JP6922927B2 - Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery - Google Patents
Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery Download PDFInfo
- Publication number
- JP6922927B2 JP6922927B2 JP2018550011A JP2018550011A JP6922927B2 JP 6922927 B2 JP6922927 B2 JP 6922927B2 JP 2018550011 A JP2018550011 A JP 2018550011A JP 2018550011 A JP2018550011 A JP 2018550011A JP 6922927 B2 JP6922927 B2 JP 6922927B2
- Authority
- JP
- Japan
- Prior art keywords
- particle size
- negative electrode
- lithium ion
- ion secondary
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims description 89
- 229910001416 lithium ion Inorganic materials 0.000 title claims description 89
- 239000007773 negative electrode material Substances 0.000 title claims description 78
- 239000002245 particle Substances 0.000 claims description 191
- 239000003575 carbonaceous material Substances 0.000 claims description 127
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 91
- 238000009826 distribution Methods 0.000 claims description 68
- 229910052799 carbon Inorganic materials 0.000 claims description 67
- 230000001186 cumulative effect Effects 0.000 claims description 19
- 239000007770 graphite material Substances 0.000 claims description 19
- 239000008188 pellet Substances 0.000 claims description 14
- 238000002441 X-ray diffraction Methods 0.000 claims description 10
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 9
- 238000001069 Raman spectroscopy Methods 0.000 claims description 7
- 239000003792 electrolyte Substances 0.000 claims description 6
- 238000002429 nitrogen sorption measurement Methods 0.000 claims description 6
- 239000007772 electrode material Substances 0.000 claims 1
- 239000012071 phase Substances 0.000 description 47
- 239000002131 composite material Substances 0.000 description 45
- 238000000034 method Methods 0.000 description 41
- 239000000203 mixture Substances 0.000 description 34
- 238000005259 measurement Methods 0.000 description 32
- 229910002804 graphite Inorganic materials 0.000 description 18
- 239000010439 graphite Substances 0.000 description 18
- 239000007833 carbon precursor Substances 0.000 description 17
- 239000011162 core material Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 150000002894 organic compounds Chemical class 0.000 description 11
- 229910021382 natural graphite Inorganic materials 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 239000012298 atmosphere Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 238000007600 charging Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000011294 coal tar pitch Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000000571 coke Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 4
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000001739 density measurement Methods 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 3
- 238000003763 carbonization Methods 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 239000008213 purified water Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002562 thickening agent Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910013733 LiCo Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical group [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000007561 laser diffraction method Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 1
- CMJLMPKFQPJDKP-UHFFFAOYSA-N 3-methylthiolane 1,1-dioxide Chemical compound CC1CCS(=O)(=O)C1 CMJLMPKFQPJDKP-UHFFFAOYSA-N 0.000 description 1
- OYOKPDLAMOMTEE-UHFFFAOYSA-N 4-chloro-1,3-dioxolan-2-one Chemical compound ClC1COC(=O)O1 OYOKPDLAMOMTEE-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910014195 BM-400B Inorganic materials 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013275 LiMPO Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910012424 LiSO 3 Inorganic materials 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- MBDHLQKZIVIDEY-UHFFFAOYSA-N Olivin Natural products COc1cc(C=C(C)/C(=O)c2c(O)cc(O)cc2O)ccc1O MBDHLQKZIVIDEY-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 150000001253 acrylic acids Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011320 asphalt decomposition pitch Substances 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- DISYGAAFCMVRKW-UHFFFAOYSA-N butyl ethyl carbonate Chemical compound CCCCOC(=O)OCC DISYGAAFCMVRKW-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- FWBMVXOCTXTBAD-UHFFFAOYSA-N butyl methyl carbonate Chemical compound CCCCOC(=O)OC FWBMVXOCTXTBAD-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011319 crude-oil pitch Substances 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000007610 electrostatic coating method Methods 0.000 description 1
- 229910001325 element alloy Inorganic materials 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- CYEDOLFRAIXARV-UHFFFAOYSA-N ethyl propyl carbonate Chemical compound CCCOC(=O)OCC CYEDOLFRAIXARV-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000011357 graphitized carbon fiber Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- DMEJJWCBIYKVSB-UHFFFAOYSA-N lithium vanadium Chemical compound [Li].[V] DMEJJWCBIYKVSB-UHFFFAOYSA-N 0.000 description 1
- VROAXDSNYPAOBJ-UHFFFAOYSA-N lithium;oxido(oxo)nickel Chemical compound [Li+].[O-][Ni]=O VROAXDSNYPAOBJ-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- PIHTXGRVQBTVRE-KFYAXVMHSA-N olivin Chemical compound OC1=CC(O)=C2C(O)=C(C(=O)[C@H]([C@H]([C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)C3)O)C3=CC2=C1 PIHTXGRVQBTVRE-KFYAXVMHSA-N 0.000 description 1
- 239000001254 oxidized starch Substances 0.000 description 1
- 235000013808 oxidized starch Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000011318 synthetic pitch Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Carbon And Carbon Compounds (AREA)
Description
本発明は、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。 The present invention relates to a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
リチウムイオン二次電池は、ニッケル水素電池、鉛蓄電池等の他の二次電池に比べて軽量で高い入出力特性を有することから、近年、電気自動車、ハイブリッド型電気自動車等に用いられる高入出力用電源として注目されている。
リチウムイオン二次電池が1991年に製品化されて以来、その高エネルギー密度化と入出力特性のさらなる向上は、今なお強く望まれている。そのための手段として、リチウムイオン二次電池の負極に含まれる負極材を改良する技術は重要な位置を占めている(例えば、特許文献1及び特許文献2参照)。Lithium-ion secondary batteries are lighter in weight and have higher input / output characteristics than other secondary batteries such as nickel-hydrogen batteries and lead-acid batteries. Therefore, in recent years, high input / output batteries used in electric vehicles, hybrid electric vehicles, etc. It is attracting attention as a power source.
Since the commercialization of lithium-ion secondary batteries in 1991, higher energy density and further improvement of input / output characteristics are still strongly desired. As a means for that purpose, a technique for improving the negative electrode material contained in the negative electrode of the lithium ion secondary battery occupies an important position (see, for example, Patent Document 1 and Patent Document 2).
リチウムイオン二次電池の負極材の材料としては、黒鉛、非晶質炭素等の炭素材料が広く用いられている。
黒鉛は炭素原子の六角網面が規則正しく積層した構造を有し、積層した網面の端部よりリチウムイオンの挿入・脱離反応が進行して充放電を行う。
また、非晶質炭素は、六角網面の積層が不規則であるか、網目構造を有しないため、リチウムイオンの挿入・脱離反応は全表面で進行することとなり、入出力特性に優れたリチウムイオンが得られやすい。また、非晶質炭素は、黒鉛とは対照的に、結晶性が低く、電解液との反応を低く抑えることができ、寿命特性に優れるといった特徴を有する。As a material for the negative electrode material of a lithium ion secondary battery, a carbon material such as graphite or amorphous carbon is widely used.
Graphite has a structure in which hexagonal network surfaces of carbon atoms are regularly laminated, and lithium ion insertion / desorption reactions proceed from the ends of the laminated network surfaces to charge and discharge.
In addition, amorphous carbon has excellent input / output characteristics because the lithium ion insertion / desorption reaction proceeds on the entire surface because the hexagonal network surface is irregularly laminated or does not have a network structure. Lithium ions are easily obtained. Further, in contrast to graphite, amorphous carbon has low crystallinity, can suppress the reaction with the electrolytic solution to be low, and has excellent life characteristics.
黒鉛は、リチウムイオンの挿入脱離反応が端部でのみ進行するため入出力性能が充分とは言えない。また、結晶性が高く表面の反応性が高いために、特に高温において、電解液との反応性が高くなることがあり、リチウムイオン二次電池の寿命特性の点で改善の余地がある。一方、非晶質炭素は、黒鉛よりも結晶性が低いことにより、結晶構造が不規則であり、エネルギー密度が充分とはいえない。 Graphite cannot be said to have sufficient input / output performance because the insertion / removal reaction of lithium ions proceeds only at the end. Further, since the crystallinity is high and the surface reactivity is high, the reactivity with the electrolytic solution may be high, especially at a high temperature, and there is room for improvement in terms of the life characteristics of the lithium ion secondary battery. On the other hand, amorphous carbon has an irregular crystal structure due to its lower crystallinity than graphite, and its energy density cannot be said to be sufficient.
上記のような黒鉛と非晶質炭素の性質の違いを踏まえ、黒鉛に由来する高エネルギー密度と非晶質炭素に由来する高寿命特性とを両立しうる炭素材料として、黒鉛からなる核材の表面に非晶質炭素の層を形成した状態の炭素材料が提案されている。 Based on the above-mentioned difference in properties between graphite and amorphous carbon, as a carbon material capable of achieving both high energy density derived from graphite and long life characteristics derived from amorphous carbon, a core material made of graphite is used. A carbon material in which an amorphous carbon layer is formed on the surface has been proposed.
近年、特に車載用途において、走行距離を伸ばすために電池の高容量化のニーズがいっそう高まっている。そのため、車載用途においても民生用途と同様に、電極の高密度化が検討されている。その中で、電極の高密度化による入出力特性の低下が懸念されており、高容量化と入出力特性の両立が課題となっている。すなわち、黒鉛と非晶質炭素を複合化するのみでは解決が困難な課題への取り組みが求められている。 In recent years, there has been an increasing need for higher battery capacity in order to extend the mileage, especially in in-vehicle applications. Therefore, in the case of in-vehicle use as well as in the case of consumer use, high density of electrodes is being studied. Among them, there is a concern that the input / output characteristics may be deteriorated due to the high density of electrodes, and it is an issue to achieve both high capacity and input / output characteristics. In other words, there is a need to tackle problems that are difficult to solve simply by combining graphite and amorphous carbon.
本発明は、高い充放電効率を維持しながら、入出力特性と寿命特性にも優れるリチウムイオン二次電池を製造可能なリチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極、並びにこれを用いて製造されるリチウムイオン二次電池を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention includes a negative electrode material for a lithium ion secondary battery and a negative electrode for a lithium ion secondary battery capable of manufacturing a lithium ion secondary battery excellent in input / output characteristics and life characteristics while maintaining high charge / discharge efficiency, and a negative electrode for the lithium ion secondary battery. It is an object of the present invention to provide a lithium ion secondary battery manufactured using the above.
上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>X線回折法より求めた平均面間隔d002が0.335nm〜0.339nmであり、77Kでの窒素吸着測定より求めた比表面積が0.5m2/g〜6.0m2/gであり、かつ下記(1)及び(2)を満たす炭素材料を含む、リチウムイオン二次電池用負極材。
(1)個数基準の粒度分布において、差分の相対粒子量q0が最頻値となるときの粒子径が11.601μm以下である。
(2)個数基準の粒度分布において、粒子径11.601μmのときの差分の相対粒子量q0Aと、粒子径7.806μmのときの差分の相対粒子量q0Bとの比(q0A/q0B)が1.20〜3.00である。Means for solving the above problems include the following embodiments.
<1> The average spacing d 002 determined by X-ray diffraction method is 0.335Nm~0.339Nm, specific surface area determined from nitrogen adsorption measurements at 77K is 0.5m 2 /g~6.0m 2 / A negative electrode material for a lithium ion secondary battery, which is g and contains a carbon material satisfying the following (1) and (2).
(1) In the number-based particle size distribution, the particle size when the relative particle amount q0 of the difference is the mode is 11.601 μm or less.
(2) In the particle size distribution based on the number, the ratio (q0A / q0B) of the difference relative particle amount q0A when the particle size is 11.601 μm and the difference relative particle amount q0B when the particle size is 7.806 μm is 1. It is .20 to 3.00.
<2>X線回折法より求めた平均面間隔d002が0.335nm〜0.339nmであり、ラマン分光測定のR値が0.1〜1.0であり、かつ下記(1)及び(2)を満たす炭素材料を含む、リチウムイオン二次電池用負極材。
(1)個数基準の粒度分布において、差分の相対粒子量q0が最頻値となるときの粒子径が11.601μm以下である。
(2)個数基準の粒度分布において、粒子径11.601μmのときの差分の相対粒子量q0Aと、粒子径7.806μmのときの差分の相対粒子量q0Bとの比(q0A/q0B)が1.20〜3.00である。<2> The average surface spacing d 002 obtained by the X-ray diffraction method is 0.335 nm to 0.339 nm, the R value of Raman spectroscopy measurement is 0.1 to 1.0, and the following (1) and ( A negative electrode material for a lithium ion secondary battery containing a carbon material satisfying 2).
(1) In the number-based particle size distribution, the particle size when the relative particle amount q0 of the difference is the mode is 11.601 μm or less.
(2) In the particle size distribution based on the number, the ratio (q0A / q0B) of the difference relative particle amount q0A when the particle size is 11.601 μm and the difference relative particle amount q0B when the particle size is 7.806 μm is 1. It is .20 to 3.00.
<3>X線回折法より求めた平均面間隔d002が0.335nm〜0.339nmであり、核となる第一の炭素相と、前記第一の炭素相の表面の少なくとも一部に配置される第一の炭素相とは異なる第二の炭素相と、を含み、かつ下記(1)及び(2)を満たす炭素材料を含む、リチウムイオン二次電池用負極材。
(1)個数基準の粒度分布において、差分の相対粒子量q0が最頻値となるときの粒子径が11.601μm以下である。
(2)個数基準の粒度分布において、粒子径11.601μmのときの差分の相対粒子量q0Aと、粒子径7.806μmのときの差分の相対粒子量q0Bとの比(q0A/q0B)が1.20〜3.00である。<3> The average surface spacing d 002 determined by the X-ray diffractometry is 0.335 nm to 0.339 nm, and is arranged on at least a part of the surface of the first carbon phase as the core and the surface of the first carbon phase. A negative electrode material for a lithium ion secondary battery, which comprises a second carbon phase different from the first carbon phase, and also contains a carbon material satisfying the following (1) and (2).
(1) In the number-based particle size distribution, the particle size when the relative particle amount q0 of the difference is the mode is 11.601 μm or less.
(2) In the particle size distribution based on the number, the ratio (q0A / q0B) of the difference relative particle amount q0A when the particle size is 11.601 μm and the difference relative particle amount q0B when the particle size is 7.806 μm is 1. It is .20 to 3.00.
<4>前記炭素材料は、体積基準の粒度分布において、小粒子径側から体積累積分布曲線を描いた場合に、粒子径が9.516μmのときの積算値Q3が全体の4.0%以上である<1>〜<3>のいずれか1項に記載のリチウムイオン二次電池用負極材。 <4> In the volume-based particle size distribution, when the volume cumulative distribution curve is drawn from the small particle size side, the integrated value Q3 when the particle size is 9.516 μm is 4.0% or more of the whole. The negative electrode material for a lithium ion secondary battery according to any one of <1> to <3>.
<5>前記炭素材料は、体積基準の粒度分布において、小粒子径側から体積累積分布曲線を描いた場合に、累積が50%となるときの粒子径(50%D)が1μm〜20μmである<1>〜<4>のいずれか1項に記載のリチウムイオン二次電池用負極材。 <5> The carbon material has a particle size (50% D) of 1 μm to 20 μm when the cumulative volume is 50% when a volume cumulative distribution curve is drawn from the small particle size side in the volume-based particle size distribution. The negative electrode material for a lithium ion secondary battery according to any one of <1> to <4>.
<6>前記炭素材料は、体積基準の粒度分布において、小粒子径側から体積累積分布曲線を描いた場合に、累積が99.9%となるときの粒子径(99.9%D)が63μm以下である<1>〜<5>のいずれか1項に記載のリチウムイオン二次電池用負極材。 <6> The carbon material has a particle size (99.9% D) when the cumulative volume is 99.9% when a volume cumulative distribution curve is drawn from the small particle size side in a volume-based particle size distribution. The negative electrode material for a lithium ion secondary battery according to any one of <1> to <5>, which is 63 μm or less.
<7>前記炭素材料は、タップ密度が0.90g/cm3〜2.00g/cm3である<1>〜<6>のいずれか1項に記載のリチウムイオン二次電池用負極材。<7> The carbon material, a tap density of 0.90g / cm 3 ~2.00g / cm 3 <1> ~ <6> negative electrode material for a lithium ion secondary battery according to any one of.
<8>前記炭素材料は、ペレット密度が1.55g/cm3以下である<1>〜<7>のいずれか1項に記載のリチウムイオン二次電池用負極材。<8> The negative electrode material for a lithium ion secondary battery according to any one of <1> to <7>, wherein the carbon material has a pellet density of 1.55 g / cm 3 or less.
<9><1>〜<8>のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極材層と、集電体と、を含むリチウムイオン二次電池用負極。 <9> A negative electrode for a lithium ion secondary battery including a negative electrode material layer containing the negative electrode material for a lithium ion secondary battery according to any one of <1> to <8> and a current collector.
<10><9>に記載のリチウムイオン二次電池用負極と、正極と、電解質と、を含むリチウムイオン二次電池。 <10> The lithium ion secondary battery including the negative electrode for the lithium ion secondary battery, the positive electrode, and the electrolyte according to <9>.
本発明によれば、高い充放電効率を維持しながら、入出力特性と寿命特性にも優れるリチウムイオン二次電池を製造可能なリチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極、並びにこれを用いて製造されるリチウムイオン二次電池が提供される。 According to the present invention, a negative electrode material for a lithium ion secondary battery and a negative electrode for a lithium ion secondary battery capable of manufacturing a lithium ion secondary battery having excellent input / output characteristics and life characteristics while maintaining high charge / discharge efficiency. In addition, a lithium ion secondary battery manufactured by using the same is provided.
以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to the numerical values and their ranges, and does not limit the present invention.
本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
本明細書において「〜」を用いて示された数値範囲には、「〜」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本明細書において組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
本明細書において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
本明細書において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。In the present specification, the term "process" includes not only a process independent of other processes but also the process if the purpose of the process is achieved even if the process cannot be clearly distinguished from the other process. Is done.
In the numerical range indicated by using "~" in the present specification, the numerical values before and after "~" are included as the minimum value and the maximum value, respectively.
In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. good. Further, in the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
In the present specification, the content or content of each component in the composition refers to the content of each component in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. It means the total content or content of substances.
In the present specification, the particle size of each component in the composition is a mixture of the plurality of particles existing in the composition unless otherwise specified, when a plurality of particles corresponding to each component are present in the composition. Means a value for.
In the present specification, the term "layer" or "membrane" refers to a part of the region in addition to the case where the layer or the membrane is formed in the entire region when the region where the layer or the membrane exists is observed. The case where only is formed is also included.
As used herein, the term "laminated" refers to stacking layers, and two or more layers may be bonded or the two or more layers may be removable.
<リチウムイオン二次電池用負極材(1)>
本実施形態のリチウムイオン二次電池用負極材(以下、単に「負極材」と呼ぶ場合がある)は、X線回折法より求めた平均面間隔d002が0.335nm〜0.339nmであり、77Kでの窒素吸着測定より求めた比表面積が0.5m2/g〜6.0m2/gであり、かつ下記(1)及び(2)を満たす炭素材料を含む。
(1)個数基準の粒度分布において、差分の相対粒子量q0が最頻値となるときの粒子径が11.601μm以下である。
(2)個数基準の粒度分布において、粒子径11.601μmのときの差分の相対粒子量q0Aと、粒子径7.806μmのときの差分の相対粒子量q0Bとの比(q0A/q0B)が1.20〜3.00である。<Negative electrode material for lithium ion secondary battery (1)>
The negative electrode material for a lithium ion secondary battery of the present embodiment (hereinafter, may be simply referred to as “negative electrode material”) has an average surface spacing d 002 obtained by an X-ray diffraction method of 0.335 nm to 0.339 nm. the specific surface area determined from nitrogen adsorption measurements at 77K is the 0.5m 2 /g~6.0m 2 / g, and containing a carbon material satisfying the following (1) and (2).
(1) In the number-based particle size distribution, the particle size when the relative particle amount q0 of the difference is the mode is 11.601 μm or less.
(2) In the particle size distribution based on the number, the ratio (q0A / q0B) of the difference relative particle amount q0A when the particle size is 11.601 μm and the difference relative particle amount q0B when the particle size is 7.806 μm is 1. It is .20 to 3.00.
本実施形態の負極材を用いることで、高い充放電効率を維持しながら、入出力特性と寿命特性にも優れるリチウムイオン二次電池を製造可能である。 By using the negative electrode material of the present embodiment, it is possible to manufacture a lithium ion secondary battery having excellent input / output characteristics and life characteristics while maintaining high charge / discharge efficiency.
本実施形態の負極材の組成は、上述した条件を満たす炭素材料を含むのであれば特に制限されない。本実施形態の効果を得る観点からは、負極材全体に占める炭素材料の割合は50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、100質量%であることが特に好ましい。 The composition of the negative electrode material of the present embodiment is not particularly limited as long as it contains a carbon material satisfying the above-mentioned conditions. From the viewpoint of obtaining the effect of the present embodiment, the ratio of the carbon material to the entire negative electrode material is preferably 50% by mass or more, more preferably 80% by mass or more, and more preferably 90% by mass or more. It is more preferably 100% by mass, and particularly preferably 100% by mass.
(炭素材料)
炭素材料のX線回折法より求めた平均面間隔d002は、0.335nm〜0.339nmである。
平均面間隔d002の値は、0.3354nmが黒鉛結晶の理論値であり、この値に近いほどエネルギー密度が大きくなる傾向にある。平均面間隔d002の値が上記範囲内の場合、優れたリチウムイオン二次電池の初回充放電効率とエネルギー密度が得られる傾向にある。(Carbon material)
The average surface spacing d 002 determined by the X-ray diffraction method of the carbon material is 0.335 nm to 0.339 nm.
The value of the average interplanar spacing d 002 is 0.3354 nm, which is the theoretical value of graphite crystals, and the closer to this value, the higher the energy density tends to be. When the value of the average surface spacing d 002 is within the above range, excellent initial charge / discharge efficiency and energy density of the lithium ion secondary battery tend to be obtained.
本実施形態において炭素材料の平均面間隔d002は、X線(CuKα線)を炭素材料の試料に照射し、回折線をゴニオメーターにより測定して得た回折プロファイルより、回折角2θ=24°〜27°付近に現れる炭素002面に対応した回折ピークより、ブラッグの式を用いて算出することができる。In the present embodiment, the average surface spacing d 002 of the carbon material is a diffraction angle 2θ = 24 ° from the diffraction profile obtained by irradiating the sample of the carbon material with X-rays (CuKα rays) and measuring the diffraction lines with a goniometer. It can be calculated using Bragg's equation from the diffraction peak corresponding to the carbon 002 plane appearing near ~ 27 °.
炭素材料の平均面間隔d002の値は、リチウムイオン二次電池のエネルギー密度の観点からは小さい方が好ましい。具体的には、例えば、0.335nm〜0.337nmであることが好ましい。
炭素材料の平均面間隔d002の値は、例えば、炭素材料に対して行う熱処理の温度を高くすることで小さくなる傾向にあるため、この性質を利用して平均面間隔d002を上記範囲内に調節することができる。The value of the average surface spacing d 002 of the carbon material is preferably small from the viewpoint of the energy density of the lithium ion secondary battery. Specifically, for example, it is preferably 0.335 nm to 0.337 nm.
Since the value of the average surface spacing d 002 of the carbon material tends to decrease as the temperature of the heat treatment performed on the carbon material is increased, for example, the average surface spacing d 002 is kept within the above range by utilizing this property. Can be adjusted to.
炭素材料の77Kでの窒素吸着測定より求めた比表面積(以下、N2比表面積と呼ぶ場合がある)は、0.5m2/g〜6.0m2/gである。
炭素材料のN2比表面積が上記範囲内であると、入出力特性と初回効率のバランスが良好に維持される傾向にある。
炭素材料のN2比表面積は、77Kでの窒素吸着測定より得た吸着等温線からBET法を用いて求めることができる。The specific surface area determined from nitrogen adsorption measurements at 77K carbon material (hereinafter sometimes referred to as N 2 specific surface area) is 0.5m 2 /g~6.0m 2 / g.
When the N 2 specific surface area of the carbon material is within the above range, the balance between the input / output characteristics and the initial efficiency tends to be well maintained.
The N 2 specific surface area of the carbon material can be determined by using the BET method from the adsorption isotherm obtained from the nitrogen adsorption measurement at 77K.
リチウムイオン二次電池の入出力特性と初回効率のバランスの観点からは、N2比表面積は1.0m2/g〜5.0m2/gであることが好ましい。
N2比表面積は、例えば、炭素材料の体積平均粒子径を大きくする、炭素材料に対して行う熱処理の温度を高くする、炭素材料の表面を改質する等の方法により値を小さくできる傾向にあるため、この性質を利用してN2比表面積を上記範囲内に設定することができる。From the viewpoint of the balance of the input and output characteristics and initial efficiency of the lithium ion secondary battery, it is preferable N 2 specific surface area is 1.0m 2 /g~5.0m 2 / g.
The N 2 specific surface area tends to be reduced in value by, for example, increasing the volume average particle size of the carbon material, increasing the temperature of the heat treatment performed on the carbon material, or modifying the surface of the carbon material. some reason, the N 2 specific surface area by using this property can be set within the above range.
炭素材料は、個数基準の粒度分布において、差分の相対粒子量q0が最頻値となるときの粒子径が11.601μm以下である。差分の相対粒子量q0が最頻値となる粒子径が11.601μmを超えると、粒子径の大きい炭素材料の割合が増えるため、炭素材料の粒子の表面から内部へのリチウムイオンの拡散距離が長くなり、リチウムイオン二次電池の入出力特性が低下する傾向にある。 The carbon material has a particle size of 11.601 μm or less when the relative particle amount q0 of the difference is the mode in the particle size distribution based on the number. When the particle size at which the relative particle amount q0 of the difference is the most frequent value exceeds 11.601 μm, the proportion of carbon material having a large particle size increases, so that the diffusion distance of lithium ions from the surface of the particles of the carbon material to the inside increases. As it becomes longer, the input / output characteristics of the lithium ion secondary battery tend to deteriorate.
差分の相対粒子量q0が最頻値となる粒子径は、11.601μm又は9.516μmであることが好ましく、11.601μmであることがより好ましい。 The particle size at which the relative particle amount q0 of the difference is the mode is preferably 11.601 μm or 9.516 μm, and more preferably 11.601 μm.
炭素材料は、粒子径が11.601μmのときの差分の相対粒子量q0と、粒子径が9.516μmのときの差分の相対粒子量q0の合計値が25以上であることが好ましく、30以上であることがより好ましく、32以上であることがさらに好ましい。 For the carbon material, the total value of the difference relative particle amount q0 when the particle size is 11.601 μm and the difference relative particle amount q0 when the particle size is 9.516 μm is preferably 25 or more, preferably 30 or more. Is more preferable, and 32 or more is further preferable.
炭素材料は、個数基準の粒度分布において、粒子径11.601μmのときの差分の相対粒子量q0Aと、粒子径7.806μmのときの差分の相対粒子量q0Bとの比(q0A/q0B)が1.20〜3.00である。
q0A/q0Bの値が1.20未満であると、入出力特性が低下する傾向にある。
q0A/q0Bの値が3.00を超えると、炭素材料の粒子同士の接触が悪くなり、リチウムイオン二次電池の寿命特性が低下する傾向にある。
入出力特性と寿命特性の観点からは、q0A/q0Bの値は、1.20〜2.20の範囲であることが好ましく、1.25〜2.10の範囲であることがより好ましい。The carbon material has a ratio (q0A / q0B) of the difference relative particle amount q0A when the particle size is 11.601 μm and the difference relative particle amount q0B when the particle size is 7.806 μm in the particle size distribution based on the number. It is 1.20 to 3.00.
If the value of q0A / q0B is less than 1.20, the input / output characteristics tend to deteriorate.
When the value of q0A / q0B exceeds 3.00, the contact between the particles of the carbon material becomes poor, and the life characteristic of the lithium ion secondary battery tends to deteriorate.
From the viewpoint of input / output characteristics and life characteristics, the value of q0A / q0B is preferably in the range of 1.20 to 2.20, and more preferably in the range of 1.25 to 2.10.
本明細書において炭素材料の個数基準の粒度分布は、粒子径0.1μm〜2000μmの範囲を対数比で50分割して得られる。例えば、粒子径は、n=(2000/0.1)^(1/50)を求め、0.1×n、0.1×n^2、・・・、0.1×n^50から得られる。0.1μm〜2000μmの範囲における粒子径ごとの相対粒子量q0の合計値は100となる。
表1には、実施例2で用いた炭素材料の個数基準における差分の相対粒子量q0の値と粒子径をあわせて示す。In the present specification, the particle size distribution based on the number of carbon materials is obtained by dividing the range of particle diameters of 0.1 μm to 2000 μm into 50 logarithmic ratios. For example, the particle size is obtained from n = (2000 / 0.1) ^ (1/50) and is from 0.1 × n, 0.1 × n ^ 2, ..., 0.1 × n ^ 50. can get. The total value of the relative particle amount q0 for each particle size in the range of 0.1 μm to 2000 μm is 100.
Table 1 shows the value of the relative particle amount q0 and the particle size of the difference based on the number of carbon materials used in Example 2.
炭素材料は、体積基準の粒度分布において、小粒子径側から体積累積分布曲線を描いた場合に、粒子径が9.516μmのときの積算値Q3が全体の4.0%以上であることが好ましく、9.0%以上であることがより好ましい。
粒子径が9.516μmのときの積算値Q3が全体の4.0%以上であると、炭素材料中に含まれる微小な粒子により粒子間の接触点が充分に確保され、リチウムイオン二次電池の寿命特性が向上する傾向にある。For carbon materials, when the volume cumulative distribution curve is drawn from the small particle size side in the volume-based particle size distribution, the integrated value Q3 when the particle size is 9.516 μm is 4.0% or more of the total. It is preferably 9.0% or more, and more preferably 9.0% or more.
When the integrated value Q3 when the particle size is 9.516 μm is 4.0% or more of the whole, the contact points between the particles are sufficiently secured by the minute particles contained in the carbon material, and the lithium ion secondary battery There is a tendency for the life characteristics of the particles to improve.
上記積算値Q3の上限は特に制限されないが、30%以下であることが好ましく、20%以下であることがより好ましい。 The upper limit of the integrated value Q3 is not particularly limited, but is preferably 30% or less, and more preferably 20% or less.
炭素材料は、体積基準の粒度分布において、小粒子径側から体積累積分布曲線を描いた場合に、累積が50%となるときの粒子径(50%D、以下、体積平均粒子径とも称する)が1μm〜20μmであることが好ましく、3μm〜18μmであることがより好ましく、5μm〜15μmであることがさらに好ましい。
炭素材料の体積平均粒子径が1μm以上であると、比表面積が大きすぎてリチウムイオン二次電池の初回充放電効率が低下することが抑制される傾向にある。一方、炭素材料の体積平均粒子径が20μm以下であると、粒子径が大きすぎて粒子表面から内部へのLiの拡散距離が長くなり、リチウムイオン二次電池の入出力特性が低下することが抑制される傾向にある。The carbon material has a particle size (50% D, hereinafter also referred to as a volume average particle size) when the cumulative volume is 50% when a volume cumulative distribution curve is drawn from the small particle size side in the volume-based particle size distribution. Is preferably 1 μm to 20 μm, more preferably 3 μm to 18 μm, and even more preferably 5 μm to 15 μm.
When the volume average particle size of the carbon material is 1 μm or more, the specific surface area tends to be too large and the decrease in the initial charge / discharge efficiency of the lithium ion secondary battery tends to be suppressed. On the other hand, if the volume average particle size of the carbon material is 20 μm or less, the particle size is too large and the diffusion distance of Li from the particle surface to the inside becomes long, and the input / output characteristics of the lithium ion secondary battery may deteriorate. It tends to be suppressed.
炭素材料は、体積基準の粒度分布において、小粒子径側から体積累積分布曲線を描いた場合に、累積が99.9%となるときの粒子径(99.9%D、以下、最大粒子径とも称する)が63μm以下であることが好ましく、50μm以下であることがより好ましく、45μm以下であることがさらに好ましい。
炭素材料の最大粒子径が63μm以下であると、電極を作製する際に極板を薄膜化しやすく、入出力特性への影響が抑制される傾向にある。The carbon material has a particle size (99.9% D, hereinafter, maximum particle size) when the cumulative volume is 99.9% when a volume cumulative distribution curve is drawn from the small particle size side in the volume-based particle size distribution. (Also referred to as) is preferably 63 μm or less, more preferably 50 μm or less, and further preferably 45 μm or less.
When the maximum particle size of the carbon material is 63 μm or less, the electrode plate is likely to be thinned when the electrode is manufactured, and the influence on the input / output characteristics tends to be suppressed.
本明細書において炭素材料の体積基準の粒度分布は、個数基準の粒度分布と同様に、0.1μm〜2000μmの範囲を対数比で50分割して得られる。体積基準の粒度分布は、個数基準の粒度分布と同様の方法で測定することができる。 In the present specification, the volume-based particle size distribution of the carbon material is obtained by dividing the range of 0.1 μm to 2000 μm into 50 logarithmic ratios, similar to the number-based particle size distribution. The volume-based particle size distribution can be measured in the same manner as the number-based particle size distribution.
本明細書において炭素材料の粒度分布は、公知の方法により測定することができる。例えば、炭素材料の試料を界面活性剤とともに精製水中に分散させて調製した分散液を、レーザー回折式粒度分布測定装置の試料水槽に入れ、ポンプで循環させながら1分間超音波をかけて、以下の測定条件においてレーザー回折式で測定して得られる。レーザー回折式粒度分布測定装置としては、例えば、(株)島津製作所の「SALD−3000J」を用いることができる。ここで、出力条件として「個数」又は「体積」を選択することで、個数基準の粒度分布又は体積基準の粒度分布を得ることができる。 In the present specification, the particle size distribution of the carbon material can be measured by a known method. For example, a dispersion prepared by dispersing a sample of a carbon material together with a surfactant in purified water is placed in a sample water tank of a laser diffraction type particle size distribution measuring device, and ultrasonic waves are applied for 1 minute while circulating with a pump. It is obtained by measuring with a laser diffraction method under the measurement conditions of. As the laser diffraction type particle size distribution measuring device, for example, "SALD-3000J" manufactured by Shimadzu Corporation can be used. Here, by selecting "number" or "volume" as the output condition, a number-based particle size distribution or a volume-based particle size distribution can be obtained.
(測定条件の設定)
測定回数:1回
測定間隔:2秒
平均回数:64回
測定吸光度範囲:0.01〜0.2
(任意粒子径・%テーブル設定)
範囲:0.1μm〜2000μm
分割数:50(Setting of measurement conditions)
Number of measurements: 1 measurement interval: 2 seconds Average number of measurements: 64 measurements Absorbance range: 0.01 to 0.2
(Arbitrary particle size /% table setting)
Range: 0.1 μm to 2000 μm
Number of divisions: 50
本実施形態の炭素材料は、例えば、粒子径の異なる炭素材料を2種以上組み合わせることで得ることができる。
このような炭素材料の組み合わせとしては、体積平均粒子径が8μm〜12μmの炭素材料と体積平均粒子径が14μm〜18μmの炭素材料の組み合わせ、体積平均粒子径が9μm〜11μmの炭素材料と体積平均粒子径が15μm〜17μmの炭素材料の組み合わせ等が挙げられる。
粒子径の異なる炭素材料を2種組み合わせる場合の比率としては、例えば、質量比で7:3〜3:7の範囲内、質量比で6:4〜4:6の範囲内等が挙げられる。The carbon material of the present embodiment can be obtained, for example, by combining two or more types of carbon materials having different particle sizes.
Such a combination of carbon materials includes a combination of a carbon material having a volume average particle diameter of 8 μm to 12 μm and a carbon material having a volume average particle diameter of 14 μm to 18 μm, and a carbon material having a volume average particle diameter of 9 μm to 11 μm and a volume average. Examples thereof include a combination of carbon materials having a particle size of 15 μm to 17 μm.
Examples of the ratio when two types of carbon materials having different particle sizes are combined include, for example, a mass ratio in the range of 7: 3 to 3: 7, and a mass ratio in the range of 6: 4 to 4: 6.
炭素材料は、タップ密度が0.90g/cm3〜2.00g/cm3であることが好ましく、1.00g/cm3〜1.50g/cm3であることがより好ましく、1.05g/cm3〜1.30g/cm3であることがさらに好ましい。
炭素材料のタップ密度が0.90g/cm3以上であると、負極を作製する際に用いる結着剤等の有機物の量を少なくでき、リチウムイオン二次電池のエネルギー密度が大きくなる傾向にある。一方、炭素材料のタップ密度が2.00g/cm3以下であると、入出力特性が良好となる傾向にある。Carbon material is preferably a tap density of 0.90g / cm 3 ~2.00g / cm 3 , more preferably 1.00g / cm 3 ~1.50g / cm 3 , 1.05g / It is more preferably cm 3 to 1.30 g / cm 3.
When the tap density of the carbon material is 0.90 g / cm 3 or more, the amount of organic substances such as binders used when producing the negative electrode can be reduced, and the energy density of the lithium ion secondary battery tends to increase. .. On the other hand, when the tap density of the carbon material is 2.00 g / cm 3 or less, the input / output characteristics tend to be good.
炭素材料のタップ密度は、例えば、炭素材料の体積平均粒子径を大きくすること等によってその値が高くなる傾向があり、この性質を利用してタップ密度を上記範囲内に設定することができる。 The tap density of the carbon material tends to increase by increasing the volume average particle size of the carbon material, for example, and the tap density can be set within the above range by utilizing this property.
炭素材料を含む負極材全体としてのタップ密度は、0.90g/cm3〜3.00g/cm3であってもよい。負極材のタップ密度を調節する方法としては、炭素材料に加えて、後述する金属成分等を含有させる方法が挙げられる。The tap density of the entire negative electrode material containing a carbon material may be 0.90g / cm 3 ~3.00g / cm 3 . Examples of the method for adjusting the tap density of the negative electrode material include a method of incorporating a metal component or the like, which will be described later, in addition to the carbon material.
本明細書において炭素材料又は負極材のタップ密度は、容量100cm3のメスシリンダーに試料粉末100cm3をゆっくり投入し、メスシリンダーに栓をし、このメスシリンダーを5cmの高さから250回落下させた後の試料粉末の質量(g)を容積(cm3)で除して得られる値(g/cm3)を意味する。In the present specification, the tap density of the carbon material or the negative electrode material is such that the sample powder 100 cm 3 is slowly poured into a graduated cylinder having a capacity of 100 cm 3 , the graduated cylinder is plugged, and the graduated cylinder is dropped 250 times from a height of 5 cm. It means a value (g / cm 3 ) obtained by dividing the mass (g) of the sample powder after the test by the volume (cm 3).
炭素材料は、ペレット密度が1.55g/cm3以下であることが好ましく、1.50g/cm3以下であることがより好ましい。ペレット密度が1.55g/cm3以下であると、電極を高密度化したときに炭素材料の粒子間の空隙が少なくなりすぎて粒子近傍のイオン濃度が低下し、リチウムイオン二次電池の入出力特性が低下するのが抑制される傾向がある。Carbon material is preferably pellet density of 1.55 g / cm 3 or less, more preferably 1.50 g / cm 3 or less. When the pellet density is 1.55 g / cm 3 or less, when the electrode density is increased, the voids between the particles of the carbon material become too small, and the ion concentration near the particles decreases, so that the lithium ion secondary battery is inserted. Deterioration of output characteristics tends to be suppressed.
炭素材料のペレット密度は、例えば、炭素材料の体積平均粒子径を小さくすること等によってその値が低くなる傾向があり、この性質を利用してペレット密度を上記範囲内に設定することができる。 The value of the pellet density of the carbon material tends to be lowered by, for example, reducing the volume average particle size of the carbon material, and the pellet density can be set within the above range by utilizing this property.
炭素材料を含む負極材全体としてのペレット密度は、1.10g/cm3〜2.00g/cm3であってもよい。負極材のペレット密度を調節する方法としては、炭素材料に対して行う熱処理の温度を制御する方法が挙げられる。The pellet density of the entire negative electrode material including the carbon material may be 1.10 g / cm 3 to 2.00 g / cm 3. Examples of the method of adjusting the pellet density of the negative electrode material include a method of controlling the temperature of the heat treatment performed on the carbon material.
本発明において炭素材料又は負極材のペレット密度は、成型器に試料粉末1.00gを投入し、油圧プレスにて1.0tの圧力で加圧した後の試料の厚み(cm)と断面積(cm2)とから得られる体積で質量(g)を除して得られる値(g/cm3)を意味する。In the present invention, the pellet density of the carbon material or the negative electrode material is the thickness (cm) and the cross-sectional area of the sample after 1.00 g of the sample powder is put into the molding machine and pressed with a pressure of 1.0 t by a hydraulic press. It means a value (g / cm 3 ) obtained by dividing the mass (g) by the volume obtained from cm 2).
炭素材料は、ラマン分光測定のR値が0.1〜1.0であることが好ましく、0.2〜0.8であることがより好ましく、0.3〜0.7であることがさらに好ましい。R値が0.1以上であると、リチウムイオンの挿入及び脱離に用いられる黒鉛格子欠陥が充分存在し、入出力特性の低下が抑制される傾向にある。R値が1.0以下であると、電解液の分解反応が充分に抑制され、初回効率の低下が抑制される傾向にある。 The carbon material preferably has an R value of 0.1 to 1.0, more preferably 0.2 to 0.8, and further preferably 0.3 to 0.7, as measured by Raman spectroscopy. preferable. When the R value is 0.1 or more, graphite lattice defects used for insertion and desorption of lithium ions are sufficiently present, and deterioration of input / output characteristics tends to be suppressed. When the R value is 1.0 or less, the decomposition reaction of the electrolytic solution is sufficiently suppressed, and the decrease in the initial efficiency tends to be suppressed.
R値は、ラマン分光測定において得られたラマン分光スペクトルにおいて、1580cm−1付近の最大ピークの強度Igと、1360cm−1付近の最大ピークの強度Idの強度比(Id/Ig)と定義する。ここで、1580cm−1付近に現れるピークとは、通常、黒鉛結晶構造に対応すると同定されるピークであり、例えば1530cm−1〜1630cm−1に観測されるピークを意味する。また1360cm−1付近に現れるピークとは、通常、炭素の非晶質構造に対応すると同定されるピークであり、例えば1300cm−1〜1400cm−1に観測されるピークを意味する。R value, in the Raman spectrum obtained in the Raman spectrometry, to define the intensity Ig of the maximum peak in the vicinity of 1580 cm -1, the intensity ratio of the intensity Id of the maximum peak around 1360 cm -1 and (Id / Ig). Here, the peak appearing near 1580 cm -1, generally a peak identified as corresponding to the graphite crystal structure, means a peak observed for example 1530cm -1 ~1630cm -1. The peak appearing in the vicinity of 1360 cm -1 is a peak usually identified to correspond to the amorphous structure of carbon, and means, for example, a peak observed in 1300 cm -1 to 1400 cm -1.
本明細書においてラマン分光測定は、レーザーラマン分光光度計(型番:NRS−1000、日本分光株式会社)を用い、リチウムイオン二次電池用負極材を平らになるようにセットした試料板にアルゴンレーザー光(励起波長:532nm)を照射して測定を行う。 In the present specification, the Raman spectroscopic measurement is performed by using a laser Raman spectrophotometer (model number: NRS-1000, JASCO Corporation) on a sample plate in which the negative electrode material for a lithium ion secondary battery is set flat. The measurement is performed by irradiating light (excitation wavelength: 532 nm).
炭素材料の材質としては、黒鉛(人造黒鉛、天然黒鉛、黒鉛化メゾフェーズカーボン、黒鉛化炭素繊維等)、低結晶性炭素、メゾフェーズカーボンなどの炭素材料が挙げられる。充放電容量を大きくする観点からは、炭素材料の少なくとも一部が黒鉛であることが好ましい。 Examples of the material of the carbon material include carbon materials such as graphite (artificial graphite, natural graphite, graphitized mesophase carbon, graphitized carbon fiber, etc.), low crystalline carbon, and mesophase carbon. From the viewpoint of increasing the charge / discharge capacity, it is preferable that at least a part of the carbon material is graphite.
炭素材料の形状は特に制限されない。例えば、鱗片状、球状、塊状等が挙げられる。高いタップ密度を得る観点からは、球状であることが好ましい。これらの炭素材料から前述した物性を備えた炭素材料を適宜選択すればよい。炭素材料は1種を単独で用いても、材質、形状等の異なる2種以上を組み合わせて用いてもよい。 The shape of the carbon material is not particularly limited. For example, scaly, spherical, lumpy and the like can be mentioned. From the viewpoint of obtaining a high tap density, it is preferably spherical. From these carbon materials, a carbon material having the above-mentioned physical characteristics may be appropriately selected. As the carbon material, one type may be used alone, or two or more types having different materials, shapes and the like may be used in combination.
炭素材料は、核となる第一の炭素相と、その表面の少なくとも一部に配置される(例えば、核を被覆する)第一の炭素相とは異なる第二の炭素相とを含む複合材料であってもよい。炭素材料を異なる複数種の炭素相から構成することにより、所望の物性又は性質をより効果的に発揮しうる炭素材料を得ることができる。 The carbon material is a composite material containing a first carbon phase that is the nucleus and a second carbon phase that is different from the first carbon phase that is located on at least a part of the surface thereof (for example, that covers the nucleus). It may be. By composing the carbon material from a plurality of different carbon phases, it is possible to obtain a carbon material capable of more effectively exhibiting desired physical properties or properties.
炭素材料が核となる第一の炭素相と、その表面の少なくとも一部に配置される第二の炭素相とを含む複合材料である場合、第一の炭素相と第二の炭素相の組み合わせとしては、第一の炭素相と、第一の炭素相と結晶性の異なる第二の炭素相の組み合わせが挙げられ、第一の炭素相と、第一の炭素相よりも結晶性の低い(d002の値が第一の炭素相よりも大きい)第二の炭素相の組み合わせが好ましい。When the carbon material is a composite material containing a first carbon phase as a core and a second carbon phase arranged on at least a part of the surface thereof, a combination of the first carbon phase and the second carbon phase. Examples include a combination of a first carbon phase and a second carbon phase having a different crystallinity from the first carbon phase, which is less crystalline than the first carbon phase and the first carbon phase ( A combination of the second carbon phase (where the value of d 002 is larger than the first carbon phase) is preferred.
炭素材料が、核となる第一の炭素相と、第一の炭素相よりも結晶性の低い第二の炭素相とを含む複合材料である場合、核となる第一の炭素相の材質が上述した黒鉛から選択されることが好ましい。この場合、第二の炭素相は第一の炭素相よりも結晶性の低いもの(以下、低結晶炭素相とも称する)から選択されることが好ましい。 When the carbon material is a composite material containing a first carbon phase as a core and a second carbon phase having a lower crystallinity than the first carbon phase, the material of the first carbon phase as a core is It is preferably selected from the graphite described above. In this case, the second carbon phase is preferably selected from those having lower crystallinity than the first carbon phase (hereinafter, also referred to as a low crystal carbon phase).
第一の炭素相よりも結晶性が低い第二の炭素相の材質は特に制限されず、所望の性質に応じて適宜選択される。第二の炭素相の好ましい例としては、熱処理により炭素質に変化し得る有機化合物(炭素前駆体)から得られる炭素相が挙げられる。具体的には、エチレンヘビーエンドピッチ、原油ピッチ、コールタールピッチ、アスファルト分解ピッチ、ポリ塩化ビニル等の有機化合物を熱分解して生成するピッチ、ナフタレン等を超強酸の存在下で重合させて作製される合成ピッチなどが挙げられる。また、ポリ塩化ビニル、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルブチラール等の熱可塑性合成高分子、デンプン、セルロース等の天然高分子などを炭素前駆体として用いることもできる。 The material of the second carbon phase, which has lower crystallinity than the first carbon phase, is not particularly limited and is appropriately selected according to desired properties. A preferred example of the second carbon phase is a carbon phase obtained from an organic compound (carbon precursor) that can be transformed into a carbonaceous substance by heat treatment. Specifically, it is produced by polymerizing ethylene heavy end pitch, crude oil pitch, coal tar pitch, asphalt decomposition pitch, pitch produced by thermal decomposition of organic compounds such as polyvinyl chloride, naphthalene, etc. in the presence of super strong acid. The synthetic pitch to be performed can be mentioned. Further, thermoplastic synthetic polymers such as polyvinyl chloride, polyvinyl alcohol, polyvinyl acetate and polyvinyl butyral, and natural polymers such as starch and cellulose can also be used as carbon precursors.
炭素材料が上述した複合材料である場合、核となる第一の炭素相は、平均面間隔d002が0.335nm〜0.339nmの範囲の黒鉛材料であることが、充放電容量増大の観点から好ましい。特に、d002が0.335nm〜0.338nmの範囲、好ましくは0.335nm〜0.337nmの範囲の黒鉛材料を用いる場合、充放電容量が330mAh/g〜370mAh/gと大きく良好なリチウムイオン二次電池が得られる傾向にある。When the carbon material is the composite material described above, the first carbon phase as the core is a graphite material having an average surface spacing d 002 in the range of 0.335 nm to 0.339 nm from the viewpoint of increasing charge / discharge capacity. Is preferable. In particular, when a graphite material having d 002 in the range of 0.335 nm to 0.338 nm, preferably 0.335 nm to 0.337 nm is used, the charge / discharge capacity is as large as 330 mAh / g to 370 mAh / g, which is good lithium ion. Secondary batteries tend to be obtained.
第一の炭素相となる黒鉛材料は、体積平均粒子径(50%D)が1μm〜20μmであることが好ましい。黒鉛材料の体積平均粒子径が1μm以上であると、原料黒鉛中に微粉が適度な量で含まれ、核材に炭素前駆体としての有機化合物を付着させる工程での凝集の発生が抑制され、両者がより均等に混合される傾向にある。黒鉛材料の体積平均粒子径が20μm以下であると、負極材中での粗大粒子の混在が抑制され、負極材の塗工の際に筋引きなどの発生が抑制される傾向にある。 The graphite material to be the first carbon phase preferably has a volume average particle size (50% D) of 1 μm to 20 μm. When the volume average particle size of the graphite material is 1 μm or more, fine powder is contained in the raw material graphite in an appropriate amount, and the occurrence of aggregation in the step of adhering the organic compound as a carbon precursor to the core material is suppressed. Both tend to be mixed more evenly. When the volume average particle size of the graphite material is 20 μm or less, the mixture of coarse particles in the negative electrode material is suppressed, and the occurrence of streaks and the like during coating of the negative electrode material tends to be suppressed.
第一の炭素相となる黒鉛材料は、77Kでの窒素吸着測定により求めた比表面積、すなわちBET比表面積(N2比表面積)が0.1m2/g〜30m2/gであることが好ましく、0.5m2/g〜25m2/gであることがより好ましく、0.5m2/g〜15m2/gであることがさらに好ましい。黒鉛材料のN2比表面積が0.1m2/g以上であると、核材に炭素前駆体としての有機化合物を付着させる工程で凝集が生じにくい傾向にある。黒鉛材料のN2比表面積が30m2/g以下であると、比表面積が適度な範囲に維持され、有機化合物がより均等に付着する傾向にある。Graphite material as the first carbon phase is preferably a ratio determined by nitrogen adsorption measurements at 77K surface area, i.e. BET specific surface area (N 2 specific surface area) is 0.1m 2 / g~30m 2 / g , more preferably 0.5m 2 / g~25m 2 / g, further preferably 0.5m 2 / g~15m 2 / g. When the N 2 specific surface area of the graphite material is 0.1 m 2 / g or more, aggregation tends to be less likely to occur in the step of adhering the organic compound as a carbon precursor to the core material. When the N 2 specific surface area of the graphite material is 30 m 2 / g or less, the specific surface area is maintained in an appropriate range, and the organic compounds tend to adhere more evenly.
第一の炭素相となる黒鉛材料の形状としては、鱗片状、球状、塊状等が挙げられ、タップ密度増大の観点からは球形であることが好ましい。 Examples of the shape of the graphite material serving as the first carbon phase include scaly, spherical, and lumpy shapes, and it is preferable that the graphite material has a spherical shape from the viewpoint of increasing the tap density.
黒鉛材料の球形化度を表す指標としては、アスペクト比が挙げられる。本明細書において黒鉛材料のアスペクト比は「最大長垂直長/最大長」で得られる値であり、その最大値は1である。ここで、「最大長」とは黒鉛材料の粒子の輪郭線上の2点間の距離の最大値であり、「最大長垂直長」とは最大長となる2点間を結ぶ線分に垂直であって粒子の輪郭線上の2点を結ぶ線分のうち、最も長いものの長さである。
黒鉛材料のアスペクト比は、例えば、フロー式粒子像分析装置を用いて測定することができる。フロー式粒子像分析装置としては、シスメックス株式会社の「FPIA−3000」等が挙げられる。An aspect ratio can be mentioned as an index showing the degree of spheroidization of the graphite material. In the present specification, the aspect ratio of the graphite material is a value obtained by "maximum length vertical length / maximum length", and the maximum value is 1. Here, the "maximum length" is the maximum value of the distance between two points on the contour line of the particles of the graphite material, and the "maximum length vertical length" is perpendicular to the line segment connecting the two points having the maximum length. It is the length of the longest line segment connecting two points on the contour line of the particle.
The aspect ratio of the graphite material can be measured using, for example, a flow-type particle image analyzer. Examples of the flow type particle image analyzer include "FPIA-3000" manufactured by Sysmex Corporation.
第一の炭素相となる黒鉛材料は、平均アスペクト比が0.1以上であることが好ましく、0.3以上であることがより好ましい。黒鉛材料の平均アスペクト比が0.1以上であると、黒鉛材料中の鱗片状黒鉛の割合が多すぎず、黒鉛材料のエッジ面の量を適切な範囲内に抑えることができる。エッジ面はベイサル面に比べて活性であることから、核材に炭素前駆体としての有機化合物を付着させる工程において、有機化合物がエッジ面により多く付着することが懸念されるが、平均アスペクト比が0.1以上であれば、有機化合物がより均等に核材に付着する傾向にある。その結果、得られる炭素材料における低結晶炭素と結晶炭素の分布がより均等になる傾向にある。 The graphite material serving as the first carbon phase preferably has an average aspect ratio of 0.1 or more, and more preferably 0.3 or more. When the average aspect ratio of the graphite material is 0.1 or more, the proportion of scaly graphite in the graphite material is not too large, and the amount of the edge surface of the graphite material can be suppressed within an appropriate range. Since the edge surface is more active than the basal surface, there is a concern that more organic compounds will be attached to the edge surface in the step of attaching the organic compound as a carbon precursor to the core material, but the average aspect ratio is high. If it is 0.1 or more, the organic compound tends to adhere to the core material more evenly. As a result, the distribution of low crystalline carbon and crystalline carbon in the obtained carbon material tends to be more even.
負極材は、炭素材料に加え、必要に応じてその他の成分を含んでもよい。例えば、金属成分を含んでもよい。
金属成分としては、高容量化のため必要に応じて、Al、Si、Ga、Ge、In、Sn、Sb、Ag等のリチウムと合金化する元素からなる金属の粉末、Al、Si、Ga、Ge、In、Sn、Sb、Ag等のリチウムと合金化する元素を少なくとも含む多元系合金の粉末、リチウム合金の粉末などが挙げられる。金属成分は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。また、負極材が金属成分を含む場合、金属成分は炭素材料とは別に添加されても、炭素材料と複合化した状態で添加されてもよい。The negative electrode material may contain other components in addition to the carbon material, if necessary. For example, it may contain a metal component.
As the metal component, if necessary for increasing the capacity, a metal powder composed of an element alloying with lithium such as Al, Si, Ga, Ge, In, Sn, Sb, Ag, Al, Si, Ga, etc. Examples thereof include powders of multi-element alloys containing at least elements that alloy with lithium such as Ge, In, Sn, Sb, and Ag, and powders of lithium alloys. As the metal component, one type may be used alone, or two or more types may be used in combination. When the negative electrode material contains a metal component, the metal component may be added separately from the carbon material or may be added in a state of being composited with the carbon material.
負極材が炭素材料に加えて金属成分を含む場合、炭素材料のみを含む場合に比べて負極材全体のタップ密度が増大する傾向にある。例えば、負極材全体のタップ密度を0.3g/cm3〜3.0g/cm3とすることができる。負極材のタップ密度が大きいと、充放電反応が促進され負極抵抗が減少し、良好な入出力特性が得られる傾向にある。When the negative electrode material contains a metal component in addition to the carbon material, the tap density of the entire negative electrode material tends to increase as compared with the case where the negative electrode material contains only the carbon material. For example, it is possible to a tap density of the entire negative electrode material and 0.3g / cm 3 ~3.0g / cm 3 . When the tap density of the negative electrode material is large, the charge / discharge reaction is promoted, the negative electrode resistance is reduced, and good input / output characteristics tend to be obtained.
負極材が炭素材料に加えて金属成分を含む場合、その量は特に制限されない。例えば、負極材全体の1質量%〜50質量%となる量であってよい。 When the negative electrode material contains a metal component in addition to the carbon material, the amount thereof is not particularly limited. For example, the amount may be 1% by mass to 50% by mass of the entire negative electrode material.
<リチウムイオン二次電池用負極材(2)>
本実施形態のリチウムイオン二次電池用負極材は、X線回折法より求めた平均面間隔d002が0.335nm〜0.339nmであり、ラマン分光測定のR値が0.1〜1.0であり、かつ下記(1)及び(2)を満たす炭素材料を含む。
(1)個数基準の粒度分布において、差分の相対粒子量q0が最頻値となるときの粒子径が11.601μm以下である。
(2)個数基準の粒度分布において、粒子径11.601μmのときの差分の相対粒子量q0Aと、粒子径7.806μmのときの差分の相対粒子量q0Bとの比(q0A/q0B)が1.20〜3.00である。<Negative electrode material for lithium ion secondary battery (2)>
In the negative electrode material for a lithium ion secondary battery of the present embodiment, the average surface spacing d 002 determined by the X-ray diffraction method is 0.335 nm to 0.339 nm, and the R value of Raman spectroscopy measurement is 0.1 to 1. It contains a carbon material that is 0 and satisfies the following (1) and (2).
(1) In the number-based particle size distribution, the particle size when the relative particle amount q0 of the difference is the mode is 11.601 μm or less.
(2) In the particle size distribution based on the number, the ratio (q0A / q0B) of the difference relative particle amount q0A when the particle size is 11.601 μm and the difference relative particle amount q0B when the particle size is 7.806 μm is 1. It is .20 to 3.00.
本実施形態の負極材において、各条件の詳細及び好ましい態様は、上述した実施形態の負極材に関する記載を参照することができる。 In the negative electrode material of the present embodiment, the details of each condition and the preferred embodiment can be referred to the above-described description of the negative electrode material of the embodiment.
<リチウムイオン二次電池用負極材(3)>
本実施形態のリチウムイオン二次電池用負極材は、X線回折法により求めた平均面間隔d002が0.335nm〜0.339nmであり、核となる第一の炭素相と、前記第一の炭素相の表面の少なくとも一部に配置される第一の炭素相とは異なる第二の炭素相と、を含み、かつ下記(1)及び(2)を満たす炭素材料を含む。
(1)個数基準の粒度分布において、差分の相対粒子量q0が最頻値となるときの粒子径が11.601μm以下である。
(2)個数基準の粒度分布において、粒子径11.601μmのときの差分の相対粒子量q0Aと、粒子径7.806μmのときの差分の相対粒子量q0Bとの比(q0A/q0B)が1.20〜3.00である。<Negative electrode material for lithium ion secondary battery (3)>
The negative electrode material for a lithium ion secondary battery of the present embodiment has an average surface spacing d 002 determined by an X-ray diffraction method of 0.335 nm to 0.339 nm, and has a first carbon phase as a core and the first carbon phase. A second carbon phase different from the first carbon phase arranged on at least a part of the surface of the carbon phase of the above, and a carbon material satisfying the following (1) and (2).
(1) In the number-based particle size distribution, the particle size when the relative particle amount q0 of the difference is the mode is 11.601 μm or less.
(2) In the particle size distribution based on the number, the ratio (q0A / q0B) of the difference relative particle amount q0A when the particle size is 11.601 μm and the difference relative particle amount q0B when the particle size is 7.806 μm is 1. It is .20 to 3.00.
本実施形態の負極材において、各条件の詳細及び好ましい態様は、上述した実施形態の負極材に関する記載を参照することができる。 In the negative electrode material of the present embodiment, the details of each condition and the preferred embodiment can be referred to the above-described description of the negative electrode material of the embodiment.
<負極材の製造方法>
本実施形態の負極材の製造方法に特に制限はなく、負極材の製造に通常用いられている方法を採用することができる。<Manufacturing method of negative electrode material>
The method for producing the negative electrode material of the present embodiment is not particularly limited, and a method usually used for producing the negative electrode material can be adopted.
炭素材料が、核となる第一の炭素相と、その表面の少なくとも一部に配置される第二の炭素相とを含む複合材料である場合、その製造方法としては、例えば、炭素前駆体となる有機化合物を第一の炭素相となる核材の表面に付着させた後、750℃〜1200℃の不活性雰囲気中で焼成して炭素前駆体を炭素化する方法が挙げられる。炭素前駆体として用いる有機化合物としては、炭素前駆体の例として上述した有機化合物が挙げられる。 When the carbon material is a composite material containing a first carbon phase as a core and a second carbon phase arranged on at least a part of the surface thereof, a method for producing the carbon material is, for example, a carbon precursor. After adhering the organic compound to the surface of the core material to be the first carbon phase, a method of carbonizing the carbon precursor by firing in an inert atmosphere at 750 ° C. to 1200 ° C. can be mentioned. Examples of the organic compound used as the carbon precursor include the above-mentioned organic compounds as an example of the carbon precursor.
第一の炭素相の表面に炭素前駆体を付着させる方法は、特に制限されない。例えば、炭素前駆体を溶媒に溶解又は分散させた液体に第一の炭素相となる核材を混合した後に溶媒を除去する湿式方式、核材と炭素前駆体をそれぞれ固体の状態で混合して得た混合物に力学的エネルギーを加えることで付着させる乾式方式、CVD法等の気相方式などが挙げられる。炭素材料の比表面積の制御の観点からは、乾式方式により行うことが好ましい。 The method of adhering the carbon precursor to the surface of the first carbon phase is not particularly limited. For example, a wet method in which a core material to be the first carbon phase is mixed with a liquid in which a carbon precursor is dissolved or dispersed in a solvent and then the solvent is removed, the core material and the carbon precursor are mixed in a solid state. Examples thereof include a dry method in which the obtained mixture is adhered by applying mechanical energy, a vapor phase method such as a CVD method, and the like. From the viewpoint of controlling the specific surface area of the carbon material, it is preferable to use the dry method.
乾式方法により第一の炭素相の表面に炭素前駆体を付着させる方法は、特に制限されない。例えば、第一の炭素と炭素前駆体の混合物を、内容物の混合及び撹拌の少なくとも一方が可能な構造を有する容器中に充填し、力学的エネルギーを加えつつ混合及び撹拌の少なくとも一方を行うことによって付着させることができる。具体的には、例えば、羽、スクリュー等の装置を備えた容器を用いて行うことができる。混合物に加える力学的エネルギーの大きさは、特に制限されない。例えば、0.360kJ/kg〜36000kJ/kgであることが好ましく、0.360kJ/kg〜7200kJ/kgであることがより好ましく、2.50kJ/kg〜2000kJ/kgであることがさらに好ましい。 The method of adhering the carbon precursor to the surface of the first carbon phase by the dry method is not particularly limited. For example, a mixture of the first carbon and a carbon precursor is filled in a container having a structure capable of at least one of mixing and stirring of the contents, and at least one of mixing and stirring is performed while applying mechanical energy. Can be attached by. Specifically, for example, it can be carried out using a container equipped with a device such as a wing or a screw. The amount of mechanical energy applied to the mixture is not particularly limited. For example, it is preferably 0.360 kJ / kg to 36000 kJ / kg, more preferably 0.360 kJ / kg to 7200 kJ / kg, and even more preferably 2.50 kJ / kg to 2000 kJ / kg.
ここで混合物に加える力学的エネルギーとは、負荷(kW)に時間(h)を乗じて得た値を、充填した混合物の質量(kg)で除して得た値である。混合物に加える力学的エネルギーを上記範囲とすることで、第一の炭素の表面に炭素前駆体がより均等に付着し、得られる炭素材料における低結晶炭素と結晶性炭素の分布がより均等になる傾向にある。 Here, the mechanical energy applied to the mixture is a value obtained by multiplying the load (kW) by the time (h) and dividing by the mass (kg) of the packed mixture. By setting the mechanical energy applied to the mixture in the above range, the carbon precursor adheres more evenly to the surface of the first carbon, and the distribution of low crystalline carbon and crystalline carbon in the obtained carbon material becomes more even. There is a tendency.
第一の炭素相の表面に炭素前駆体を付着させた後の状態のもの(中間製造物)は、さらに加熱焼成される。焼成温度は、炭素前駆体が炭素化しうる温度であれば特に制限されない。例えば、750℃〜2000℃であることが好ましく、800℃〜1800℃であることがより好ましく、900℃〜1400℃であることがさらに好ましい。焼成温度が750℃以上であると、リチウムイオン二次電池の充放電効率、入出力特性及びサイクル特性が良好に維持される傾向にあり、焼成温度が2000℃以下であると、低結晶性炭素部分の結晶性が高くなりすぎることが抑制される傾向にある。その結果、急速充電特性、低温充電特性、過充電安全性等の特性が良好に維持される傾向にある。焼成時の雰囲気は、中間製造物が酸化し難い雰囲気であれば特に制限されない。例えば、窒素ガス雰囲気、アルゴンガス雰囲気、自己分解ガス雰囲気等が適用できる。焼成に使用する炉の形式は、特に制限されない。例えば、電気及びガスの少なくとも一方を熱源としたバッチ炉、連続炉等が好ましい。 The state after the carbon precursor is attached to the surface of the first carbon phase (intermediate product) is further heated and fired. The firing temperature is not particularly limited as long as the carbon precursor can be carbonized. For example, it is preferably 750 ° C. to 2000 ° C., more preferably 800 ° C. to 1800 ° C., and even more preferably 900 ° C. to 1400 ° C. When the firing temperature is 750 ° C. or higher, the charge / discharge efficiency, input / discharge characteristics, and cycle characteristics of the lithium ion secondary battery tend to be maintained well, and when the firing temperature is 2000 ° C. or lower, low crystalline carbon. It tends to be suppressed that the crystallinity of the portion becomes too high. As a result, characteristics such as quick charge characteristics, low temperature charge characteristics, and overcharge safety tend to be maintained satisfactorily. The atmosphere at the time of firing is not particularly limited as long as the intermediate product has an atmosphere in which it is difficult to oxidize. For example, a nitrogen gas atmosphere, an argon gas atmosphere, a self-decomposing gas atmosphere, or the like can be applied. The type of furnace used for firing is not particularly limited. For example, a batch furnace, a continuous furnace, or the like using at least one of electricity and gas as a heat source is preferable.
<リチウムイオン二次電池用負極>
本実施形態のリチウムイオン二次電池用負極は、上述した負極材を含む負極材層と、集電体と、を含む。これにより、高い充放電効率を維持しながら、入出力特性と寿命特性にも優れるリチウムイオン二次電池を構成することが可能となる。リチウムイオン二次電池用負極は、上述した負極材を含む負極材層及び集電体の他、必要に応じて他の構成要素を含んでもよい。<Negative electrode for lithium ion secondary battery>
The negative electrode for a lithium ion secondary battery of the present embodiment includes a negative electrode material layer containing the above-mentioned negative electrode material and a current collector. This makes it possible to construct a lithium ion secondary battery having excellent input / output characteristics and life characteristics while maintaining high charge / discharge efficiency. The negative electrode for a lithium ion secondary battery may include, if necessary, other components in addition to the negative electrode material layer and the current collector including the negative electrode material described above.
リチウムイオン二次電池用負極を作製する方法は、特に制限されない。例えば、負極材と有機結着剤を溶剤とともに撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等の分散装置を用いて混練してスラリー状の負極組成物を調製し、これを集電体の表面に付与して負極層を形成する方法、上記と同様にしてペースト状の負極組成物を調製し、シート状、ペレット状等の形状に成形し、これを集電体と一体化する方法などが挙げられる。 The method for producing the negative electrode for a lithium ion secondary battery is not particularly limited. For example, a negative electrode material and an organic binder are kneaded together with a solvent using a disperser such as a stirrer, a ball mill, a super sand mill, or a pressure kneader to prepare a slurry negative electrode composition, which is used as a surface of a current collector. A method of forming a negative electrode layer by applying the solvent to the current collector, a method of preparing a paste-like negative electrode composition in the same manner as described above, forming the negative electrode composition into a sheet shape, a pellet shape, or the like, and integrating the negative electrode composition with the current collector. Can be mentioned.
有機結着剤は、特に限定されない。例えば、スチレン−ブタジエン共重合体、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリフォスファゼン、ポリアクリロニトリル等のイオン導電性の大きな高分子化合物などが挙げられる。(メタ)アクリレートはアクリレートとメタクリレートの少なくとも一方を表す。
負極組成物に含まれる有機系結着剤の量は特に制限されないが、負極材と有機系結着剤の合計100質量部に対して0.5質量部〜20質量部であることが好ましい。The organic binder is not particularly limited. For example, ethylenically unsaturated carboxylic acid esters such as styrene-butadiene copolymers, methyl (meth) acrylates, ethyl (meth) acrylates, butyl (meth) acrylates, (meth) acrylonitrile, and hydroxyethyl (meth) acrylates, acrylic acids. , Esteric unsaturated carboxylic acids such as methacrylic acid, itaconic acid, fumaric acid, maleic acid, polyvinylidene fluoride, polyethylene oxide, polyepicrohydrin, polyphosphazene, polyacrylonitrile and other polymer compounds with high ionic conductivity. And so on. (Meta) acrylate represents at least one of acrylate and methacrylate.
The amount of the organic binder contained in the negative electrode composition is not particularly limited, but is preferably 0.5 parts by mass to 20 parts by mass with respect to 100 parts by mass in total of the negative electrode material and the organic binder.
負極組成物は、粘度を調整するための増粘剤を含んでもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。 The negative electrode composition may contain a thickener for adjusting the viscosity. Examples of the thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, casein and the like.
負極組成物は、導電補助材を含んでもよい。導電補助材としては、例えば、カーボンブラック、グラファイト、アセチレンブラック等の炭素材料のほか、導電性を示す酸化物、窒化物等が挙げられる。導電補助剤の量は特に制限されないが、負極材100質量部に対して0.5質量%〜15質量%程度であってもよい。 The negative electrode composition may include a conductive auxiliary material. Examples of the conductive auxiliary material include carbon materials such as carbon black, graphite, and acetylene black, as well as oxides and nitrides exhibiting conductivity. The amount of the conductive auxiliary agent is not particularly limited, but may be about 0.5% by mass to 15% by mass with respect to 100 parts by mass of the negative electrode material.
集電体の材質及び形状は、特に制限されない。例えば、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等の金属材料を、箔状、穴開け箔状、メッシュ状等にしたものが挙げられる。さらには、ポーラスメタル(発泡メタル)等の多孔性材料、カーボンペーパーなども使用可能である。 The material and shape of the current collector are not particularly limited. For example, a metal material such as aluminum, copper, nickel, titanium, stainless steel, etc., which is formed into a foil shape, a perforated foil shape, a mesh shape, or the like can be mentioned. Furthermore, porous materials such as porous metal (foamed metal), carbon paper, and the like can also be used.
負極組成物を集電体に付与する方法は、特に限定されない。例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、コンマコート法、グラビアコート法、スクリーン印刷法等の塗布方法が挙げられる。負極組成物を集電体に付与した後は、負極組成物に含まれる溶剤を除去するために、熱風乾燥機、赤外線乾燥機又はこれらを組み合わせた乾燥機により乾燥させる。さらに必要に応じて平板プレス、カレンダーロール等による圧延処理を行う。 The method of applying the negative electrode composition to the current collector is not particularly limited. Examples thereof include coating methods such as a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a comma coating method, a gravure coating method, and a screen printing method. After the negative electrode composition is applied to the current collector, it is dried by a hot air dryer, an infrared dryer, or a dryer combining these in order to remove the solvent contained in the negative electrode composition. Further, if necessary, rolling processing is performed by a flat plate press, a calendar roll, or the like.
負極材組成物をシート状、ペレット状等の形状に成形し、これを集電体と一体化する方法は、特に制限されない。例えば、ロール、プレス又はこれらの組み合わせを用いて公知の方法により行うことができる。一体化する際の圧力は、1MPa〜200MPa程度が好ましい。 The method of molding the negative electrode material composition into a sheet shape, a pellet shape, or the like and integrating the negative electrode material composition with the current collector is not particularly limited. For example, it can be carried out by a known method using a roll, a press or a combination thereof. The pressure at the time of integration is preferably about 1 MPa to 200 MPa.
リチウムイオン二次電池用負極の負極密度は、1.3g/cm3〜1.8g/cm3であることが好ましく、1.4g/cm3〜1.8g/cm3であることがより好ましく、1.5g/cm3〜1.7g/cm3であることがさらに好ましい。負極密度が1.3g/cm3以上であると、抵抗値が低下しにくく容量が高く維持される傾向にあり、1.8g/cm3以下であると、レート特性及びサイクル特性の低下が抑制される傾向にある。The negative electrode density of the lithium-ion secondary battery negative electrode is preferably 1.3g / cm 3 ~1.8g / cm 3 , more preferably from 1.4g / cm 3 ~1.8g / cm 3 , further preferably 1.5g / cm 3 ~1.7g / cm 3 . When the negative electrode density is 1.3 g / cm 3 or more, the resistance value is unlikely to decrease and the capacity tends to be maintained high, and when it is 1.8 g / cm 3 or less, the decrease in rate characteristics and cycle characteristics is suppressed. Tends to be.
<リチウムイオン二次電池>
本実施形態のリチウムイオン二次電池は、上述したリチウムイオン二次電池用負極と、正極と、電解質と、を含む。リチウムイオン二次電池は、例えば、リチウムイオン二次電池用負極と正極とをセパレータを介して対向するように容器内に配置し、電解質を溶媒に溶解して調製した電解液を容器内に注入することにより得ることができる。<Lithium-ion secondary battery>
The lithium ion secondary battery of the present embodiment includes the above-mentioned negative electrode for a lithium ion secondary battery, a positive electrode, and an electrolyte. In the lithium ion secondary battery, for example, a negative electrode and a positive electrode for a lithium ion secondary battery are arranged in a container so as to face each other via a separator, and an electrolytic solution prepared by dissolving an electrolyte in a solvent is injected into the container. Can be obtained by doing.
正極は、前記負極と同様にして、集電体の表面に正極材料を付与して正極層を形成することで得ることができる。集電体としては、アルミニウム、チタン、ステンレス鋼等の金属材料を箔状、穴開け箔状、メッシュ状等にした帯状のものを用いることができる。 The positive electrode can be obtained by applying a positive electrode material to the surface of the current collector to form a positive electrode layer in the same manner as the negative electrode. As the current collector, a strip-shaped current collector obtained by forming a metal material such as aluminum, titanium, or stainless steel into a foil shape, a perforated foil shape, a mesh shape, or the like can be used.
正極に用いる材料は、特に制限されない。例えば、リチウムイオンをドーピング又はインターカレーション可能な金属化合物、金属酸化物、金属硫化物、リン酸化合物等の正極活物質及びその他の材料が挙げられる。
正極活物質としては、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2)、コバルト酸リチウムにおいてコバルトの少なくとも一部がニッケル及びマンガンの少なくとも一方で置換された複酸化物(LiCoxNiyMnzO2、x+y+z=1)、これらの化合物においてコバルト、ニッケル及びマンガンの少なくとも一部が添加元素M’で置換された複酸化物(LiCoaNibMncM’dO2、a+b+c+d=1、M’:Al、Mg、Ti、Zr又はGe)、リチウムマンガンスピネル(LiMn2O4)、リチウムバナジウム化合物、V2O5、V6O13、VO2、MnO2、TiO2、MoV2O8、TiS2、V2S5、VS2、MoS2、MoS3、Cr3O8、Cr2O5、及びオリビン型LiMPO4(M:Co、Ni、Mn、Fe)が挙げられる。
その他の材料としては、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素などが挙げられる。The material used for the positive electrode is not particularly limited. For example, positive electrode active materials such as metal compounds capable of doping or intercalating lithium ions, metal oxides, metal sulfides, and phosphate compounds, and other materials can be mentioned.
As the positive electrode active material, at least a part of cobalt was replaced with at least one of nickel and manganese in lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMnO 2), and lithium cobalt oxide. composite oxide (LiCo x Ni y Mn z O 2, x + y + z = 1), mixed oxide of cobalt in these compounds, at least a part of nickel and manganese is substituted with additional element M '(LiCo a Ni b Mn c M'd O 2 , a + b + c + d = 1, M': Al, Mg, Ti, Zr or Ge), lithium manganese spinel (LiMn 2 O 4 ), lithium vanadium compound, V 2 O 5 , V 6 O 13 , VO 2 , MnO 2 , TiO 2 , MoV 2 O 8 , TiS 2 , V 2 S 5 , VS 2 , MoS 2 , MoS 3 , Cr 3 O 8 , Cr 2 O 5 , and Olivin type LiMPO 4 (M: Co, Ni) , Mn, Fe).
Examples of other materials include conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, and polyacene, and porous carbon.
セパレータとしては、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はこれらを組み合わせたものが挙げられる。なお、リチウムイオン二次電池の構造上、正極と負極が接触しない場合は、セパレータを省略してもよい。 Examples of the separator include non-woven fabrics mainly composed of polyolefins such as polyethylene and polypropylene, cloths, micropore films, and combinations thereof. If the positive electrode and the negative electrode do not come into contact with each other due to the structure of the lithium ion secondary battery, the separator may be omitted.
電解質としては、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3等のリチウム塩が挙げられる。
電解質を溶解する溶媒としては、エチレンカーボネート、フルオロエチレンカーボネート、クロロエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、シクロペンタノン、シクロヘキシルベンゼン、スルホラン、プロパンスルトン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3−オキサゾリジン−2−オン、γ−ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル、トリメチルリン酸エステル、トリエチルリン酸エステル等の非水系溶媒が挙げられる。Examples of the electrolyte include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , and LiSO 3 CF 3.
Solvents that dissolve the electrolyte include ethylene carbonate, fluoroethylene carbonate, chloroethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, cyclohexylbenzene, sulfolane, propanesulton, 3-methylsulfolane, and 2,4-dimethyl. Sulfolane, 3-methyl-1,3-oxazolidine-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl carbonate, Examples thereof include non-aqueous solvents such as 1,2-dimethoxyethane, tetrahydrofuran, 2-methyl tetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate, trimethylphosphate and triethylphosphate.
リチウムイオン二次電池における電極の構成は、特に限定されない。一般的には、正極及び負極と、必要に応じて正極と負極の間に設けられるセパレータとを重ねたものを、渦巻状に巻回した状態のもの(巻回式極板群)及び渦巻状に巻回しない板状のもの(積層式極板群)が挙げられる。 The configuration of the electrodes in the lithium ion secondary battery is not particularly limited. In general, a pile of a positive electrode and a negative electrode and a separator provided between the positive electrode and the negative electrode, if necessary, wound in a spiral shape (swirl type electrode plate group) and a spiral shape. Examples include plate-shaped ones (laminated electrode plate group) that are not wound around.
リチウムイオン二次電池の種類は、特に限定されない。例えば、ラミネート型電池、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池等が挙げられる。 The type of lithium ion secondary battery is not particularly limited. Examples thereof include laminated batteries, paper batteries, button batteries, coin batteries, laminated batteries, cylindrical batteries, square batteries and the like.
本実施形態の負極材は、充放電での入出力特性と寿命特性に優れているため、電気自動車、パワーツール、電力貯蔵用等の比較的大容量であることが要求されるリチウムイオン二次電池に好適に用いられる。中でも、電気自動車(EV)、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)等の自動車用途では、加速性能及びブレーキ回生性能を向上させるため大電流での充放電が求められており、このような要求を満足する上で、入出力特性に優れる本実施形態の負極材を用いることが望ましい。 Since the negative electrode material of the present embodiment has excellent input / output characteristics and life characteristics during charging and discharging, a lithium ion secondary material that is required to have a relatively large capacity for electric vehicles, power tools, power storage, etc. Suitable for batteries. In particular, in automobile applications such as electric vehicles (EV), hybrid electric vehicles (HEV), and plug-in hybrid electric vehicles (PHEV), charging and discharging with a large current is required to improve acceleration performance and brake regeneration performance. In order to satisfy such requirements, it is desirable to use the negative electrode material of the present embodiment having excellent input / output characteristics.
以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
[実施例1]
体積平均粒子径が10μmの球状天然黒鉛(d002=0.336nm、平均アスペクト比=0.8)100質量部と、コールタールピッチ(軟化点98℃、残炭率(炭化率)50%)5質量部とを混合して得た混合物を、回転翼を配置したシリンダー内に入れ、シリンダーの内壁と回転翼の間で擦り合わせることにより、球状天然黒鉛の表面にコールタールピッチを付着させた。擦り合わせの工程は24kWの負荷で5分間行った(負荷:1800kJ/kg)。次いで窒素流通下、20℃/時間の昇温速度で1000℃まで昇温し、1時間保持してコールタールピッチを炭素化した。その後、カッターミルで解砕し、300メッシュ篩で篩分けを行い、その篩下を複合材料1として得た。[Example 1]
100 parts by mass of spherical natural graphite (d 002 = 0.336 nm, average aspect ratio = 0.8) with a volume average particle diameter of 10 μm and coal tar pitch (softening point 98 ° C., residual carbonization rate (carbonization rate) 50%) A mixture obtained by mixing 5 parts by mass was placed in a cylinder in which a rotary blade was arranged and rubbed between the inner wall of the cylinder and the rotary blade to adhere a coal tar pitch to the surface of spherical natural graphite. .. The rubbing step was carried out at a load of 24 kW for 5 minutes (load: 1800 kJ / kg). Next, the temperature was raised to 1000 ° C. at a heating rate of 20 ° C./hour under nitrogen flow, and the temperature was maintained for 1 hour to carbonize the coal tar pitch. Then, it was crushed with a cutter mill, sieved with a 300 mesh sieve, and the under-sieve was obtained as composite material 1.
体積平均粒子径が10μmの球状天然黒鉛の代わりに体積平均粒子径が16μmの球状天然黒鉛(d002=0.336nm、平均アスペクト比=0.8)100質量部を用いた以外は複合材料1と同様にして、複合材料2を得た。 Composite material 1 except that 100 parts by mass of spherical natural graphite (d 002 = 0.336 nm, average aspect ratio = 0.8) having a volume average particle diameter of 16 μm was used instead of spherical natural graphite having a volume average particle diameter of 10 μm. The composite material 2 was obtained in the same manner as in the above.
複合材料1と複合材料2を質量比が5:5(複合材料1:複合材料2)となるように混合して、炭素材料を作製した。得られた炭素材料について、下記に示す方法により、XRD解析、比表面積測定、粒度分布測定、タップ密度測定、及びペレット密度測定を行った。 The composite material 1 and the composite material 2 were mixed so as to have a mass ratio of 5: 5 (composite material 1: composite material 2) to prepare a carbon material. The obtained carbon material was subjected to XRD analysis, specific surface area measurement, particle size distribution measurement, tap density measurement, and pellet density measurement by the methods shown below.
[XRD解析(平均面間隔d002の測定)]
炭素材料を石英製の試料ホルダーの凹部分に充填し、測定ステージにセットした。以下の測定条件において広角X線回折装置(株式会社リガク製)で測定を行った。
線源:CuKα線(波長=0.15418nm)
出力:40kV、20mA
サンプリング幅:0.010°
走査範囲:10°〜35°
スキャンスピード:0.5°/min[XRD analysis (measurement of average surface spacing d 002)]
The carbon material was filled in the concave portion of the quartz sample holder and set on the measurement stage. The measurement was performed with a wide-angle X-ray diffractometer (manufactured by Rigaku Co., Ltd.) under the following measurement conditions.
Radioactive source: CuKα ray (wavelength = 0.15418 nm)
Output: 40kV, 20mA
Sampling width: 0.010 °
Scanning range: 10 ° to 35 °
Scan speed: 0.5 ° / min
[N2比表面積測定]
炭素材料について、高速比表面積/細孔分布測定装置(MICROMERITICS社の「ASAP2010」)を用いて液体窒素温度(77K)での窒素吸着を多点法で測定し、BET法(相対圧範囲:0.05〜0.2)より算出した。 [N 2 specific surface area measurement]
For carbon materials, nitrogen adsorption at liquid nitrogen temperature (77K) was measured by the multipoint method using a high-speed specific surface area / pore distribution measuring device (MICROMERITICS'ASAP2010'), and the BET method (relative pressure range: 0). It was calculated from .05-0.2).
[粒度分布測定]
炭素材料を界面活性剤と共に精製水中に分散させた溶液を、レーザー回折式粒度分布測定装置(株式会社島津製作所の「SALD−3000J」)の試料水槽に入れ、ポンプで循環させながら1分間超音波をかけて、以下の測定条件においてレーザー回折式で測定した。この際、出力条件を個数又は体積基準に設定して下記(1)〜(5)に該当する値を調べた。[Measurement of particle size distribution]
A solution in which a carbon material is dispersed in purified water together with a surfactant is placed in a sample water tank of a laser diffraction type particle size distribution measuring device (“SALD-3000J” manufactured by Shimadzu Corporation) and circulated by a pump for 1 minute. Was measured by a laser diffraction method under the following measurement conditions. At this time, the output conditions were set based on the number or volume, and the values corresponding to the following (1) to (5) were examined.
(測定条件の設定)
測定回数:1回
測定間隔:2秒
平均回数:64回
測定吸光度範囲:0.01〜0.2
(任意粒子径・%テーブル設定)
範囲:0.1〜2000μm
分割数:50(Setting of measurement conditions)
Number of measurements: 1 measurement interval: 2 seconds Average number of measurements: 64 measurements Absorbance range: 0.01 to 0.2
(Arbitrary particle size /% table setting)
Range: 0.1-2000 μm
Number of divisions: 50
(1)上記の粒度分布測定において出力条件の分布基準を「個数」として得られた個数基準の粒度分布における、差分の相対粒子量q0が最頻値となるときの粒子径を調べた。 (1) In the particle size distribution based on the number obtained by setting the distribution standard of the output condition as "number" in the above particle size distribution measurement, the particle size when the relative particle amount q0 of the difference became the mode was investigated.
(2)上記の粒度分布測定において出力条件の分布基準を「個数」として得られた個数基準の粒度分布における、粒子径が11.601μmのときの差分の相対粒子量q0Aと、粒子径が7.806μmのときの差分の相対粒子量q0Bとの比(q0A/q0B)を算出した。 (2) In the particle size distribution based on the number obtained by using the distribution standard of the output condition as the "number" in the above particle size distribution measurement, the relative particle amount q0A of the difference when the particle size is 11.601 μm and the particle size are 7 The ratio (q0A / q0B) of the difference to the relative particle size q0B at .806 μm was calculated.
(3)上記の粒度分布測定において出力条件の分布基準を「体積」として得られた体積基準の粒度分布において、小粒子径側から体積累積分布曲線を描いた場合に、粒子径が9.516μmのときの積算値Q3を調べた。 (3) In the volume-based particle size distribution obtained by setting the distribution standard of the output condition as "volume" in the above particle size distribution measurement, the particle size is 9.516 μm when the volume cumulative distribution curve is drawn from the small particle size side. The integrated value Q3 at the time of was examined.
(4)上記の粒度分布測定において出力条件の分布基準を「体積」として得られた体積基準の粒度分布において、小粒子径側から体積累積分布曲線を描いた場合に、累積が50%となるときの粒子径(50%D)を調べた。 (4) In the volume-based particle size distribution obtained by setting the distribution standard of the output condition as "volume" in the above particle size distribution measurement, the cumulative volume is 50% when the volume cumulative distribution curve is drawn from the small particle size side. The particle size (50% D) at that time was examined.
(5)上記の粒度分布測定において出力条件の分布基準を「体積」として得られた体積基準の粒度分布において、小粒子径側から体積累積分布曲線を描いた場合に、累積が99.9%となるときの粒子径(99.9%D)を調べた。 (5) In the volume-based particle size distribution obtained by setting the distribution standard of the output condition as "volume" in the above particle size distribution measurement, when the volume cumulative distribution curve is drawn from the small particle size side, the accumulation is 99.9%. The particle size (99.9% D) at that time was examined.
[タップ密度測定]
容量100cm3のメスシリンダーに炭素材料100cm3をゆっくり投入し、メスシリンダーに栓をした。このメスシリンダーを5cmの高さから250回落下させた後の炭素材料の質量及び容積から求められる値をタップ密度とした。[Tap density measurement]
The carbon material 100 cm 3 was slowly poured into a graduated cylinder having a capacity of 100 cm 3, and the graduated cylinder was plugged. The value obtained from the mass and volume of the carbon material after dropping the graduated cylinder 250 times from a height of 5 cm was defined as the tap density.
[ペレット密度測定]
13mm径の成型器(Carver社の13mm pellet die 型番3619)に炭素材料1.00gを投入し、油圧プレス機(Carver社の「Carver Standard Press」)にて1.0tの圧力で加圧した後の炭素材料の厚み及び断面積から求められる体積を炭素材料の質量で除した値をペレット密度とした。[Pellet density measurement]
After putting 1.00 g of carbon material into a 13 mm diameter molding machine (Carver's 13 mm volume die model number 3619) and pressurizing it with a hydraulic press (Carver's "Carver Standard Press") at a pressure of 1.0 t. The value obtained by dividing the volume obtained from the thickness and cross-sectional area of the carbon material by the mass of the carbon material was defined as the pellet density.
[平均アスペクト比]
炭素材料の平均アスペクト比は、フロー式粒子像分析装置(シスメックス株式会社の「FPIA−3000」)を用いて求めた。[Average aspect ratio]
The average aspect ratio of the carbon material was determined using a flow-type particle image analyzer (“FPIA-3000” of Sysmex Corporation).
[初回充放電効率の測定]
作製した炭素材料98質量部に対し、増粘剤としてCMC(カルボキシメチルセルロース、第一工業製薬株式会社の「セロゲンWS−C」)の濃度が2質量%の水溶液をCMCの固形分で1質量部となるように加え、10分間混練を行った。次いで、混練物中の固形分濃度(負極材とCMCの合計)が40質量%〜50質量%となるように精製水を加え、10分間混練を行った。次いで、結着剤としてSBR(日本ゼオン株式会社の「BM−400B」)の濃度が40質量%の水分散液をSBRの固形分で1質量部となるように加え、10分間混合してペースト状の負極材組成物を作製した。この負極材組成物を厚さ40μmの電解銅箔に厚さ200μmのマスクを用いて直径9.5mmの円形となるよう塗布した。さらに、105℃で乾燥して水分を除去し、試料電極(負極)を作製した。[Measurement of initial charge / discharge efficiency]
1 part by mass of an aqueous solution containing 2% by mass of CMC (carboxymethyl cellulose, "Cerogen WS-C" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) as a thickener with respect to 98 parts by mass of the produced carbon material. And kneaded for 10 minutes. Next, purified water was added so that the solid content concentration in the kneaded product (total of the negative electrode material and the CMC) was 40% by mass to 50% by mass, and kneading was performed for 10 minutes. Next, as a binder, an aqueous dispersion having a concentration of SBR (“BM-400B” of Nippon Zeon Corporation) of 40% by mass was added so as to make up 1 part by mass of the solid content of SBR, and mixed for 10 minutes to paste. A negative electrode material composition in the form of a shape was prepared. This negative electrode material composition was applied to an electrolytic copper foil having a thickness of 40 μm using a mask having a thickness of 200 μm so as to form a circle having a diameter of 9.5 mm. Further, it was dried at 105 ° C. to remove water to prepare a sample electrode (negative electrode).
次いで、上記試料電極、セパレータ、対極の順に積層したものを電池容器に入れ、エチレンカーボネート(EC)及びメチルエチルカーボネート(MEC)(ECとMECは体積比で1:3)の混合溶媒にLiPF6を1.5モル/リットルの濃度になるように溶解した電解液を注入し、コイン電池を作製した。対極には金属リチウムを使用し、セパレータには厚さ20μmのポリエチレン微孔膜を使用した。 Next, the sample electrode, the separator, and the counter electrode stacked in this order are placed in a battery container, and LiPF 6 is added to a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) (EC and MEC have a volume ratio of 1: 3). Was injected to a concentration of 1.5 mol / liter, and a coin battery was prepared. Metallic lithium was used for the counter electrode, and a polyethylene micropore membrane having a thickness of 20 μm was used for the separator.
得られたコイン電池の試料電極と対極の間に、0.2mA/cm2の定電流で0V(Vvs.Li/Li+)まで充電し、次いで0Vの定電圧で電流が0.02mAになるまで充電した。次に30分の休止時間後に0.2mA/cm2の定電流で2.5V(Vvs.Li/Li+)まで放電する1サイクル試験を行い、初回充放電効率を測定した。初回充放電効率(%)は、(放電容量)/(充電容量)×100として算出した。ここでは、負極材の試料電極にリチウムイオンが吸蔵される場合を充電、逆に試料電極からリチウムイオンが放出される場合を放電とした。Between the sample electrode of the obtained coin battery and the counter electrode, it is charged to 0 V (Vvs. Li / Li + ) with a constant current of 0.2 mA / cm 2 , and then the current becomes 0.02 mA at a constant voltage of 0 V. Charged up to. Next, a one-cycle test was conducted in which the battery was discharged to 2.5 V (Vvs. Li / Li + ) at a constant current of 0.2 mA / cm 2 after a 30-minute rest period, and the initial charge / discharge efficiency was measured. The initial charge / discharge efficiency (%) was calculated as (discharge capacity) / (charge capacity) × 100. Here, the case where lithium ions are occluded in the sample electrode of the negative electrode material is regarded as charging, and conversely, the case where lithium ions are released from the sample electrode is regarded as discharging.
[寿命特性の評価]
初回充放電効率の測定に用いた負極材組成物と同様の方法で作製した負極材組成物を、厚さ40μmの電解銅箔に単位面積当りの塗布量が9.0mg/cm2となるようにクリアランスを調整したコンマコーターで塗工した。その後、ハンドプレスで電極密度を1.5g/cm3に調整した。この電極を直径14mmの円盤状に打ち抜き、試料電極(負極)を作製した。この試料電極を用いた以外は初回充放電効率の測定と同様にして、コイン電池を作製した。[Evaluation of life characteristics]
The negative electrode material composition prepared by the same method as the negative electrode material composition used for the measurement of the initial charge / discharge efficiency was applied to an electrolytic copper foil having a thickness of 40 μm so that the coating amount per unit area was 9.0 mg / cm 2. It was coated with a comma coater with adjusted clearance. Then, the electrode density was adjusted to 1.5 g / cm 3 by hand pressing. This electrode was punched into a disk shape having a diameter of 14 mm to prepare a sample electrode (negative electrode). A coin battery was produced in the same manner as in the measurement of the initial charge / discharge efficiency except that this sample electrode was used.
上記で作製したコイン電池を用い、下記手順で寿命特性の評価を行った。
(1)0.48mAの定電流で0V(Vvs.Li/Li+)まで充電し、次いで0Vの定電圧で電流が0.048mAになるまで充電した。
(2)30分の休止時間後に、0.48mAの定電流で1.5V(Vvs.Li/Li+)まで放電する1サイクル試験を行い、放電容量を測定した。
(3)4.8mAの定電流で0V(Vvs.Li/Li+)まで充電し、0Vの定電圧で電流が0.48mAになるまで充電した。
(4)30分の休止時間後に、4.8mAの定電流で1.5V(Vvs.Li/Li+)まで放電した。
(5)上記(3)及び(4)の充放電サイクル試験を50サイクル行った。
上記のサイクルを50サイクル繰り返したときの1サイクル目からの放電容量維持率(=50サイクル目放電容量/1サイクル目放電容量×100)を測定した。放電容量維持率が高いほど、寿命特性に優れていると判断することができる。Using the coin battery produced above, the life characteristics were evaluated by the following procedure.
(1) The battery was charged to 0 V (Vvs. Li / Li +) with a constant current of 0.48 mA, and then charged to a current of 0.048 mA with a constant voltage of 0 V.
(2) After a rest time of 30 minutes, a one-cycle test of discharging to 1.5 V (Vvs. Li / Li +) at a constant current of 0.48 mA was performed, and the discharge capacity was measured.
(3) The battery was charged to 0 V (Vvs. Li / Li +) with a constant current of 4.8 mA, and charged to a current of 0.48 mA with a constant voltage of 0 V.
(4) After a 30-minute rest period, the battery was discharged to 1.5 V (Vvs. Li / Li +) with a constant current of 4.8 mA.
(5) The charge / discharge cycle test of (3) and (4) above was performed for 50 cycles.
When the above cycle was repeated 50 cycles, the discharge capacity retention rate from the first cycle (= 50th cycle discharge capacity / 1st cycle discharge capacity × 100) was measured. It can be determined that the higher the discharge capacity retention rate, the better the life characteristics.
(入出力特性の評価)
寿命特性と同等の方法でコイン電池を作製し、下記手順で入出力特性の評価を行った。
(1)0.96mAの定電流で0V(Vvs.Li/Li+)まで充電し、次いで電流値が0.096mAになるまで0Vで定電圧充電を行った。
(2)30分の休止時間後に、0.96mAの定電流で1.5V(Vvs.Li/Li+)まで放電した。
(3)0.96mAの定電流で容量の半分まで充電を行った。
(4)4.8mA、14.4mA、24mAの電流値で10秒間放電を行い、その際の電圧降下(ΔV)を確認した。それぞれの電流値での試験の間には30分間の休止時間を置いた。
各電流値に対してΔVをプロットし、その傾きを抵抗値(Ω)とした。この値が小さいほど、入出力特性に優れると判断することができる。(Evaluation of input / output characteristics)
A coin battery was manufactured by the same method as the life characteristic, and the input / output characteristics were evaluated by the following procedure.
(1) Charging was performed to 0 V (Vvs. Li / Li +) with a constant current of 0.96 mA, and then constant voltage charging was performed at 0 V until the current value reached 0.096 mA.
(2) After a 30-minute rest period, the battery was discharged to 1.5 V (Vvs. Li / Li +) with a constant current of 0.96 mA.
(3) Charging was performed to half the capacity with a constant current of 0.96 mA.
(4) Discharge was performed for 10 seconds at current values of 4.8 mA, 14.4 mA, and 24 mA, and the voltage drop (ΔV) at that time was confirmed. There was a 30 minute rest period between the tests at each current value.
ΔV was plotted for each current value, and the slope was taken as the resistance value (Ω). It can be judged that the smaller this value is, the better the input / output characteristics are.
[実施例2]
複合材料1と複合材料2を質量比が4:6(複合材料1:複合材料2)となるように混合した以外は実施例1と同様にして炭素材料を作製し、その特性を調べた。また、コイン電池を作製してその性能を評価した。結果を表2に示す。[Example 2]
A carbon material was prepared in the same manner as in Example 1 except that the composite material 1 and the composite material 2 were mixed so as to have a mass ratio of 4: 6 (composite material 1: composite material 2), and their characteristics were examined. In addition, a coin battery was manufactured and its performance was evaluated. The results are shown in Table 2.
[実施例3]
複合材料1と複合材料2を質量比が3:7(複合材料1:複合材料2)となるように混合した以外は実施例1と同様にして炭素材料を作製し、その特性を調べた。また、コイン電池を作製してその性能を評価した。結果を表2に示す。[Example 3]
A carbon material was prepared in the same manner as in Example 1 except that the composite material 1 and the composite material 2 were mixed so as to have a mass ratio of 3: 7 (composite material 1: composite material 2), and their characteristics were examined. In addition, a coin battery was manufactured and its performance was evaluated. The results are shown in Table 2.
[実施例4]
複合材料1と複合材料2を質量比が6:4(複合材料1:複合材料2)となるように混合した以外は実施例1と同様にして炭素材料を作製し、その特性を調べた。また、コイン電池を作製してその性能を評価した。結果を表2に示す。[Example 4]
A carbon material was prepared in the same manner as in Example 1 except that the composite material 1 and the composite material 2 were mixed so as to have a mass ratio of 6: 4 (composite material 1: composite material 2), and their characteristics were examined. In addition, a coin battery was manufactured and its performance was evaluated. The results are shown in Table 2.
[比較例1]
複合材料1と複合材料2を質量比が2:8(複合材料1:複合材料2)となるように混合した以外は実施例1と同様にして炭素材料を作製し、その特性を調べた。また、コイン電池を作製してその性能を評価した。結果を表2に示す。[Comparative Example 1]
A carbon material was prepared in the same manner as in Example 1 except that the composite material 1 and the composite material 2 were mixed so as to have a mass ratio of 2: 8 (composite material 1: composite material 2), and their characteristics were examined. In addition, a coin battery was manufactured and its performance was evaluated. The results are shown in Table 2.
[比較例2]
複合材料2のみを用いた以外は実施例1と同様にして炭素材料を作製し、その特性を調べた。また、コイン電池を作製してその性能を評価した。結果を表2に示す。[Comparative Example 2]
A carbon material was prepared in the same manner as in Example 1 except that only the composite material 2 was used, and its characteristics were examined. In addition, a coin battery was manufactured and its performance was evaluated. The results are shown in Table 2.
[比較例3]
複合材料1のみを用いた以外は実施例1と同様にして炭素材料を作製し、その特性を調べた。また、コイン電池を作製してその性能を評価した。結果を表2に示す。[Comparative Example 3]
A carbon material was prepared in the same manner as in Example 1 except that only the composite material 1 was used, and its characteristics were examined. In addition, a coin battery was manufactured and its performance was evaluated. The results are shown in Table 2.
[比較例4]
体積平均粒子径が10μmの球状天然黒鉛の代わりに体積平均粒子径が22μmの球状天然黒鉛(d002=0.336nm、平均アスペクト比=0.7)100質量部を用いた以外は複合材料1と同様にして、複合材料3を得た。
複合材料3と複合材料2を質量比が5:5(複合材料3:複合材料2)となるように混合した以外は実施例1と同様にして炭素材料を作製し、その特性を調べた。また、コイン電池を作製してその性能を評価した。結果を表2に示す。[Comparative Example 4]
Composite material 1 except that 100 parts by mass of spherical natural graphite (d 002 = 0.336 nm, average aspect ratio = 0.7) having a volume average particle diameter of 22 μm was used instead of spherical natural graphite having a volume average particle diameter of 10 μm. The composite material 3 was obtained in the same manner as in the above.
A carbon material was prepared in the same manner as in Example 1 except that the composite material 3 and the composite material 2 were mixed so as to have a mass ratio of 5: 5 (composite material 3: composite material 2), and their characteristics were examined. In addition, a coin battery was manufactured and its performance was evaluated. The results are shown in Table 2.
[比較例5]
体積平均粒子径が22μmの球状天然黒鉛(d002=0.336nm、平均アスペクト比=0.7)を300メッシュの篩に通し、得られた篩下と複合材料2を質量比が5:5(篩下:複合材料2)となるように混合した以外は実施例1と同様にして炭素材料を作製し、その特性を調べた。また、コイン電池を作製してその性能を評価した。結果を表2に示す。[Comparative Example 5]
Spherical natural graphite (d 002 = 0.336 nm, average aspect ratio = 0.7) having a volume average particle diameter of 22 μm is passed through a 300 mesh sieve, and the obtained sieve and composite material 2 have a mass ratio of 5: 5. A carbon material was prepared in the same manner as in Example 1 except that the mixture was mixed so as to be (under a sieve: composite material 2), and its characteristics were examined. In addition, a coin battery was manufactured and its performance was evaluated. The results are shown in Table 2.
[比較例6]
石炭系コールタールをオートクレーブにより400℃で熱処理し、生コークスを得た。この生コークスを粉砕した後、1200℃の不活性雰囲気中でカ焼を行い、コークス塊を得た。このコークス塊を分級機付きの衝撃粉砕機を用いて平均粒子径15μmに粉砕後、200メッシュの篩に通し、篩下を炭素粒子(d002=0.342nm)として得た。この炭素粒子100質量部とポリビニルアルコール(重合度1700、完全けん化型、炭化率15質量%)20質量部を混合して得た混合物を用いたこと以外は複合材料1と同様にして、複合材料4を得た。
複合材料4と複合材料2を質量比が5:5(複合材料4:複合材料2)となるように混合した以外は実施例1と同様にして炭素材料を作製し、その特性を調べた。また、コイン電池を作製してその性能を評価した。結果を表2に示す。[Comparative Example 6]
Coal-based coal tar was heat-treated at 400 ° C. by autoclave to obtain raw coke. After crushing this raw coke, coke was baked in an inert atmosphere at 1200 ° C. to obtain coke lumps. This coke mass was pulverized to an average particle size of 15 μm using an impact crusher equipped with a classifier, and then passed through a 200 mesh sieve to obtain carbon particles (d 002 = 0.342 nm) under the sieve. The composite material is the same as the composite material 1 except that a mixture obtained by mixing 100 parts by mass of the carbon particles and 20 parts by mass of polyvinyl alcohol (degree of polymerization 1700, fully saponified type, carbonization rate 15% by mass) is used. I got 4.
A carbon material was prepared in the same manner as in Example 1 except that the composite material 4 and the composite material 2 were mixed so as to have a mass ratio of 5: 5 (composite material 4: composite material 2), and their characteristics were examined. In addition, a coin battery was manufactured and its performance was evaluated. The results are shown in Table 2.
[比較例7]
体積平均粒子径10μmの球状天然黒鉛(d002=0.336nm、平均アスペクト比=0.8)と体積平均粒子径16μmの球状天然黒鉛(d002=0.336nm、平均アスペクト比=0.8)を質量比が5:5となるように混合した以外は実施例1と同様にして炭素材料を作製し、その特性を調べた。また、コイン電池を作製してその性能を評価した。結果を表2に示す。[Comparative Example 7]
Spherical natural graphite with a volume average particle diameter of 10 μm (d 002 = 0.336 nm, average aspect ratio = 0.8) and spherical natural graphite with a volume average particle diameter of 16 μm (d 002 = 0.336 nm, average aspect ratio = 0.8) ) Was mixed so as to have a mass ratio of 5: 5, and a carbon material was prepared in the same manner as in Example 1 and its characteristics were examined. In addition, a coin battery was manufactured and its performance was evaluated. The results are shown in Table 2.
[比較例8]
比較例6で作製した炭素粒子(d002=0.342nm)100質量部とコールタールピッチ30質量部と酸化鉄粉末5質量部を250℃で1時間混合した。得られた塊状物をピンミルで粉砕した後、型込みプレスで、密度1.52g/cm3のブロック状に成形加工した。得られたブロックをマッフル炉で最高温度800℃にて焼成したのち、アチソン炉で自己分解ガス雰囲気下、2900℃にて黒鉛化を行った。次いで、黒鉛化したブロックを、ハンマーで粗砕した後、ピンミルで平均粒子径30μmの黒鉛粉末を得た。さらにこの黒鉛粉末を、球形化処理装置(ホソカワミクロン製、ファカルティ)を使用し、粉砕回転数1800回転/分(rpm)、分級回転数7000回転/分(rpm)で10分間の処理を行い、球形化人造黒鉛粉末を作製した。この球形化人造黒鉛粉末を200メッシュの篩に通し、篩下を炭素材料として得た。この炭素材料の特性を実施例1と同様にして調べた。また、コイン電池を作製してその性能を評価した。結果を表2に示す。[Comparative Example 8]
100 parts by mass of carbon particles (d 002 = 0.342 nm) prepared in Comparative Example 6, 30 parts by mass of coal tar pitch, and 5 parts by mass of iron oxide powder were mixed at 250 ° C. for 1 hour. The obtained mass was crushed with a pin mill and then molded into a block having a density of 1.52 g / cm 3 by a die-in press. The obtained block was calcined in a muffle furnace at a maximum temperature of 800 ° C., and then graphitized in an Achison furnace at 2900 ° C. under a self-decomposing gas atmosphere. Then, the graphitized block was roughly crushed with a hammer, and then a graphite powder having an average particle diameter of 30 μm was obtained with a pin mill. Further, this graphite powder is processed for 10 minutes at a crushing rotation speed of 1800 rotations / minute (rpm) and a classification rotation speed of 7000 rotations / minute (rpm) using a spheroidizing processing device (Faculty manufactured by Hosokawa Micron) to form a spherical shape. An artificial graphite powder was prepared. This spherical artificial graphite powder was passed through a 200-mesh sieve to obtain a carbon material under the sieve. The characteristics of this carbon material were investigated in the same manner as in Example 1. In addition, a coin battery was manufactured and its performance was evaluated. The results are shown in Table 2.
表2に示す結果から明らかなように、本実施形態の炭素材料を含む負極材を用いて作製した実施例1〜4のリチウムイオン二次電池は、高い充放電効率を維持しながら、入出力特性と寿命特性にも優れていた。 As is clear from the results shown in Table 2, the lithium ion secondary batteries of Examples 1 to 4 produced by using the negative electrode material containing the carbon material of the present embodiment input and output while maintaining high charge / discharge efficiency. It was also excellent in characteristics and life characteristics.
Claims (10)
(1)個数基準の粒度分布において、差分の相対粒子量q0が最頻値となるときの粒子径が11.601μm以下である。
(2)個数基準の粒度分布において、粒子径11.601μmのときの差分の相対粒子量q0Aと、粒子径7.806μmのときの差分の相対粒子量q0Bとの比(q0A/q0B)が1.20〜3.00である。 The average interplanar spacing d 002 determined by the X-ray diffractometry is 0.335 nm to 0.339 nm, and the graphite material as the first carbon phase as the core and at least a part of the surface of the first carbon phase are covered. A negative electrode material for a lithium ion secondary battery, which comprises amorphous carbon as a second carbon phase to be arranged, and also contains a carbon material satisfying the following (1) and (2).
(1) In the number-based particle size distribution, the particle size when the relative particle amount q0 of the difference is the mode is 11.601 μm or less.
(2) In the particle size distribution based on the number, the ratio (q0A / q0B) of the difference relative particle amount q0A when the particle size is 11.601 μm and the difference relative particle amount q0B when the particle size is 7.806 μm is 1. It is .20 to 3.00.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/083714 WO2018087928A1 (en) | 2016-11-14 | 2016-11-14 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018087928A1 JPWO2018087928A1 (en) | 2019-09-26 |
JP6922927B2 true JP6922927B2 (en) | 2021-08-18 |
Family
ID=62109485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018550011A Active JP6922927B2 (en) | 2016-11-14 | 2016-11-14 | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6922927B2 (en) |
KR (1) | KR102671321B1 (en) |
CN (2) | CN109952672B (en) |
TW (1) | TWI752112B (en) |
WO (1) | WO2018087928A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020141574A1 (en) * | 2019-01-04 | 2020-07-09 | 日立化成株式会社 | Negative electrode material for lithium ion secondary cell, method for manufacturing negative electrode material for lithium ion secondary cell, negative electrode for lithium ion secondary cell, and lithium ion secondary cell |
ES2948200T3 (en) * | 2019-07-31 | 2023-09-01 | Resonac Corp | Negative electrode material for secondary lithium ion battery, negative electrode for secondary lithium ion battery and secondary lithium ion battery |
KR20220017748A (en) | 2020-08-05 | 2022-02-14 | 에스케이온 주식회사 | Anode active material and lithium seceondary battery |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3335366B2 (en) | 1991-06-20 | 2002-10-15 | 三菱化学株式会社 | Electrodes for secondary batteries |
JP3395200B2 (en) | 1992-04-28 | 2003-04-07 | 三洋電機株式会社 | Non-aqueous secondary battery |
JP3440638B2 (en) * | 1995-07-12 | 2003-08-25 | 松下電器産業株式会社 | Non-aqueous electrolyte secondary battery |
WO2003063274A1 (en) * | 2002-01-25 | 2003-07-31 | Toyo Tanso Co., Ltd. | Negative electrode material for lithium ion secondary battery |
CN100564253C (en) * | 2002-03-27 | 2009-12-02 | 杰富意化学株式会社 | The greying thing of mesophasespherule, the negative material that uses it, negative pole and lithium-ion secondary cell |
EP1598895B1 (en) * | 2003-02-27 | 2011-01-19 | Mitsubishi Chemical Corporation | Nonaqueous electrolytic solution and lithium secondary battery |
JP3782079B2 (en) * | 2003-07-23 | 2006-06-07 | 株式会社 伊藤園 | Method for producing coffee beverage |
KR100639888B1 (en) * | 2004-05-04 | 2006-10-30 | 주식회사 소디프신소재 | Novel graphite globules and carbon materials using them |
KR101106966B1 (en) * | 2004-08-30 | 2012-01-20 | 도까이 카본 가부시끼가이샤 | Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell |
JP2008305661A (en) * | 2007-06-07 | 2008-12-18 | Tokai Carbon Co Ltd | Negative electrode material for lithium ion secondary battery and method for producing the same |
JP2008305722A (en) * | 2007-06-08 | 2008-12-18 | Tokai Carbon Co Ltd | Negative electrode material for lithium ion secondary battery and method for producing the same |
CN101106191A (en) * | 2007-07-26 | 2008-01-16 | 辽宁工程技术大学 | Preparation method of composite graphite negative electrode material and lithium ion battery using the material |
CN101412510A (en) * | 2007-10-15 | 2009-04-22 | 台湾松下能源股份有限公司 | Composite graphite for lithium secondary battery and method for manufacturing same |
KR100945619B1 (en) * | 2008-04-23 | 2010-03-04 | 엘에스엠트론 주식회사 | Anode active material for secondary battery, secondary battery comprising same and manufacturing method thereof |
CN102414879B (en) * | 2009-04-27 | 2015-04-15 | 加拿大巴斯姆有限公司 | Electrodes and electrode material for lithium electrochemical cells |
US9876221B2 (en) * | 2010-05-14 | 2018-01-23 | Samsung Sdi Co., Ltd. | Negative active material for rechargeable lithium battery and rechargeable lithium battery including same |
JP6278596B2 (en) * | 2010-07-30 | 2018-02-14 | 日立化成株式会社 | Carbon material, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP6121645B2 (en) * | 2010-09-16 | 2017-04-26 | 三菱化学株式会社 | Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode using the same, and non-aqueous electrolyte secondary battery |
WO2012133611A1 (en) * | 2011-03-29 | 2012-10-04 | 三菱化学株式会社 | Negative electrode material for nonaqueous secondary battery, negative electrode using the same, and nonaqueous secondary battery |
TWI482734B (en) * | 2011-12-09 | 2015-05-01 | 昭和電工股份有限公司 | Composite graphite particle and the use |
JP5987439B2 (en) * | 2012-04-19 | 2016-09-07 | 日立化成株式会社 | Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery |
JP2014089855A (en) * | 2012-10-30 | 2014-05-15 | Hitachi Maxell Ltd | Negative electrode active material for nonaqueous secondary battery use, and nonaqueous secondary battery |
JP6170795B2 (en) * | 2013-09-27 | 2017-07-26 | 昭和電工株式会社 | Electrode active material, method for producing electrode active material, electrode material, electrode paste, electrode and battery |
JP2015082381A (en) * | 2013-10-22 | 2015-04-27 | トヨタ自動車株式会社 | Nonaqueous electrolyte secondary battery |
JP6278870B2 (en) * | 2013-11-07 | 2018-02-14 | Jfeケミカル株式会社 | Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same |
JP6318758B2 (en) * | 2014-03-25 | 2018-05-09 | 三菱ケミカル株式会社 | Non-aqueous secondary battery carbon material and non-aqueous secondary battery |
US9972845B2 (en) * | 2014-06-13 | 2018-05-15 | Lg Chem, Ltd. | Negative electrode active material and method of manufacturing the same |
WO2016136803A1 (en) * | 2015-02-25 | 2016-09-01 | 新日鉄住金化学株式会社 | Active material for negative electrode of lithium-ion secondary battery, secondary battery negative electrode using same, and secondary battery |
WO2016153255A1 (en) * | 2015-03-23 | 2016-09-29 | 주식회사 엘지화학 | Cathode active material and preparation method therefor |
CN106058211B (en) * | 2016-08-03 | 2019-07-09 | 深圳市贝特瑞新能源材料股份有限公司 | A kind of natural graphite composite material, preparation method and lithium ion battery |
-
2016
- 2016-11-14 JP JP2018550011A patent/JP6922927B2/en active Active
- 2016-11-14 CN CN201680090827.3A patent/CN109952672B/en active Active
- 2016-11-14 WO PCT/JP2016/083714 patent/WO2018087928A1/en active Application Filing
- 2016-11-14 KR KR1020197014057A patent/KR102671321B1/en active Active
- 2016-11-14 CN CN202210750544.4A patent/CN114883558B/en active Active
-
2017
- 2017-11-13 TW TW106139157A patent/TWI752112B/en active
Also Published As
Publication number | Publication date |
---|---|
KR20190074290A (en) | 2019-06-27 |
TW201822394A (en) | 2018-06-16 |
JPWO2018087928A1 (en) | 2019-09-26 |
CN114883558A (en) | 2022-08-09 |
CN109952672A (en) | 2019-06-28 |
CN109952672B (en) | 2022-06-24 |
KR102671321B1 (en) | 2024-06-03 |
WO2018087928A1 (en) | 2018-05-17 |
CN114883558B (en) | 2025-03-18 |
TWI752112B (en) | 2022-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107528053B (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5439701B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery | |
JP7156468B2 (en) | Method for producing negative electrode material for lithium ion secondary battery, and negative electrode material for lithium ion secondary battery | |
US12176539B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP7004093B2 (en) | Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP5590159B2 (en) | Negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery | |
JP6922927B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
WO2017191820A1 (en) | Negative electrode material for lithium ion secondary cell, method for manufacturing negative electrode material for lithium ion secondary cell, negative electrode for lithium ion secondary cell, and lithium ion secondary cell | |
JP5707707B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery | |
JP6102231B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary battery | |
CN119111004A (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP7047892B2 (en) | Carbonaceous particles, negative material for lithium-ion secondary batteries, negative-negative materials for lithium-ion secondary batteries, and lithium-ion secondary batteries | |
JP7444322B1 (en) | Negative electrode materials for lithium ion secondary batteries, negative electrodes for lithium ion secondary batteries, and lithium ion secondary batteries | |
WO2024195012A1 (en) | Graphite carbon material for lithium-ion secondary battery anode, anode material for lithium-ion secondary battery, anode for lithium-ion secondary battery, and lithium-ion secondary battery | |
WO2021059444A1 (en) | Negative electrode material for lithium-ion secondary cell, method for manufacturing negative electrode material for lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell | |
WO2024195011A1 (en) | Graphite carbon material for lithium-ion secondary battery anode, anode material for lithium-ion secondary battery, anode for lithium-ion secondary battery, and lithium-ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210511 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210603 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210629 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210712 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6922927 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |