の半サイクルで電流を流すために使用する。
【0031】
実施の形態1では、フルブリッジの整流器2で整流する場合について述べたが、実施の形態3は、図4に示すように、ハーフブリッジの整流器2と、ハーフブリッジのスイッチとダイオードの組み合わせによる昇圧回路用スイッチ8、15の場合であっても、同様の効果を得ることができる。
【0032】
次に、実施の形態3の回路動作について説明する。
一般に、この回路構成の場合は、負荷11の両端電圧は交流電源1の電圧ピーク値よりも高くなるように設定されている。装置は図示されていない制御回路によって、負荷11の両端電圧を制御しながら、交流電源1の正の半サイクルでは、スイッチ12aとスイッチ16aを、図1の回路のスイッチ12、16と同様に、交互にオン・オフ制御し、整流器2の直流回路負側母線に接続されたダイオード13b、17b及びリアクトル7bを通って流れる電流波形が、交流電源1の正弦波の正側の波形に近づくように制御する。
また、交流電源1の負の半サイクルでは、スイッチ12bとスイッチ16bを、交互にオン・オフ制御し、整流器2の直流回路正側母線に接続されたダイオード13a、17a及びリアクトル7aを通って流れる電流波形が、交流電源1の正弦波の負側の波形に近づくように制御する。
【0033】
図4の回路の場合は、図1に示した回路の整流器2をハーフブリッジ構成とし、昇圧回路用スイッチ回路8、15及びリアクトル7a、7bの動作を、交流電源1の極性すなわち整流器2のダイオードの動作極性にあわせて変更するようにしている。従って、動作としては図1の回路の昇圧回路用スイッチ8、15を、それぞれ交流電源1の電圧極性毎に二回路持つように構成したものと同様であり、リアクトル18、19の動作および選定方法も同様となる。なお、実施の形態1の(1)式で、リアクトル7a及びリアクトル7bは、それぞれL1のリアクタンスを有するものとする。
【0034】
実施の形態3は、電流が通過する半導体素子の数が少ないので損失が少ないため、冷却用部品を含めて小型・低コスト化を図ることができる。
【0035】
実施の形態4.
図5は、この発明の実施の形態4による直流電源装置を示す回路図である。
図において、1、2、8、10、11、12a、12b、13a、13b、15、16a、16b、17a、17b、18、19は図4におけるものと、7は図1におけるものとそれぞれ同一のものである。
実施の形態3では、リアクトル7a、7bを直流側に設ける構成としたが、実施の形態4は、リアクトル7を交流電源1側に設けている。
【0036】
次に、実施の形態4の回路動作について説明する。
一般に、この回路構成の場合は、負荷11の両端電圧は、交流電源1の電圧ピーク値よりも高くなるように設定されている。装置は図示されていない制御回路によって、負荷11の両端電圧を制御しながら、交流電源1の正の半サイクルでは、スイッチ12aとスイッチ16aを、図1の回路のスイッチ12、16と同様に、交互にオン・オフ制御し、整流器2の直流回路負側母線に接続されたダイオード13b、17b及びリアクトル7を通って流れる電流波形が、交流電源1の正弦波の正側の波形に近づくように制御する。
また、交流電源1の負の半サイクルでは、スイッチ12bとスイッチ16bを交互にオン・オフ制御し、整流器2の直流回路正側母線に接続されたダイオード13a、17a及びリアクトル7を通って流れる電流波形が、交流電源1の正弦波の負側の波形に近づくように制御する。図5の回路の場合は、図3に示した回路の整流器2をハーフブリッジ構成とし、昇圧回路用スイッチ回路8、15の動作を、交流電源1の極性すなわち整流器2のダイオードの動作極性にあわせて変更するようにしている。
【0037】
従って、動作としては、図3の回路の昇圧回路用スイッチ8、15を、それぞれ交流電源1の電圧極性毎に二回路持つように構成したものと同様であり、リアクトル18、19の動作および選定方法も同様となる。
【0038】
直流電源装置におけるリアクトル7は、物理的に大きくまた発熱が大きいために他の部品と離して配置されることが多いと共に、整流器2を構成するダイオード及びスイッチとダイオードの直列回路8、15は、冷却片上にまとめて配置されることが多いことから、図5に示すように、交流電源1側にリアクトル7を配置することで、冷却片からリアクトル7までの配線をなくすことができる。
【0039】
したがって、実施の形態4によれば、作業時間の短縮と低コスト化を図ることができ、さらに実施の形態1及び2に比べて、実施の形態3と同様に損失及びコストを低減することができる。
【0040】
実施の形態5.
図6は、この発明の実施の形態5による直流電源装置を示す回路図である。
図において、1、2、7、8、11、12a、12b、13a、13b、15、16a、16b、17a、17b、18、19は図5におけるものと同一のものである。10a、10bは直列に接続されたコンデンサである。
【0041】
次に、実施の形態5の回路動作について説明する。
図6の回路の場合は、直流回路のコンデンサ10a,10bを交流電源1の正極性用、負極性用に各々設けることで、図5の回路で必要だった整流回路2を削除している。一般に、この回路構成の場合は、直流回路のコンデンサ10a、10bの各々の電圧は、交流電源1の電圧のピーク値よりも高くなるように設定されており、負荷11の両端電圧はコンデンサ10a、10bの電圧の和となる。装置は図示されていない制御回路によって、コンデンサ10a、10bの各々の電圧が負荷11の両端電圧の1/2となるように制御しながら、交流電源1の正の半サイクルでは、スイッチ12aとスイッチ16aを、図1の回路のスイッチ12、16と同様に、交互にオン・オフ制御し、リアクトル7を通って流れる電流波形が、交流電源1の正弦波の正側の波形に近づくように制御する。
また、交流電源1の負の半サイクルでは、スイッチ12bとスイッチ16bを交互にオン・オフ制御し、リアクトル7を通って流れる電流波形が、交流電源1の正弦波の負側の波形に近づくように制御する。
【0042】
この図6の回路の場合は、直流回路のコンデンサ10a、10bを、交流電源1の正極性用及び負極性用に各々設けることで、図5の回路ではコンデンサ10が直流母線間に1組しか使用していないために、交流電源1を直流に変換するために必要だった整流回路2を削除しているが、昇圧回路用スイッチ8、15の動作としては、図5の回路の昇圧回路用スイッチ8、15と同様であり、リアクトル18、19の動作および選定方法も同様となる。
【0043】
実施の形態4では、整流器2を設けた場合について述べたが、実施の形態5は、図6に示すように、直流回路のコンデンサを2分割し、コンデンサ10a、10bを設ける構成とすることにより、整流器2を削除することができる。
【0044】
実施の形態5では、整流器を削除することで、さらに損失とコストを低減することができる。
【0045】
実施の形態6.
図7は、この発明の実施の形態6による直流電源装置を示す回路図である。
図において、1、2、4、6〜19は図1におけるものと同一のものである。3a、5aは整流器2を構成するサイリスタである。
【0046】
実施の形態1では、整流器2として、ダイオード3、5を使用していたが、実施の形態6は、図7に示すように、これをサイリスタ3a、5aとしている。
【0047】
これにより、実施の形態6では、起動時の突入電流を低減することができ、整流器2のダイオードの過電流耐量を低減できるので、小型、低コストを図ることができる。
これは、実施の形態3、4、5の整流用ダイオードをサイリスタにした場合についても同様の効果がある。
【0048】
実施の形態7.
図8は、この発明の実施の形態7による直流電源装置を示す回路図である。
図において、1〜17は図1におけるものと同一のものである。18a、19aは電流に対して線形のリアクタンス特性を有するリアクトル、18b、19bは過飽和リアクトルである。
【0049】
実施の形態1では、昇圧回路用スイッチ8、15を構成するスイッチとダイオードの接続点と電源側との間に使用するリアクトル18、19は、電流に対して線形のリアクタンス特性を有するものであったが、実施の形態7は、図8に示すように、電流に対して線形のリアクタンス特性を有するリアクトル18a、19aと過飽和リアクトル18b、19bとの各々の直列回路を適用した。これにより、たとえばスイッチ16がオフし、ダイオード17に電流が流れている状態から、スイッチ12がオンしてダイオード17の電流がなくなる直前の逆回復現象のためにダイオード電流極性が反転した時(図2の時刻T6の直前の波形(e)の極性が反転するとき)に過飽和リアクトルの特性により、大きなインダクタンスを持つため、電流のdi/dtがさらに抑制される。
【0050】
この結果、実施の形態7では、ダイオードのオフ時のスイッチング波形がさらになめらかになることで、スイッチングに伴うノイズの発生及び損失がさらに低減できる。
これは、実施の形態3、4、5に用いても同様の効果がある。
【0051】
実施の形態8.
図9は、この発明の実施の形態8による直流電源装置を示す回路図である。
図において、1〜19は図1におけるものと同一のものである。21は負荷電流を検出する電流センサ、22は電流センサ21で検出した電流値と予め設定した電流値を比較して設定レベル以上の負荷電流が流れている場合の過負荷を検出する過負荷検出回路、23は過負荷検出回路22の出力により、スイッチ12とスイッチ16にそれまで与えていた信号の論理和信号を形成して、スイッチ12、16に制御信号として出力する第一の信号合成器である。
【0052】
実施の形態1では、スイッチ12、16は交互に導通するようにしたが、実施の形態8は、図9に示すように、予め設定した電流値と電流センサ21の検出値とを比較し、設定レベル以上の電流が流れている場合に、過負荷を検出する過負荷検出回路22の出力信号により、スイッチ12、16にそれまで与えていた信号の論理和信号を信号合成器23によって形成し、スイッチ12、16に同時に出力する。これにより、通常運転状態では、初期の低ノイズ、高効率性能を実現すると共に、過負荷時にはスイッチ12、16に同時に電流が流れ、ダイオード13、17も同時にオフするようになる。
【0053】
したがって、実施の形態8では、ダイオードの逆回復に伴うノイズが増えるものの、スイッチ及びダイオードに流れる電流が1/2になることで、スイッチ及びダイオードの損失を低減し、運転継続性を強化できる。
【0054】
実施の形態9.
図10は、この発明の実施の形態9による直流電源装置を示す回路図である。
図において、1〜22は図9におけるものと同一のものである。24は過負荷検出回路22の出力によりスイッチ12、16のスイッチング周波数を低下させるスイッチング周波数切換回路である。
【0055】
実施の形態1では、スイッチ12、16は一定周波数で動作するようにしたが、実施の形態9は、図10に示すように、過負荷検出回路22で過負荷を検出したとき、スイッチング周波数切換回路24により、スイッチ12、16のスイッチング周波数を低下させる。
【0056】
これにより、実施の形態9では、過負荷運転時は、リアクトル7に印加されるPWM周波数が低下することで、リアクトル7のリップル電流は増加するが、スイッチング損失の減少により、運転継続性を強化できる。
【0057】
実施の形態10.
図11は、この発明の実施の形態10による直流電源装置を示す回路図である。
図において、1〜19は図1におけるものと同一のものである。25、26はそれぞれスイッチ12、16の異常を検出する異常検出回路、27はスイッチ12、16のオンオフ信号を発生させるオンオフ信号発生回路、28は異常検出回路25、26の出力及びオンオフ信号発生回路27の出力が入力される第二の信号合成器で、異常検出回路25、26のいずれかが動作したときは、健全な側のスイッチに、スイッチ12、16にそれまで与えていた信号の論理和信号を制御信号として出力する。
【0058】
実施の形態1では、スイッチ12、16は交互に導通するようにしたが、実施の形態10は、図11に示すように、スイッチ12、16の異常検出回路25、26のいずれかが動作したとき、スイッチ12、16にそれまで与えていた信号の論理和信号を信号合成器28によって形成し、健全な側のスイッチに出力する。
【0059】
実施の形態10では、これにより、通常の健全運転状態では、初期の低ノイズ、高効率性能を実現すると共に、故障時の運転継続性を強化できる。
【0060】
実施の形態11.
図12は、この発明の実施の形態11による直流電源装置を示す回路図である。
図において、1〜19、25〜28は図11におけるものと、21、22は図10におけるものとそれぞれ同一のものであり、過負荷検出回路22は、図示されていないスイッチング周波数切換回路に出力を行う。29は過負荷検出回路22に設けられ、異常検出回路25、26のいずれかが動作したとき、過負荷検出レベルを切換える過負荷検出レベル切換回路である。
【0061】
実施の形態10では、スイッチの異常検出回路25、26を設けると共に、異常検出回路25、26のいずれかが動作したときは、健全な側のスイッチを動作させる手段を設けたが、実施の形態11は、図12に示すように、スイッチの異常検出回路25、26のいずれかが動作したとき、過負荷検出レベルを切換える過負荷検出レベル切換回路29を設けると共に、健全な側のスイッチだけに、スイッチ12、16にそれまで与えていた信号の論理和を信号合成器28により形成して出力するようにした。これにより、過負荷検出回路22の検出レベルを最適にして、過負荷を検出し、図10と同様の、図示されていないスイッチング周波数切換回路に出力して、健全な側のスイッチに与えるスイッチング周波数を制御する。
【0062】
これにより、実施の形態11では、通常の健全運転状態では所期の低ノイズ、高効率性能を実現すると共に、故障時の運転継続性を強化し、さらに過負荷保護特性も最適値に設定できる。
【0063】
なお、実施の形態1〜11では、電源を交流電源としたが、直流電源であってもよい。
【0064】
また、実施の形態1〜11では、スイッチング方式としてパルス幅制御として記載したが、他の変調方式であってもよい。
【0065】
【発明の効果】
この発明は、以上説明したように構成されているので、以下に示すような効果を奏する。
第一のスイッチと第一のダイオードが第一の直列接続点を介して直列に接続された第一の直列回路と、この第一の直列回路に並列に接続されると共に、第二のスイッチと第二のダイオードが第二の直列接続点を介して直列に接続された第二の直列回路と、電源と第一の直列回路及び第二の直列回路に接続され、第一のスイッチまたは第二のスイッチが閉路したとき、電源から電流が入力されると共に、閉路したスイッチが開路したとき、直流電流を負荷に出力する第一のリアクトルと、電源と第一の直列接続点との間に接続された第二のリアクトルと、電源と第二の直列接続点との間に接続された第三のリアクトルを備え、第一のスイッチ及び第二のスイッチは、いずれか一方が閉路するよう制御され
さらに、第二のリアクトル及び第三のリアクトルのリアクタンスL2は、電源の入力電圧のピーク値をVin、負荷への出力電圧をVD、第一のダイオード及び第二のダイオードの通電時順電圧降下をVF1、第一のダイオード及び第二のダイオードの電流が流れ始める電圧をVF0、第一のリアクトルのリアクタンスをL1としたとき、(VF1−VF0)≦(VD−Vin)L2/(L1+L2)の関係に設定すれば、第一のダイオード及び第二のダイオードがオフするときの逆回復電流を確実に抑制して、第一のスイッチ及び第二のスイッチの損失及び発生ノイズを低減することができる。
【0066】
また、第一のスイッチと第一のダイオードが第一の直列接続点を介して直列に接続された第一の直列回路と、この第一の直列回路に並列に接続されると共に、第二のスイッチと第二のダイオードが第二の直列接続点を介して直列に接続された第二の直列回路と、第一のスイッチまたは第二のスイッチが閉路したとき、電源から電流が入力されるよう接続されると共に、上記閉路した第一のスイッチまたは第二のスイッチが開路したとき、それぞれ第一のダイオードまたは第二のダイオードを介して直流電流を負荷に出力するよう接続された第一のリアクトルと、この第一のリアクトルと第一の直列接続点との間に接続された第二のリアクトルと、第一のリアクトルと第二の直列接続点との間に接続された第三のリアクトルを備え、第一のスイッチ及び第二のスイッチは、いずれか一方が閉路するよう制御され
さらに、第二のリアクトル及び第三のリアクトルのリアクタンスL2は、電源の入力電圧のピーク値をVin、負荷への出力電圧をVD、第一のダイオード及び第二のダイオードの通電時順電圧降下をVF1、第一のダイオード及び第二のダイオードの電流が流れ始める電圧をVF0、第一のリアクトルのリアクタンスをL1としたとき、(VF1−VF0)≦(VD−Vin)L2/(L1+L2)の関係に設定すれば、第一のダイオード及び第二のダイオードがオフするときの逆回復電流を確実に抑制して、第一のスイッチ及び第二のスイッチの損失及び発生ノイズを低減することができる。
【0067】
さらにまた、ダイオードを用いて構成され、交流電源を整流して直流に変換する整流器を備え、第一のリアクトルは整流器の出力側に挿入されているので、交流電源を用いて、第一のスイッチ及び第二のスイッチの損失及び発生ノイズをさらに低減することができる。
また、ダイオードを用いて構成され、交流電源を整流して直流に変換する整流器を備え、第一のリアクトルは整流器の入力側に挿入されているので、交流電源と第一のリアクトルを近くに配置し、第一のスイッチ及び第二のスイッチの損失及び発生ノイズをさらに低減することができる。
【0068】
また、第一の直列回路及び第二の直列回路は、電源の正の半サイクルと電源の負の半サイクルとに対応して、それぞれ二組のスイッチとダイオードの直列回路によって形成されているので、交流電源に用いることができる。
【0069】
加えて、第一のリアクトルは、電源の正の半サイクルと電源の負の半サイクルとに対応して、二つ設けられているので、交流電源に用いても、第一のダイオード及び第二のダイオードがオフするときの逆回復電流を抑制することができる。
また、ダイオードを用いて構成され、交流電源を整流して直流に変換するハーフブリッジの整流器を備えたので、交流電源を用いて、電流が通過する半導体素子の数を少なくすることができる。
【0070】
また、第一の直列回路に並列に接続されると共に互いに直列に接続された二つのコンデンサを備え、二つのコンデンサは、電源の正の半サイクルと電源の負の半サイクルとに対応しているので、交流電源に用いても、第一のダイオード及び第二のダイオードがオフするときの逆回復電流を抑制することができる。
【0071】
また、第一のスイッチと第二のスイッチは、交互に閉路されるので、第一のダイオード及び第二のダイオードがオフするときの逆回復電流を抑制することができる。
【0072】
また、第二のリアクトル及び第三のリアクトルは、それぞれ電流に対して線形のリアクタンスを有するリアクトルと、このリアクトルに直列に接続された過飽和リアクトルによって構成されているので、第一のスイッチ及び第二のスイッチの損失及び発生ノイズをさらに低減することができる。
【0073】
また、整流器を構成するダイオードの一部は、サイリスタによって代替されているので、起動時の突入電流を低減することができる。
加えて、負荷電流を検出して予め設定されている設定値と比較して過負荷を検出する過負荷検出回路と、この過負荷検出回路によって過負荷が検出されたとき、第一のスイッチ及び第二のスイッチを同時にスイッチングさせる制御信号を形成する第一の信号合成器を備えたので、過負荷時に第一のスイッチ及び第二のスイッチに同時に電流を流すことができる。
【0074】
また、負荷電流を検出して予め設定されている設定値と比較して過負荷を検出する過負荷検出回路と、第一のスイッチ及び第二のスイッチのスイッチング周波数を切換えるスイッチング周波数切換回路を備え、過負荷検出回路によって過負荷が検出されたとき、スイッチング周波数切換回路は、第一のスイッチ及び第二のスイッチのスイッチング周波数を低下させるので、第一のスイッチ及び第二のスイッチの損失及び発生ノイズが減少する。
【0075】
また、第一のスイッチの異常を検出する第一の異常検出回路と、第二のスイッチの異常を検出する第二の異常検出回路と、第一の異常検出回路及び第二の異常検出回路のいずれか一方により、異常が検出されたとき、過負荷検出回路の過負荷検出レベルを切換える過負荷検出レベル切換回路を備えたので、第一のスイッチまたは第二のスイッチの故障時の過負荷保護特性を最適値に設定できる。
【0076】
さらに、第一のスイッチの異常を検出する第一の異常検出回路と、第二のスイッチの異常を検出する第二の異常検出回路と、第一の異常検出回路及び第二の異常検出回路のいずれか一方により、異常が検出されたとき、異常でない方のスイッチをスイッチングさせるよう制御信号を形成する第二の信号合成器を備えたので、第一のスイッチまたは第二のスイッチの故障時の運転継続性を強化できる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による直流電源装置を示す回路図である。
【図2】 この発明の実施の形態1による直流電源装置の動作を示すタイミングチャートである。
【図3】 この発明の実施の形態2による直流電源装置を示す回路図である。
【図4】 この発明の実施の形態3による直流電源装置を示す回路図である。
【図5】 この発明の実施の形態4による直流電源装置を示す回路図である。
【図6】 この発明の実施の形態5による直流電源装置を示す回路図である。
【図7】 この発明の実施の形態6による直流電源装置を示す回路図である。
【図8】 この発明の実施の形態7による直流電源装置を示す回路図である。
【図9】 この発明の実施の形態8による直流電源装置を示す回路図である。
【図10】 この発明の実施の形態9による直流電源装置を示す回路図である。
【図11】 この発明の実施の形態10による直流電源装置を示す回路図である。
【図12】 この発明の実施の形態11による直流電源装置を示す回路図である。
【図13】 従来の整流装置を示す回路図である。
【図14】 従来の整流装置の動作を示すタイミングチャートである。
【符号の説明】
1 交流電源、2 整流器、3,4,5,6 ダイオード、
3a,5a サイリスタ、7 リアクトル、8,15 昇圧回路用スイッチ、
10 コンデンサ、11 負荷、12,16 スイッチ、
13,17 ダイオード、18,18a,19,19a リアクトル、
18b,19b 過飽和リアクトル、21 電流センサ、
22 過負荷検出回路、23,28 信号合成器、
24 スイッチング周波数切換回路、25,26 異常検出回路、
27 オンオフ信号発生回路、29 過負荷検出レベル切換回路。

Claims (15)

  1. 第一のスイッチと第一のダイオードが第一の直列接続点を介して直列に接続された第一の直列回路、この第一の直列回路に並列に接続されると共に、第二のスイッチと第二のダイオードが第二の直列接続点を介して直列に接続された第二の直列回路、電源と上記第一の直列回路及び第二の直列回路に接続され、上記第一のスイッチまたは第二のスイッチが閉路したとき、電源から電流が入力されると共に、上記閉路したスイッチが開路したとき、直流電流を負荷に出力する第一のリアクトル、上記電源と第一の直列接続点との間に接続された第二のリアクトル、上記電源と第二の直列接続点との間に接続された第三のリアクトルを備え、上記第一のスイッチ及び第二のスイッチは、いずれか一方が閉路するよう制御され
    かつ、上記第二のリアクトル及び第三のリアクトルのリアクタンスL2は、上記電源の入力電圧のピーク値をVin、上記負荷への出力電圧をVD、上記第一のダイオード及び第二のダイオードの通電時順電圧降下をVF1、上記第一のダイオード及び第二のダイオードの電流が流れ始める電圧をVF0、上記第一のリアクトルのリアクタンスをL1としたとき、(VF1−VF0)≦(VD−Vin)L2/(L1+L2)の関係にある ことを特徴とする直流電源装置。
  2. 第一のスイッチと第一のダイオードが第一の直列接続点を介して直列に接続された第一の直列回路、この第一の直列回路に並列に接続されると共に、第二のスイッチと第二のダイオードが第二の直列接続点を介して直列に接続された第二の直列回路、上記第一のスイッチまたは第二のスイッチが閉路したとき、電源から電流が入力されるよう接続されると共に、上記閉路した第一のスイッチまたは第二のスイッチが開路したとき、それぞれ第一のダイオードまたは第二のダイオードを介して直流電流を負荷に出力するよう接続された第一のリアクトル、この第一のリアクトルと第一の直列接続点との間に接続された第二のリアクトル、上記第一のリアクトルと第二の直列接続点との間に接続された第三のリアクトルを備え、上記第一のスイッチ及び第二のスイッチは、いずれか一方が閉路するよう制御され
    かつ、上記第二のリアクトル及び第三のリアクトルのリアクタンスL2は、上記電源の入力電圧のピーク値をVin、上記負荷への出力電圧をVD、上記第一のダイオード及び第二のダイオードの通電時順電圧降下をVF1、上記第一のダイオード及び第二のダイオードの電流が流れ始める電圧をVF0、上記第一のリアクトルのリアクタンスをL1としたとき、(VF1−VF0)≦(VD−Vin)L2/(L1+L2)の関係にある
    ことを特徴とする直流電源装置。
  3. ダイオードを用いて構成され、交流電源を整流して直流に変換する整流器を備え、第一のリアクトルは上記整流器の出力側に挿入されていることを特徴とする請求項1または請求項2記載の直流電源装置。
  4. ダイオードを用いて構成され、交流電源を整流して直流に変換する整流器を備え、第一のリアクトルは上記整流器の入力側に挿入されていることを特徴とする請求項1または請求項2記載の直流電源装置。
  5. 第一の直列回路及び第二の直列回路は、電源の正の半サイクルと電源の負の半サイクルとに対応して、それぞれ二組のスイッチとダイオードの直列回路によって形成されていることを特徴とする請求項1記載の直流電源装置。
  6. 第一のリアクトルは、電源の正の半サイクルと電源の負の半サイクルとに対応して、二つ設けられていることを特徴とする請求項5記載の直流電源装置。
  7. ダイオードを用いて構成され、交流電源を整流して直流に変換するハーフブリッジの整流器を備えたことを特徴とする請求項1または請求項5または請求項6記載の直流電源装置。
  8. 第一の直列回路に並列に接続されると共に互いに直列に接続された二つのコンデンサを備え、上記二つのコンデンサは、電源の正の半サイクルと電源の負の半サイクルとに対応していることを特徴とする請求項5記載の直流電源装置。
  9. 第一のスイッチと第二のスイッチは、交互に閉路されることを特徴とする請求項1〜請求項8のいずれか一項記載の直流電源装置。
  10. 第二のリアクトル及び第三のリアクトルは、それぞれ電流に対して線形のリアクタンスを有するリアクトルと、このリアクトルに直列に接続された過飽和リアクトルによって構成されていることを特徴とする請求項1〜請求項9のいずれか一項記載の直流電源装置。
  11. 整流器は、ダイオードを用いて構成されると共に、上記ダイオードの一部は、サイリスタによって代替されていることを特徴とする請求項3〜請求項5のいずれか一項記載の直流電源装置。
  12. 負荷電流を検出して予め設定されている設定値と比較して過負荷を検出する過負荷検出回路、この過負荷検出回路によって過負荷が検出されたとき、第一のスイッチ及び第二のスイッチを同時にスイッチングさせる制御信号を形成する第一の信号合成器を備えたことを特徴とする請求項1〜請求項11のいずれか一項記載の直流電源装置。
  13. 負荷電流を検出して予め設定されている設定値と比較して過負荷を検出する過負荷検出回路、第一のスイッチ及び第二のスイッチのスイッチング周波数を切換えるスイッチング周波数切換回路を備え、上記過負荷検出回路によって過負荷が検出されたとき、上記スイッチング周波数切換回路は、第一のスイッチ及び第二のスイッチのスイッチング周波数を低下させることを特徴とする請求項1〜請求項12のいずれか一項記載の直流電源装置。
  14. 第一のスイッチの異常を検出する第一の異常検出回路、第二のスイッチの異常を検出する第二の異常検出回路、上記第一の異常検出回路及び第二の異常検出回路のいずれか一方により、異常が検出されたとき、過負荷検出回路の過負荷検出レベルを切換える過負荷検出レベル切換回路を備えたことを特徴とする請求項13記載の直流電源装置。
  15. 第一のスイッチの異常を検出する第一の異常検出回路、第二のスイッチの異常を検出する第二の異常検出回路、上記第一の異常検出回路及び第二の異常検出回路のいずれか一方により、異常が検出されたとき、異常でない方のスイッチをスイッチングさせるよう制御信号を形成する第二の信号合成器を備えたことを特徴とする請求項1〜請求項14のいずれか一項記載の直流電源装置。
JP36607199A 1999-12-24 1999-12-24 直流電源装置 Expired - Fee Related JP3681596B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36607199A JP3681596B2 (ja) 1999-12-24 1999-12-24 直流電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36607199A JP3681596B2 (ja) 1999-12-24 1999-12-24 直流電源装置

Publications (2)

Publication Number Publication Date
JP2001186768A JP2001186768A (ja) 2001-07-06
JP3681596B2 true JP3681596B2 (ja) 2005-08-10

Family

ID=18485859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36607199A Expired - Fee Related JP3681596B2 (ja) 1999-12-24 1999-12-24 直流電源装置

Country Status (1)

Country Link
JP (1) JP3681596B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103997246A (zh) * 2014-05-08 2014-08-20 东北电力大学 基于高频桥臂的双向光伏逆变器

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033037A (ja) * 2001-07-12 2003-01-31 Diamond Electric Mfg Co Ltd 力率改善回路
JP3692993B2 (ja) 2001-10-04 2005-09-07 トヨタ自動車株式会社 駆動装置および動力出力装置
JP2008125313A (ja) * 2006-11-15 2008-05-29 Sakae Shibazaki スイッチング電源装置
JP2008125310A (ja) * 2006-11-15 2008-05-29 Sakae Shibazaki スイッチング電源装置
JP5210331B2 (ja) * 2010-01-06 2013-06-12 力銘科技股▲分▼有限公司 インタリーブ・ブリッジレス・パワー・ファクター修正器およびその制御方法
JP2015012645A (ja) * 2013-06-27 2015-01-19 サンケン電気株式会社 Dc−dcコンバータ及びac−dcコンバータ
JP2019057991A (ja) 2017-09-20 2019-04-11 トヨタ自動車株式会社 Dc−dcコンバータ
JP2019057993A (ja) 2017-09-20 2019-04-11 トヨタ自動車株式会社 電力変換回路
JP6819525B2 (ja) 2017-09-20 2021-01-27 トヨタ自動車株式会社 電力変換回路
JP6950575B2 (ja) * 2018-02-26 2021-10-13 トヨタ自動車株式会社 昇圧コンバータ
JP6954239B2 (ja) * 2018-07-19 2021-10-27 トヨタ自動車株式会社 電力変換器及びモータシステム
JP6888601B2 (ja) 2018-11-13 2021-06-16 トヨタ自動車株式会社 双方向電力変換器、電気自動車、及び、双方向電力変換器の制御方法
JP7156118B2 (ja) * 2019-03-20 2022-10-19 株式会社デンソー モータシステム
JP2021002983A (ja) 2019-06-24 2021-01-07 ルネサスエレクトロニクス株式会社 半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103997246A (zh) * 2014-05-08 2014-08-20 东北电力大学 基于高频桥臂的双向光伏逆变器

Also Published As

Publication number Publication date
JP2001186768A (ja) 2001-07-06

Similar Documents

Publication Publication Date Title
CA2929041C (en) Dc power-supply device and refrigeration cycle device
JP2602619B2 (ja) 3相交直電力変換装置
JP3681596B2 (ja) 直流電源装置
US20100259955A1 (en) Soft switching power converter
EP0440245B1 (en) Power source circuit
US9735666B2 (en) Power conversion device
JP2004524788A (ja) 同期整流変換器回路内の逆電流を減少させる方法と回路
Siwakoti et al. Power electronics converters—An overview
JP2013055794A (ja) 電力変換装置
WO1999022436A1 (en) Ac to dc conversion arrangement
JP7121971B2 (ja) 三相ac-dcコンバータ
US8995159B1 (en) High-frequency matrix converter with square wave input
US8787055B2 (en) Inverter device
JP2022011002A (ja) 電力回生スナバ回路および電源装置
CN100377481C (zh) 具有三相功率因数校正的集成变换装置
JP2000188867A (ja) コンバータ回路および直流電圧制御用装置
JP7305062B2 (ja) 電力変換装置
Roasto et al. Analysis and evaluation of PWM and PSM shoot-through control methods for voltage-fed qZSI based DC/DC converters
WO2011058665A1 (ja) 電力変換装置
JP3736997B2 (ja) パルス幅変調制御式コンバータ
JP3177085B2 (ja) 電力変換装置
Sharifuddin et al. Implementation of Three-Phase Bidirectional Isolated DC-DC Converter with Improved Light-Load Efficiency
Ashraf et al. An efficient single-phase ac-to-ac buck and boost matrix converter
JP2580108B2 (ja) 電力変換装置
JPH0686539A (ja) コンバータ回路

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees