JP3599570B2 - 放電灯の輝度調整方法及び放電灯点灯装置 - Google Patents
放電灯の輝度調整方法及び放電灯点灯装置 Download PDFInfo
- Publication number
- JP3599570B2 JP3599570B2 JP22588898A JP22588898A JP3599570B2 JP 3599570 B2 JP3599570 B2 JP 3599570B2 JP 22588898 A JP22588898 A JP 22588898A JP 22588898 A JP22588898 A JP 22588898A JP 3599570 B2 JP3599570 B2 JP 3599570B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- discharge lamp
- level
- inverter circuit
- tube current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Inverter Devices (AREA)
- Circuit Arrangements For Discharge Lamps (AREA)
- Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ノート型パーソナルコンピュータ等に用いられている液晶表示パネルのバックライト照明用に使用される放電灯の輝度調整方法及びその装置に関するものである。
【0002】
【従来の技術】
従来、放電灯(例えば冷陰極蛍光管)を点灯する放電灯点灯装置(バックライトインバータ装置とも称する)では、蛍光管の輝度の調光は管電流を変化させて行っている。
【0003】
図1は従来例の放電灯点灯装置を示す構成図である。図において、11は電池等の直流電源、12はDC−DCコンバータ回路、13は自励方式インバータ回路(以下、インバータ回路と称する)、14は電流検出回路、15は冷陰極蛍光管である。
【0004】
上記構成において、冷陰極蛍光管(以下、蛍光管と称する)15を流れる蛍光管電流が電流検出回路14によって検出され、この検出結果がDC−DCコンバータ回路12に帰還される。
【0005】
DC−DCコンバータ回路12は、直流電源11から供給される電圧レベルを電流検出回路14からの帰還信号に基づいて別の電圧レベルに変換し、インバータ回路13に出力する。
【0006】
インバータ回路13は、DC−DCコンバータ回路12から入力した直流電圧を所定周波数の交流電圧に変換して蛍光管15に印加する。
【0007】
前述のように電流検出回路14によって検出された管電流がDC−DCコンバータ回路12に帰還されてインバータ回路13の供給電圧を変化させることにより、管電流が定電流制御されている。
【0008】
蛍光管15を流れる管電流は、連続した電流であり、予め設定された所定のレベルになるよう制御される。また、輝度MAX100%〜50%程度の範囲で調光することができ、この調光方式は一般的に電流調光方式と呼ばれている。
【0009】
また、調光範囲を広くするために低輝度側の範囲を広げるには、管電流を減らして動作させる必要がある。しかしながら、管電流を減らしていくと蛍光管15の性質上、放電が不安定になるので、上記のような連続した定電流制御方式では、低輝度側の下限は、輝度MAXの50%程度が限度である。
【0010】
一方、最近では、ノート型パーソナルコンピュータ等でバッテリー駆動の稼働時間を長くするために、消費電力の大きな蛍光管を低輝度で動作させる手法が使われている。この場合、輝度の調光範囲として、輝度MAX100%〜10%程度が要求されている。
【0011】
調光範囲を拡大する方法としては、連続電流による定電流制御では限度があるため、例えば、特開平5−198384号公報に開示されるように、管電流を断続させると共にその比率を変化させるバースト調光方式が用いられる。この調光方式は、デューティー調光或いは周波数調光とも呼ばれている。
【0012】
バースト調光方式を用いた放電灯点灯装置は、例えば図2に示すように直流電源21の出力電圧をDC−DCコンバータ回路22で所定レベルの電圧に変換して自励方式インバータ回路23に入力すると共に、DC−DCコンバータ回路22からインバータ回路23への通電をバースト信号発振回路24によって発生されたバースト信号に基づいて断続することにより、冷陰極蛍光管25の輝度を変化させる。この際、インバータ回路23への通電の断続比率を調整することにより、調光を行うことができる。
【0013】
次に、従来のバースト調光方式を用いた放電灯点灯装置の具体例を説明する。
【0014】
図3は従来のバースト調光方式を用いた放電灯点灯装置を示す構成図、図4はその動作波形図である。図において、31は電池等の直流電源、32はDC−DCコンバータ回路、33は調光制御回路、34は自励方式のインバータ回路、35は冷陰極蛍光管(以下、蛍光管と称する)である。
【0015】
DC−DCコンバータ回路32は、直流電源31から供給される電圧レベルを所定レベルに変化させてインバータ回路34に出力する。
【0016】
調光制御回路33は、三角波生成回路33aと制御信号生成回路33bから構成され、三角波生成回路33aによって生成された三角波電圧Vtrと閾値電圧Vthとを制御信号生成回路33bのコンパレータ331に入力して矩形波電圧Vreq(バースト信号)を生成し、この矩形波電圧Vreqをインバータ回路34に入力する。
【0017】
インバータ回路34は、トランス341、チョークコイル342、及びトランジスタ343〜345を備えている。DC−DCコンバータ回路32からはチョークコイル342を介してトランス341へ通電され、トランジスタ343を矩形波電圧Vreqによってスイッチングすることにより、トランジスタ344,345等によって構成されるロイヤー回路の発振動作をオン・オフさせる。
【0018】
このオン・オフ動作によってインバータ回路23への通電の断続が行われる。
【0019】
これにより、ロイヤー回路が発振動作を行っているときのみ蛍光管35に電圧が印加されるので、トランジスタ343のスイッチング動作におけるオン・オフの比率を変化させることにより調光を行うことができる。
【0020】
トランジスタ343のスイッチング動作におけるオン・オフの比率は、制御信号生成回路33bにおける可変抵抗器332によって上記閾値電圧Vthのレベルを変化させることにより変えることができる。
【0021】
【発明が解決しようとする課題】
しかしながら、前述した従来のバースト調光方式を用いた放電灯点灯装置では以下のような問題点があった。
【0022】
即ち、バースト調光方式の場合、矩形波電圧Vreq(バースト信号)の周波数(以下、バースト周波数と称する)は、一般に数百Hz〜数KHzに設定され、このバースト周波数でインバータ回路34のトランス341に供給される電流が断続されるので、制御信号生成回路33b及びトランジスタ343がオフからオンに切り替わるときに、トランス341やチョークコイル342のコアから、これらに生ずる磁歪によってバースト周波数の可聴音が発生する。このようにトランス341やチョークコイル342から発生する唸り音は非常に耳障りであり、バースト調光特有の解決しなければならない問題とされていた。
【0023】
また、従来のバースト調光方式では、輝度が高い(出力電力が大きい)状態から低い状態に至る広範囲においてバースト周波数でのデューティー調光が行われている。このため、バースト調光時にトランス341やコイル342から発生する可聴周波数の唸り音は、インバータ回路34への供給電圧が高いほど、またインバータ回路34の出力電力が大きいときほど、大きな音になる性質がある。
【0024】
従って、インバータ回路34に供給される電圧が高いほど、インバータ回路34の起動時の電圧波形が急峻になり、唸り音が発生しやすくなる。同様にインバータ回路34で扱う電力が大きいときほど起動時の電流が大きくなるので、大きな唸り音が発生しやすくなる。
【0025】
図5は従来のバースト調光時にトランス341から発生する騒音レベルの実測値の一例を示す図、図6は従来のバースト調光時にチョークコイル342から発生する騒音レベルの実測値の一例を示す図、図7乃至図10はこのときのロイヤー回路のコレクタ電圧波形及び管電流波形を示す図である。
【0026】
図5及び図6において、縦軸は騒音レベル(dB)を表し、横軸は調光状態を表している。また、図中における3つの折れ線のそれぞれは、インバータ回路34への入力電圧の違いを表し、それぞれにおける入力電圧は図中に記載したように7V、12V、18Vである。
【0027】
また、図7乃至図10の上側の波形はロイヤー回路におけるトランジスタのコレクタ電圧波形(10V/div)、下側の波形は管電流波形(5mA/div)であり、図7は管電流5mArms、図8は管電流4mArms、図9は管電流3mArms、図10は管電流2.5mArmsのときの測定結果である。
【0028】
さらに、図3に示す従来例(特開平5−198384号)のバースト調光方式を用いた放電灯点灯装置では、インバータ回路34の入力電圧が変動した場合に、管電流の定電流制御がされていないので、管電流(輝度)が変化してしまう欠点があった。
【0029】
本発明の目的は上記の問題点に鑑み、騒音の発生を低減でき、広範囲な輝度調整が行える放電灯の輝度調整方法及び放電灯点灯装置並びにこれを用いた液晶表示装置及び照明装置を提供することにある。
【0030】
【課題を解決するための手段】
本発明は上記の目的を達成するために請求項1では、直流電圧から交流電圧を発生するインバータ回路の出力電圧を放電灯に印加して該放電灯を点灯するときの放電灯の輝度調整方法であって、前記放電灯を流れる管電流を検出して電圧に変換して出力する管電流検出手段と、所定の閾値電圧レベル以下の電圧レベルを有し、前記インバータ回路から出力 される交流電圧の周波数よりも低い周波数となる周期で電圧レベルが所定の傾斜をもって変化するバースト信号電圧を生成して出力するバースト信号生成手段と、供給された前記バースト信号電圧と前記管電流検出手段の出力電圧とをダイオードの論理和結合によって加算し、前記バースト信号電圧と前記管電流検出手段の出力電圧の合成電圧に応じた帰還電圧を生成して出力する帰還電圧生成手段と、前記帰還電圧に応じた制御電圧を前記電流制御手段に供給する制御電圧生成手段と、前記制御電圧生成手段に接続され、前記制御電圧の直流レベルを変化させる直流レベル可変手段とを備えた輝度調整回路を用い、前記放電灯を流れる管電流値が所定の閾値以上のときは、前記インバータ回路から連続した交流電圧を出力し且つ該出力電圧のレベルを変えることにより前記管電流を変化させて輝度調整を行い、前記管電流値が前記閾値より小さいときは、前記インバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で前記インバータ回路の出力電圧のレベルを連続的に低下させ且つ低下させる期間と前記周期との比率を変えることにより前記管電流を変化させて輝度調整を行う放電灯の輝度調整方法を提案する。
【0031】
該放電灯の輝度調整方法によれば、放電灯を流れる管電流値が所定の閾値以上のとき、即ち放電灯の輝度が高い調光状態のときは、前記インバータ回路から連続した交流電圧を出力し且つ該出力電圧のレベルを変えることにより前記管電流が変化されて輝度調整が行われる。また、前記管電流値が前記閾値より小さいとき、即ち放電灯の輝度が低い調光状態のときは、前記インバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で前記インバータ回路の出力電圧のレベルを低下させ且つ低下させる期間の比率を変えることにより前記管電流が変化されて輝度調整が行われる。
【0032】
また、請求項2では、請求項1記載の放電灯の輝度調整方法において、前記インバータ回路の出力電圧のレベルを前記周期で低下させるときに、前記インバータ回路への入力電圧レベルを所定の傾斜をもって変化させる放電灯の輝度調整方法を提案する。
【0033】
該放電灯の輝度調整方法によれば、前記インバータ回路の入力電圧のレベルが所定の傾斜をもつように前記インバータ回路の入力電圧レベルが変化され、放電灯の管電流が調整されるので、前記入力電圧レベルの変化はなだらかなものとなる。
【0034】
また、請求項3では、直流電圧から交流電圧を発生するインバータ回路を備え、該インバータ回路の出力電圧を放電灯に印加して該放電灯を点灯する放電灯点灯装置において、前記放電灯を流れる管電流を検出して電圧に変換して出力する管電流検出手段と、制御電圧に基づいて前記インバータ回路のトランス一次巻線への通電方向及び通電電流を制御する電流制御手段と、所定の閾値電圧レベル以下の電圧レベルを有し、前記インバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で電圧レベルが所定の傾斜をもって変化するバースト信号電圧を生成して出力するバースト信号生成手段と、供給された前記バースト信号電圧と前記管電流検出手段の出力電圧とをダイオードの論理和結合によって加算し、前記バースト信号電圧と前記管電流検出手段の出力電圧の合成電圧に応じた帰還電圧を生成して出力する帰還電圧生成手段と、前記帰還電圧に応じた制御電圧を前記電流制御手段に供給する制御電圧生成手段と、前記制御電圧生成手段に接続され、前記制御電圧の直流レベルを変化させる直流レベル可変手段とを備えている放電灯点灯装置を提案する。
【0035】
該放電灯点灯装置によれば、管電流検出手段により前記放電灯を流れる管電流が検出されて電圧に変換され、バースト信号生成手段によって所定の閾値電圧レベル以下の電圧レベルを有し前記インバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で電圧レベルが所定の傾斜をもって変化するバースト信号電圧が生成されて出力される。前記バースト信号電圧と前記管電流検出手段の出力電圧とがダイオードの論理和結合によって加算され、該加算された合成電圧に応じた帰還電圧が出力され、前記制御電圧生 成手段によって前記帰還電圧に応じた制御電圧を前記電流制御手段に供給される。さらに、電流制御手段によって前記制御電圧に基づいて前記インバータ回路のトランス一次巻線への通電方向及び通電電流が制御される。また、直流レベル可変手段によって、前記制御電圧の直流レベルが変化され、これにより前記電流制御手段による前記インバータ回路のトランス一次巻線への通電方向及び通電電流が変化されて前記放電灯の輝度調整が行われる。
【0036】
従って、前記管電流が前記閾値電圧レベルよりも高いときは、前記放電灯に印加される交流電圧は連続したものとなり且つその電圧レベルが変化されて輝度調整が行われる。また、前記管電流が前記閾値電圧レベルより低いときは、前記放電灯に印加される交流電圧は連続状態からバースト周波数でくさび状に減少部分を設けて、その結果、断続したものとなり且つ断続の比率が変化されて輝度調整が行われる。また、ダイオードの論理和結合によって前記バースト信号電圧と前記管電流検出手段の出力電圧とが加算又は選択されるので、加算回路が極めて単純化される。
【0037】
また、請求項4では、請求項3記載の放電灯点灯装置において、前記インバータ回路は圧電トランスを有し該圧電トランスから交流電圧を発生させる放電灯点灯装置を提案する。
【0038】
該放電灯点灯装置によれば、インバータ回路の圧電トランスによって交流電圧が発生される。
【0039】
また、請求項5では、請求項3又は4記載の放電灯点灯装置において、前記バースト信号電圧が三角波電圧である放電灯点灯装置を提案する。
【0040】
該放電灯点灯装置によれば、前記バースト信号電圧が三角波電圧であるので、前記インバータ回路の入力電圧を所定の傾斜をもち且つなだらかに容易に変化させることができる。
【0041】
また、請求項6では、前記請求項3乃至5の何れかに記載の放電灯点灯装置を用いた液晶表示装置を提案する。
【0042】
該液晶表示装置によれば、前記放電灯点灯装置によってバックライト用の放電灯が点灯される。
【0043】
また、請求項7では、前記請求項3乃至5の何れかに記載の放電灯点灯装置を用いた照明装置を提案する。
【0044】
該照明装置によれば、前記放電灯点灯装置によって照明用の放電灯が点灯される。
【0045】
また、請求項8では、直流電圧から交流電圧を発生するインバータ回路の出力電圧を放電灯に印加して該放電灯を点灯する放電灯点灯装置の輝度調整回路であって、前記放電灯を流れる管電流を検出して電圧に変換して出力する管電流検出手段と、制御電圧に基づいて前記インバータ回路のトランス一次巻線への通電方向及び通電電流を制御する電流制御手段と、所定の閾値電圧レベル以下の電圧レベルを有し、前記インバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で電圧レベルが所定の傾斜をもって変化するバースト信号電圧を生成して出力するバースト信号生成手段と、供給された前記バースト信号電圧と前記管電流検出手段の出力電圧とをダイオードの論理和結合によって加算し、前記バースト信号電圧と前記管電流検出手段の出力電圧の合成電圧に応じた帰還電圧を生成して出力する帰還電圧生成手段と、前記帰還電圧に応じた制御電圧を前記電流制 御手段に供給する制御電圧生成手段と、前記制御電圧生成手段に接続され、前記制御電圧の直流レベルを変化させる直流レベル可変手段とを備えている放電灯の輝度調整回路を提案する。
【0046】
該放電灯の輝度調整回路によれば、放電灯を流れる管電流値が所定のしきい値以上の場合、即ち放電灯の輝度が高い調光状態の場合は、前記直流電圧に応じて前記インバータ回路から連続して交流電圧を出力し且つ出力電圧のレベルを変えることにより前記管電流が変化されて輝度調整が行われる。また、前記管電流が前記しきい値より小さい場合、即ち放電灯の輝度が低い調光状態の場合は、前記直流電圧に応じて前記インバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で前記インバータ回路の出力電圧のレベルを低下させ且つ低下させる帰還と前記周期との比率を変えることにより前記管電流が変化されて輝度調整が行われる。
【0047】
【発明の実施の形態】
以下、図面に基づいて本発明の一実施形態を説明する。
【0048】
図11は本発明の第1の実施形態における放電灯点灯装置を示す構成図である。図において、41は直流電源、42は制御手段であるDC−DCコンバータ回路、43は自励方式のインバータ回路、44は放電灯である冷陰極蛍光管(以下、単に蛍光管と称する)、45は管電流検出手段及び帰還電圧生成手段である電流検出回路、46はバースト信号生成手段であるバースト信号生成回路である。また、DC−DCコンバータ回路42,電流検出回路45,バースト信号生成回路46が電圧供給回路に対応する。
【0049】
DC−DCコンバータ回路42は、電流検出回路45から出力される帰還電圧に基づいて、帰還電圧がほぼ一定値を維持するように、直流電源41から出力される直流電圧を所定レベルの直流電圧に変換して、この電圧を連続して或いは断続してインバータ回路43に供給する。
【0050】
インバータ回路43は、例えば前述した従来例と同様にトランジスタ及びトランスなどから構成され、DC−DCコンバータ回路42から入力した直流電圧を所定周波数の交流電圧に変換して蛍光管44に印加する。
【0051】
電流検出回路45は、蛍光管44を流れる管電流を検出して、例えば管電流値に対応した電圧に変換すると共に、この検出電圧とバースト信号生成回路46から出力されるバースト信号電圧とを加算した後、この電圧レベルを可変抵抗器等によってレベル変換し、これを帰還電圧としてDC−DCコンバータ回路42に出力する。上記可変抵抗器の抵抗値調整によって蛍光管44の輝度調整を行うことができる。
【0052】
バースト信号生成回路46は、所定の閾値電圧レベル以下の電圧レベルを有すると共にインバータ回路43から出力される交流電圧の周波数よりも低い周波数となる周期で電圧レベルが所定の傾斜(横軸を時間、縦軸を電圧値にとった際の変化量)をもって変化するバースト信号電圧を生成して出力する。またここでは、バースト信号電圧を三角波電圧とすると共に、前記閾値電圧レベルは、蛍光管44の輝度が最大値と最小値のほぼ中間であるときの管電流に対応した検出電圧のレベルとしている。
【0053】
上記構成によれば、図12の波形図に示すように、蛍光管44の輝度が高い状態(管電流が大きい状態)から通常の輝度レベル(上記閾値電圧に対応する輝度レベル)までは、バースト信号電圧よりも検出電圧のレベルが大きいので、帰還電圧のレベルは常にほぼ一定となり、定電流制御の電流調光方式で調光が行われる。
【0054】
また、調光を絞った低輝度状態(管電流が小さい状態)になると、前記検出電圧のレベルよりもバースト信号電圧のレベルが大きくなるので、帰還電圧のレベルが前記三角波電圧の周期で変化し、帰還電圧における三角波電圧成分によってコンバータ回路の出力電圧レベルがパルス幅変調され、DC−DCコンバータ回路の出力電圧レベルが低下或いは断続されるバースト調光方式で調光が行われる。
【0055】
通常の輝度レベル(上記しきい値に対応する輝度レベル)付近では、図16に示すように、管電流が一定値となっている状態からしだいに減少し、0より大きく前記一定値より小さい値(以下、極小値と称する)に達した後、しだいに増加する。増加する状態から前記一定値となっている状態へ移り変わる際、オーバーシュートに対応した過度応答としての急激な電流の増加・減少が生じず、漸斤的にゆるやかに前記一定値に収束している。また、この部分の管電流について、図16の波形はくさび状となっている。前記一定値に対する前記極小値の比率は0より大きく1より小さい値となっている。
【0056】
さらに、バースト調光時のインバータ部への入力電圧波形を、従来のような矩形波状の急峻な波形から、立ち上がり立ち下がりの傾斜が緩やかな波形になるようにバースト信号電圧を三角波電圧とし、インバータ回路43に使用されるトランス等に発生する磁歪を低減している。
【0057】
従って、蛍光管44の輝度が高く高負荷の調光状態のときはインバータ回路43から連続した交流電圧を出力し且つコンバータ回路の出力電圧のレベルを変えることにより蛍光管44を流れる管電流が変化されて輝度調整が行われ、蛍光管44の輝度が低く低負荷の調光状態のときはインバータ回路43から出力される交流電圧の周波数よりも低い周波数となる周期でインバータ回路43の出力電圧のレベルを低下させ且つ低下させる期間(少なくともインバータ回路43の出力電圧のレベルが減少し、低下した値で一定となる2つの状態の期間を含む。またはこの2つの状態の期間に加え、インバータ回路43の出力電圧のレベルが上昇する状態の期間を含んで定義しても良い。)の比率を変えることにより管電流が変化されて輝度調整が行われるので、高負荷時においてトランスやコイル等に生ずる磁歪を低減することができるため、前記磁歪によってトランスやコイルから発生する唸り音を従来に比べて大幅に低減することができる。
【0058】
次に、本実施形態における具体的回路構成を示した第1実施例を説明する。
【0059】
図13は第1実施例における放電灯点灯装置を示す構成図である。図において、51は直流電源、52はDC−DCコンバータ回路、53は自励方式のインバータ回路、54は冷陰極蛍光管(以下、単に蛍光管と称する)、55は検出・帰還回路、56はインピーダンス変換・DCレベル設定回路、57は三角波発生回路である。
【0060】
DC−DCコンバータ回路52は、誤差増幅器521、コンパレータ522、三角波発生回路523、NPN型のトランジスタ524、電界効果トランジスタ(以下、FETと称する)525、ダイオード526、チョークコイル527、及びコンデンサ528から構成されている。
【0061】
誤差増幅器521は、検出・帰還回路55から出力される帰還電圧を入力して、この帰還電圧がリファレンス電圧Vrefとほぼ同じになるようにこれらの差の電圧に対応した誤差電圧を出力する。
【0062】
コンパレータ522は、三角波発生回路523から出力される三角波電圧と上記誤差電圧とを比較して、三角波電圧より誤差電圧が大きいときはハイレベルの信号を出力し、誤差電圧より三角波電圧が大きいときはローレベルの電圧を出力する。この出力電圧はトランジスタ524のベースに入力され、トランジスタ524はスイッチング動作を行い、このスイッチング動作に伴ってFET525もスイッチング動作を行う。
【0063】
これにより、FET525がオン状態のときに、FET525を介してダイオード526、チョークコイル527及びコンデンサ528からなる平滑回路に直流電源51からの電圧が供給される。従って、チョークコイル527及びコンデンサ528の出力端からはFET525のスイッチング動作に基づく連続したほぼ一定レベルの直流電圧、或いはFET525のスイッチング動作に基づいてレベルが変化する直流電圧又は断続する直流電圧が出力される。
【0064】
インバータ回路53は、トランス531 、チョークコイル532、NPN型のトランジスタ533,534、抵抗器535、コンデンサ536,537から構成され、周知のロイヤー回路を有するものである。
【0065】
DC−DCコンバータ回路52の出力電圧はチョークコイル532、ヒューズ(無くても良い)を介してトランス531の一次巻線の中間タップに印加されると共に抵抗器535を介して三次巻線の一端及びトランジスタ533のベースに印加されている。トランス531の三次巻線の他端はトランジスタ534のベースに 接続され、トランジスタ533,534のそれぞれのコレクタはトランス531の一次巻線の両端に接続され、エミッタは接地されている。また、一次巻線の両端間にはコンデンサ536が接続されている。トランス531の二次巻線の一端はコンデンサ537を介して蛍光管54の一端に接続され、二次巻線の他端は接地されている。
【0066】
検出・帰還回路55は、抵抗器R1〜R3、ダイオードD1〜D3、コンデンサC1、及び可変抵抗器VR1から構成され、蛍光管54の他端は抵抗器R1を介して接地されると共に、ダイオードD2のアノード及びダイオードD1のカソードに接続されている。
【0067】
また、ダイオードD2のカソードはダイオードD3のカソード及び抵抗器R2の一端に接続されると共にコンデンサC1を介して接地され、抵抗器R2の他端は直列接続された抵抗器R3と可変抵抗器VR1を介して接地されている。
【0068】
ダイオードD3のアノードには、インピーダンス変換・DCレベル設定回路56を介して三角波発生回路57から出力される三角波電圧が印加されている。
【0069】
ここで、コンデンサC1の値は、三角波電圧の周波数(バースト周波数)に対して、十分にインピーダンスが高くなるように設定されている。
【0070】
これにより、蛍光管54を流れる管電流は抵抗器R1によって電圧に変換され、この検出電圧はダイオードD2とダイオードD3のアノード同士の接続である合成回路(OR回路)によって三角波電圧と合成された後、抵抗器R2,R3及び可変抵抗器VR1によって分圧されて、帰還電圧として出力される。この帰還電圧のレベルは可変抵抗器VR1によって変化させることができる。
【0071】
三角波発生回路57は、例えば周波数220Hz、振幅1.5Vp-pの三角波電圧を発生し、この三角波電圧はインピーダンス変換・DCレベル設定回路56によってDCレベルが設定され、エミッタフォロワ等で低インピーダンスに変換されてダイオードD3のアノードに印加される。
【0072】
次に、前述の構成よりなる本実施例の動作を図12及び図14乃至図17に示す波形図に基づいて説明する。図14乃至図17において、上段の波形はインバータ回路53におけるロイヤー回路のコレクタ電圧であり、下段の波形は管電流の波形である。また、コレクタ電圧は1目盛り当たり10V、管電流波形は1目盛り当たり5mAでそれぞれ表され、時間軸(横軸)は1目盛り当たり1msを表している。
【0073】
尚、図14乃至図17の波形は、オシロスコープを用いて実測した波形を描いたものである。
【0074】
ダイオードD2で整流されたインバータ周波数の交流信号(検出電圧)は、コンデンサC1で平滑され直流電圧となる。
【0075】
コンデンサC1の電圧は、抵抗器R2,R3及び可変抵抗器VR1で分圧され、帰還電圧としてDC−DCコンバータ回路52の帰還入力に加わる。
【0076】
蛍光管54を流れる管電流の調整は、可変抵抗器VR1を変化させてDC−DCコンバータ回路52の帰還入力へ加わる帰還電圧のレベルを調整することにより行われる。これにより、可変抵抗器VR1の値が小さいときに管電流は増えて輝度が高くなり、大きいときに管電流が減少して輝度が暗くなるような動作を行う。
【0077】
即ち、蛍光管54の輝度を最大値まで高くして管電流を5mArmsとしたときは、蛍光管54の管電流の検出電圧のレベルが、ダイオードD3を介して注入される三角波電圧のレベルより大きいので、DC−DCコンバータ回路52へ帰還される帰還電圧は、管電流の検出電圧が優先される。このとき、通常の定電流制御が行われ、管電流は連続したものとなる。(図12及び図14参照)
【0078】
可変抵抗器VR1を調整して蛍光管54の輝度を最大値からやや低くし、管電流を4mArmsに設定したときは、上記同様に管電流の検出電圧のレベルの方がバースト周波数の三角波電圧のレベルより大きいので、通常の定電流制御で動作し、管電流が5mArmsに比べて管電流波形のレベルが低下する。(図12及び図15参照)
【0079】
また、可変抵抗器VR1を調整して管電流を3mArmsに設定したときは、管電流波形のレベルがさらに減少して、管電流検出電圧が小さくなり、ダイオードOR接続された三角波電圧が帰還電圧に徐々に現れ、管電流検出電圧に三角波電圧が重畳されて、DC−DCコンバータ回路52に帰還される。
【0080】
帰還電圧において三角波電圧の飛び出した部分では、DC−DCコンバータ回路52は、出力電圧を抑制する方向で動作するため、インバータ回路53におけるロイヤー回路のコレクタ電圧は、三角波の現れた部分で低下する。この結果、管電流は、三角波の現れた部分でくさび状に低下する。可変抵抗器VR1を調整して管電流をさらに減らすと、管電流波形のくさび状の部分が拡がりバースト調光状態となる。(図12及び図16参照)
【0081】
可変抵抗器VR1を調整して管電流をさらに減少させると、DC−DCコンバータ回路52への帰還電圧は、ほとんど三角波が支配的となり、インバータ回路53におけるロイヤー回路のコレクタ電圧の休止期間(完全に管電流が流れないオフ状態の期間)が拡がったバースト調光の動作となる。(図12及び図17参照)
【0082】
また、トランス531及びチョークコイル532から発生する騒音は図18及び図19に示すように、従来例に比べて大幅に低減された。
【0083】
図18はトランス531から発生する騒音レベルの実測値を示す図、図19はチョークコイル532から発生する騒音レベルの実測値を示す図である。
【0084】
図18及び図19において、縦軸は騒音レベル(dB)を表し、横軸は調光状態を表している。また、図中における3つの折れ線のそれぞれは、インバータ回路53への入力電圧の違いを表し、それぞれにおける入力電圧は図中に記載したように7V、12V、18Vである。
【0085】
前述したように、第1の実施例によれば非常に簡単な回路構成により、従来の定電流調光方式とバースト調光方式を併用して、最大輝度から最小輝度までの広範囲において連続して蛍光管54の輝度調整を行うことができ、蛍光管54の輝度が高く高負荷の調光状態のときは定電流調光方式によって管電流が変化されて輝度調整が行われ、蛍光管54の輝度が低く低負荷の調光状態のときは定電流調光方式とバースト調光方式を併用して管電流が変化されて輝度調整が行われるので、高負荷時においてトランスやコイル等に生ずる磁歪を低減することができるため、前記磁歪によってトランスやコイルから発生する唸り音を従来に比べて大幅に低減することができる。
【0086】
さらに、三角波電圧を重畳させた帰還電圧としたので、インバータ回路53の入力電圧レベルの変化をなだらかなものとすることができ、インバータ回路53に使用されているトランス531やチョークコイル532に対して急峻に変化する電圧が印加されることがないため、この電圧の急峻な変化に伴ってこれらのトランス531やチョークコイル532に発生する磁歪を低減でき、唸り音の発生をさらに低減することができる。
【0087】
次に、本実施形態における第2実施例を説明する。
【0088】
図20は第2実施例の放電灯点灯装置を示す構成図である。図において、前述した第1実施例と同一構成部分は同一符号をもって表しその説明を省略する。また、第1実施例と第2実施例との相違点は、インバータ回路53のロイヤー回路のグランド側でインバータ回路の動作を制御するようにしたことにある。
【0089】
即ち、第2実施例では、直流電源51の出力電圧を直接インバータ回路53の入力端に印加し、第1実施例のDC−DCコンバータ52に代えて制御部61(制御手段)を設けた。
【0090】
制御部61は、誤差増幅器611、三角波発生回路612、コンパレータ613、ダイオード614、NPN型のトランジスタ615、チョークコイル616から構成されている。
【0091】
誤差増幅器611は、検出・帰還回路55から出力される帰還電圧を入力して、この帰還電圧がリファレンス電圧Vrefとほぼ同じになるようにこれらの差の電圧に対応した誤差電圧を出力する。
【0092】
コンパレータ613は、三角波発生回路612から出力される三角波電圧と上記誤差電圧とを比較して、三角波電圧より誤差電圧が大きいときはハイレベルの信号を出力し、誤差電圧より三角波電圧が大きいときはローレベルの電圧を出力する。この出力電圧はトランジスタ615のベースに入力され、トランジスタ615はスイッチング動作を行う。
【0093】
トランジスタ615のエミッタは接地され、コレクタはダイオード614のアノードに接続されると共にチョークコイル616を介してインバータ回路53のトランジスタ533,534のエミッタに接続されている。また、ダイオード614のカソードはインバータ回路53の入力端に接続されている。
【0094】
これにより、トランジスタ615がオン状態のときに、トランジスタ615を介してインバータ回路53のロイヤー回路が接地され、インバータ回路53にはトランジスタ615のスイッチング動作に基づく連続したほぼ一定レベルの直流電圧、或いはトランジスタ615のスイッチング動作に基づいてレベルが変化する直流電圧又は断続する直流電圧が印加される。
【0095】
従って、第2実施例においても第1実施例と同様の効果を得ることができる。
【0096】
次に、本実施形態における第3実施例を説明する。
【0097】
図21は第3実施例の放電灯点灯装置を示す構成図である。図において、前述した第1実施例と同一構成部分は同一符号をもって表しその説明を省略する。また、第1実施例と第3実施例との相違点は、他励方式のインバータ回路62を用いたことにある。
【0098】
このように他励方式のインバータ回路62を用いても第1の実施例と同様の効果を得ることができる。
【0099】
次に、本実施形態における第4実施例を説明する。
【0100】
図22は第4実施例の放電灯点灯装置を示す構成図である。図において、前述した第1実施例と同一構成部分は同一符号をもって表しその説明を省略する。また、第1実施例と第4実施例との相違点は、圧電トランスを用いて交流の高電圧を発生する自励方式圧電インバータ回路63を用いたことにある。
【0101】
このように自励方式圧電インバータ回路63を用いても第1の実施例と同様の効果を得ることができる。
【0102】
次に、本実施形態における第5実施例を説明する。
【0103】
図23は第5実施例の放電灯点灯装置を示す構成図である。図において、前述した第1実施例と同一構成部分は同一符号をもって表しその説明を省略する。また、第1実施例と第5実施例との相違点は、インバータ回路53におけるトランス531の二次巻線をフローティングして蛍光管54に接続したことにある。
【0104】
この場合、検出・帰還回路55の入力端には、管電流に代えてトランス531の一次巻線の印加電圧を抵抗器64を介して印加している。トランス531の一次巻線の電圧に対応して管電流が変化するので、この構成によって定電流制御を行うことができると共に、第1実施例と同様の効果を得ることができる。
【0105】
次に、本発明の第2の実施形態を説明する。
【0106】
図24は第2の実施形態の放電灯点灯装置を示す構成図である。図において、前述した第1の実施形態の第1実施例と同一構成部分は同一符号をもって表しその説明を省略する。また、第1の実施形態の第1実施例と第2の実施形態との相違点は、圧電トランスを用いた他励方式圧電インバータ回路66を設け、制御手段である周波数制御回路65によってインバータ回路66の出力電圧を制御し、管電流の調整(輝度調整)を行うようにしたことにある。
【0107】
周波数制御回路65は、誤差増幅器651、電圧制御型発振器(以下、VCOと称する)652、波形整形回路653、及びバッファ回路654から構成されている。
【0108】
誤差増幅器651は、検出・帰還回路55から出力される帰還電圧を入力して、この帰還電圧がリファレンス電圧Vrefとほぼ同じになるようにこれらの差の電圧に対応した誤差電圧を出力する。
【0109】
VCO652は、誤差増幅器651から出力された誤差電圧に基づいて設定した周波数の制御信号を出力する。この制御信号は、波形整形回路653によって波形整形された後、バッファ回路654を介してインバータ回路66に供給される。
【0110】
インバータ回路66は、直流電源51からの直流電圧が直接供給され、周波数制御回路65から入力した制御信号に基づいて交流出力電圧を変化させる。
【0111】
このように圧電トランスを用いた他励方式のインバータ回路66を用いても、前述した第1の実施形態の第1実施例と同様の効果を得ることができる。
【0112】
次に、本発明の第3の実施形態を説明する。
【0113】
図25は第3の実施形態の放電灯点灯装置を示す構成図である。図において、前述した第1の実施形態の第1実施例と同一構成部分は同一符号をもって表しその説明を省略する。また、第1の実施形態の第1実施例と第3の実施形態との相違点は、DC−DCコンバータ回路52及び検出・帰還回路55を除去して、電流制御手段である駆動制御回路67を設けると共に、制御手段である三角波発生回路57及びインピーダンス変換・DCレベル設定回路68から供給されたバースト信号電圧である三角波電圧によって駆動制御回路67の動作を制御するようにしたことにある。
【0114】
即ち、駆動制御回路67は、PNP型のトランジスタ671と2つの抵抗器672,673から構成され、トランジスタ671のベースは抵抗器672を介して直流電源51の正極及び自己のエミッタに接続されると共に抵抗器673を介してインピーダンス変換・DCレベル設定回路68の出力端に接続されている。さらに、トランジスタ671のコレクタはインバータ回路53の抵抗器535を介して二次巻き線に接続されている。また、インバータ回路53のトランス531の一次巻線中間タップはチョークコイル532、ヒューズ(無くても良い)を介して直流電源51の正極に接続されている。グランドとインピーダンス変換・DCレベル設定回路68との間に直流レベル可変手段である可変抵抗器69が接続されている。
【0115】
上記構成によれば、インピーダンス変換・DCレベル設定回路68から出力される三角波電圧のDCレベルを変化させることにより、インバータ回路53のトランス531の一次巻線への入力電力を制御して蛍光管54の輝度調整を広範囲に行うことができると共に、従来のような唸り音の発生を低減することができる。
【0116】
即ち、駆動制御回路67のトランジスタ671のベース電圧レベルは、インピーダンス変換・DCレベル設定回路68から出力される三角波電圧のレベルに応じて変化される。
【0117】
これにより、トランジスタ671のコレクタ電流はベース電圧レベルに対応して変化するので、インバータ回路53におけるロイヤー回路を構成するトランジスタ533,534のベース電圧はトランジスタ671のコレクタ電流の増減に対応して変化し、これに対応してトランジスタ533,534のコレクタ電流も変化する。
【0118】
従って、バースト調光動作トランス531の一次巻線に印加される電圧は、上記三角波電圧の傾斜に対応してなだらかに変化する。
【0119】
これにより、インバータ回路53に使用されているトランス531やチョークコイル532に対して急峻に変化する電圧が印加されることがないため、このような電圧の急峻な変化に伴ってこれらのトランス531やチョークコイル532に発生する磁歪を低減でき、唸り音の発生を低減することができる。
【0120】
一方、蛍光管54の輝度を調整する際には、図26に示すように、インピーダンス変換・DCレベル設定回路68の可変抵抗器69の抵抗値を変化させることによって三角波電圧のDCレベル或いはDCオフセットレベルを変化させる。
【0121】
これにより、直流電源51の電圧Vdcと三角波電圧Vtrの差に対応してトランジスタ671のベース・エミッタ間電圧Vbeが変化する。即ち、輝度が高いときは、ベース・エミッタ間電圧Vbeは約0.7Vで飽和する。輝度が低いときは、ベース・エミッタ間電圧Vbeが三角波となり、バースト調光状態となる。
【0122】
従って、インバータ回路53のロイヤー回路の動作を連続或いは断続させることができると共に断続の比率を変化させることができ、広範囲な輝度調整を行うことができる。
【0123】
前述したように上記各実施形態によれば、蛍光管(放電灯)54の調光範囲におけるバースト調光動作の範囲を負荷が比較的軽い範囲とし、バースト調光動作時のトランスやチョークコイルに印加される電圧波形の立ち上がり立ち下がりをなだらかにしている。さらに、バースト調光時でも管電流検出電圧がバースト信号電圧より大きい状態(オン状態)の場合には、管電流の定電流制御が有効である。
【0124】
従って、本実施形態によれば、負荷電力大きい蛍光管の輝度が高い調光状態のときは、検出・帰還回路55が、管電流波形のレベルを優先して制御部に帰還し、連続した管電流を流す定電流制御が行われる。
【0125】
また、調光レベルを絞って負荷電力が小さい状態になったときは、帰還電圧は、管電流検出電圧にバースト信号電圧(三角波電圧)が重畳した形で帰還され、バースト信号の電圧の大きい部分では管電流が抑圧されて、管電流はバースト調光に切り替わる。バースト調光への切り替わりは、任意に設定でき、設定した管電流に応じて徐々に切り替わる。
【0126】
バースト調光時は、帰還ループに三角波のようななだらかな傾斜をもつ波形を注入して行われるため、オン・オフの切り替わり時に、トランスにかかる電圧波形の立ち上がり、立ち下がりはなだらかになる。
【0127】
従って、全調光範囲をバースト調光方式で行う放電灯点灯装置と比較すると、トランス、コイル類から発生する可聴周波数の唸り音が大幅に改善される。
【0128】
バースト調光における唸り音の発生は、一般的に負荷電力が大きいときほど大きく、負荷電力が小さいときは発生音も小さくなるので、発生する唸り音の最高音圧レベルが大幅に低下する。
【0129】
また、オフ・オンの切り替わり時の電圧波形が急峻であるほどコアの磁歪による音の発生が大きい。このため、従来のバースト調光は矩形波のパルス信号でオン・オフの切替が行われていたので、急峻な電圧がトランスに加わり唸り音の発生が大きかった。しかし本実施形態では、オン・オフの切り替わりは、帰還電圧に注入する三角波電圧と管電流の検出レベルを比較してバースト調光に徐々に切り替わる方式を採用したので、トランス・コア類から発生する唸り音は小さくなる。
【0130】
さらに、上記各実施形態では、上記動作を実現するために複雑な回路を必要としない。
【0131】
また、上記各実施形態及び各実施例の放電灯点灯装置を用いた液晶表示装置或いは照明装置においても同様の効果を得ることができる。
【0132】
尚、上記各実施形態ではバースト信号を三角波としたが、これに限定されることはなく、なだらかな傾斜を有する波形の信号で有れば、鋸波信号、サイン波信号、台形波信号、またはこれらの合成波信号であっても、同様の効果を得ることができる。
【0133】
また、上記各実施形態及び実施例を、図20に示した第1の実施形態の第2実施例と同様にグランド側で制御しても同様の効果を得ることができることは言うまでもない。
【0134】
【発明の効果】
以上説明したように本発明の請求項1記載の放電灯の輝度調整方法によれば、放電灯の輝度が高く高負荷の調光状態のときはインバータ回路から連続した交流電圧を出力し且つ該出力電圧のレベルを変えることにより放電灯を流れる管電流が変化されて輝度調整が行われ、放電灯の輝度が低く低負荷の調光状態のときはインバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で前記インバータ回路の出力電圧のレベルを低下させ且つ低下させる期間と前記周期との比率を変えることにより前記管電流が変化されて輝度調整が行われるので、高負荷時においてトランスやコイル等に生ずる磁歪による波形の急激な変化を低減することができるため、前記磁歪によってトランスやコイルから発生する唸り音を従来に比べて大幅に低減することができる。
【0135】
また、請求項2記載の放電灯の輝度調整方法によれば、上記の効果に加えて、前記インバータ回路の入力電圧レベルの変化をなだらかなものとすることができるので、前記インバータ回路に使用されているトランスやコイル類に対して急峻に変化する電圧が印加されることがないため、該電圧の急峻な変化に伴ってこれらのトランスやコイル類に発生する磁歪による波形の急激な変化を低減でき、唸り音の発生をさらに低減することができる。
【0136】
また、請求項3乃至5記載の放電灯点灯装置によれば、放電灯を流れる管電流が閾値電圧レベルよりも高いときは放電灯に印加される交流電圧は連続したものとなり且つその電圧レベルが変化されて輝度調整が行われ、前記管電流が前記閾値電圧レベルより低いときは前記放電灯に印加される交流電圧は断続したものとなり且つ断続の比率が変化されて輝度調整が行われるので、高負荷時において前記インバータ回路のトランスやコイル等に生ずる磁歪を低減することができるため、前記磁歪によってトランスやコイルから発生する唸り音を従来に比べて大幅に低減することができる。
【0137】
さらに、ダイオード結合によってバースト信号電圧と管電流検出手段の出力電圧とが合成されるので、合成回路が極めて単純化され、回路構成を簡略化することができる。
【0138】
また、請求項5記載の放電灯点灯装置によれば、上記の効果に加えて、前記バースト信号電圧を三角波電圧としたので、前記インバータ回路の入力電圧を所定の傾斜をもち且つなだらかに容易に変化させることができる。
【0139】
また、請求項6記載の液晶表示装置によれば、上記放電灯点灯装置によってバックライト用の放電灯が点灯されるので、従来に比べて唸り音の発生を低減することができる。
【0140】
また、請求項7記載の照明装置によれば、上記放電灯点灯装置によって照明用の放電灯が点灯されるので、従来に比べて唸り音の発生を低減することができる。
【0141】
また、請求項8記載の放電灯の輝度調整回路によれば、放電灯の輝度が高く高負荷の調光状態の場合は、インバータ回路から連続した交流電圧を出力し且つ該出力電圧のレベルを変えることにより放電灯を流れる管電流が変化されて輝度調整が行われ、放電灯の輝度が低く低負荷の調光状態の場合は、インバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で前記インバータ回路の出力電圧のレベルを低下させ且つ低下させる期間と前記周期との比率を変えることにより前記管電流が変化されて輝度調整が行われるので、高負荷の場合においてトランスやコイル等に生ずる磁歪による波形の急激な変化を低減することができるため、前記磁歪によってトランスやコイルから発生する唸り音を従来に比べて大幅に低減することができる。
【図面の簡単な説明】
【図1】従来例の放電灯点灯装置を示す構成図
【図2】従来例のバースト調光方式を用いた放電灯点灯装置を示す構成図
【図3】従来のバースト調光方式を用いた放電灯点灯装置を示す構成図
【図4】従来例のバースト調光方式を用いた放電灯点灯装置の動作波形を示す図
【図5】従来例のバースト調光時にトランスから発生する騒音レベルの実測値の一例を示す図
【図6】従来例のバースト調光時にチョークコイルから発生する騒音レベルの実測値の一例を示す図
【図7】従来例のインバータ回路におけるロイヤー回路のコレクタ電圧波形及び管電流波形を示す図
【図8】従来例のインバータ回路におけるロイヤー回路のコレクタ電圧波形及び管電流波形を示す図
【図9】従来例のインバータ回路におけるロイヤー回路のコレクタ電圧波形及び管電流波形を示す図
【図10】従来例のインバータ回路におけるロイヤー回路のコレクタ電圧波形及び管電流波形を示す図
【図11】本発明の第1の実施形態における放電灯点灯装置を示す構成図
【図12】本発明の第1の実施形態における放電灯点灯装置の動作波形を示す図
【図13】本発明の第1の実施形態の第1実施例における放電灯点灯装置を示す構成図
【図14】本発明の第1実施例のインバータ回路におけるロイヤー回路のコレクタ電圧波形及び管電流波形を示す図
【図15】本発明の第1実施例のインバータ回路におけるロイヤー回路のコレクタ電圧波形及び管電流波形を示す図
【図16】本発明の第1実施例のインバータ回路におけるロイヤー回路のコレクタ電圧波形及び管電流波形を示す図
【図17】本発明の第1実施例のインバータ回路におけるロイヤー回路のコレクタ電圧波形及び管電流波形を示す図
【図18】本発明の第1実施例における調光時にトランスから発生する騒音レベルの実測値を示す図
【図19】本発明の第1実施例における調光時にチョークコイルから発生する騒音レベルの実測値を示す図
【図20】本発明の第1の実施形態における第2実施例の放電灯点灯装置を示す構成図
【図21】本発明の第1の実施形態における第3実施例の放電灯点灯装置を示す構成図
【図22】本発明の第1の実施形態における第4実施例の放電灯点灯装置を示す構成図
【図23】本発明の第1の実施形態における第5実施例の放電灯点灯装置を示す構成図
【図24】本発明の第2の実施形態の放電灯点灯装置を示す構成図
【図25】本発明の第3の実施形態の放電灯点灯装置を示す構成図
【図26】本発明の第3の実施形態における輝度調整動作を説明する信号波形図
【符号の説明】
41…直流電源、42…DC−DCコンバータ回路、43…自励方式インバータ回路、44…冷陰極蛍光管、45…電流検出回路、46…バースト信号発生回路、51…直流電源、52…DC−DCコンバータ回路、53…自励方式インバータ回路、531 …トランス、532 …チョークコイル、54…冷陰極蛍光管、55…検出・帰還回路、56…インピーダンス変換・DCレベル設定回路、56a…可変抵抗器、57…三角波発生回路、61…制御部、62…他励方式インバータ回路、63…自励方式圧電インバータ回路、64…抵抗器、65…周波数制御回路、66…圧電インバータ回路、67…駆動制御回路、D1〜D3…ダイオード、R1〜R3…抵抗器、C1…コンデンサ、VR1…可変抵抗器。
【発明の属する技術分野】
本発明は、ノート型パーソナルコンピュータ等に用いられている液晶表示パネルのバックライト照明用に使用される放電灯の輝度調整方法及びその装置に関するものである。
【0002】
【従来の技術】
従来、放電灯(例えば冷陰極蛍光管)を点灯する放電灯点灯装置(バックライトインバータ装置とも称する)では、蛍光管の輝度の調光は管電流を変化させて行っている。
【0003】
図1は従来例の放電灯点灯装置を示す構成図である。図において、11は電池等の直流電源、12はDC−DCコンバータ回路、13は自励方式インバータ回路(以下、インバータ回路と称する)、14は電流検出回路、15は冷陰極蛍光管である。
【0004】
上記構成において、冷陰極蛍光管(以下、蛍光管と称する)15を流れる蛍光管電流が電流検出回路14によって検出され、この検出結果がDC−DCコンバータ回路12に帰還される。
【0005】
DC−DCコンバータ回路12は、直流電源11から供給される電圧レベルを電流検出回路14からの帰還信号に基づいて別の電圧レベルに変換し、インバータ回路13に出力する。
【0006】
インバータ回路13は、DC−DCコンバータ回路12から入力した直流電圧を所定周波数の交流電圧に変換して蛍光管15に印加する。
【0007】
前述のように電流検出回路14によって検出された管電流がDC−DCコンバータ回路12に帰還されてインバータ回路13の供給電圧を変化させることにより、管電流が定電流制御されている。
【0008】
蛍光管15を流れる管電流は、連続した電流であり、予め設定された所定のレベルになるよう制御される。また、輝度MAX100%〜50%程度の範囲で調光することができ、この調光方式は一般的に電流調光方式と呼ばれている。
【0009】
また、調光範囲を広くするために低輝度側の範囲を広げるには、管電流を減らして動作させる必要がある。しかしながら、管電流を減らしていくと蛍光管15の性質上、放電が不安定になるので、上記のような連続した定電流制御方式では、低輝度側の下限は、輝度MAXの50%程度が限度である。
【0010】
一方、最近では、ノート型パーソナルコンピュータ等でバッテリー駆動の稼働時間を長くするために、消費電力の大きな蛍光管を低輝度で動作させる手法が使われている。この場合、輝度の調光範囲として、輝度MAX100%〜10%程度が要求されている。
【0011】
調光範囲を拡大する方法としては、連続電流による定電流制御では限度があるため、例えば、特開平5−198384号公報に開示されるように、管電流を断続させると共にその比率を変化させるバースト調光方式が用いられる。この調光方式は、デューティー調光或いは周波数調光とも呼ばれている。
【0012】
バースト調光方式を用いた放電灯点灯装置は、例えば図2に示すように直流電源21の出力電圧をDC−DCコンバータ回路22で所定レベルの電圧に変換して自励方式インバータ回路23に入力すると共に、DC−DCコンバータ回路22からインバータ回路23への通電をバースト信号発振回路24によって発生されたバースト信号に基づいて断続することにより、冷陰極蛍光管25の輝度を変化させる。この際、インバータ回路23への通電の断続比率を調整することにより、調光を行うことができる。
【0013】
次に、従来のバースト調光方式を用いた放電灯点灯装置の具体例を説明する。
【0014】
図3は従来のバースト調光方式を用いた放電灯点灯装置を示す構成図、図4はその動作波形図である。図において、31は電池等の直流電源、32はDC−DCコンバータ回路、33は調光制御回路、34は自励方式のインバータ回路、35は冷陰極蛍光管(以下、蛍光管と称する)である。
【0015】
DC−DCコンバータ回路32は、直流電源31から供給される電圧レベルを所定レベルに変化させてインバータ回路34に出力する。
【0016】
調光制御回路33は、三角波生成回路33aと制御信号生成回路33bから構成され、三角波生成回路33aによって生成された三角波電圧Vtrと閾値電圧Vthとを制御信号生成回路33bのコンパレータ331に入力して矩形波電圧Vreq(バースト信号)を生成し、この矩形波電圧Vreqをインバータ回路34に入力する。
【0017】
インバータ回路34は、トランス341、チョークコイル342、及びトランジスタ343〜345を備えている。DC−DCコンバータ回路32からはチョークコイル342を介してトランス341へ通電され、トランジスタ343を矩形波電圧Vreqによってスイッチングすることにより、トランジスタ344,345等によって構成されるロイヤー回路の発振動作をオン・オフさせる。
【0018】
このオン・オフ動作によってインバータ回路23への通電の断続が行われる。
【0019】
これにより、ロイヤー回路が発振動作を行っているときのみ蛍光管35に電圧が印加されるので、トランジスタ343のスイッチング動作におけるオン・オフの比率を変化させることにより調光を行うことができる。
【0020】
トランジスタ343のスイッチング動作におけるオン・オフの比率は、制御信号生成回路33bにおける可変抵抗器332によって上記閾値電圧Vthのレベルを変化させることにより変えることができる。
【0021】
【発明が解決しようとする課題】
しかしながら、前述した従来のバースト調光方式を用いた放電灯点灯装置では以下のような問題点があった。
【0022】
即ち、バースト調光方式の場合、矩形波電圧Vreq(バースト信号)の周波数(以下、バースト周波数と称する)は、一般に数百Hz〜数KHzに設定され、このバースト周波数でインバータ回路34のトランス341に供給される電流が断続されるので、制御信号生成回路33b及びトランジスタ343がオフからオンに切り替わるときに、トランス341やチョークコイル342のコアから、これらに生ずる磁歪によってバースト周波数の可聴音が発生する。このようにトランス341やチョークコイル342から発生する唸り音は非常に耳障りであり、バースト調光特有の解決しなければならない問題とされていた。
【0023】
また、従来のバースト調光方式では、輝度が高い(出力電力が大きい)状態から低い状態に至る広範囲においてバースト周波数でのデューティー調光が行われている。このため、バースト調光時にトランス341やコイル342から発生する可聴周波数の唸り音は、インバータ回路34への供給電圧が高いほど、またインバータ回路34の出力電力が大きいときほど、大きな音になる性質がある。
【0024】
従って、インバータ回路34に供給される電圧が高いほど、インバータ回路34の起動時の電圧波形が急峻になり、唸り音が発生しやすくなる。同様にインバータ回路34で扱う電力が大きいときほど起動時の電流が大きくなるので、大きな唸り音が発生しやすくなる。
【0025】
図5は従来のバースト調光時にトランス341から発生する騒音レベルの実測値の一例を示す図、図6は従来のバースト調光時にチョークコイル342から発生する騒音レベルの実測値の一例を示す図、図7乃至図10はこのときのロイヤー回路のコレクタ電圧波形及び管電流波形を示す図である。
【0026】
図5及び図6において、縦軸は騒音レベル(dB)を表し、横軸は調光状態を表している。また、図中における3つの折れ線のそれぞれは、インバータ回路34への入力電圧の違いを表し、それぞれにおける入力電圧は図中に記載したように7V、12V、18Vである。
【0027】
また、図7乃至図10の上側の波形はロイヤー回路におけるトランジスタのコレクタ電圧波形(10V/div)、下側の波形は管電流波形(5mA/div)であり、図7は管電流5mArms、図8は管電流4mArms、図9は管電流3mArms、図10は管電流2.5mArmsのときの測定結果である。
【0028】
さらに、図3に示す従来例(特開平5−198384号)のバースト調光方式を用いた放電灯点灯装置では、インバータ回路34の入力電圧が変動した場合に、管電流の定電流制御がされていないので、管電流(輝度)が変化してしまう欠点があった。
【0029】
本発明の目的は上記の問題点に鑑み、騒音の発生を低減でき、広範囲な輝度調整が行える放電灯の輝度調整方法及び放電灯点灯装置並びにこれを用いた液晶表示装置及び照明装置を提供することにある。
【0030】
【課題を解決するための手段】
本発明は上記の目的を達成するために請求項1では、直流電圧から交流電圧を発生するインバータ回路の出力電圧を放電灯に印加して該放電灯を点灯するときの放電灯の輝度調整方法であって、前記放電灯を流れる管電流を検出して電圧に変換して出力する管電流検出手段と、所定の閾値電圧レベル以下の電圧レベルを有し、前記インバータ回路から出力 される交流電圧の周波数よりも低い周波数となる周期で電圧レベルが所定の傾斜をもって変化するバースト信号電圧を生成して出力するバースト信号生成手段と、供給された前記バースト信号電圧と前記管電流検出手段の出力電圧とをダイオードの論理和結合によって加算し、前記バースト信号電圧と前記管電流検出手段の出力電圧の合成電圧に応じた帰還電圧を生成して出力する帰還電圧生成手段と、前記帰還電圧に応じた制御電圧を前記電流制御手段に供給する制御電圧生成手段と、前記制御電圧生成手段に接続され、前記制御電圧の直流レベルを変化させる直流レベル可変手段とを備えた輝度調整回路を用い、前記放電灯を流れる管電流値が所定の閾値以上のときは、前記インバータ回路から連続した交流電圧を出力し且つ該出力電圧のレベルを変えることにより前記管電流を変化させて輝度調整を行い、前記管電流値が前記閾値より小さいときは、前記インバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で前記インバータ回路の出力電圧のレベルを連続的に低下させ且つ低下させる期間と前記周期との比率を変えることにより前記管電流を変化させて輝度調整を行う放電灯の輝度調整方法を提案する。
【0031】
該放電灯の輝度調整方法によれば、放電灯を流れる管電流値が所定の閾値以上のとき、即ち放電灯の輝度が高い調光状態のときは、前記インバータ回路から連続した交流電圧を出力し且つ該出力電圧のレベルを変えることにより前記管電流が変化されて輝度調整が行われる。また、前記管電流値が前記閾値より小さいとき、即ち放電灯の輝度が低い調光状態のときは、前記インバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で前記インバータ回路の出力電圧のレベルを低下させ且つ低下させる期間の比率を変えることにより前記管電流が変化されて輝度調整が行われる。
【0032】
また、請求項2では、請求項1記載の放電灯の輝度調整方法において、前記インバータ回路の出力電圧のレベルを前記周期で低下させるときに、前記インバータ回路への入力電圧レベルを所定の傾斜をもって変化させる放電灯の輝度調整方法を提案する。
【0033】
該放電灯の輝度調整方法によれば、前記インバータ回路の入力電圧のレベルが所定の傾斜をもつように前記インバータ回路の入力電圧レベルが変化され、放電灯の管電流が調整されるので、前記入力電圧レベルの変化はなだらかなものとなる。
【0034】
また、請求項3では、直流電圧から交流電圧を発生するインバータ回路を備え、該インバータ回路の出力電圧を放電灯に印加して該放電灯を点灯する放電灯点灯装置において、前記放電灯を流れる管電流を検出して電圧に変換して出力する管電流検出手段と、制御電圧に基づいて前記インバータ回路のトランス一次巻線への通電方向及び通電電流を制御する電流制御手段と、所定の閾値電圧レベル以下の電圧レベルを有し、前記インバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で電圧レベルが所定の傾斜をもって変化するバースト信号電圧を生成して出力するバースト信号生成手段と、供給された前記バースト信号電圧と前記管電流検出手段の出力電圧とをダイオードの論理和結合によって加算し、前記バースト信号電圧と前記管電流検出手段の出力電圧の合成電圧に応じた帰還電圧を生成して出力する帰還電圧生成手段と、前記帰還電圧に応じた制御電圧を前記電流制御手段に供給する制御電圧生成手段と、前記制御電圧生成手段に接続され、前記制御電圧の直流レベルを変化させる直流レベル可変手段とを備えている放電灯点灯装置を提案する。
【0035】
該放電灯点灯装置によれば、管電流検出手段により前記放電灯を流れる管電流が検出されて電圧に変換され、バースト信号生成手段によって所定の閾値電圧レベル以下の電圧レベルを有し前記インバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で電圧レベルが所定の傾斜をもって変化するバースト信号電圧が生成されて出力される。前記バースト信号電圧と前記管電流検出手段の出力電圧とがダイオードの論理和結合によって加算され、該加算された合成電圧に応じた帰還電圧が出力され、前記制御電圧生 成手段によって前記帰還電圧に応じた制御電圧を前記電流制御手段に供給される。さらに、電流制御手段によって前記制御電圧に基づいて前記インバータ回路のトランス一次巻線への通電方向及び通電電流が制御される。また、直流レベル可変手段によって、前記制御電圧の直流レベルが変化され、これにより前記電流制御手段による前記インバータ回路のトランス一次巻線への通電方向及び通電電流が変化されて前記放電灯の輝度調整が行われる。
【0036】
従って、前記管電流が前記閾値電圧レベルよりも高いときは、前記放電灯に印加される交流電圧は連続したものとなり且つその電圧レベルが変化されて輝度調整が行われる。また、前記管電流が前記閾値電圧レベルより低いときは、前記放電灯に印加される交流電圧は連続状態からバースト周波数でくさび状に減少部分を設けて、その結果、断続したものとなり且つ断続の比率が変化されて輝度調整が行われる。また、ダイオードの論理和結合によって前記バースト信号電圧と前記管電流検出手段の出力電圧とが加算又は選択されるので、加算回路が極めて単純化される。
【0037】
また、請求項4では、請求項3記載の放電灯点灯装置において、前記インバータ回路は圧電トランスを有し該圧電トランスから交流電圧を発生させる放電灯点灯装置を提案する。
【0038】
該放電灯点灯装置によれば、インバータ回路の圧電トランスによって交流電圧が発生される。
【0039】
また、請求項5では、請求項3又は4記載の放電灯点灯装置において、前記バースト信号電圧が三角波電圧である放電灯点灯装置を提案する。
【0040】
該放電灯点灯装置によれば、前記バースト信号電圧が三角波電圧であるので、前記インバータ回路の入力電圧を所定の傾斜をもち且つなだらかに容易に変化させることができる。
【0041】
また、請求項6では、前記請求項3乃至5の何れかに記載の放電灯点灯装置を用いた液晶表示装置を提案する。
【0042】
該液晶表示装置によれば、前記放電灯点灯装置によってバックライト用の放電灯が点灯される。
【0043】
また、請求項7では、前記請求項3乃至5の何れかに記載の放電灯点灯装置を用いた照明装置を提案する。
【0044】
該照明装置によれば、前記放電灯点灯装置によって照明用の放電灯が点灯される。
【0045】
また、請求項8では、直流電圧から交流電圧を発生するインバータ回路の出力電圧を放電灯に印加して該放電灯を点灯する放電灯点灯装置の輝度調整回路であって、前記放電灯を流れる管電流を検出して電圧に変換して出力する管電流検出手段と、制御電圧に基づいて前記インバータ回路のトランス一次巻線への通電方向及び通電電流を制御する電流制御手段と、所定の閾値電圧レベル以下の電圧レベルを有し、前記インバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で電圧レベルが所定の傾斜をもって変化するバースト信号電圧を生成して出力するバースト信号生成手段と、供給された前記バースト信号電圧と前記管電流検出手段の出力電圧とをダイオードの論理和結合によって加算し、前記バースト信号電圧と前記管電流検出手段の出力電圧の合成電圧に応じた帰還電圧を生成して出力する帰還電圧生成手段と、前記帰還電圧に応じた制御電圧を前記電流制 御手段に供給する制御電圧生成手段と、前記制御電圧生成手段に接続され、前記制御電圧の直流レベルを変化させる直流レベル可変手段とを備えている放電灯の輝度調整回路を提案する。
【0046】
該放電灯の輝度調整回路によれば、放電灯を流れる管電流値が所定のしきい値以上の場合、即ち放電灯の輝度が高い調光状態の場合は、前記直流電圧に応じて前記インバータ回路から連続して交流電圧を出力し且つ出力電圧のレベルを変えることにより前記管電流が変化されて輝度調整が行われる。また、前記管電流が前記しきい値より小さい場合、即ち放電灯の輝度が低い調光状態の場合は、前記直流電圧に応じて前記インバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で前記インバータ回路の出力電圧のレベルを低下させ且つ低下させる帰還と前記周期との比率を変えることにより前記管電流が変化されて輝度調整が行われる。
【0047】
【発明の実施の形態】
以下、図面に基づいて本発明の一実施形態を説明する。
【0048】
図11は本発明の第1の実施形態における放電灯点灯装置を示す構成図である。図において、41は直流電源、42は制御手段であるDC−DCコンバータ回路、43は自励方式のインバータ回路、44は放電灯である冷陰極蛍光管(以下、単に蛍光管と称する)、45は管電流検出手段及び帰還電圧生成手段である電流検出回路、46はバースト信号生成手段であるバースト信号生成回路である。また、DC−DCコンバータ回路42,電流検出回路45,バースト信号生成回路46が電圧供給回路に対応する。
【0049】
DC−DCコンバータ回路42は、電流検出回路45から出力される帰還電圧に基づいて、帰還電圧がほぼ一定値を維持するように、直流電源41から出力される直流電圧を所定レベルの直流電圧に変換して、この電圧を連続して或いは断続してインバータ回路43に供給する。
【0050】
インバータ回路43は、例えば前述した従来例と同様にトランジスタ及びトランスなどから構成され、DC−DCコンバータ回路42から入力した直流電圧を所定周波数の交流電圧に変換して蛍光管44に印加する。
【0051】
電流検出回路45は、蛍光管44を流れる管電流を検出して、例えば管電流値に対応した電圧に変換すると共に、この検出電圧とバースト信号生成回路46から出力されるバースト信号電圧とを加算した後、この電圧レベルを可変抵抗器等によってレベル変換し、これを帰還電圧としてDC−DCコンバータ回路42に出力する。上記可変抵抗器の抵抗値調整によって蛍光管44の輝度調整を行うことができる。
【0052】
バースト信号生成回路46は、所定の閾値電圧レベル以下の電圧レベルを有すると共にインバータ回路43から出力される交流電圧の周波数よりも低い周波数となる周期で電圧レベルが所定の傾斜(横軸を時間、縦軸を電圧値にとった際の変化量)をもって変化するバースト信号電圧を生成して出力する。またここでは、バースト信号電圧を三角波電圧とすると共に、前記閾値電圧レベルは、蛍光管44の輝度が最大値と最小値のほぼ中間であるときの管電流に対応した検出電圧のレベルとしている。
【0053】
上記構成によれば、図12の波形図に示すように、蛍光管44の輝度が高い状態(管電流が大きい状態)から通常の輝度レベル(上記閾値電圧に対応する輝度レベル)までは、バースト信号電圧よりも検出電圧のレベルが大きいので、帰還電圧のレベルは常にほぼ一定となり、定電流制御の電流調光方式で調光が行われる。
【0054】
また、調光を絞った低輝度状態(管電流が小さい状態)になると、前記検出電圧のレベルよりもバースト信号電圧のレベルが大きくなるので、帰還電圧のレベルが前記三角波電圧の周期で変化し、帰還電圧における三角波電圧成分によってコンバータ回路の出力電圧レベルがパルス幅変調され、DC−DCコンバータ回路の出力電圧レベルが低下或いは断続されるバースト調光方式で調光が行われる。
【0055】
通常の輝度レベル(上記しきい値に対応する輝度レベル)付近では、図16に示すように、管電流が一定値となっている状態からしだいに減少し、0より大きく前記一定値より小さい値(以下、極小値と称する)に達した後、しだいに増加する。増加する状態から前記一定値となっている状態へ移り変わる際、オーバーシュートに対応した過度応答としての急激な電流の増加・減少が生じず、漸斤的にゆるやかに前記一定値に収束している。また、この部分の管電流について、図16の波形はくさび状となっている。前記一定値に対する前記極小値の比率は0より大きく1より小さい値となっている。
【0056】
さらに、バースト調光時のインバータ部への入力電圧波形を、従来のような矩形波状の急峻な波形から、立ち上がり立ち下がりの傾斜が緩やかな波形になるようにバースト信号電圧を三角波電圧とし、インバータ回路43に使用されるトランス等に発生する磁歪を低減している。
【0057】
従って、蛍光管44の輝度が高く高負荷の調光状態のときはインバータ回路43から連続した交流電圧を出力し且つコンバータ回路の出力電圧のレベルを変えることにより蛍光管44を流れる管電流が変化されて輝度調整が行われ、蛍光管44の輝度が低く低負荷の調光状態のときはインバータ回路43から出力される交流電圧の周波数よりも低い周波数となる周期でインバータ回路43の出力電圧のレベルを低下させ且つ低下させる期間(少なくともインバータ回路43の出力電圧のレベルが減少し、低下した値で一定となる2つの状態の期間を含む。またはこの2つの状態の期間に加え、インバータ回路43の出力電圧のレベルが上昇する状態の期間を含んで定義しても良い。)の比率を変えることにより管電流が変化されて輝度調整が行われるので、高負荷時においてトランスやコイル等に生ずる磁歪を低減することができるため、前記磁歪によってトランスやコイルから発生する唸り音を従来に比べて大幅に低減することができる。
【0058】
次に、本実施形態における具体的回路構成を示した第1実施例を説明する。
【0059】
図13は第1実施例における放電灯点灯装置を示す構成図である。図において、51は直流電源、52はDC−DCコンバータ回路、53は自励方式のインバータ回路、54は冷陰極蛍光管(以下、単に蛍光管と称する)、55は検出・帰還回路、56はインピーダンス変換・DCレベル設定回路、57は三角波発生回路である。
【0060】
DC−DCコンバータ回路52は、誤差増幅器521、コンパレータ522、三角波発生回路523、NPN型のトランジスタ524、電界効果トランジスタ(以下、FETと称する)525、ダイオード526、チョークコイル527、及びコンデンサ528から構成されている。
【0061】
誤差増幅器521は、検出・帰還回路55から出力される帰還電圧を入力して、この帰還電圧がリファレンス電圧Vrefとほぼ同じになるようにこれらの差の電圧に対応した誤差電圧を出力する。
【0062】
コンパレータ522は、三角波発生回路523から出力される三角波電圧と上記誤差電圧とを比較して、三角波電圧より誤差電圧が大きいときはハイレベルの信号を出力し、誤差電圧より三角波電圧が大きいときはローレベルの電圧を出力する。この出力電圧はトランジスタ524のベースに入力され、トランジスタ524はスイッチング動作を行い、このスイッチング動作に伴ってFET525もスイッチング動作を行う。
【0063】
これにより、FET525がオン状態のときに、FET525を介してダイオード526、チョークコイル527及びコンデンサ528からなる平滑回路に直流電源51からの電圧が供給される。従って、チョークコイル527及びコンデンサ528の出力端からはFET525のスイッチング動作に基づく連続したほぼ一定レベルの直流電圧、或いはFET525のスイッチング動作に基づいてレベルが変化する直流電圧又は断続する直流電圧が出力される。
【0064】
インバータ回路53は、トランス531 、チョークコイル532、NPN型のトランジスタ533,534、抵抗器535、コンデンサ536,537から構成され、周知のロイヤー回路を有するものである。
【0065】
DC−DCコンバータ回路52の出力電圧はチョークコイル532、ヒューズ(無くても良い)を介してトランス531の一次巻線の中間タップに印加されると共に抵抗器535を介して三次巻線の一端及びトランジスタ533のベースに印加されている。トランス531の三次巻線の他端はトランジスタ534のベースに 接続され、トランジスタ533,534のそれぞれのコレクタはトランス531の一次巻線の両端に接続され、エミッタは接地されている。また、一次巻線の両端間にはコンデンサ536が接続されている。トランス531の二次巻線の一端はコンデンサ537を介して蛍光管54の一端に接続され、二次巻線の他端は接地されている。
【0066】
検出・帰還回路55は、抵抗器R1〜R3、ダイオードD1〜D3、コンデンサC1、及び可変抵抗器VR1から構成され、蛍光管54の他端は抵抗器R1を介して接地されると共に、ダイオードD2のアノード及びダイオードD1のカソードに接続されている。
【0067】
また、ダイオードD2のカソードはダイオードD3のカソード及び抵抗器R2の一端に接続されると共にコンデンサC1を介して接地され、抵抗器R2の他端は直列接続された抵抗器R3と可変抵抗器VR1を介して接地されている。
【0068】
ダイオードD3のアノードには、インピーダンス変換・DCレベル設定回路56を介して三角波発生回路57から出力される三角波電圧が印加されている。
【0069】
ここで、コンデンサC1の値は、三角波電圧の周波数(バースト周波数)に対して、十分にインピーダンスが高くなるように設定されている。
【0070】
これにより、蛍光管54を流れる管電流は抵抗器R1によって電圧に変換され、この検出電圧はダイオードD2とダイオードD3のアノード同士の接続である合成回路(OR回路)によって三角波電圧と合成された後、抵抗器R2,R3及び可変抵抗器VR1によって分圧されて、帰還電圧として出力される。この帰還電圧のレベルは可変抵抗器VR1によって変化させることができる。
【0071】
三角波発生回路57は、例えば周波数220Hz、振幅1.5Vp-pの三角波電圧を発生し、この三角波電圧はインピーダンス変換・DCレベル設定回路56によってDCレベルが設定され、エミッタフォロワ等で低インピーダンスに変換されてダイオードD3のアノードに印加される。
【0072】
次に、前述の構成よりなる本実施例の動作を図12及び図14乃至図17に示す波形図に基づいて説明する。図14乃至図17において、上段の波形はインバータ回路53におけるロイヤー回路のコレクタ電圧であり、下段の波形は管電流の波形である。また、コレクタ電圧は1目盛り当たり10V、管電流波形は1目盛り当たり5mAでそれぞれ表され、時間軸(横軸)は1目盛り当たり1msを表している。
【0073】
尚、図14乃至図17の波形は、オシロスコープを用いて実測した波形を描いたものである。
【0074】
ダイオードD2で整流されたインバータ周波数の交流信号(検出電圧)は、コンデンサC1で平滑され直流電圧となる。
【0075】
コンデンサC1の電圧は、抵抗器R2,R3及び可変抵抗器VR1で分圧され、帰還電圧としてDC−DCコンバータ回路52の帰還入力に加わる。
【0076】
蛍光管54を流れる管電流の調整は、可変抵抗器VR1を変化させてDC−DCコンバータ回路52の帰還入力へ加わる帰還電圧のレベルを調整することにより行われる。これにより、可変抵抗器VR1の値が小さいときに管電流は増えて輝度が高くなり、大きいときに管電流が減少して輝度が暗くなるような動作を行う。
【0077】
即ち、蛍光管54の輝度を最大値まで高くして管電流を5mArmsとしたときは、蛍光管54の管電流の検出電圧のレベルが、ダイオードD3を介して注入される三角波電圧のレベルより大きいので、DC−DCコンバータ回路52へ帰還される帰還電圧は、管電流の検出電圧が優先される。このとき、通常の定電流制御が行われ、管電流は連続したものとなる。(図12及び図14参照)
【0078】
可変抵抗器VR1を調整して蛍光管54の輝度を最大値からやや低くし、管電流を4mArmsに設定したときは、上記同様に管電流の検出電圧のレベルの方がバースト周波数の三角波電圧のレベルより大きいので、通常の定電流制御で動作し、管電流が5mArmsに比べて管電流波形のレベルが低下する。(図12及び図15参照)
【0079】
また、可変抵抗器VR1を調整して管電流を3mArmsに設定したときは、管電流波形のレベルがさらに減少して、管電流検出電圧が小さくなり、ダイオードOR接続された三角波電圧が帰還電圧に徐々に現れ、管電流検出電圧に三角波電圧が重畳されて、DC−DCコンバータ回路52に帰還される。
【0080】
帰還電圧において三角波電圧の飛び出した部分では、DC−DCコンバータ回路52は、出力電圧を抑制する方向で動作するため、インバータ回路53におけるロイヤー回路のコレクタ電圧は、三角波の現れた部分で低下する。この結果、管電流は、三角波の現れた部分でくさび状に低下する。可変抵抗器VR1を調整して管電流をさらに減らすと、管電流波形のくさび状の部分が拡がりバースト調光状態となる。(図12及び図16参照)
【0081】
可変抵抗器VR1を調整して管電流をさらに減少させると、DC−DCコンバータ回路52への帰還電圧は、ほとんど三角波が支配的となり、インバータ回路53におけるロイヤー回路のコレクタ電圧の休止期間(完全に管電流が流れないオフ状態の期間)が拡がったバースト調光の動作となる。(図12及び図17参照)
【0082】
また、トランス531及びチョークコイル532から発生する騒音は図18及び図19に示すように、従来例に比べて大幅に低減された。
【0083】
図18はトランス531から発生する騒音レベルの実測値を示す図、図19はチョークコイル532から発生する騒音レベルの実測値を示す図である。
【0084】
図18及び図19において、縦軸は騒音レベル(dB)を表し、横軸は調光状態を表している。また、図中における3つの折れ線のそれぞれは、インバータ回路53への入力電圧の違いを表し、それぞれにおける入力電圧は図中に記載したように7V、12V、18Vである。
【0085】
前述したように、第1の実施例によれば非常に簡単な回路構成により、従来の定電流調光方式とバースト調光方式を併用して、最大輝度から最小輝度までの広範囲において連続して蛍光管54の輝度調整を行うことができ、蛍光管54の輝度が高く高負荷の調光状態のときは定電流調光方式によって管電流が変化されて輝度調整が行われ、蛍光管54の輝度が低く低負荷の調光状態のときは定電流調光方式とバースト調光方式を併用して管電流が変化されて輝度調整が行われるので、高負荷時においてトランスやコイル等に生ずる磁歪を低減することができるため、前記磁歪によってトランスやコイルから発生する唸り音を従来に比べて大幅に低減することができる。
【0086】
さらに、三角波電圧を重畳させた帰還電圧としたので、インバータ回路53の入力電圧レベルの変化をなだらかなものとすることができ、インバータ回路53に使用されているトランス531やチョークコイル532に対して急峻に変化する電圧が印加されることがないため、この電圧の急峻な変化に伴ってこれらのトランス531やチョークコイル532に発生する磁歪を低減でき、唸り音の発生をさらに低減することができる。
【0087】
次に、本実施形態における第2実施例を説明する。
【0088】
図20は第2実施例の放電灯点灯装置を示す構成図である。図において、前述した第1実施例と同一構成部分は同一符号をもって表しその説明を省略する。また、第1実施例と第2実施例との相違点は、インバータ回路53のロイヤー回路のグランド側でインバータ回路の動作を制御するようにしたことにある。
【0089】
即ち、第2実施例では、直流電源51の出力電圧を直接インバータ回路53の入力端に印加し、第1実施例のDC−DCコンバータ52に代えて制御部61(制御手段)を設けた。
【0090】
制御部61は、誤差増幅器611、三角波発生回路612、コンパレータ613、ダイオード614、NPN型のトランジスタ615、チョークコイル616から構成されている。
【0091】
誤差増幅器611は、検出・帰還回路55から出力される帰還電圧を入力して、この帰還電圧がリファレンス電圧Vrefとほぼ同じになるようにこれらの差の電圧に対応した誤差電圧を出力する。
【0092】
コンパレータ613は、三角波発生回路612から出力される三角波電圧と上記誤差電圧とを比較して、三角波電圧より誤差電圧が大きいときはハイレベルの信号を出力し、誤差電圧より三角波電圧が大きいときはローレベルの電圧を出力する。この出力電圧はトランジスタ615のベースに入力され、トランジスタ615はスイッチング動作を行う。
【0093】
トランジスタ615のエミッタは接地され、コレクタはダイオード614のアノードに接続されると共にチョークコイル616を介してインバータ回路53のトランジスタ533,534のエミッタに接続されている。また、ダイオード614のカソードはインバータ回路53の入力端に接続されている。
【0094】
これにより、トランジスタ615がオン状態のときに、トランジスタ615を介してインバータ回路53のロイヤー回路が接地され、インバータ回路53にはトランジスタ615のスイッチング動作に基づく連続したほぼ一定レベルの直流電圧、或いはトランジスタ615のスイッチング動作に基づいてレベルが変化する直流電圧又は断続する直流電圧が印加される。
【0095】
従って、第2実施例においても第1実施例と同様の効果を得ることができる。
【0096】
次に、本実施形態における第3実施例を説明する。
【0097】
図21は第3実施例の放電灯点灯装置を示す構成図である。図において、前述した第1実施例と同一構成部分は同一符号をもって表しその説明を省略する。また、第1実施例と第3実施例との相違点は、他励方式のインバータ回路62を用いたことにある。
【0098】
このように他励方式のインバータ回路62を用いても第1の実施例と同様の効果を得ることができる。
【0099】
次に、本実施形態における第4実施例を説明する。
【0100】
図22は第4実施例の放電灯点灯装置を示す構成図である。図において、前述した第1実施例と同一構成部分は同一符号をもって表しその説明を省略する。また、第1実施例と第4実施例との相違点は、圧電トランスを用いて交流の高電圧を発生する自励方式圧電インバータ回路63を用いたことにある。
【0101】
このように自励方式圧電インバータ回路63を用いても第1の実施例と同様の効果を得ることができる。
【0102】
次に、本実施形態における第5実施例を説明する。
【0103】
図23は第5実施例の放電灯点灯装置を示す構成図である。図において、前述した第1実施例と同一構成部分は同一符号をもって表しその説明を省略する。また、第1実施例と第5実施例との相違点は、インバータ回路53におけるトランス531の二次巻線をフローティングして蛍光管54に接続したことにある。
【0104】
この場合、検出・帰還回路55の入力端には、管電流に代えてトランス531の一次巻線の印加電圧を抵抗器64を介して印加している。トランス531の一次巻線の電圧に対応して管電流が変化するので、この構成によって定電流制御を行うことができると共に、第1実施例と同様の効果を得ることができる。
【0105】
次に、本発明の第2の実施形態を説明する。
【0106】
図24は第2の実施形態の放電灯点灯装置を示す構成図である。図において、前述した第1の実施形態の第1実施例と同一構成部分は同一符号をもって表しその説明を省略する。また、第1の実施形態の第1実施例と第2の実施形態との相違点は、圧電トランスを用いた他励方式圧電インバータ回路66を設け、制御手段である周波数制御回路65によってインバータ回路66の出力電圧を制御し、管電流の調整(輝度調整)を行うようにしたことにある。
【0107】
周波数制御回路65は、誤差増幅器651、電圧制御型発振器(以下、VCOと称する)652、波形整形回路653、及びバッファ回路654から構成されている。
【0108】
誤差増幅器651は、検出・帰還回路55から出力される帰還電圧を入力して、この帰還電圧がリファレンス電圧Vrefとほぼ同じになるようにこれらの差の電圧に対応した誤差電圧を出力する。
【0109】
VCO652は、誤差増幅器651から出力された誤差電圧に基づいて設定した周波数の制御信号を出力する。この制御信号は、波形整形回路653によって波形整形された後、バッファ回路654を介してインバータ回路66に供給される。
【0110】
インバータ回路66は、直流電源51からの直流電圧が直接供給され、周波数制御回路65から入力した制御信号に基づいて交流出力電圧を変化させる。
【0111】
このように圧電トランスを用いた他励方式のインバータ回路66を用いても、前述した第1の実施形態の第1実施例と同様の効果を得ることができる。
【0112】
次に、本発明の第3の実施形態を説明する。
【0113】
図25は第3の実施形態の放電灯点灯装置を示す構成図である。図において、前述した第1の実施形態の第1実施例と同一構成部分は同一符号をもって表しその説明を省略する。また、第1の実施形態の第1実施例と第3の実施形態との相違点は、DC−DCコンバータ回路52及び検出・帰還回路55を除去して、電流制御手段である駆動制御回路67を設けると共に、制御手段である三角波発生回路57及びインピーダンス変換・DCレベル設定回路68から供給されたバースト信号電圧である三角波電圧によって駆動制御回路67の動作を制御するようにしたことにある。
【0114】
即ち、駆動制御回路67は、PNP型のトランジスタ671と2つの抵抗器672,673から構成され、トランジスタ671のベースは抵抗器672を介して直流電源51の正極及び自己のエミッタに接続されると共に抵抗器673を介してインピーダンス変換・DCレベル設定回路68の出力端に接続されている。さらに、トランジスタ671のコレクタはインバータ回路53の抵抗器535を介して二次巻き線に接続されている。また、インバータ回路53のトランス531の一次巻線中間タップはチョークコイル532、ヒューズ(無くても良い)を介して直流電源51の正極に接続されている。グランドとインピーダンス変換・DCレベル設定回路68との間に直流レベル可変手段である可変抵抗器69が接続されている。
【0115】
上記構成によれば、インピーダンス変換・DCレベル設定回路68から出力される三角波電圧のDCレベルを変化させることにより、インバータ回路53のトランス531の一次巻線への入力電力を制御して蛍光管54の輝度調整を広範囲に行うことができると共に、従来のような唸り音の発生を低減することができる。
【0116】
即ち、駆動制御回路67のトランジスタ671のベース電圧レベルは、インピーダンス変換・DCレベル設定回路68から出力される三角波電圧のレベルに応じて変化される。
【0117】
これにより、トランジスタ671のコレクタ電流はベース電圧レベルに対応して変化するので、インバータ回路53におけるロイヤー回路を構成するトランジスタ533,534のベース電圧はトランジスタ671のコレクタ電流の増減に対応して変化し、これに対応してトランジスタ533,534のコレクタ電流も変化する。
【0118】
従って、バースト調光動作トランス531の一次巻線に印加される電圧は、上記三角波電圧の傾斜に対応してなだらかに変化する。
【0119】
これにより、インバータ回路53に使用されているトランス531やチョークコイル532に対して急峻に変化する電圧が印加されることがないため、このような電圧の急峻な変化に伴ってこれらのトランス531やチョークコイル532に発生する磁歪を低減でき、唸り音の発生を低減することができる。
【0120】
一方、蛍光管54の輝度を調整する際には、図26に示すように、インピーダンス変換・DCレベル設定回路68の可変抵抗器69の抵抗値を変化させることによって三角波電圧のDCレベル或いはDCオフセットレベルを変化させる。
【0121】
これにより、直流電源51の電圧Vdcと三角波電圧Vtrの差に対応してトランジスタ671のベース・エミッタ間電圧Vbeが変化する。即ち、輝度が高いときは、ベース・エミッタ間電圧Vbeは約0.7Vで飽和する。輝度が低いときは、ベース・エミッタ間電圧Vbeが三角波となり、バースト調光状態となる。
【0122】
従って、インバータ回路53のロイヤー回路の動作を連続或いは断続させることができると共に断続の比率を変化させることができ、広範囲な輝度調整を行うことができる。
【0123】
前述したように上記各実施形態によれば、蛍光管(放電灯)54の調光範囲におけるバースト調光動作の範囲を負荷が比較的軽い範囲とし、バースト調光動作時のトランスやチョークコイルに印加される電圧波形の立ち上がり立ち下がりをなだらかにしている。さらに、バースト調光時でも管電流検出電圧がバースト信号電圧より大きい状態(オン状態)の場合には、管電流の定電流制御が有効である。
【0124】
従って、本実施形態によれば、負荷電力大きい蛍光管の輝度が高い調光状態のときは、検出・帰還回路55が、管電流波形のレベルを優先して制御部に帰還し、連続した管電流を流す定電流制御が行われる。
【0125】
また、調光レベルを絞って負荷電力が小さい状態になったときは、帰還電圧は、管電流検出電圧にバースト信号電圧(三角波電圧)が重畳した形で帰還され、バースト信号の電圧の大きい部分では管電流が抑圧されて、管電流はバースト調光に切り替わる。バースト調光への切り替わりは、任意に設定でき、設定した管電流に応じて徐々に切り替わる。
【0126】
バースト調光時は、帰還ループに三角波のようななだらかな傾斜をもつ波形を注入して行われるため、オン・オフの切り替わり時に、トランスにかかる電圧波形の立ち上がり、立ち下がりはなだらかになる。
【0127】
従って、全調光範囲をバースト調光方式で行う放電灯点灯装置と比較すると、トランス、コイル類から発生する可聴周波数の唸り音が大幅に改善される。
【0128】
バースト調光における唸り音の発生は、一般的に負荷電力が大きいときほど大きく、負荷電力が小さいときは発生音も小さくなるので、発生する唸り音の最高音圧レベルが大幅に低下する。
【0129】
また、オフ・オンの切り替わり時の電圧波形が急峻であるほどコアの磁歪による音の発生が大きい。このため、従来のバースト調光は矩形波のパルス信号でオン・オフの切替が行われていたので、急峻な電圧がトランスに加わり唸り音の発生が大きかった。しかし本実施形態では、オン・オフの切り替わりは、帰還電圧に注入する三角波電圧と管電流の検出レベルを比較してバースト調光に徐々に切り替わる方式を採用したので、トランス・コア類から発生する唸り音は小さくなる。
【0130】
さらに、上記各実施形態では、上記動作を実現するために複雑な回路を必要としない。
【0131】
また、上記各実施形態及び各実施例の放電灯点灯装置を用いた液晶表示装置或いは照明装置においても同様の効果を得ることができる。
【0132】
尚、上記各実施形態ではバースト信号を三角波としたが、これに限定されることはなく、なだらかな傾斜を有する波形の信号で有れば、鋸波信号、サイン波信号、台形波信号、またはこれらの合成波信号であっても、同様の効果を得ることができる。
【0133】
また、上記各実施形態及び実施例を、図20に示した第1の実施形態の第2実施例と同様にグランド側で制御しても同様の効果を得ることができることは言うまでもない。
【0134】
【発明の効果】
以上説明したように本発明の請求項1記載の放電灯の輝度調整方法によれば、放電灯の輝度が高く高負荷の調光状態のときはインバータ回路から連続した交流電圧を出力し且つ該出力電圧のレベルを変えることにより放電灯を流れる管電流が変化されて輝度調整が行われ、放電灯の輝度が低く低負荷の調光状態のときはインバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で前記インバータ回路の出力電圧のレベルを低下させ且つ低下させる期間と前記周期との比率を変えることにより前記管電流が変化されて輝度調整が行われるので、高負荷時においてトランスやコイル等に生ずる磁歪による波形の急激な変化を低減することができるため、前記磁歪によってトランスやコイルから発生する唸り音を従来に比べて大幅に低減することができる。
【0135】
また、請求項2記載の放電灯の輝度調整方法によれば、上記の効果に加えて、前記インバータ回路の入力電圧レベルの変化をなだらかなものとすることができるので、前記インバータ回路に使用されているトランスやコイル類に対して急峻に変化する電圧が印加されることがないため、該電圧の急峻な変化に伴ってこれらのトランスやコイル類に発生する磁歪による波形の急激な変化を低減でき、唸り音の発生をさらに低減することができる。
【0136】
また、請求項3乃至5記載の放電灯点灯装置によれば、放電灯を流れる管電流が閾値電圧レベルよりも高いときは放電灯に印加される交流電圧は連続したものとなり且つその電圧レベルが変化されて輝度調整が行われ、前記管電流が前記閾値電圧レベルより低いときは前記放電灯に印加される交流電圧は断続したものとなり且つ断続の比率が変化されて輝度調整が行われるので、高負荷時において前記インバータ回路のトランスやコイル等に生ずる磁歪を低減することができるため、前記磁歪によってトランスやコイルから発生する唸り音を従来に比べて大幅に低減することができる。
【0137】
さらに、ダイオード結合によってバースト信号電圧と管電流検出手段の出力電圧とが合成されるので、合成回路が極めて単純化され、回路構成を簡略化することができる。
【0138】
また、請求項5記載の放電灯点灯装置によれば、上記の効果に加えて、前記バースト信号電圧を三角波電圧としたので、前記インバータ回路の入力電圧を所定の傾斜をもち且つなだらかに容易に変化させることができる。
【0139】
また、請求項6記載の液晶表示装置によれば、上記放電灯点灯装置によってバックライト用の放電灯が点灯されるので、従来に比べて唸り音の発生を低減することができる。
【0140】
また、請求項7記載の照明装置によれば、上記放電灯点灯装置によって照明用の放電灯が点灯されるので、従来に比べて唸り音の発生を低減することができる。
【0141】
また、請求項8記載の放電灯の輝度調整回路によれば、放電灯の輝度が高く高負荷の調光状態の場合は、インバータ回路から連続した交流電圧を出力し且つ該出力電圧のレベルを変えることにより放電灯を流れる管電流が変化されて輝度調整が行われ、放電灯の輝度が低く低負荷の調光状態の場合は、インバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で前記インバータ回路の出力電圧のレベルを低下させ且つ低下させる期間と前記周期との比率を変えることにより前記管電流が変化されて輝度調整が行われるので、高負荷の場合においてトランスやコイル等に生ずる磁歪による波形の急激な変化を低減することができるため、前記磁歪によってトランスやコイルから発生する唸り音を従来に比べて大幅に低減することができる。
【図面の簡単な説明】
【図1】従来例の放電灯点灯装置を示す構成図
【図2】従来例のバースト調光方式を用いた放電灯点灯装置を示す構成図
【図3】従来のバースト調光方式を用いた放電灯点灯装置を示す構成図
【図4】従来例のバースト調光方式を用いた放電灯点灯装置の動作波形を示す図
【図5】従来例のバースト調光時にトランスから発生する騒音レベルの実測値の一例を示す図
【図6】従来例のバースト調光時にチョークコイルから発生する騒音レベルの実測値の一例を示す図
【図7】従来例のインバータ回路におけるロイヤー回路のコレクタ電圧波形及び管電流波形を示す図
【図8】従来例のインバータ回路におけるロイヤー回路のコレクタ電圧波形及び管電流波形を示す図
【図9】従来例のインバータ回路におけるロイヤー回路のコレクタ電圧波形及び管電流波形を示す図
【図10】従来例のインバータ回路におけるロイヤー回路のコレクタ電圧波形及び管電流波形を示す図
【図11】本発明の第1の実施形態における放電灯点灯装置を示す構成図
【図12】本発明の第1の実施形態における放電灯点灯装置の動作波形を示す図
【図13】本発明の第1の実施形態の第1実施例における放電灯点灯装置を示す構成図
【図14】本発明の第1実施例のインバータ回路におけるロイヤー回路のコレクタ電圧波形及び管電流波形を示す図
【図15】本発明の第1実施例のインバータ回路におけるロイヤー回路のコレクタ電圧波形及び管電流波形を示す図
【図16】本発明の第1実施例のインバータ回路におけるロイヤー回路のコレクタ電圧波形及び管電流波形を示す図
【図17】本発明の第1実施例のインバータ回路におけるロイヤー回路のコレクタ電圧波形及び管電流波形を示す図
【図18】本発明の第1実施例における調光時にトランスから発生する騒音レベルの実測値を示す図
【図19】本発明の第1実施例における調光時にチョークコイルから発生する騒音レベルの実測値を示す図
【図20】本発明の第1の実施形態における第2実施例の放電灯点灯装置を示す構成図
【図21】本発明の第1の実施形態における第3実施例の放電灯点灯装置を示す構成図
【図22】本発明の第1の実施形態における第4実施例の放電灯点灯装置を示す構成図
【図23】本発明の第1の実施形態における第5実施例の放電灯点灯装置を示す構成図
【図24】本発明の第2の実施形態の放電灯点灯装置を示す構成図
【図25】本発明の第3の実施形態の放電灯点灯装置を示す構成図
【図26】本発明の第3の実施形態における輝度調整動作を説明する信号波形図
【符号の説明】
41…直流電源、42…DC−DCコンバータ回路、43…自励方式インバータ回路、44…冷陰極蛍光管、45…電流検出回路、46…バースト信号発生回路、51…直流電源、52…DC−DCコンバータ回路、53…自励方式インバータ回路、531 …トランス、532 …チョークコイル、54…冷陰極蛍光管、55…検出・帰還回路、56…インピーダンス変換・DCレベル設定回路、56a…可変抵抗器、57…三角波発生回路、61…制御部、62…他励方式インバータ回路、63…自励方式圧電インバータ回路、64…抵抗器、65…周波数制御回路、66…圧電インバータ回路、67…駆動制御回路、D1〜D3…ダイオード、R1〜R3…抵抗器、C1…コンデンサ、VR1…可変抵抗器。
Claims (8)
- 直流電圧から交流電圧を発生するインバータ回路の出力電圧を放電灯に印加して該放電灯を点灯するときの放電灯の輝度調整方法であって、
前記放電灯を流れる管電流を検出して電圧に変換して出力する管電流検出手段と、
所定の閾値電圧レベル以下の電圧レベルを有し、前記インバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で電圧レベルが所定の傾斜をもって変化するバースト信号電圧を生成して出力するバースト信号生成手段と、
供給された前記バースト信号電圧と前記管電流検出手段の出力電圧とをダイオードの論理和結合によって加算し、前記バースト信号電圧と前記管電流検出手段の出力電圧の合成電圧に応じた帰還電圧を生成して出力する帰還電圧生成手段と、
前記帰還電圧に応じた制御電圧を前記電流制御手段に供給する制御電圧生成手段と、
前記制御電圧生成手段に接続され、前記制御電圧の直流レベルを変化させる直流レベル可変手段とを備えた輝度調整回路を用い、
前記放電灯を流れる管電流値が所定の閾値以上のときは、前記インバータ回路から連続した交流電圧を出力し且つ該出力電圧のレベルを変えることにより前記管電流を変化させて輝度調整を行い、
前記管電流値が前記閾値より小さいときは、前記インバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で前記インバータ回路の出力電圧のレベルを連続的に低下させ且つ低下させる期間と前記周期との比率を変えることにより前記管電流を変化させて輝度調整を行う
ことを特徴とする放電灯の輝度調整方法。 - 前記インバータ回路の出力電圧のレベルを前記周期で低下させるときに、前記インバータ回路への入力電圧レベルを所定の傾斜をもって変化させることを特徴とする請求項1記載の放電灯の輝度調整方法。
- 直流電圧から交流電圧を発生するインバータ回路を備え、該インバータ回路の出力電圧を放電灯に印加して該放電灯を点灯する放電灯点灯装置において、
前記放電灯を流れる管電流を検出して電圧に変換して出力する管電流検出手段と、
制御電圧に基づいて前記インバータ回路のトランス一次巻線への通電方向及び通電電流を制御する電流制御手段と、
所定の閾値電圧レベル以下の電圧レベルを有し、前記インバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で電圧レベルが所定の傾斜をもって変化するバースト信号電圧を生成して出力するバースト信号生成手段と、
供給された前記バースト信号電圧と前記管電流検出手段の出力電圧とをダイオードの論理和結合によって加算し、前記バースト信号電圧と前記管電流検出手段の出力電圧の合成電圧に応じた帰還電圧を生成して出力する帰還電圧生成手段と、
前記帰還電圧に応じた制御電圧を前記電流制御手段に供給する制御電圧生成手段と、
前記制御電圧生成手段に接続され、前記制御電圧の直流レベルを変化させる直流レベル可変手段とを備えている
ことを特徴とする放電灯点灯装置。 - 前記インバータ回路は圧電トランスを有し該圧電トランスから交流電圧を発生させることを特徴とする請求項3記載の放電灯点灯装置。
- 前記バースト信号電圧が三角波電圧であることを特徴とする請求項3又は4記載の放電灯点灯装置。
- 前記請求項3乃至5の何れかに記載の放電灯点灯装置を用いた液晶表示装置。
- 前記請求項3乃至5の何れかに記載の放電灯点灯装置を用いた照明装置。
- 直流電圧から交流電圧を発生するインバータ回路の出力電圧を放電灯に 印加して該放電灯を点灯する放電灯点灯装置の輝度調整回路であって、
前記放電灯を流れる管電流を検出して電圧に変換して出力する管電流検出手段と、
制御電圧に基づいて前記インバータ回路のトランス一次巻線への通電方向及び通電電流を制御する電流制御手段と、
所定の閾値電圧レベル以下の電圧レベルを有し、前記インバータ回路から出力される交流電圧の周波数よりも低い周波数となる周期で電圧レベルが所定の傾斜をもって変化するバースト信号電圧を生成して出力するバースト信号生成手段と、
供給された前記バースト信号電圧と前記管電流検出手段の出力電圧とをダイオードの論理和結合によって加算し、前記バースト信号電圧と前記管電流検出手段の出力電圧の合成電圧に応じた帰還電圧を生成して出力する帰還電圧生成手段と、
前記帰還電圧に応じた制御電圧を前記電流制御手段に供給する制御電圧生成手段と、
前記制御電圧生成手段に接続され、前記制御電圧の直流レベルを変化させる直流レベル可変手段とを備えている
ことを特徴とする放電灯の輝度調整回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22588898A JP3599570B2 (ja) | 1998-08-10 | 1998-08-10 | 放電灯の輝度調整方法及び放電灯点灯装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22588898A JP3599570B2 (ja) | 1998-08-10 | 1998-08-10 | 放電灯の輝度調整方法及び放電灯点灯装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000058289A JP2000058289A (ja) | 2000-02-25 |
JP3599570B2 true JP3599570B2 (ja) | 2004-12-08 |
Family
ID=16836452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22588898A Expired - Fee Related JP3599570B2 (ja) | 1998-08-10 | 1998-08-10 | 放電灯の輝度調整方法及び放電灯点灯装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3599570B2 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4686902B2 (ja) * | 2001-05-30 | 2011-05-25 | パナソニック株式会社 | バックライト装置 |
JP4267883B2 (ja) | 2001-09-21 | 2009-05-27 | ミネベア株式会社 | 液晶表示ユニット |
KR100857848B1 (ko) * | 2002-05-17 | 2008-09-10 | 삼성전자주식회사 | 백라이트 어셈블리와 이의 구동 방법과 이를 갖는 액정 표시 장치 |
JP2006040780A (ja) * | 2004-07-29 | 2006-02-09 | Matsushita Electric Ind Co Ltd | バックライト調光装置 |
JP4182081B2 (ja) | 2005-04-07 | 2008-11-19 | Tdk株式会社 | 放電灯駆動装置 |
KR101243402B1 (ko) | 2005-12-27 | 2013-03-13 | 엘지디스플레이 주식회사 | 액정표시소자의 하이브리드 백라이트 구동 장치 |
JPWO2008001506A1 (ja) | 2006-06-29 | 2009-11-26 | 株式会社タムラ製作所 | 圧電トランスの調光騒音低減回路 |
CN101473702A (zh) | 2006-07-26 | 2009-07-01 | 株式会社田村制作所 | 压电变压器的调光噪声降低电路 |
JP2008192492A (ja) * | 2007-02-06 | 2008-08-21 | Taiyo Yuden Co Ltd | ランプ駆動制御装置および方法およびこれに組み込まれる信号処理回路および液晶バックライト駆動装置 |
JP4423648B2 (ja) | 2007-04-23 | 2010-03-03 | ミネベア株式会社 | 放電灯点灯装置 |
CN101682976A (zh) * | 2007-06-05 | 2010-03-24 | 夏普株式会社 | 背光源灯点亮控制装置及具有该装置的显示装置 |
JP4472738B2 (ja) | 2007-09-07 | 2010-06-02 | ミネベア株式会社 | 負荷駆動装置 |
JP5691495B2 (ja) * | 2010-12-24 | 2015-04-01 | 株式会社村田製作所 | Led駆動電源装置およびled照明装置 |
-
1998
- 1998-08-10 JP JP22588898A patent/JP3599570B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000058289A (ja) | 2000-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4627320B2 (ja) | インバータおよびその制御回路、ならびにそれらを用いた発光装置および液晶テレビ | |
KR100323369B1 (ko) | 인버터의구동방법,압전트랜스의구동방법및구동회로 | |
EP0922324B1 (en) | Control circuit and method for piezoelectric transformer | |
JP3599570B2 (ja) | 放電灯の輝度調整方法及び放電灯点灯装置 | |
JP3224948B2 (ja) | 放電灯の点灯回路 | |
US6153962A (en) | Piezoelectric transformer inverter | |
KR100919717B1 (ko) | 인버터 구동 장치 및 그 방법 | |
JP3262014B2 (ja) | 圧電トランスインバータ装置 | |
JP3271042B2 (ja) | 圧電トランスを用いた電圧変換装置 | |
JP3898406B2 (ja) | 放電灯点灯方法及び放電灯点灯装置 | |
US7023142B2 (en) | Light modulation method and apparatus for cold cathode fluorescent lamps | |
JP2001166278A (ja) | 液晶表示装置用バックライト制御装置 | |
JP3932406B2 (ja) | 冷陰極放電ランプ点灯回路 | |
JP3814770B2 (ja) | 放電灯点灯装置 | |
KR100897894B1 (ko) | Lcd 백라이트 인버터 구동 시스템 | |
KR100368427B1 (ko) | 인버터 및 이의 디밍 방법 | |
JP2006505918A (ja) | 高圧放電灯を動作させるための回路装置 | |
JP3386875B2 (ja) | 放電灯点灯装置 | |
JP3900817B2 (ja) | 無電極放電灯点灯装置 | |
JP2000091093A (ja) | 冷陰極管点灯装置 | |
JP3581829B2 (ja) | 放電灯調光装置 | |
JP2005174610A (ja) | 照明装置 | |
JP2002216992A (ja) | 放電灯点灯装置 | |
JP2002313595A (ja) | 放電管点灯装置および液晶表示装置 | |
JP2011060703A (ja) | ランプ点灯装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040831 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040914 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |