JP3440638B2 - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP3440638B2 JP3440638B2 JP17575195A JP17575195A JP3440638B2 JP 3440638 B2 JP3440638 B2 JP 3440638B2 JP 17575195 A JP17575195 A JP 17575195A JP 17575195 A JP17575195 A JP 17575195A JP 3440638 B2 JP3440638 B2 JP 3440638B2
- Authority
- JP
- Japan
- Prior art keywords
- graphite
- average particle
- negative electrode
- lithium
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は非水電解液二次電池、特
に負極の改善に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of a negative electrode.
【0002】[0002]
【従来の技術】電子機器の小型化、軽量化が進むにつ
れ、その電源としての電池に対しても小型、軽量化の要
望が高まっている。中でも負極にリチウム金属を用いる
非水電解液二次電池はその理論エネルギー密度が大なる
ことから大きな期待が寄せられてきた。しかしながら、
負極にリチウム金属を用いた場合、充電時に樹枝状のリ
チウム(デンドライト)が生成し、電池の充放電を繰り
返すうちにこのデンドライトが成長してセパレータを貫
通し、電池の内部短絡を引き起こす問題があり、現在に
至るまで完全には解決されていない。2. Description of the Related Art As electronic devices have become smaller and lighter, there has been a growing demand for smaller and lighter batteries as their power sources. Above all, non-aqueous electrolyte secondary batteries using lithium metal for the negative electrode have been greatly expected because of their large theoretical energy density. However,
When lithium metal is used for the negative electrode, there is a problem that dendritic lithium (dendrites) is generated during charging, and this dendrite grows and penetrates the separator during repeated charging and discharging of the battery, causing an internal short circuit in the battery. , To the present, it has not been completely resolved.
【0003】この問題を解決する手段として、リチウム
金属単独ではなく、アルミニウム、鉛、インジウム、ビ
スマス、カドミウムなどの低融点金属とリチウムの合金
を負極とする試みが種々なされてきたが、この場合も電
池の充放電に伴い、合金内へのリチウムの吸蔵、放出を
繰り返すうちに合金が微細化し、この微細な合金がセパ
レータを貫通してリチウム金属負極と同様、電池の短
絡、急激な温度上昇が発生するため解決されたとは言い
難い。As a means for solving this problem, various attempts have been made to use not a lithium metal alone but an alloy of a low melting point metal such as aluminum, lead, indium, bismuth and cadmium and a lithium as a negative electrode, but also in this case. As the battery is charged and discharged, the alloy becomes finer as it repeatedly occludes and releases lithium in the alloy, and this fine alloy penetrates the separator and short-circuits the battery and causes a rapid temperature rise like the lithium metal negative electrode. It is hard to say that it was solved because it occurred.
【0004】一方、上記の問題を解決するものとして、
負極にカーボンを用いる電池が提案された。非水電解液
二次電池の負極としてカーボンを用いた電池は1986
年第27回電池討論会要旨集P.97、あるいは198
7年第28回電池討論会要旨集P.201に紹介されて
おり、正極活物質として五酸化バナジウム、二酸化マン
ガン、または酸化クロムを用い、活物質であるリチウム
を負極のカーボン中へ担持させる方法としては電池系外
での電気化学的な手法によるとされている。中でも、正
極に五酸化バナジウム、負極にカーボンを用いた電池が
主としてメモリーバックアップ用途などに用いられるコ
イン形電池として実用化され、負極へのリチウムの担持
方法としては、電池内でリチウム金属とカーボンとを電
気的に接触させる方法がとられている。On the other hand, as a solution to the above problems,
Batteries using carbon for the negative electrode have been proposed. A battery using carbon as a negative electrode of a non-aqueous electrolyte secondary battery is 1986.
Annual Meeting of the 27th Battery Symposium P. 97 or 198
7th Annual 28th Battery Symposium Summary P. 201, vanadium pentoxide, manganese dioxide, or chromium oxide is used as a positive electrode active material, and lithium as an active material is supported on carbon of a negative electrode by an electrochemical method outside the battery system. It is said that. Among them, a battery using vanadium pentoxide for the positive electrode and carbon for the negative electrode has been put into practical use as a coin-shaped battery mainly used for memory backup applications, etc., and as a method for supporting lithium on the negative electrode, lithium metal and carbon are used in the battery. The method of making electrical contact is adopted.
【0005】最近に至り、1992年第33回電池討論
会要旨集P.83で電子機器用電源として、正極にLi
CoO2、負極にカーボンを用いた円筒形電池が提案さ
れ、深度の深い充放電において、1200サイクル経過
後も初期の70%以上の容量が保持されていたと報告さ
れている。現在ではこの電池系が4V級リチウムイオン
二次電池として各社で実用化されている。この電池系の
特徴は、負極の充放電反応は負極のカーボン中へのリチ
ウムイオンの吸蔵、放出反応であり、充電に伴う負極上
へのリチウムの析出がおこらず、従ってデンドライトが
生じないため良好なサイクル特性が得られるというとこ
ろにある。同時にこの電池系のもう一つの特徴は、正極
にLiCoO2というリチウム含有酸化物を用いてお
り、活物質であるリチウムは正極から供給されるため、
特別な処法により負極にリチウムを担持させる必要がな
いということにある。[0005] Recently, the 1993 33rd Battery Symposium Abstracts P. In 83, as a power source for electronic equipment, Li is used for the positive electrode.
A cylindrical battery using CoO 2 and carbon for the negative electrode has been proposed, and it is reported that the capacity of 70% or more of the initial capacity was maintained even after 1200 cycles in deep charge / discharge. At present, this battery system is put to practical use by each company as a 4V class lithium ion secondary battery. The characteristic of this battery system is that the charge / discharge reaction of the negative electrode is a reaction of occluding and releasing lithium ions in the carbon of the negative electrode, and lithium is not deposited on the negative electrode due to charging, and therefore dendrite does not occur, which is good. It has the advantage that excellent cycle characteristics can be obtained. At the same time, another feature of this battery system is that the lithium-containing oxide LiCoO 2 is used for the positive electrode and the active material lithium is supplied from the positive electrode.
It is not necessary to support lithium on the negative electrode by a special treatment method.
【0006】4V級リチウムイオン二次電池の正極活物
質としては上記のLiCoO2のみならず、LiNi
O2,LiMn2O4,LiFeO2、あるいはこれらC
o,Ni,Mn,Feを他の金属元素で一部置換したも
のなどがこれまで検討されている。また、負極材料であ
るカーボンとして、当初はコークス、熱分解炭素、ある
いは各種有機物の低温焼成品などの、いわゆる非晶質カ
ーボンを中心に検討されてきたが、活物質であるリチウ
ムの吸蔵、放出能力という観点から最近では高結晶性の
カーボン、いわゆる黒鉛系のカーボンが注目されてい
る。Not only the above LiCoO 2 but also LiNi is used as the positive electrode active material of the 4V class lithium ion secondary battery.
O 2 , LiMn 2 O 4 , LiFeO 2 , or these C
The materials in which o, Ni, Mn, and Fe are partially replaced with other metal elements have been studied so far. Also, as carbon as the negative electrode material, initially, so-called amorphous carbon such as coke, pyrolytic carbon, or low temperature fired products of various organic substances has been mainly studied, but absorption and release of lithium as the active material. Recently, highly crystalline carbon, so-called graphite-based carbon, has been attracting attention from the viewpoint of ability.
【0007】特開平4−115457号公報では負極と
して易黒鉛化性の球状粒子から成る黒鉛質材料が優れた
特性を示すとされている。黒鉛とリチウムの層間化合物
であるC6Liは古くから知られており、電気化学的に
リチウムを吸蔵、放出(インターカレーション、デイン
ターカレーション)した場合、理論容量はカーボン1g
に対し372mAhという非常に大きな値を示す。それ
にもかかわらず、当初リチウムイオン二次電池の負極と
して採用されなかったのはJournal of Electrochemical
Society117,No.2(1970)p.222で報告されているよう
に、現在非水電解液一次電池で電解液の溶媒成分の一つ
として広く用いられているプロピレンカーボネートを用
いると、その溶媒分子が黒鉛の表面で分解し、リチウム
の黒鉛中へのインターカレーション反応がスムーズに行
われないということにあった。これに対し、1992年
第59回電気化学大会講演要旨集P.238では電解液
の溶媒成分にエチレンカーボネートを主体として用いる
ことにより、この問題が解決されると報告されている。
以降、天然黒鉛や種々の人造黒鉛がリチウムイオン二次
電池の負極として検討され、現在ではむしろ黒鉛系の負
極が主流となってきている。In Japanese Patent Laid-Open No. 4-115457, it is said that a graphite material composed of easily graphitizable spherical particles as a negative electrode exhibits excellent characteristics. C 6 Li, which is an intercalation compound of graphite and lithium, has been known for a long time, and when electrochemically absorbing and desorbing lithium (intercalation, deintercalation), the theoretical capacity is 1 g of carbon.
On the other hand, it shows a very large value of 372 mAh. Nevertheless, it was the Journal of Electrochemical that was not initially adopted as a negative electrode for lithium-ion secondary batteries.
As reported in Society 117, No. 2 (1970) p. 222, when propylene carbonate, which is widely used as one of the solvent components of electrolytes in non-aqueous electrolyte primary batteries, is used, its solvent molecule Was decomposed on the surface of graphite, and the intercalation reaction of lithium into graphite was not carried out smoothly. In contrast, the 1992 59th Electrochemical Convention Abstracts P. In 238, this problem is reported to be solved by using ethylene carbonate as a solvent component of the electrolytic solution as a main component.
Since then, natural graphite and various artificial graphites have been studied as negative electrodes for lithium-ion secondary batteries, and at present, graphite-based negative electrodes have become the mainstream.
【0008】一方、電池の負極として求められる要件と
してカーボン自身のリチウムの吸蔵、放出の能力と共
に、電池という限られた体積の中に如何に多量のカーボ
ンを詰め込み得るかという充填性があり、これはカーボ
ンに限らず粉末であればその形状により大きく左右され
るものである。On the other hand, the requirements for the negative electrode of the battery include the ability of the carbon itself to occlude and release lithium, and the filling property of how much carbon can be packed in the limited volume of the battery. Is not limited to carbon, but if it is powder, it is greatly influenced by its shape.
【0009】カーボン粉末の形状を考えた場合、粒状、
塊状、鱗片状、繊維状の4つに大別される。リチウムイ
オン電池では通常、集電体である金属薄膜の両面または
片面にカーボンと結着剤の混合ペーストを塗布し、極板
としたものを乾燥後、適宜圧延して電極を形成するが、
上記4種の形状のうちでは鱗片状のカーボンがもっとも
充填性に優れている。すなわち、他の3種の形状のカー
ボンでは極板を乾燥後圧延しても粒子の形状は変わらず
単に密に充填されるだけであるが、鱗片状カーボンは圧
延により粒子が同一方向に配向するため、より緊密性が
大となり充填性も大となる。したがって、リチウムの吸
蔵、放出の能力およびカーボン粉末の充填性という観点
では、天然黒鉛あるいは人造黒鉛でかつ粉末形状が鱗片
状のものがカーボン負極材料として最も優れた材料であ
ると言える。Considering the shape of carbon powder,
It is roughly divided into four types: block, scale, and fibrous. In a lithium-ion battery, usually, a mixed paste of carbon and a binder is applied to both sides or one side of a metal thin film which is a current collector, and the electrode plate is dried and then appropriately rolled to form an electrode.
Of the above four shapes, scale-like carbon has the best filling property. That is, in the other three types of carbon, the shape of the particles does not change even if the electrode plate is dried and then rolled, and the particles are simply densely packed, but in the scale-like carbon, the particles are oriented in the same direction by rolling. Therefore, the tightness is higher and the filling property is also higher. Therefore, it can be said that natural graphite or artificial graphite having a scaly powder shape is the most excellent material for the carbon negative electrode material from the viewpoint of the ability to insert and extract lithium and the filling property of carbon powder.
【0010】特に、天然黒鉛は純度が99%以上の処理
を施したものであれば産出地の違いによる差はなく使用
できる。また、代表的な鱗片状の人造黒鉛としては石炭
ピッチもしくは石油ピッチを黒鉛化したもので、ロンザ
社製、あるいは日本黒鉛社製の人造黒鉛が挙げられる。In particular, natural graphite can be used as long as it has been treated with a purity of 99% or more without any difference due to the difference in the place of production. Further, as a typical flake-shaped artificial graphite, coal pitch or petroleum pitch is graphitized, and artificial graphite manufactured by Lonza Co. or Nippon Graphite Co., Ltd. may be mentioned.
【0011】[0011]
【発明が解決しようとする課題】しかし、鱗片状の黒鉛
に限らず、粒子径が揃った黒鉛粉末を用いて塗布し一定
の充填密度にした場合、黒鉛の粒子と粒子の間の隙間に
無理に詰め込まれることとなり、充填密度の高いところ
と低いところが生じてしまう。このため充填密度の高い
ところは充放電時のリチウムイオンの移動を妨げてしま
い、高率放電特性が著しく低下してしまう。However, when not only scaly graphite but also graphite powder having a uniform particle size is applied to achieve a constant packing density, the gap between the graphite particles is unreasonable. As a result, there will be a high packing density and a low packing density. For this reason, the high packing density hinders the movement of lithium ions during charging and discharging, and the high rate discharge characteristics are significantly deteriorated.
【0012】また、鱗片状の天然黒鉛あるいは人造黒鉛
を負極材料として用いた場合、配向性が大なるため圧延
により充填性が上がるが、充填性が上がりすぎて空孔部
分が減少してしまうため、充放電に伴うリチウムイオン
の移動を妨げてしまう。また、これらの形状は結晶構造
のa−b面の面積が大半で、電気化学反応に関与するc
軸方向の面積が小さいために、低温放電特性や高率放電
特性が悪いという問題がある。When flake-shaped natural graphite or artificial graphite is used as the negative electrode material, the orientation is large, so that the filling property is improved by rolling, but the filling property is too high and the voids are reduced. , It hinders the movement of lithium ions due to charge and discharge. In addition, most of these shapes have an ab plane area of the crystal structure and are involved in the electrochemical reaction.
Since the area in the axial direction is small, there is a problem that the low temperature discharge characteristic and the high rate discharge characteristic are poor.
【0013】そこで、電極反応面積を大きくするため
に、黒鉛粉末の粒子を小さくし、c軸方向の面積を大き
くした場合、上記特性は向上するが、逆に、電池が高温
になった場合にリチウムイオンを吸蔵した黒鉛と電解液
が急速に発熱反応を起こし安全性が悪くなってしまう。Therefore, when the particles of graphite powder are made small and the area in the c-axis direction is made large in order to increase the electrode reaction area, the above characteristics are improved, but conversely, when the battery becomes hot. The lithium ion-occluded graphite and the electrolytic solution rapidly cause an exothermic reaction, resulting in poor safety.
【0014】本発明は上記の課題を解決するものであ
り、粒子径の異なった黒鉛粉末を混合し黒鉛粉末粒子の
配列を調整することで、高率放電特性を向上し、かつ安
全性に優れた非水電解液二次電池を提供することを目的
としたものである。[0014] The present invention has been made to solve the above problems, by adjusting the arrangement of the graphite powder particles were mixed different graphite powder particle size, to improve the high rate discharge characteristics, and excellent safety Another object is to provide a non-aqueous electrolyte secondary battery.
【0015】[0015]
【課題を解決するための手段】これらの課題を解決する
ために、本発明は黒鉛からなる負極と、リチウム含有酸
化物からなる正極を備えた非水電解液二次電池であり、
負極として平均粒子径が異なる黒鉛粉末を少なくとも2
種類混合したものを用いたものであり、そのうちの1種
類の黒鉛粉末(a)の平均粒子径は10μmよりも大き
く20μmよりも小さいものであり、他の1種類の黒鉛
粉末(b)の平均粒子径は1μmよりも大きく10μm
よりも小さく、かつ、前記黒鉛粉末(a)の平均粒子径
よりも4.3μm以上小さいもので、かつ、黒鉛混合材
中で黒鉛粉末(b)の占める割合が10〜60重量%で
ある。とくに黒鉛粉末は鱗片状の人造黒鉛あるいは天然
黒鉛が良い。In order to solve these problems, the present invention is a non-aqueous electrolyte secondary battery comprising a negative electrode made of graphite and a positive electrode made of a lithium-containing oxide,
At least 2 graphite powders having different average particle diameters as the negative electrode
One kind of graphite powder (a) has an average particle size of more than 10 μm and less than 20 μm, and the other one kind of graphite powder (b) has an average particle size. Particle size is greater than 1 μm and 10 μm
Smaller than the average particle size of the graphite powder (a) by 4.3 μm or more , and a graphite mixed material
Of which graphite powder (b) accounts for 10 to 60% by weight.
There is . In particular, the graphite powder is preferably scale-shaped artificial graphite or natural graphite.
【0016】[0016]
【作用】本発明の負極構成では、粒子径の異なる黒鉛を
混合して用いることから、大きな黒鉛の粒子と粒子の隙
間に小さな粒子径をもった黒鉛が入り込み、一定の充填
密度にした場合においても、黒鉛粉末粒子の配列を調整
することで均一な充填密度が得られるため、リチウムイ
オンの移動は妨げることなく均一に行われる。In the negative electrode structure of the present invention, since graphite particles having different particle diameters are mixed and used, when graphite particles having a small particle diameter enter the gap between the particles of large graphite and the particles have a constant packing density. However, since a uniform packing density can be obtained by adjusting the arrangement of the graphite powder particles, the movement of lithium ions can be carried out uniformly without hindrance.
【0017】また、高率放電特性を向上するために、単
に小さい粒子径の黒鉛を用いるのとは違い、粒子径の異
なる黒鉛を混合することにより電極の反応面積を調整
し、電池が高温になった場合に起こる急な発熱反応を起
こさない安全性のよい非水電解液二次電池とすることが
できる。 Further, in order to improve the high rate discharge characteristics, simply Unlike to use small particle size graphite, the reaction area of the electrode was adjusted by mixing the different graphite particle sizes, the battery is a high temperature It is possible to provide a safe non-aqueous electrolyte secondary battery that does not cause a sudden exothermic reaction that occurs when the battery becomes full.
【0018】[0018]
[実施例1]以下、実施例に示す図面とともに本発明を
詳しく述べる。[Embodiment 1] The present invention will be described in detail below with reference to the drawings shown in the embodiments.
【0019】図1に本実施例で用いた円筒型電池の縦断
面図を示す。図において1は耐有機電解液性のステンレ
ス鋼板を加工した電池ケース、2は安全弁を設けた封口
板、3は絶縁パッキングを示す。4は極板群であり、正
極および負極がセパレータを介して複数回渦巻状に巻回
されて電池ケース1内に収納されている。そして上記正
極からは正極リード5が引き出されて封口板2に接続さ
れている。負極からは負極リード6が引き出され、電池
ケース1の底部に接続されている。7は絶縁リングで極
板群4の上下部にそれぞれ設けられている。以下、正、
負極板等について詳しく説明する。FIG. 1 is a vertical sectional view of the cylindrical battery used in this embodiment. In the figure, 1 is a battery case formed by processing a stainless steel plate resistant to organic electrolyte, 2 is a sealing plate provided with a safety valve, and 3 is an insulating packing. Reference numeral 4 denotes an electrode plate group, in which the positive electrode and the negative electrode are spirally wound a plurality of times with a separator interposed therebetween and housed in the battery case 1. A positive electrode lead 5 is drawn out from the positive electrode and connected to the sealing plate 2. A negative electrode lead 6 is drawn out from the negative electrode and connected to the bottom of the battery case 1. Insulating rings 7 are provided on the upper and lower portions of the electrode plate group 4, respectively. Below, positive,
The negative electrode plate and the like will be described in detail.
【0020】正極はLi2CO3とCo3O4とを混合し、
900℃で10時間焼成して合成したLiCoO2の粉
末100重量部に、アセチレンブラック3重量部、フッ
素樹脂系結着剤7重量部を混合し、カルボキシメチルセ
ルロース水溶液に懸濁させてペースト状にした。このペ
ーストを厚さ0.03mmのアルミ箔の両面に塗工し、
乾燥後圧延して厚さ0.18mm、幅38mm、長さ2
40mmの極板とした。The positive electrode is a mixture of Li 2 CO 3 and Co 3 O 4 ,
3 parts by weight of acetylene black and 7 parts by weight of a fluororesin binder were mixed with 100 parts by weight of LiCoO 2 powder synthesized by firing at 900 ° C. for 10 hours, and suspended in an aqueous carboxymethyl cellulose solution to form a paste. . Apply this paste to both sides of 0.03mm thick aluminum foil,
After drying, it is rolled to a thickness of 0.18 mm, a width of 38 mm, and a length of 2.
The plate was 40 mm.
【0021】負極は黒鉛粉末(平均粒子径17.8μ
m、d002=3.36Å、Lc=1000Å、BET
法による表面積=8.2m2/g)100重量部に、ス
チレン/ブタジエンゴム5重量部を混合し、カルボキシ
メチルセルロース水溶液に懸濁させてペースト状にし
た。そしてこのペーストを厚さ0.02mmの銅箔の両
面に塗工し、乾燥後圧延して厚さ0.19mm、幅40
mm、長さ280mmの極板とした。The negative electrode is graphite powder (average particle size 17.8 μm).
m, d002 = 3.36Å, Lc = 1000Å, BET
100 parts by weight of surface area by the method = 8.2 m 2 / g) was mixed with 5 parts by weight of styrene / butadiene rubber and suspended in an aqueous solution of carboxymethyl cellulose to form a paste. Then, this paste is applied to both sides of a copper foil having a thickness of 0.02 mm, dried and rolled to have a thickness of 0.19 mm and a width of 40 mm.
mm and a length of 280 mm.
【0022】そして、正極板にはアルミニウム製、負極
板にはニッケル製のリードをそれぞれ取り付け、厚さ
0.025mm、幅45mm、長さ730mmのポリエ
チレン製多孔質フィルムを介して渦巻状に巻回し、直径
14.0mm、高さ50mmの電池ケースに納入した。
電解液にはエチレンカーボネート(以下ECと略す)と
ジエチルカーボネート(以下DECと略す)プロピオン
酸メチル(以下MPと略す)とを30:50:20の体
積比で混合した溶媒に1モル/リットルのLiPF6を
溶解したものを用い、これを注液した後封口して電池を
作製し、これを電池Aとした。ここで、電池仕様は公称
電圧3.6V、公称容量550mAhとした。Then, a lead made of aluminum is attached to the positive electrode plate and a lead made of nickel is attached to the negative electrode plate, and the lead is spirally wound through a polyethylene porous film having a thickness of 0.025 mm, a width of 45 mm and a length of 730 mm. It was delivered to a battery case with a diameter of 14.0 mm and a height of 50 mm.
The electrolytic solution contained 1 mol / liter of a solvent prepared by mixing ethylene carbonate (hereinafter abbreviated as EC) and diethyl carbonate (hereinafter abbreviated as DEC) methyl propionate (hereinafter abbreviated as MP) at a volume ratio of 30:50:20. A solution of LiPF 6 was used, which was poured and then sealed to prepare a battery, which was named battery A. Here, the battery specifications were a nominal voltage of 3.6 V and a nominal capacity of 550 mAh.
【0023】また、(表1)に示すように平均粒子径1
7.8μm(d002=3.36Å、Lc=1000
Å、BET法による表面積=8.2m2/g)の黒鉛粉
末と平均粒子径2.6μm(d002=3.36Å、L
c=1000Å、BET法による表面積=23.2m2
/g)の黒鉛粉末の混合比を変化させた以外は上記と同
様にして電池を作製し、これらを電池B〜Kとした。Further, as shown in (Table 1), the average particle size is 1
7.8 μm (d002 = 3.36Å, Lc = 1000
Å, graphite powder having a surface area by the BET method of 8.2 m 2 / g) and an average particle diameter of 2.6 μm (d002 = 3.36 Å, L
c = 1000Å, surface area by BET method = 23.2 m 2
Batteries B to K were produced in the same manner as above except that the mixing ratio of the graphite powder of / g) was changed.
【0024】これらの電池A〜Kを用いて高率放電試験
(2C放電:30分率)を行った。充放電条件は、環境
温度20℃において充電電流110mA、充電終止電圧
4.2V、放電電流1100mA、放電終止電圧3.0
Vとして行った。さらに、これらの電池を同様の充電条
件で充電状態にした後、外部短絡試験を行った。(表
1)にこれらの試験結果を示す。A high rate discharge test (2C discharge: 30 minutes rate) was performed using these batteries A to K. Charge and discharge conditions are as follows: charge current 110 mA, charge end voltage 4.2 V, discharge current 1100 mA, discharge end voltage 3.0 at an ambient temperature of 20 ° C.
I went as V. Further, these batteries were put into a charged state under the same charge condition, and then an external short circuit test was conducted. Table 1 shows the results of these tests.
【0025】[0025]
【表1】 [Table 1]
【0026】(表1)より、平均粒径の小さな黒鉛粉末
を10重量%以上混合することで、2C放電容量は著し
く大きくなり、40重量%混合したところで2C放電容
量はほぼ一定になった。しかし、外部短絡による安全性
試験では、平均粒径の小さな黒鉛粉末を40重量%以下
混合したものまでは急激な温度上昇は起こらなかった
が、40重量%以上混合するとその比率にともない温度
急上昇が大きくなった。From (Table 1), it was found that the 2C discharge capacity was remarkably increased by mixing 10% by weight or more of the graphite powder having a small average particle size, and the 2C discharge capacity became almost constant when mixed by 40% by weight. However, in a safety test due to an external short circuit, a rapid temperature rise did not occur up to 40% by weight or less of graphite powder having a small average particle size, but when 40% by weight or more was mixed, the temperature rapidly increased with the ratio. It got bigger.
【0027】したがって、小粒子径の占める割合は10
〜40重量%であることが好ましい。Therefore, the ratio of the small particle size is 10
It is preferably ˜40% by weight.
【0028】[比較例]次に、比較例として(表2)に
示すように平均粒子径を変化させた単一の黒鉛粉末を負
極に用いた以外は上記実施例と同様にして電池を作製
し、これらを電池L〜Nとした。Comparative Example Next, as a comparative example, a battery was prepared in the same manner as in the above-mentioned example except that a single graphite powder having an average particle size varied as shown in (Table 2) was used for the negative electrode. Then, these are referred to as batteries L to N.
【0029】そして、これらの電池L〜Nを用いて実施
例1と同様の方法で高率放電試験および外部短絡試験を
行った。(表2)にこれらの試験結果を示す。Then, using these batteries L to N, a high rate discharge test and an external short circuit test were conducted in the same manner as in Example 1. Table 2 shows the results of these tests.
【0030】[0030]
【表2】 [Table 2]
【0031】(表2)より、黒鉛粉末の平均粒子径だけ
を変化させた場合においては、粒子径を小さくし、表面
積を大きくすることで2C放電容量は大きくなるが、そ
れにともない外部短絡試験の温度急上昇発生率が大きく
なった。このため、安全性が低下し、高率放電特性およ
び安全性ともに優れた電池は得られなかった。From Table 2, when only the average particle diameter of the graphite powder is changed, the 2C discharge capacity is increased by decreasing the particle diameter and increasing the surface area. The rate of sudden temperature rises increased. For this reason, the safety was lowered, and a battery excellent in both high rate discharge characteristics and safety could not be obtained.
【0032】さらに、小粒子径の黒鉛粉末を混合した時
の効果について詳しく述べる。(図2)に実施例および
比較例の電池A〜Nの表面積に対する2C放電容量およ
び外部短絡時発火率を示す。Further, the effect of mixing graphite powder having a small particle size will be described in detail. (FIG. 2) shows the 2C discharge capacity and the ignition rate at the time of external short circuit with respect to the surface areas of the batteries A to N of the example and the comparative example.
【0033】(図2)より、外部短絡試験による安全性
は、負極に用いた黒鉛粉末の表面積に依存していること
が確認できる。しかし、2C放電容量は、黒鉛粉末の表
面積だけに依存せず、本実施例の電池のように平均粒子
径の大きい黒鉛粉末に平均粒子径の小さい黒鉛粉末を混
合することで、単に黒鉛粉末の平均粒子径を変化させた
比較例の電池よりも放電容量は大きなものが得られた。From FIG. 2, it can be confirmed that the safety by the external short circuit test depends on the surface area of the graphite powder used for the negative electrode. However, the 2C discharge capacity does not depend only on the surface area of the graphite powder, but simply by mixing the graphite powder having a large average particle diameter with the graphite powder having a small average particle diameter as in the battery of this example, the graphite powder having A discharge capacity larger than that of the battery of Comparative Example in which the average particle diameter was changed was obtained.
【0034】これは、2C放電のような高率放電では反
応面積だけではなく、リチウムイオンの移動が容易に行
えるかどうかということが影響を及ぼすためである。This is because in a high rate discharge such as 2C discharge, not only the reaction area but also whether or not lithium ions can be easily moved affects.
【0035】粒子径が揃った黒鉛粉末を用いて負極に塗
布した場合は、黒鉛の粒子と粒子の間に隙間が生じ、一
定の充填密度にした場合、隙間に無理に詰め込まれるこ
ととなり、充填密度の高いところと低いところが生じて
しまう。このため充填密度の高いところは充放電時のリ
チウムイオンの移動を妨げてしまい、高率放電特性が著
しく低下してしまう。When graphite powder having a uniform particle size is applied to the negative electrode, a gap is created between the graphite particles, and if the packing density is kept constant, the gap will be forcedly packed, and the filling will occur. There are high density areas and low density areas. For this reason, the high packing density hinders the movement of lithium ions during charging and discharging, and the high rate discharge characteristics are significantly deteriorated.
【0036】しかし、粒子径の異なる黒鉛を混合して用
いた場合は、大きな黒鉛の粒子と粒子の隙間に小さな粒
子径の黒鉛が入りこみ、一定の充填密度にした場合でも
均一な充填密度が得られ、充放電時のリチウムイオンの
移動は妨げられることなく均一に行われる。However, when graphite particles having different particle diameters are mixed and used, graphite having a small particle diameter enters the gap between the large graphite particles and the particles, and a uniform packing density is obtained even when the packing density is constant. Therefore, the movement of lithium ions during charge / discharge is performed uniformly without being hindered.
【0037】ただし、平均粒子径が20μm以上の黒鉛
粉末を負極に用いた場合、その粒子径が大きすぎるため
に集電体上に塗布、圧延することが困難であり、また、
10μm以下の黒鉛を用いた場合は外部短絡時に急激な
温度上昇が起こりやすくなることから、10μm〜20
μmの黒鉛を少なくとも一種類用いることが望ましい。However, when graphite powder having an average particle size of 20 μm or more is used for the negative electrode, it is difficult to coat and roll it on the current collector because the particle size is too large.
When graphite having a thickness of 10 μm or less is used, a rapid temperature rise is likely to occur at the time of an external short circuit.
It is desirable to use at least one type of graphite having a size of μm.
【0038】一方、平均粒子径を1μm以下にすること
は困難であり、また粉砕によりこのような平均粒子径を
得た場合でも収率は悪く、コスト的にも不利であること
から、1μm〜10μmの黒鉛を少なくとも一種類用い
ることが望ましい。On the other hand, it is difficult to control the average particle size to 1 μm or less, and even if such an average particle size is obtained by pulverization, the yield is poor and the cost is disadvantageous. It is desirable to use at least one type of 10 μm graphite.
【0039】なお、本実施例では平均粒子径が17.8
μmの黒鉛粉末に平均粒子径2.6μmの小粒子黒鉛粉
末を混合したが、小さい粒子の黒鉛粉末の平均粒子径が
5.3μmあるいは7.8μmであっても良い。また、
大きい粒子の黒鉛粉末の平均粒子径が12.1μmを用
いた場合においても同様の効果が得られる。In this embodiment, the average particle size is 17.8.
A small particle graphite powder having an average particle diameter of 2.6 μm was mixed with the graphite powder of μm, but the average particle diameter of the small particle graphite powder may be 5.3 μm or 7.8 μm. Also,
The same effect can be obtained when the average particle size of the large particle graphite powder is 12.1 μm.
【0040】また、本実施例では正極としてLiCoO
2を用いたが、リチウムイオンを含む化合物であるLi
NiO2やLiMn2O4更にはこれらのCo、Ni、あ
るいはMnの一部を他の元素、例えばCo、Mn、F
e、Niなどで置換した複合化合物を用いた場合でも同
様の効果が得られる。上記複合酸化物は、例えば、リチ
ウムやコバルトの炭酸塩あるいは酸化物を原料として、
目的組成に応じて混合、焼成することにより容易に得る
ことができ、勿論他の原料を用いた場合においても同様
に合成できる。通常焼成温度は650℃〜1200℃の
間で設定される。In this embodiment, LiCoO is used as the positive electrode.
2 was used, but Li that is a compound containing lithium ions
NiO 2 and LiMn 2 O 4 and further Co, Ni, or part of Mn may be replaced with other elements such as Co, Mn, and F.
The same effect can be obtained when a complex compound substituted with e, Ni, or the like is used. The composite oxide, for example, using a carbonate or oxide of lithium or cobalt as a raw material,
It can be easily obtained by mixing and firing depending on the target composition, and can be similarly synthesized even when other raw materials are used. Usually, the firing temperature is set between 650 ° C and 1200 ° C.
【0041】また、電解液としては従来より公知のもの
が使用できるが、黒鉛材料を負極に使用する場合、プロ
ピレンカーボネート(以下PCと略す)は充電時に分解
反応を起しガス発生を伴う傾向があるために好ましくな
く、同様な環状カーボネートである本実施例で用いたエ
チレンカーボネート(EC)がPCの場合のような副反
応をほとんど伴わないために適していると言える。しか
しながら、ECは非常に高融点であり常温では固体であ
るために単独溶媒での使用は困難である。従って、低融
点であり且つ低粘性の溶媒である1,2−ジメトキシエ
タンやジエチルカーボネート(DEC)、さらにはプロ
ピオン酸メチル(MP)などの脂肪族カルボン酸エステ
ルとの混合溶媒を用いることが好ましい。また、これら
の溶媒に溶解するLi塩として本実施例では六フッ化リ
ン酸リチウムを用いたが、ホウフッ化リチウム、六フッ
化ヒ酸リチウム、過塩素酸リチウムなど従来より公知の
ものを用いた場合でも同様の効果が得られる。Although a conventionally known electrolyte can be used as the electrolyte, when a graphite material is used for the negative electrode, propylene carbonate (hereinafter abbreviated as PC) tends to cause a decomposition reaction during charging and generate gas. Therefore, it can be said that ethylene carbonate (EC), which is a similar cyclic carbonate, used in the present example is hardly accompanied by side reactions as in the case of PC. However, since EC has a very high melting point and is a solid at room temperature, it is difficult to use it as a single solvent. Therefore, it is preferable to use a mixed solvent of 1,2-dimethoxyethane, diethyl carbonate (DEC), which is a low-melting point and low-viscosity solvent, and an aliphatic carboxylic acid ester such as methyl propionate (MP). . Although lithium hexafluorophosphate was used as the Li salt dissolved in these solvents in the present embodiment, conventionally known ones such as lithium borofluoride, lithium hexafluoroarsenate, and lithium perchlorate were used. Even in this case, the same effect can be obtained.
【0042】[0042]
【発明の効果】以上の説明から明らかなように、本発明
は、負極に平均粒子径が異なる黒鉛粉末を少なくとも2
種類混合した黒鉛混合材を用いており、そのうちの1種
類の黒鉛粉末(a)の平均粒子径は10μmよりも大き
く20μmよりも小さいものであり、他の1種類の黒鉛
粉末(b)の平均粒子径は1μmよりも大きく10μm
よりも小さく、かつ、前記黒鉛粉末(a)の平均粒子径
よりも4.3μm以上小さく、かつ、黒鉛混合材中で黒
鉛粉末(b)の占める割合が10〜60重量%であるの
で、一定の充填密度にした場合においても、均一な充填
密度が得られるため、リチウムイオンの移動を妨げるこ
となく、高率放電特性および安全性に優れた非水電解液
二次電池を提供することができる。As is apparent from the above description, the present invention uses at least 2 graphite powders having different average particle diameters in the negative electrode.
One kind of graphite powder (a) has an average particle size of more than 10 μm and less than 20 μm, and the other one kind of graphite powder (b) has an average particle size. Particle size is greater than 1 μm and 10 μm
Less than, and said graphite powder rather small than 4.3μm than the average particle diameter of (a), and black graphite admixture in
Since the proportion of the lead powder (b) is 10 to 60% by weight , a uniform packing density can be obtained even when the packing density is constant, so that the migration of lithium ions is not hindered. It is possible to provide a non-aqueous electrolyte secondary battery excellent in high rate discharge characteristics and safety.
【図1】本発明の実施例および比較例における非水電解
液二次電池の縦断面図FIG. 1 is a vertical cross-sectional view of non-aqueous electrolyte secondary batteries in Examples and Comparative Examples of the present invention.
【図2】表面積に対する2C放電容量および外部短絡時
発火率の関係を示す図FIG. 2 is a diagram showing a relationship between a surface area of 2 C discharge capacity and an ignition rate at an external short circuit.
1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極リード 6 負極リード 7 絶縁リング 1 battery case 2 Seal plate 3 insulating packing 4 electrode group 5 Positive lead 6 Negative electrode lead 7 Insulation ring
───────────────────────────────────────────────────── フロントページの続き (72)発明者 永田 博美 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 守田 彰克 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平7−37618(JP,A) 特開 平8−180873(JP,A) 特開 平8−83610(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiromi Nagata 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Akikatsu Morita, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (56) References JP-A-7-37618 (JP, A) JP-A-8-180873 (JP, A) JP-A-8-83610 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/00-4/62
Claims (3)
からなる正極と非水電解液とを備えた非水電解液二次電
池であり、前記負極は平均粒子径が異なる黒鉛粉末を少
なくとも2種類混合した黒鉛混合材を用いており、その
うちの1種類の黒鉛粉末(a)の平均粒子径は10μm
よりも大きく20μmよりも小さいもので、他の1種類
の黒鉛粉末(b)の平均粒子径は1μmよりも大きく1
0μmよりも小さく、かつ、前記黒鉛粉末(a)の平均
粒子径よりも4.3μm以上小さく、かつ、黒鉛混合材
中で黒鉛粉末(b)の占める割合が10〜60重量%で
ある非水電解液二次電池。1. A non-aqueous electrolyte secondary battery comprising a negative electrode made of graphite, a positive electrode made of a lithium-containing oxide, and a non-aqueous electrolyte, wherein the negative electrode is at least two types of graphite powders having different average particle sizes. The mixed graphite mixture is used, and one of them has an average particle diameter of 10 μm.
The average particle size of the other one type of graphite powder (b) is larger than 1 μm and smaller than 20 μm.
Less than 0 .mu.m, and, rather small than 4.3μm than the average particle diameter of the graphite powder (a), and graphite mixed material
Of which graphite powder (b) accounts for 10 to 60% by weight.
A non-aqueous electrolyte secondary battery.
m以上7.8μm以下である請求項1記載の非水電解液
二次電池。2. The graphite powder (b) has an average particle diameter of 2.6 μm.
The non-aqueous electrolyte secondary battery according to claim 1, which has a size of m or more and 7.8 μm or less.
天然黒鉛である請求項1または2に記載の非水電解液二
次電池。3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the graphite powder is flake-shaped artificial graphite or natural graphite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17575195A JP3440638B2 (en) | 1995-07-12 | 1995-07-12 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17575195A JP3440638B2 (en) | 1995-07-12 | 1995-07-12 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0927314A JPH0927314A (en) | 1997-01-28 |
JP3440638B2 true JP3440638B2 (en) | 2003-08-25 |
Family
ID=16001623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17575195A Expired - Fee Related JP3440638B2 (en) | 1995-07-12 | 1995-07-12 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3440638B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12294087B2 (en) | 2018-02-26 | 2025-05-06 | Lg Energy Solution, Ltd. | Negative electrode active material for lithium secondary battery, and negative electrode for lithium secondary battery and lithium secondary battery including the same |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100506292B1 (en) * | 1997-05-27 | 2005-08-05 | 티디케이가부시기가이샤 | Electrode for non-aqueous electrolytic cells |
JPH11339780A (en) * | 1998-05-27 | 1999-12-10 | Tdk Corp | Manufacture of electrode for nonaqueous electrolyte secondary battery |
JP3152226B2 (en) | 1998-08-27 | 2001-04-03 | 日本電気株式会社 | Non-aqueous electrolyte secondary battery, method for producing the same, and carbon material composition |
JP4120262B2 (en) * | 2002-02-26 | 2008-07-16 | ソニー株式会社 | Non-aqueous electrolyte battery |
JP2005044775A (en) * | 2003-01-22 | 2005-02-17 | Hitachi Maxell Ltd | Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery using the same |
JP5586550B2 (en) | 2011-09-16 | 2014-09-10 | 株式会社東芝 | Battery electrode, non-aqueous electrolyte battery, and battery pack |
KR102542649B1 (en) | 2015-06-30 | 2023-06-09 | 삼성에스디아이 주식회사 | Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same |
EP3389121B1 (en) | 2015-12-08 | 2024-10-23 | GS Yuasa International Ltd. | Energy storage device |
WO2017111542A1 (en) * | 2015-12-23 | 2017-06-29 | 주식회사 엘지화학 | Anode active material for lithium secondary battery and anode for lithium secondary battery including same |
KR102088491B1 (en) * | 2015-12-23 | 2020-03-13 | 주식회사 엘지화학 | Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery comprising the same |
KR102095008B1 (en) | 2016-09-13 | 2020-03-30 | 주식회사 엘지화학 | Negative electrode, secondary battery, battery module and battery pack comprising the same |
WO2018052234A2 (en) * | 2016-09-13 | 2018-03-22 | 주식회사 엘지화학 | Anode, secondary battery comprising same, battery module, and battery pack |
JP6922927B2 (en) * | 2016-11-14 | 2021-08-18 | 昭和電工マテリアルズ株式会社 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery |
CN114402460B (en) * | 2019-10-04 | 2025-06-06 | 株式会社Lg新能源 | Spheroidized carbonaceous negative electrode active material, method for producing the same, and negative electrode and lithium secondary battery containing the same |
CN111370670B (en) * | 2020-03-19 | 2021-07-02 | 江西迪比科股份有限公司 | Mixing method of negative electrode slurry |
KR20220034586A (en) * | 2020-09-11 | 2022-03-18 | 주식회사 엘지에너지솔루션 | Negative electrode material, negative electrode and secondary battery comprising the same |
-
1995
- 1995-07-12 JP JP17575195A patent/JP3440638B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12294087B2 (en) | 2018-02-26 | 2025-05-06 | Lg Energy Solution, Ltd. | Negative electrode active material for lithium secondary battery, and negative electrode for lithium secondary battery and lithium secondary battery including the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0927314A (en) | 1997-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0688057B1 (en) | Lithium ion secondary battery | |
JP3262704B2 (en) | Carbon electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same | |
JP2884746B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3440638B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3499584B2 (en) | Lithium secondary battery | |
KR19980080096A (en) | Lithium secondary battery and negative electrode manufacturing method | |
JPH08124559A (en) | Manufacture of lithium secondary battery and of negative electrode active material | |
JP5245201B2 (en) | Negative electrode, secondary battery | |
JP7556779B2 (en) | Anode active material, anode, and secondary battery | |
JPH08148185A (en) | Nonaqueous electrolyte secondary battery and negative electrode therefor | |
JPWO2019142744A1 (en) | Non-aqueous electrolyte secondary battery | |
JP4798741B2 (en) | Non-aqueous secondary battery | |
JP3048808B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3309719B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3236400B2 (en) | Non-aqueous secondary battery | |
JPH06325753A (en) | Lithium secondary battery | |
JP3440705B2 (en) | Manufacturing method of non-aqueous electrolyte secondary battery | |
JP4795509B2 (en) | Non-aqueous electrolyte battery | |
JP2000173666A (en) | Nonaqueous electrolyte secondary battery | |
JP3052760B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH11279785A (en) | Composite carbon material for electrode, its production and nonaqueous electrolytic solution secondary cell using that | |
JP2012084554A (en) | Anode, secondary battery, and method for manufacturing anode | |
JP4085244B2 (en) | Non-aqueous secondary battery | |
JP3406843B2 (en) | Lithium secondary battery | |
JP4120771B2 (en) | Non-aqueous secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080620 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090620 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100620 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100620 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |