[go: up one dir, main page]

JP3309719B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3309719B2
JP3309719B2 JP18034096A JP18034096A JP3309719B2 JP 3309719 B2 JP3309719 B2 JP 3309719B2 JP 18034096 A JP18034096 A JP 18034096A JP 18034096 A JP18034096 A JP 18034096A JP 3309719 B2 JP3309719 B2 JP 3309719B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
battery
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18034096A
Other languages
Japanese (ja)
Other versions
JPH1027624A (en
Inventor
雅規 北川
正也 大河内
肇 西野
崇 竹内
秀 越名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP18034096A priority Critical patent/JP3309719B2/en
Publication of JPH1027624A publication Critical patent/JPH1027624A/en
Application granted granted Critical
Publication of JP3309719B2 publication Critical patent/JP3309719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池、特に電解液の改善により、高温保存後における電池
特性の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of battery characteristics after high-temperature storage by improving an electrolyte.

【0002】[0002]

【従来の技術】電子機器の小型化、軽量化が進むにつ
れ、その電源としての電池に対しても小型、軽量化の要
望が高まっている。中でも負極にリチウム金属を用いる
非水電解液二次電池はその理論エネルギー密度が大なる
ことから大きな期待が寄せられてきた。しかしながら、
負極にリチウム金属を用いた場合、充電時に樹枝状のリ
チウム(デンドライト)が生成し、電池の充放電を繰り
返すうちにこのデンドライトが成長してセパレータを貫
通し、電池の内部短絡を引き起こす。さらにその極端な
場合には電池の急激な温度上昇につながるなどの問題が
あり、現在に至るまで完全には解決されていない。
2. Description of the Related Art As electronic devices have become smaller and lighter, there has been an increasing demand for smaller and lighter batteries as power sources. Among them, non-aqueous electrolyte secondary batteries using lithium metal for the negative electrode have been greatly expected because of their large theoretical energy density. However,
When lithium metal is used for the negative electrode, dendritic lithium (dendrites) are generated during charging, and the dendrites grow and penetrate the separator during repeated charge / discharge of the battery, causing an internal short circuit in the battery. Further, in such extreme cases, there are problems such as a rapid rise in the temperature of the battery, and the problems have not been completely solved until now.

【0003】この問題を解決する手段として、リチウム
金属単独ではなく、アルミニウム、鉛、インジウム、ビ
スマス、カドミウムなどの低融点金属とリチウムの合金
を負極とする試みが種々なされてきたが、この場合も電
池の充放電に伴い、リチウムの吸蔵、放出を繰り返すう
ちに合金が微細化し、この微細な合金がセパレータを貫
通してリチウム金属負極と同様、電池が内部短絡し、急
激な温度上昇するため解決されたとは言い難い。
As a means for solving this problem, various attempts have been made to use not only lithium metal alone but also an alloy of lithium and a low-melting metal such as aluminum, lead, indium, bismuth, and cadmium as a negative electrode. During charging and discharging of the battery, the alloy becomes finer as the occlusion and release of lithium are repeated, and this fine alloy penetrates through the separator and, like the lithium metal anode, the battery is short-circuited internally and the temperature rises sharply. It is hard to say that it was done.

【0004】一方、上記の問題を解決するものとして、
負極にカーボンを用いる電池が提案された。非水電解液
二次電池の負極としてカーボンを用いた電池は1986
年第27回電池討論会要旨集P.97、あるいは198
7年第28回電池討論会要旨集P.201に紹介されて
おり、活物質であるリチウムイオンを負極のカーボン中
へ担持させる方法としては電池系外での電気化学的な手
法によるとされ、正極活物質には五酸化バナジウム、二
酸化マンガン、または酸化クロムを用いている。中で
も、正極に五酸化バナジウム、負極にカーボンを用いた
電池が主としてメモリーバックアップ用途などに用いら
れるコイン形電池として実用化されている。この電池で
は負極へのリチウムの担持方法としては、電池内でリチ
ウム金属とカーボンとを電気的に接触させる方法がとら
れている。
On the other hand, as a solution to the above problem,
A battery using carbon for the negative electrode has been proposed. The battery using carbon as the negative electrode of the non-aqueous electrolyte secondary battery was 1986.
27th Battery Symposium Abstracts P. 97 or 198
7th 28th Battery Symposium Abstracts P. 201, it is said that lithium ion as an active material is supported on carbon of the negative electrode by an electrochemical method outside the battery system, and the positive electrode active material is vanadium pentoxide, manganese dioxide, Alternatively, chromium oxide is used. Above all, batteries using vanadium pentoxide for the positive electrode and carbon for the negative electrode have been put to practical use as coin-type batteries mainly used for memory backup applications and the like. In this battery, as a method of supporting lithium on the negative electrode, a method of electrically contacting lithium metal and carbon in the battery is adopted.

【0005】最近に至り、1992年第33回電池討論
会要旨集P.83で電子機器用電源として、正極にLi
CoO2、負極にカーボンを用いた円筒形電池が提案さ
れ、深い深度の充放電において1200サイクル経過後
も初期の70%以上の容量が保持されていたと報告され
ている。現在ではこの電池系が4V級リチウムイオン二
次電池として実用化されている。この電池系の特徴は、
負極の充放電反応が負極のカーボン中へのリチウムイオ
ンの吸蔵、放出反応であり、充電に伴う負極上へのリチ
ウムの析出がおこらず、従ってデンドライトが生じない
ため良好なサイクル特性が得られるという点、またカー
ボンはリチウムイオンの吸蔵、放出反応の繰り返しにお
いてもリチウム合金のような微細化が起こらず、電池の
急激な温度上昇が起こらないと言う点があげられる。こ
の電池系のもう一つの特徴は、正極にLiCoO2とい
うリチウム含有複合酸化物を用いており、負極活物質で
あるリチウムイオンは正極から供給されるため、前述の
ような特別な処方により負極にリチウムイオンを担持さ
せる必要がないというところにある。
Recently, the summary of the 33rd Battery Symposium in 1992, P.S. At 83, the positive electrode is Li
A cylindrical battery using CoO 2 and carbon as the negative electrode has been proposed, and it is reported that the capacity of 70% or more of the initial capacity was maintained even after 1200 cycles in deep charge / discharge. At present, this battery system has been put to practical use as a 4V class lithium ion secondary battery. The characteristics of this battery system are
The charge / discharge reaction of the negative electrode is a reaction of occluding and releasing lithium ions into the carbon of the negative electrode. Lithium does not deposit on the negative electrode upon charging, and therefore, no dendrites are generated, so that good cycle characteristics are obtained. Another point is that carbon does not undergo miniaturization like a lithium alloy even when lithium occlusion and release reactions are repeated, and a rapid temperature rise of the battery does not occur. Another feature of this battery system is that a lithium-containing composite oxide called LiCoO 2 is used for the positive electrode, and lithium ions, which are the negative electrode active material, are supplied from the positive electrode. There is no need to carry lithium ions.

【0006】4V級リチウムイオン二次電池の正極活物
質としては上記のLiCoO2のみならず、LiNi
2,LiMn24、LiFeO2、あるいはこれらC
o,Ni,Mn,Feを他の金属元素で一部置換したも
のなどがこれまで検討されている。また、負極材料であ
るカーボンとして、当初はコークス、熱分解炭素、ある
いは各種有機物の低温焼成品などの、いわゆる非晶質カ
ーボンを中心に検討されてきたのに加えて、活物質であ
るリチウムイオンの吸蔵、放出能力という観点から最近
では高結晶性のカーボン、いわゆる黒鉛系のカーボンが
注目されている。
As the positive electrode active material of the 4V class lithium ion secondary battery, not only LiCoO 2 but also LiNi
O 2 , LiMn 2 O 4 , LiFeO 2 , or these C
O, Ni, Mn, and Fe in which other metal elements are partially substituted have been studied. In addition, in addition to the fact that so-called amorphous carbon, such as coke, pyrolytic carbon, or low-temperature calcined products of various organic substances, was initially studied as carbon as a negative electrode material, lithium ion as an active material was also considered. In recent years, attention has been paid to highly crystalline carbon, so-called graphite-based carbon, from the viewpoint of the ability to occlude and release carbon.

【0007】特開平4ー115457号公報では負極と
して易黒鉛化性の球状粒子から成る黒鉛質材料が優れた
特性を示すとされている。黒鉛とリチウムイオンの層間
化合物であるC6Liは古くから知られており、電気化
学的にリチウムイオンを吸蔵、放出(インターカレーシ
ョン、デインターカレーション)した場合、理論容量は
カーボン1gに対し372mAhという非常に大きな値
を示す。それにもかかわらず、当初リチウムイオン二次
電池の負極として採用されなかったのはJournal of Ele
ctrochemical Society117,No2(1970)p.222で報告されて
いるように、現在非水電解液一次電池で電解液の溶媒成
分の一つとして広く用いられているプロピレンカーボネ
ートを用いると、その溶媒分子が黒鉛の表面で分解し、
リチウムイオンの黒鉛中へのインターカレーション反応
がスムースに行われないということにあった。これに対
し、1992年第59回電気化学大会講演要旨集P.2
38では電解液の溶媒成分にエチレンカーボネートを主
体として用いることにより、この問題が解決されると報
告されている。以降、天然黒鉛や種々の人造黒鉛がリチ
ウムイオン二次電池の負極として検討され、現在ではむ
しろ黒鉛系の負極が主流となってきている。
Japanese Patent Application Laid-Open No. 4-115457 states that a graphitic material comprising graphitizable spherical particles as a negative electrode exhibits excellent characteristics. C 6 Li, an intercalation compound of graphite and lithium ions, has been known for a long time. When lithium ions are occluded and released (intercalated, deintercalated) electrochemically, the theoretical capacity is 1 g of carbon. It shows a very large value of 372 mAh. Nevertheless, the Journal of Ele was not initially adopted as the negative electrode of lithium ion secondary batteries.
As reported in the ctrochemical Society 117, No2 (1970) p. 222, when propylene carbonate, which is widely used as one of the solvent components of the electrolyte in the nonaqueous electrolyte primary battery, is used, the solvent molecule becomes Decomposes on the surface of graphite,
The intercalation reaction of lithium ions into graphite was not performed smoothly. On the other hand, the abstracts of the 59th Electrochemical Conference of 1992, P.A. 2
38, it is reported that this problem can be solved by mainly using ethylene carbonate as a solvent component of the electrolytic solution. Since then, natural graphite and various artificial graphites have been studied as negative electrodes of lithium ion secondary batteries, and graphite-based negative electrodes have become the mainstream at present.

【0008】これら負極炭素材料の特徴は、初充放電の
みに不可逆容量が生じることがあげられ、不可逆容量
は、ガス発生反応、負極結晶中にリチウムイオンが取り
残される、負極表面と電解液との反応などいくつかの反
応のために起こるとされている。そのため、負極炭素材
料は、その表面にリチウムイオンを含む緻密な膜を生成
することで安定化している。
One of the characteristics of these negative electrode carbon materials is that irreversible capacity is generated only at the initial charge and discharge. The irreversible capacity is determined by the gas generation reaction, lithium ions remaining in the negative electrode crystal, and the negative electrode between the negative electrode surface and the electrolyte. It is said to occur for some reactions, such as reactions. Therefore, the negative electrode carbon material is stabilized by forming a dense film containing lithium ions on its surface.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、負極炭
素表面に生成した緻密な膜は、充放電によるリチウムイ
オンの移動を妨げる原因になっている。特に、電池が高
温下に放置された場合、負極炭素材料と電解液の反応は
進行し、さらに負極炭素表面に緻密な膜が生成するた
め、高温下に放置された後の電池特性が劣化してしま
う。特に、負極表面の緻密な膜でリチウムイオンの移動
が著しく阻害されるため、高率放電時の容量劣化が大き
くなるという課題がある。
However, the dense film formed on the carbon surface of the negative electrode hinders the movement of lithium ions due to charge and discharge. In particular, when the battery is left at a high temperature, the reaction between the negative electrode carbon material and the electrolyte proceeds, and a dense film is formed on the surface of the negative electrode carbon. Would. In particular, since the movement of lithium ions is remarkably inhibited by a dense film on the surface of the negative electrode, there is a problem that the capacity deterioration during high-rate discharge is increased.

【0010】本発明は上記の課題を解決するものであ
り、電解液の改善により、高温放置した場合において
も、容量劣化の小さな非水電解液二次電池を提供するこ
とを目的としたものである。
An object of the present invention is to provide a non-aqueous electrolyte secondary battery having a small capacity deterioration even when left at high temperatures by improving the electrolyte. is there.

【0011】[0011]

【課題を解決するための手段】本発明はこの課題を解決
するために、正極にリチウム含有酸化物、負極に炭素材
を用い、それらをセパレータを介して構成する非水電解
液二次電池において、リチウム塩を有機溶媒に溶解させ
た電解液に他のアルカリ金属塩を溶解した混合物を電解
液として用いたものである。
SUMMARY OF THE INVENTION In order to solve this problem, the present invention provides a non-aqueous electrolyte secondary battery using a lithium-containing oxide for the positive electrode, a carbon material for the negative electrode, and a separator therebetween. In addition, a mixture in which another alkali metal salt is dissolved in an electrolytic solution in which a lithium salt is dissolved in an organic solvent is used as an electrolytic solution.

【0012】[0012]

【発明の実施の形態】本発明の非水電解液二次電池で
は、負極にリチウムイオンの吸蔵・放出できる炭素材を
用いているため、初充電時に炭素材の表面にリチウムイ
オンを含む緻密な皮膜を生成し、リチウムを吸蔵した炭
素材と電解液は安定化している。さらに、この電池が高
温下に放置された場合、負極炭素材表面の皮膜が成長
し、充放電時のリチウムイオンの移動を妨げてしまう。
しかしながら、リチウムイオンよりもイオン半径の大き
なアルカリ金属イオン、例えば、ナトリウムイオン、カ
リウムイオンを電解液中に溶解することで、負極炭素材
の表面に生成したリチウムイオンを含む緻密な皮膜の一
部がナトリウムイオンあるいはカリウムイオンと置換
し、多孔質な皮膜になり、充放電時に移動するリチウム
イオンの阻害をやわらげ、電池を高温下に放置された場
合でも、容量の劣化は小さく、特に、高率放電した場合
でも、容量劣化は小さくなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the nonaqueous electrolyte secondary battery of the present invention, a carbon material capable of occluding and releasing lithium ions is used for the negative electrode. The carbon material that formed the film and occluded lithium and the electrolyte were stabilized. Furthermore, when the battery is left at a high temperature, a film on the surface of the negative electrode carbon material grows and hinders the movement of lithium ions during charging and discharging.
However, by dissolving alkali metal ions having a larger ion radius than lithium ions, for example, sodium ions and potassium ions in the electrolytic solution, a part of the dense film containing lithium ions formed on the surface of the negative electrode carbon material is formed. Replaces with sodium or potassium ions to form a porous film, relieves lithium ions from migrating during charge and discharge, and has a small capacity deterioration even when the battery is left at high temperatures. In this case, the capacity deterioration is small.

【0013】[0013]

【実施例】以下、図面とともに本発明の実施例を説明す
る。実施例においては円筒形の電池を構成して評価を行
った。
Embodiments of the present invention will be described below with reference to the drawings. In the examples, a cylindrical battery was constructed and evaluated.

【0014】(実施例1)図1に本実施例で用いた円筒
形電池の縦断面図を示す。図において1は耐有機電解液
製のステンレス鋼板を加工したケース、2は安全弁を設
けた封口板、3は絶縁パッキングを示す。4は極板群で
あり、正極および負極がセパレータを介して複数回渦巻
状に巻回されて電池ケース1内に収納されている。そし
て上記正極からは正極リード5が引き出されて封口板2
に接続されている。負極からは負極リード6が引き出さ
れ、電池ケース1の底部に接続されている。7は絶縁リ
ングで極板群4の上下部にそれぞれ設けられている。以
下、正・負極板等について詳しく説明する。
Embodiment 1 FIG. 1 is a longitudinal sectional view of a cylindrical battery used in this embodiment. In the figure, reference numeral 1 denotes a case in which a stainless steel plate made of an organic electrolytic solution is processed, 2 denotes a sealing plate provided with a safety valve, and 3 denotes an insulating packing. Reference numeral 4 denotes an electrode group, in which a positive electrode and a negative electrode are spirally wound a plurality of times via a separator and housed in the battery case 1. Then, a positive electrode lead 5 is pulled out from the positive electrode to form a sealing plate 2.
It is connected to the. A negative electrode lead 6 is drawn out from the negative electrode and connected to the bottom of the battery case 1. Reference numeral 7 denotes an insulating ring provided on the upper and lower portions of the electrode plate group 4, respectively. Hereinafter, the positive and negative electrode plates will be described in detail.

【0015】正極はLi2CO3とCo34とを混合し、
900℃で10時間焼成して合成したLiCoO2の粉
末100重量部に、アセチレンブラック3重量部、フッ
素樹脂系結着剤7重量部を混合し、カルボキシメチルセ
ルロースの水溶液に懸濁させてペースト状にした。この
ペーストを厚さ0.03mmのアルミ箔の両面に塗工
し、乾燥後圧延して厚さ0.18mm、幅38mm、長
さ240mmの極板とした。
The cathode mixes Li 2 CO 3 and Co 3 O 4 ,
100 parts by weight of LiCoO 2 powder synthesized by firing at 900 ° C. for 10 hours, 3 parts by weight of acetylene black and 7 parts by weight of a fluororesin binder were mixed, and suspended in an aqueous solution of carboxymethyl cellulose to form a paste. did. This paste was applied on both sides of an aluminum foil having a thickness of 0.03 mm, dried and rolled to obtain an electrode plate having a thickness of 0.18 mm, a width of 38 mm and a length of 240 mm.

【0016】負極は人造黒鉛粉末(12.6μm、d0
02=3.36Å、Lc=1000Å、BET法による
表面積=9.4〓/g)100重量部に、スチレン/ブ
タジエンゴム5重量部を混合し、カルボキシメチルセル
ロース水溶液に懸濁させてペースト状にした。このペー
ストを厚さ0.02mmの銅箔の両面に塗着し、乾燥後
圧延して厚さ0.19mm、幅40mm、長さ280m
mの極板とした。
The negative electrode was made of artificial graphite powder (12.6 μm, d0
02 = 3.36 °, Lc = 1000 °, surface area by BET method = 9.4 ° / g), 100 parts by weight, 5 parts by weight of styrene / butadiene rubber were mixed and suspended in an aqueous solution of carboxymethyl cellulose to form a paste. . This paste is applied to both sides of a copper foil having a thickness of 0.02 mm, dried, and then rolled to obtain a thickness of 0.19 mm, a width of 40 mm, and a length of 280 m.
m electrode plate.

【0017】そして、正極板にはアルミニウム製、負極
板にはニッケル製のリードをそれぞれ取り付け、厚さ
0.025mm、幅45mm、長さ730mmのポリエ
チレン製多孔質フィルムを介して渦巻状に巻回し、直径
14.0mm、高さ50mmの電池ケースに収納した。
電解液にはエチレンカーボネート(以下ECと略す)と
ジエチルカーボネート(以下DECと略す)、プロピオ
ン酸メチル(以下MPと略す)とを30:50:20の
体積比で混合した溶媒に1モル/リットルのLiPF6
を溶解したものを用い、これを注液した後封口して電池
を作製し、これを電池とした。ここで、電池使用は公
称電圧3.6V、公称容量550mAhとした。
An aluminum lead is attached to the positive electrode plate, and a nickel lead is attached to the negative electrode plate. The leads are spirally wound through a polyethylene porous film having a thickness of 0.025 mm, a width of 45 mm, and a length of 730 mm. And a battery case having a diameter of 14.0 mm and a height of 50 mm.
1 mol / liter of a solvent obtained by mixing ethylene carbonate (hereinafter abbreviated as EC), diethyl carbonate (hereinafter abbreviated as DEC), and methyl propionate (hereinafter abbreviated as MP) in a volume ratio of 30:50:20 is used as an electrolytic solution. LiPF6
Was used, and after injecting the solution, sealing was performed to produce a battery, which was designated as battery A. Here, the battery was used at a nominal voltage of 3.6 V and a nominal capacity of 550 mAh.

【0018】また、(表1)に示すように電解液中のN
aPF6の濃度を変化させた以外は上記と同様にして電
池を作製し、以下に示したように、これらを電池B〜F
とした。
Further, as shown in Table 1, N in the electrolyte
except for changing the concentration of the APF 6 is A battery was produced in the same manner as described above, as shown below, these batteries B~F
And

【0019】[0019]

【表1】 [Table 1]

【0020】これらの電池A〜Fを用いて高率放電試験
(1C:1時間率)を行った。充放電条件は、環境温度
20℃において充電電流110mA、充電終止電圧4.
2V、放電電流550mA、放電終止電圧3.0Vとし
て行った。その後、上記充電条件で充電状態にし、環境
温度60℃で30日間放置した後、上記の充放電条件で
3サイクル繰り返した。図2にこれらの試験結果を示
す。
Using these batteries A to F, a high rate discharge test (1 C: 1 hour rate) was performed. The charge and discharge conditions are as follows: charge current 110 mA at an environmental temperature of 20 ° C., charge end voltage 4.
The test was performed at 2 V, a discharge current of 550 mA, and a discharge end voltage of 3.0 V. Thereafter, the battery was charged under the above-mentioned charging conditions, left at an environmental temperature of 60 ° C. for 30 days, and then repeated three cycles under the above-mentioned charging and discharging conditions. FIG. 2 shows the test results.

【0021】図2より、NaPF6を電解液中に0.1
M溶解させることで、高温下で放置(60℃、30日
間)した後の放電容量は大きくなり、NaPF6濃度を
大きくしても、回復率はほぼ一定になった。一方、放置
する前の放電容量はNaPF6濃度を大きくした場合、
小さくなる傾向があり、特に0.7M以上で容量が小さ
くなった。これは、塩濃度の上昇により、電解液の粘度
が大きくなったためと考えられる。
FIG. 2 shows that NaPF 6 was added to the electrolyte at a concentration of 0.1%.
By dissolving M, the discharge capacity after standing at a high temperature (60 ° C., 30 days) was increased, and the recovery rate was almost constant even when the NaPF 6 concentration was increased. On the other hand, when the discharge capacity before leaving is increased when the NaPF 6 concentration is increased,
The capacity tended to decrease, and the capacity decreased particularly at 0.7 M or more. This is considered to be because the viscosity of the electrolyte increased due to the increase in the salt concentration.

【0022】したがって、加えるNaPF6濃度は0.
1M以上0.5M以下であることが好ましい。
Therefore, the concentration of NaPF 6 to be added is 0.1.
It is preferably from 1M to 0.5M.

【0023】(実施例2)次に、電解質をリチウム塩と
してLiPF6を用い、その他のアルカリ金属塩として
NaBF4、NaClO4、KPF6、KBF4、KClO
4を用い、それぞれのアルカリ金属塩の濃度を0.3M
とした以外は上記実施例と同様にして(表2)に示した
ように電池を作製し、これらを電池G〜Kとした。
(Example 2) Next, LiPF 6 was used as an electrolyte as a lithium salt, and NaBF 4 , NaClO 4 , KPF 6 , KBF 4 , and KClO were used as other alkali metal salts.
4 and the concentration of each alkali metal salt was 0.3 M
Batteries were prepared as shown in (Table 2) in the same manner as in the above example except that the above-mentioned conditions were used.

【0024】そして、これらの電池G〜Kを用いて(実
施例1)と同様の方法で、高温放置(60℃、30日
間)前後に高率放電試験を行った。(表2)にこれらの
試験結果を示す。
Using these batteries G to K, a high-rate discharge test was performed before and after standing at high temperature (60 ° C., 30 days) in the same manner as in (Example 1). (Table 2) shows the results of these tests.

【0025】[0025]

【表2】 [Table 2]

【0026】(表2)より、電池Aより電池G〜Kでは
ナトリウム塩のアニオン種の違いには関係なく、いずれ
も高温放置(60℃、30日間)後の容量維持率は大き
くなった。また、ナトリウム塩の代わりにカリウム塩を
用いた場合においても、同様の効果があった。
From Table 2, it can be seen that in the batteries G to K than in the battery A, the capacity retention ratio after the high temperature storage (60 ° C., 30 days) was larger in all of the batteries regardless of the difference in the anion type of the sodium salt. The same effect was obtained when a potassium salt was used instead of the sodium salt.

【0027】これは、負極表面に生成した緻密な皮膜中
のリチウムイオンが、イオン半径の大きなナトリウムイ
オンあるいはカリウムイオンと置換され、多孔質な皮膜
に変化し、高率放電時においてもリチウムイオンの移動
がスムースに行われたものと考えられる。
This is because lithium ions in the dense film formed on the surface of the negative electrode are replaced by sodium ions or potassium ions having a large ionic radius, and the film changes into a porous film. It is considered that the movement was performed smoothly.

【0028】なお、本実施例ではリチウム塩としてLi
PF6を用いたが、負極炭素材表面の皮膜に関するた
め、他のアニオンとのリチウム塩、例えば、LiB
4、LiClO4においても同様の効果が得られる。
In this embodiment, the lithium salt is Li
Although PF 6 was used, a lithium salt with another anion such as LiB
The same effect can be obtained with F 4 and LiClO 4 .

【0029】また、本実施例では正極としてLiCoO
2を用いたが、リチウムイオンを含む化合物であるLi
NiO2やLiMn24、更にはこれらのCo、Ni、
あるいはMnの一部を他の元素、例えばCo、Mn、F
e、Niなどで置換した複合化合物を用いた場合でも同
様の効果が得られる。上記複合酸化物は、例えば、リチ
ウムやコバルトの炭酸塩あるいは酸化物を原料として、
目的組成に応じて混合、焼成することにより容易に得る
ことができ、勿論他の原料を用いた場合においても同様
に合成できる。通常焼成温度は650℃〜1200℃の
間で設定される。
In this embodiment, LiCoO is used as a positive electrode.
2 was used, but Li, a compound containing lithium ions, was used.
NiO 2 and LiMn 2 O 4 , and also Co, Ni,
Alternatively, part of Mn is replaced with another element, for example, Co, Mn, F
Similar effects can be obtained even when a composite compound substituted with e, Ni, or the like is used. The composite oxide is, for example, a carbonate or oxide of lithium or cobalt as a raw material,
It can be easily obtained by mixing and firing according to the desired composition, and of course, it can be synthesized in the same manner when other raw materials are used. Usually, the firing temperature is set between 650 ° C and 1200 ° C.

【0030】また、本実施例では負極として人造黒鉛粉
末を用いたが、天然黒鉛あるいは人造黒鉛、天然黒鉛の
表面にそれらよりも結晶化度の低い炭素材を被覆したも
の、あるいは易黒鉛性炭素材を高温下で黒鉛化したもの
を用いた場合でも同様の効果が得られる。一方、コーク
ス、熱分解炭素、あるいは各種有機物の焼成品などの、
いわゆる非晶質カーボンを用いた場合でも同様の効果が
得られる。
In this embodiment, artificial graphite powder was used as the negative electrode. However, natural graphite, artificial graphite, natural graphite having a surface coated with a carbon material having a lower crystallinity than those, or graphitizable carbon was used. Similar effects can be obtained even when the material is graphitized at a high temperature. On the other hand, such as coke, pyrolytic carbon, or baked products of various organic substances,
Similar effects can be obtained even when so-called amorphous carbon is used.

【0031】また、電解液としては従来より公知のもの
が使用できるが、黒鉛材料を負極に使用する場合、プロ
ピレンカーボネイト(以下PCと略す)は充電時に分解
反応を起こしガス発生を伴う傾向があるため好ましくな
く、同様な環状カーボネイトである本実施例で用いたエ
チレンカーボネイト(EC)が、PCのような副反応を
ほとんど伴わないために適していると言える。しかしな
がら、ECは非常に高融点であり常温では固体であるた
めに単独溶媒での使用は困難である。従って、低融点で
あり且つ低粘性の溶媒である1,2−ジメトキシエタン
やジエチルカーボネイト(DEC)、さらにはプロピオ
ン酸メチル(MP)などの脂肪族カルボン酸エステルと
の混合溶媒を用いることが好ましい。
As the electrolytic solution, a conventionally known electrolytic solution can be used. However, when a graphite material is used for the negative electrode, propylene carbonate (hereinafter abbreviated as PC) tends to undergo a decomposition reaction at the time of charging and generate gas. For this reason, it is not preferable, and it can be said that ethylene carbonate (EC), which is a similar cyclic carbonate used in this example, is suitable because it hardly involves side reactions such as PC. However, EC has a very high melting point and is a solid at ordinary temperature, so that it is difficult to use it as a single solvent. Therefore, it is preferable to use a mixed solvent with an aliphatic carboxylic acid ester such as 1,2-dimethoxyethane or diethyl carbonate (DEC) which is a solvent having a low melting point and a low viscosity, and further, methyl propionate (MP). .

【0032】[0032]

【発明の効果】以上の説明から明らかなように、本発明
は、正極にリチウム含有複合酸化物、負極に炭素材を用
いた非水電解液二次電池において、リチウム塩を有機溶
媒に溶解させた電解液にその他のアルカリ金属塩を溶解
した混合物を電解液として用い、混合するアルカリ金属
塩の濃度が0.1M以上0.5M以下にすることで、高
温下に放置した場合においても負極炭素表面に生成する
緻密な皮膜を多孔質な皮膜にでき、放電によるリチウム
イオンの移動をスムースにできるため、高温下に放置後
の高率放電特性に優れた非水電解液二次電池を提供する
ことができる。
As is apparent from the above description, the present invention provides a non-aqueous electrolyte secondary battery using a lithium-containing composite oxide for the positive electrode and a carbon material for the negative electrode by dissolving a lithium salt in an organic solvent. By using a mixture obtained by dissolving another alkali metal salt in an electrolyte solution as an electrolyte solution and adjusting the concentration of the alkali metal salt to be mixed to 0.1 M or more and 0.5 M or less, the anode carbon can be removed even when left at a high temperature. Provide a non-aqueous electrolyte secondary battery with excellent high-rate discharge characteristics after being left at high temperatures because the dense film formed on the surface can be made into a porous film and the movement of lithium ions due to discharge can be smooth. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における非水電解液二次電池の
縦断面図
FIG. 1 is a longitudinal sectional view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

【図2】混合したNaPF6濃度に対する高温放置前後
の放電容量と高温放置前に対する放置後の容量維持率を
示す図
FIG. 2 is a diagram showing the discharge capacity before and after high-temperature storage and the capacity retention ratio after before and after high-temperature storage for mixed NaPF 6 concentrations.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極リード 6 負極リード 7 絶縁リング DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode group 5 Positive electrode lead 6 Negative electrode lead 7 Insulation ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 崇 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 越名 秀 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平6−267589(JP,A) 特開 平8−171936(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 ──────────────────────────────────────────────────の Continuing on the front page (72) Takashi Takeuchi 1006 Kazuma Kadoma, Kazuma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. In-company (56) References JP-A-6-267589 (JP, A) JP-A-8-171936 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極にリチウム含有複合酸化物、負極に炭
素材を用い、それらをセパレータを介して構成する非水
電解液二次電池において、 リチウム塩を有機溶媒に溶解させた電解液に、ナトリウ
ム塩もしくはカリウム塩を濃度が0.1M以上0.5M
以下になるように溶解した非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery comprising a lithium-containing composite oxide for a positive electrode and a carbon material for a negative electrode with a separator interposed therebetween, wherein a lithium salt is dissolved in an organic solvent. Natori
Salt or potassium salt at a concentration of 0.1M or more and 0.5M
A non-aqueous electrolyte secondary battery dissolved as follows.
【請求項2】リチウム塩はLiPF6、LiBF4、Li
ClO4から選ばれた請求項1記載の非水電解液二次電
池。
2. The lithium salt is LiPF 6 , LiBF 4 , Li
The non-aqueous electrolyte secondary battery according to claim 1, selected from ClO 4 .
【請求項3】ナトリウム塩は、NaPF6、NaBF4
NaClO4からなる群から選ばれ、カリウム塩はKP
6、KBF4、KClO4からなる群から選ばれた請
項1記載の非水電解液二次電池。
3. The sodium salt is NaPF 6 , NaBF 4 ,
NaClO 4 , the potassium salt is KP
F 6, KBF 4, the non-aqueous electrolyte secondary battery Motomeko 1, wherein selected from the group consisting of KClO 4.
JP18034096A 1996-07-10 1996-07-10 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3309719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18034096A JP3309719B2 (en) 1996-07-10 1996-07-10 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18034096A JP3309719B2 (en) 1996-07-10 1996-07-10 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH1027624A JPH1027624A (en) 1998-01-27
JP3309719B2 true JP3309719B2 (en) 2002-07-29

Family

ID=16081520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18034096A Expired - Fee Related JP3309719B2 (en) 1996-07-10 1996-07-10 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3309719B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019145662A3 (en) * 2018-01-29 2019-10-31 Arkema France Mixture of potassium and lithium salts, and use thereof in a battery

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4752126B2 (en) * 2001-04-16 2011-08-17 パナソニック株式会社 Non-aqueous electrolyte secondary battery
US20130202920A1 (en) * 2012-02-07 2013-08-08 Battelle Memorial Institute Dendrite-Inhibiting Salts in Electrolytes of Energy Storage Devices
US9184436B2 (en) * 2012-02-07 2015-11-10 Battelle Memorial Institute Methods and energy storage devices utilizing electrolytes having surface-smoothing additives
US8980460B2 (en) * 2012-02-07 2015-03-17 Battelle Memorial Institute Methods and electrolytes for electrodeposition of smooth films
JP2015088266A (en) * 2013-10-29 2015-05-07 トヨタ自動車株式会社 Lithium battery
US20160268637A1 (en) * 2014-03-05 2016-09-15 Hitachi, Ltd. Electrolyte solution for lithium ion secondary batteries and lithium ion secondary battery using same
CN114725519A (en) * 2021-01-06 2022-07-08 东莞理工学院 A lithium ion battery electrolyte and preparation method thereof, and lithium ion battery
CN114843584A (en) * 2022-04-20 2022-08-02 佛山陀普科技有限公司 Lithium ion battery electrolyte and lithium ion battery
CN119654729A (en) * 2022-10-18 2025-03-18 宁德时代新能源科技股份有限公司 Electrolyte, secondary battery, battery module, battery pack, and electricity-using device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019145662A3 (en) * 2018-01-29 2019-10-31 Arkema France Mixture of potassium and lithium salts, and use thereof in a battery
CN111316493A (en) * 2018-01-29 2020-06-19 阿科玛法国公司 Mixtures of potassium and lithium salts and their use in batteries
EP3747076A2 (en) * 2018-01-29 2020-12-09 Arkema France Mixture of potassium and lithium salts, and use thereof in a battery
CN111316493B (en) * 2018-01-29 2021-07-13 阿科玛法国公司 Mixtures of potassium and lithium salts and their use in batteries
US12249692B2 (en) 2018-01-29 2025-03-11 Arkema France Mixture of potassium and lithium salts, and use thereof in a battery

Also Published As

Publication number Publication date
JPH1027624A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
CN110998959B (en) Lithium secondary battery having improved high-temperature storage characteristics
JP2884746B2 (en) Non-aqueous electrolyte secondary battery
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
KR20040018154A (en) Nonaqueous electrolyte secondary battery
JP5245201B2 (en) Negative electrode, secondary battery
JP3196226B2 (en) Non-aqueous electrolyte secondary battery
JP3440638B2 (en) Non-aqueous electrolyte secondary battery
JP3309719B2 (en) Non-aqueous electrolyte secondary battery
JP3048808B2 (en) Non-aqueous electrolyte secondary battery
JP3840087B2 (en) Lithium secondary battery and negative electrode material
JP3499739B2 (en) Lithium secondary battery and method of manufacturing lithium secondary battery
JP3440705B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2022534525A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP5159268B2 (en) Non-aqueous electrolyte battery
JP2004220801A (en) Nonaqueous electrolyte secondary battery
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2012084554A (en) Anode, secondary battery, and method for manufacturing anode
JPH11214001A (en) Non-aqueous electrolyte secondary battery
JP4170733B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP3082116B2 (en) Non-aqueous electrolyte secondary battery
JPH08339824A (en) Nonaqueous electrolyte secondary battery
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3720959B2 (en) Secondary battery electrode material
JP3329162B2 (en) Non-aqueous electrolyte secondary battery
JP3610898B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees