[go: up one dir, main page]

JP3052760B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3052760B2
JP3052760B2 JP6318263A JP31826394A JP3052760B2 JP 3052760 B2 JP3052760 B2 JP 3052760B2 JP 6318263 A JP6318263 A JP 6318263A JP 31826394 A JP31826394 A JP 31826394A JP 3052760 B2 JP3052760 B2 JP 3052760B2
Authority
JP
Japan
Prior art keywords
graphite powder
average particle
secondary battery
mesophase
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6318263A
Other languages
Japanese (ja)
Other versions
JPH08180864A (en
Inventor
雅規 北川
純一 山浦
博美 永田
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP6318263A priority Critical patent/JP3052760B2/en
Publication of JPH08180864A publication Critical patent/JPH08180864A/en
Application granted granted Critical
Publication of JP3052760B2 publication Critical patent/JP3052760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池
の、とくにその負極に用いる炭素材料の構成に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a structure of a carbon material used for its negative electrode.

【0002】[0002]

【従来の技術】近年、電子機器のポータブル化、コード
レス化が急速に進んでおり、これらの駆動用電源として
小形・軽量で、高エネルギー密度を有する二次電池への
要望が高い。このような点で非水系二次電池、特にリチ
ウム二次電池はとりわけ高電圧・高エネルギー密度を有
することから、種々の電池が提案されている。それらの
中で、正極活物質としてはLiを含む化合物であるLi
CoO2やLiMn24、あるいはこれらのCoおよび
Mnの全部もしくは一部を他の元素、例えばFe、N
i、Mnなどで置換した複合酸化物を用いるものが検討
されている。物質としてLiを吸蔵・放出し得る炭素材
を用いた電池は、サイクル特性、保存性、安全性など高
い信頼性が得られることから、一部、実用化に至ってい
る。
2. Description of the Related Art In recent years, portable and cordless electronic devices have been rapidly advancing, and there is a high demand for a small and lightweight secondary battery having a high energy density as a drive power source for these devices. In this regard, various batteries have been proposed because non-aqueous secondary batteries, particularly lithium secondary batteries, have high voltage and high energy density. Among them, Li as a positive electrode active material is a compound containing Li.
CoO 2 or LiMn 2 O 4 , or all or a part of these Co and Mn may be replaced with another element such as Fe, N
A device using a composite oxide substituted with i, Mn, or the like has been studied. Batteries using a carbon material capable of occluding and releasing Li as a substance have attained high reliability such as cycle characteristics, storage stability, and safety, and thus have been partially put to practical use.

【0003】一方、負極に用いる材料としては、充電時
にリチウムがデンドライト状に析出することを防止する
ために、リチウムを吸蔵・放出することができる黒鉛等
の炭素材料が検討されている。
On the other hand, as a material used for the negative electrode, a carbon material such as graphite capable of occluding and releasing lithium has been studied in order to prevent lithium from being deposited in a dendritic state during charging.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、黒鉛材
料として高容量を実現できるメソフェーズ小球体粒子を
用いた場合には、この粒子は点接触でのみ電気的に接続
しているので、充放電時、とくに高率充放電時には結晶
粒子のC軸方向の膨脹,収縮によって粒子間の接触が悪
くなり、負極の電子伝導性が低下して金属リチウムがデ
ンドライト状に析出して電池の内部短絡の原因になった
り、サイクル寿命特性が低下していた。
However, when mesophase small sphere particles capable of realizing a high capacity are used as a graphite material, these particles are electrically connected only at point contact, so that the charge In particular, during high-rate charge / discharge, crystal particles expand and contract in the C-axis direction, making contact between the particles worse, reducing the electron conductivity of the negative electrode and depositing metallic lithium in a dendritic form, which may cause an internal short circuit in the battery. Or the cycle life characteristics were reduced.

【0005】本発明は、このような課題を解決するもの
であり、高容量の黒鉛粉末を用いた場合に粉末粒子の膨
脹,収縮により粒子間の接触が低下することを防止し
て、電子伝導性の低下による充放電サイクル経過時の容
量低下やデンドライト状に金属リチウムが析出すること
を防止するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is intended to prevent a decrease in contact between particles due to expansion and shrinkage of powder particles when a high-capacity graphite powder is used. It is intended to prevent the capacity from dropping during the charge / discharge cycle due to the deterioration of the properties and the precipitation of metallic lithium in the form of dendrite.

【0006】[0006]

【課題を解決するための手段】本発明の非水電解液二次
電池は上記の課題を解決するために、負極にメソフェー
ズ小球体黒鉛粉末と黒鉛粉末を用い、メソフェーズ小球
体黒鉛粉末の平均粒子径に対する黒鉛粉末の平均粒子径
の比を1.3〜4.0としたものである。
In order to solve the above-mentioned problems, a nonaqueous electrolyte secondary battery according to the present invention uses a mesophase spheroidal graphite powder and a graphite powder for a negative electrode, and obtains an average particle of the mesophase spheroidal graphite powder. The ratio of the average particle diameter of the graphite powder to the diameter was set to 1.3 to 4.0.

【0007】また、上記構成にさらに炭素繊維を加えた
ものである。
[0007] Further, carbon fibers are further added to the above configuration.

【0008】[0008]

【作用】黒鉛粉末のみを集電体上に塗着すると黒鉛結晶
はそのC軸が集電体の垂直方向と平行に配向するという
性質がある。黒鉛結晶はC軸方向の電子伝導度がA軸お
よびB軸方向の電子伝導度よりも小さいため、この構成
では厚み方向の電子伝導度が小さくなる。
When only the graphite powder is applied on the current collector, the graphite crystal has a property that its C axis is oriented in parallel with the vertical direction of the current collector. Since the graphite crystal has a smaller electron conductivity in the C-axis direction than the electron conductivity in the A-axis and B-axis directions, the electron conductivity in the thickness direction is reduced in this configuration.

【0009】本発明の負極の構成では、メソフェーズ小
球体粉末と黒鉛粉末の混合物を負極合剤に用い、メソフ
ェーズ小球体粉末の平均粒子径に対する黒鉛粉末の平均
粒子径の比を1.3〜4.0とするので、前記合剤を集
電体上に塗着するとメソフェーズ小球体の粉末粒子間で
黒鉛粉末粒子がゆがまされ様々な方向を向いて存在し、
黒鉛粉末のC軸方向が集電体の垂直方向から傾斜した状
態で隣接する粒子と接触する。
In the structure of the negative electrode of the present invention, a mixture of mesophase small sphere powder and graphite powder is used as the negative electrode mixture, and the ratio of the average particle diameter of the graphite powder to the average particle diameter of the mesophase small sphere powder is 1.3 to 4. Therefore, when the mixture is coated on the current collector, the graphite powder particles are distorted between the powder particles of the mesophase spheres and exist in various directions,
The graphite powder contacts adjacent particles in a state where the C-axis direction is inclined from the vertical direction of the current collector.

【0010】したがって、メソフェーズ小球体粉末にこ
れより平均粒子径の大きい黒鉛粉末を混合すると、黒鉛
粉末のA軸およびB軸の電子伝導度を利用して点接触で
のみ電気的に接続するメソフェーズ小球体粉末間の電子
伝導度を向上させることができる。
Therefore, when the mesophase small sphere powder is mixed with graphite powder having a larger average particle diameter, the mesophase small sphere powder which is electrically connected only at point contact by utilizing the A-axis and B-axis electron conductivities of the graphite powder. The electronic conductivity between the spherical powders can be improved.

【0011】さらに、これらに炭素繊維を加えて分散さ
せることにより、前記粒子間の接合状態を高めて負極の
電子伝導性を高めることができる。
Further, by adding and dispersing carbon fibers to these, the bonding state between the particles can be enhanced, and the electron conductivity of the negative electrode can be enhanced.

【0012】[0012]

【実施例】以下、本発明の実施例を図面を参照にしなが
ら説明する。図1に本実施例で用いた円筒型電池の縦断
面図を示す。図において1は耐有機電解液性のステンレ
ス鋼板を加工した電池ケース、2は安全弁を設けた封口
板、3は絶縁パッキングを示す。4は極板群であり、正
極および負極がセパレータを介して複数回渦巻状に巻回
されてケース1内に収納されている。そして上記正極か
らは正極リード5が引き出されて封口板2に接続されて
いる。7は絶縁リングで極板群4の上下部にそれぞれ設
けられている。以下、正、負極板等について詳しく説明
する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a longitudinal sectional view of the cylindrical battery used in this example. In the figure, reference numeral 1 denotes a battery case processed from a stainless steel sheet having resistance to organic electrolyte, 2 denotes a sealing plate provided with a safety valve, and 3 denotes an insulating packing. Reference numeral 4 denotes an electrode group, in which the positive electrode and the negative electrode are spirally wound a plurality of times via a separator and housed in the case 1. A positive electrode lead 5 is drawn out from the positive electrode and connected to the sealing plate 2. Reference numeral 7 denotes an insulating ring provided on the upper and lower portions of the electrode plate group 4, respectively. Hereinafter, the positive and negative electrode plates will be described in detail.

【0013】正極はLi2CO3とCo34とを混合し、
900℃で10時間焼成して合成したLiCoO2の粉
末100重量部に、アセチレンブラック3重量部、フッ
素樹脂系結着剤7重量部を混合し、カルボキシメチルセ
ルロース水溶液に懸濁させてペースト状にした。このペ
ーストをアルミ箔の両面に塗工し、乾燥後圧延して所定
の大きさの正極板とした。
The cathode mixes Li 2 CO 3 and Co 3 O 4 ,
3 parts by weight of acetylene black and 7 parts by weight of a fluororesin binder were mixed with 100 parts by weight of LiCoO 2 powder synthesized by firing at 900 ° C. for 10 hours, and suspended in an aqueous solution of carboxymethyl cellulose to form a paste. . This paste was applied to both sides of an aluminum foil, dried and rolled to obtain a positive electrode plate having a predetermined size.

【0014】負極はメソフェーズ小球体粉末を2800
℃の高温下で黒鉛化したもの(平均粒子径5.4μm、
d002=3.37Å)(以下メソフェーズ黒鉛とす
る)と鱗片状天然黒鉛粉末(平均粒子径9.8μm、d
002=3.36Å)とを、60:40の割合で混合し
た。この混合物100重量部に、スチレン/ブタジエン
ゴム5重量部を混合し、カルボキシメチルセルロース水
溶液に懸濁させてペースト状にした。そしてこのペース
トを銅箔の両面に塗工し、乾燥後圧延して所定の大きさ
の負極板とした。
The negative electrode was made of mesophase small sphere powder of 2800.
Graphite at high temperature of ℃ (average particle size 5.4μm,
d002 = 3.37 °) (hereinafter referred to as mesophase graphite) and flaky natural graphite powder (average particle diameter of 9.8 μm, d
002 = 3.36 °) was mixed at a ratio of 60:40. 100 parts by weight of this mixture was mixed with 5 parts by weight of styrene / butadiene rubber, and suspended in an aqueous solution of carboxymethyl cellulose to form a paste. The paste was applied to both sides of a copper foil, dried and rolled to obtain a negative electrode plate having a predetermined size.

【0015】ついで、前記正,負極板の間にポリエチレ
ン製多孔質フィルムを介してこれらを渦巻状に巻回して
極板群を構成し、これを電池ケースに納入した。電解液
にはECとDECとMPとを30:50:20の体積比
で混合した溶媒に1モル/リットルのLiPF6を溶解
したものを用い、注液した後封口してこれを電池Aとし
た。ここで、電池仕様は公称仕様3.6V550mAH
とした。
Then, these were spirally wound between the positive and negative electrodes through a polyethylene porous film via a porous film made of polyethylene to form an electrode group, which was delivered to a battery case. As the electrolyte, a solution obtained by dissolving 1 mol / liter of LiPF 6 in a solvent in which EC, DEC, and MP were mixed at a volume ratio of 30:50:20 was used. did. Here, the battery specification is the nominal specification 3.6V550mAH
And

【0016】また、(表1)に示したように鱗片状天然
黒鉛粉末の平均粒子径を変化させた以外は上記と同様に
して負極板および電池を作製し、これらを電池B〜Hと
した。
Also, as shown in Table 1, negative electrode plates and batteries were prepared in the same manner as above except that the average particle size of the flaky natural graphite powder was changed, and these were designated as batteries B to H. .

【0017】[0017]

【表1】 [Table 1]

【0018】そして、これらの電池を用いて充放電サイ
クル寿命試験を行った。充放電条件は、20℃において
電流1320mAで電圧4.2Vまで30分間充電し、
電流550mAで電圧3.0Vまで放電して行った。
A charge / discharge cycle life test was performed using these batteries. The charge and discharge conditions were as follows: at 20 ° C., a current of 1320 mA was charged to a voltage of 4.2 V for 30 minutes;
The discharge was performed at a current of 550 mA to a voltage of 3.0 V.

【0019】この結果を図2に示す。図2に示したよう
に、メソフェーズ黒鉛粉末の平均粒子径に対する鱗片状
天然黒鉛粉末の平均粒子径の比を1.3以上にすると、
メソフェーズ黒鉛粉末間で鱗片状天然黒鉛粉末が様々な
方向に傾いて存在し、集電体の銅箔の垂直方向に対して
前記天然黒鉛粉末のC軸が傾斜するため前記天然黒鉛粉
末のA,B軸の電子伝導性を利用してメソフェーズ黒鉛
粉末粒子間の接触状態を良好にすることができる。しか
し、メソフェーズ黒鉛粉末の平均粒子径に対する鱗片状
天然黒鉛粉末の平均粒子径の比が4.0を越えて、鱗片
状天然黒鉛粉末粒子が大きくなると、この粒子内のLi
イオンの拡散速度が遅くなるため、急速充電を行った場
合粒子表面に金属リチウムが析出し、その結果として充
放電サイクル寿命特性が低下した。
FIG. 2 shows the result. As shown in FIG. 2, when the ratio of the average particle diameter of the flaky natural graphite powder to the average particle diameter of the mesophase graphite powder is set to 1.3 or more,
The flaky natural graphite powder exists between the mesophase graphite powders in various directions, and the C axis of the natural graphite powder is inclined with respect to the vertical direction of the copper foil of the current collector. The contact state between the mesophase graphite powder particles can be improved by utilizing the electron conductivity of the B axis. However, when the ratio of the average particle size of the flaky natural graphite powder to the average particle size of the mesophase graphite powder exceeds 4.0 and the flaky natural graphite powder particles become large, the Li in the particles becomes large.
Since the diffusion rate of ions was slow, when rapid charging was performed, lithium metal was precipitated on the surface of the particles, and as a result, the charge / discharge cycle life characteristics were reduced.

【0020】また、前記比が1未満になると鱗片状天然
黒鉛粉末はメソフェーズ黒鉛粉末間で傾いてもその傾斜
度合が小さいため結晶のA,B軸の電子伝導性を利用す
ることができなく、充放電サイクル寿命特性が低下し
た。
Further, when the ratio is less than 1, the flaky natural graphite powder, even if inclined between mesophase graphite powders, has a small degree of inclination, so that the electron conductivity of the A and B axes of the crystal cannot be utilized. The charge-discharge cycle life characteristics decreased.

【0021】したがって、メソフェーズ黒鉛粉末の平均
粒子径に対する鱗片状天然黒鉛粉末の平均粒子径の比は
1.3以上4.0以下であることが好ましい。
Therefore, the ratio of the average particle diameter of the flaky natural graphite powder to the average particle diameter of the mesophase graphite powder is preferably 1.3 or more and 4.0 or less.

【0022】次に、負極に炭素繊維として気相成長系炭
素繊維を加えた以外は電池Aと同様の電池を作製し、こ
れを電池Iとした。
Next, a battery similar to the battery A was prepared except that a vapor-grown carbon fiber was added as a carbon fiber to the negative electrode.

【0023】気相成長系炭素繊維は平均径0.5μm,
平均長さ15μm,d002=3.37Åとし、メソフ
ェーズ黒鉛と天然黒鉛と炭素繊維との混合比は重量比で
60:30:10とした。
The vapor-grown carbon fiber has an average diameter of 0.5 μm,
The average length was 15 μm, d002 = 3.37 °, and the mixing ratio of mesophase graphite, natural graphite and carbon fiber was 60:30:10 by weight.

【0024】この電池Iについて上記と同様の充放電サ
イクル寿命試験を行った結果を図2に示す。
FIG. 2 shows the result of the same charge / discharge cycle life test performed on the battery I as described above.

【0025】図2に示したように炭素繊維を混合し負極
内に分散させると、負極合剤の保持力を高めることがで
き、粒子間の接触を良好に保ってサイクル経過に伴う容
量低下を防止することができた。
As shown in FIG. 2, when the carbon fibers are mixed and dispersed in the negative electrode, the holding power of the negative electrode mixture can be increased, the contact between the particles can be kept good, and the capacity reduction accompanying the cycle progress can be prevented. Could be prevented.

【0026】なお、本実施例では黒鉛粉末として鱗片状
天然黒鉛粉末を用いたがこの他に鱗片状人造黒鉛粉末で
あっても良い。また、炭素繊維としてもピッチ系炭素繊
維等の従来から知られている炭素繊維であれば同様の効
果が得られる。
In this embodiment, flaky natural graphite powder is used as the graphite powder, but flaky artificial graphite powder may be used. The same effect can be obtained as long as the carbon fiber is a conventionally known carbon fiber such as a pitch-based carbon fiber.

【0027】[0027]

【発明の効果】以上のように本発明の非水電解液二次電
池は、負極にメソフェーズ小球体黒鉛粉末および黒鉛粉
末の混合物を用い、メソフェーズ小球体黒鉛粉末の平均
粒子径に対する黒鉛粉末の平均粒子径の比を1.3〜
4.0としているのでメソフェーズ小球体黒鉛粉末間で
黒鉛粉末を様々な方向を向いた状態で配置することがで
きる。このため、黒鉛粉末結晶のA,B軸の電子伝導性
を活かしてメソフェーズ小球体黒鉛粉末間の電気的接触
状態を良好にし、電池の充放電サイクル寿命特性を向上
させることができる。
As described above, the non-aqueous electrolyte secondary battery of the present invention uses the mesophase small sphere graphite powder and a mixture of the graphite powder for the negative electrode, and the average of the graphite powder with respect to the average particle diameter of the mesophase small sphere graphite powder. The ratio of particle diameter is 1.3 to
Since it is 4.0, the graphite powder can be arranged in various directions between the mesophase small sphere graphite powders. For this reason, the electrical contact between the mesophase spheroidal graphite powder can be improved by utilizing the electron conductivity of the A and B axes of the graphite powder crystal, and the charge / discharge cycle life characteristics of the battery can be improved.

【0028】また、これらに炭素繊維を混合、分散させ
ることにより負極合剤の保持力を高めて電池の充放電サ
イクル寿命特性をさらに向上させることができる。
Further, by mixing and dispersing carbon fibers in these, the holding power of the negative electrode mixture can be increased and the charge / discharge cycle life characteristics of the battery can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例で用いた円筒形非水電解液二次電池の
断面図
FIG. 1 is a cross-sectional view of a cylindrical non-aqueous electrolyte secondary battery used in this example.

【図2】電池の充放電サイクル寿命特性を示す図FIG. 2 is a diagram showing charge / discharge cycle life characteristics of a battery.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極リード 6 負極リード 7 絶縁リング DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode group 5 Positive electrode lead 6 Negative electrode lead 7 Insulation ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 守田 彰克 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平4−332465(JP,A) 特開 平5−234584(JP,A) 特開 平5−307958(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/58 H01M 10/40 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akitatsu Morita 1006 Kazuma Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-4-332465 (JP, A) JP-A-5- 234584 (JP, A) JP-A-5-307958 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/58 H01M 10/40

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】負極にメソフェーズ小球体黒鉛粉末および
黒鉛粉末の混合物を用い、メソフェーズ小球体黒鉛粉末
の平均粒子径に対する黒鉛粉末の平均粒子径の比を1.
3〜4.0とした非水電解液二次電池。
A mixture of mesophase small sphere graphite powder and graphite powder is used for the negative electrode, and the ratio of the average particle diameter of the graphite powder to the average particle diameter of the mesophase small sphere graphite powder is 1.
A non-aqueous electrolyte secondary battery having a value of 3 to 4.0.
【請求項2】負極にメソフェーズ小球体黒鉛粉末、黒鉛
粉末および炭素繊維の混合物を用い、メソフェーズ小球
体粉末の平均粒子径に対する黒鉛粉末の平均粒子径の比
を1.3〜4.0とした非水電解液二次電池。
2. A negative electrode comprising mesophase small sphere graphite powder, a mixture of graphite powder and carbon fiber, wherein the ratio of the average particle diameter of the graphite powder to the average particle diameter of the mesophase small sphere powder is 1.3 to 4.0. Non-aqueous electrolyte secondary battery.
【請求項3】黒鉛粉末は人造黒鉛または天然黒鉛である
請求項1または2記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the graphite powder is artificial graphite or natural graphite.
【請求項4】 炭素繊維は気相成長系炭素繊維またはピ
ッチ系炭素繊維である請求項記載の非水電解液二次電
池。
4. The non-aqueous electrolyte secondary battery according to claim 2, wherein the carbon fiber is a vapor growth type carbon fiber or a pitch type carbon fiber.
JP6318263A 1994-12-21 1994-12-21 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3052760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6318263A JP3052760B2 (en) 1994-12-21 1994-12-21 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6318263A JP3052760B2 (en) 1994-12-21 1994-12-21 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH08180864A JPH08180864A (en) 1996-07-12
JP3052760B2 true JP3052760B2 (en) 2000-06-19

Family

ID=18097254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6318263A Expired - Fee Related JP3052760B2 (en) 1994-12-21 1994-12-21 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3052760B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786158B (en) * 2010-04-01 2012-10-03 安徽工业大学 Quick change device for stopper rod

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166877A (en) * 1987-10-02 1992-11-24 Honda Giken Kogyo Kabushiki Kaisha Method of speed reduction ratio control in continuously variable speed transmission
JPH11111270A (en) * 1997-10-08 1999-04-23 Japan Storage Battery Co Ltd Lithium secondary battery
JP4147442B2 (en) * 1999-09-30 2008-09-10 ソニー株式会社 Non-aqueous electrolyte type secondary battery
JP2001236950A (en) * 2000-02-24 2001-08-31 Japan Storage Battery Co Ltd Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP4120262B2 (en) 2002-02-26 2008-07-16 ソニー株式会社 Non-aqueous electrolyte battery
JP4336087B2 (en) * 2002-09-19 2009-09-30 シャープ株式会社 Lithium polymer battery and manufacturing method thereof
JP4950166B2 (en) * 2008-11-11 2012-06-13 三菱マテリアル株式会社 Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using the negative electrode
JP5473886B2 (en) * 2010-12-21 2014-04-16 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786158B (en) * 2010-04-01 2012-10-03 安徽工业大学 Quick change device for stopper rod

Also Published As

Publication number Publication date
JPH08180864A (en) 1996-07-12

Similar Documents

Publication Publication Date Title
WO2020111201A1 (en) Lithium ion secondary battery positive electrode composition, lithium ion secondary battery positive electrode, and lithium ion secondary battery
JP4507284B2 (en) Non-aqueous electrolyte secondary battery
JPWO2019216275A1 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US6114065A (en) Secondary battery
JPH08171917A (en) Cell
JP2001126733A (en) Nonaqueous electrolytic material
JP3440638B2 (en) Non-aqueous electrolyte secondary battery
JP3052760B2 (en) Non-aqueous electrolyte secondary battery
JP2000011991A (en) Organic electrolyte secondary battery
JPH06295725A (en) Nonaqueous secondary battery
JP3216661B2 (en) Non-aqueous electrolyte secondary battery
JPH11102729A (en) Manufacture of nonaqueous solvent type secondary battery
JPH11111266A (en) High polymer electrolyte secondary battery
JPH1131508A (en) Nonaqueous electrolyte secondary battery
KR102320977B1 (en) Anode Active Material including Silicon Composite and Lithium Secondary Battery Comprising the Same
JPH11279785A (en) Composite carbon material for electrode, its production and nonaqueous electrolytic solution secondary cell using that
JP2004296305A (en) Lithium ion secondary battery
JP2002015726A (en) Gel electrolyte secondary battery
JP3456771B2 (en) Non-aqueous electrolyte secondary battery
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JP3329162B2 (en) Non-aqueous electrolyte secondary battery
JP3232953B2 (en) Non-aqueous electrolyte secondary battery
CN115380402A (en) Battery
JP3468956B2 (en) Non-aqueous electrolyte secondary battery
JP3506386B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080407

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees