[go: up one dir, main page]

JP3420439B2 - Optical scanning optical system and laser beam printer including the same - Google Patents

Optical scanning optical system and laser beam printer including the same

Info

Publication number
JP3420439B2
JP3420439B2 JP21946496A JP21946496A JP3420439B2 JP 3420439 B2 JP3420439 B2 JP 3420439B2 JP 21946496 A JP21946496 A JP 21946496A JP 21946496 A JP21946496 A JP 21946496A JP 3420439 B2 JP3420439 B2 JP 3420439B2
Authority
JP
Japan
Prior art keywords
scanning
optical
lens
optical system
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21946496A
Other languages
Japanese (ja)
Other versions
JPH1048552A (en
Inventor
芳浩 石部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP21946496A priority Critical patent/JP3420439B2/en
Publication of JPH1048552A publication Critical patent/JPH1048552A/en
Application granted granted Critical
Publication of JP3420439B2 publication Critical patent/JP3420439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光走査光学系及びそ
れを備えるレーザービームプリンタに関し、特に光源手
段から光変調され出射した光束を回転多面鏡等より成る
光偏向器で偏向させた後、fθ特性を有する光学素子
(fθレンズ)を介して記録媒体面である被走査面上を
光走査して画像情報を記録するようにした、例えば電子
写真プロセスを有するレーザービームプリンタ(LB
P)やデジタル複写機等の装置に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning optical system and a laser beam printer having the optical scanning optical system, and in particular, a light beam modulated and emitted from a light source means is deflected by an optical deflector such as a rotating polygon mirror, and then f.theta. A laser beam printer (LB) having, for example, an electrophotographic process, which records image information by optically scanning a surface to be scanned, which is a recording medium surface, through an optical element (fθ lens) having characteristics.
P) and digital copying machines.

【0002】[0002]

【従来の技術】従来より回転多面鏡より成る光偏向器の
各偏向面(反射面)で偏向(反射)された光束(光ビー
ム)を利用して被走査面上を光走査するようにした光走
査光学系が、例えば特公昭62−36210号公報で提
案されている。
2. Description of the Related Art Conventionally, a light beam (light beam) deflected (reflected) by each deflection surface (reflection surface) of an optical deflector composed of a rotating polygon mirror is used to optically scan a surface to be scanned. An optical scanning optical system is proposed in, for example, Japanese Patent Publication No. 62-36210.

【0003】同公報で提案されている光走査光学系は光
偏向器と被走査面との間にf−θ特性を有する光走査用
の結像光学系を設け、該結像光学系の1つであるトーリ
ックレンズの屈折力を適切に設定することにより光偏向
器の偏向面が回転軸に対して平行となっていなく倒れて
いるときの角度誤差、所謂面倒れを補正している。
The optical scanning optical system proposed in the above publication is provided with an imaging optical system for optical scanning having an f-θ characteristic between an optical deflector and a surface to be scanned, and one of the imaging optical systems is provided. By properly setting the refracting power of the toric lens, the angular error when the deflecting surface of the optical deflector is not parallel to the rotation axis and is tilted, so-called surface tilt is corrected.

【0004】即ち、トーリックレンズを用いて光偏向器
の偏向面と被走査面とを光学的に共役関係にして面倒れ
による悪影響を除去している。これにより偏向面により
偏向された光束の走査面上の進行方向が補正されて走査
線のピッチにムラが生じないようにしている。
That is, a toric lens is used to make the deflection surface of the optical deflector and the surface to be scanned optically conjugate with each other to eliminate the adverse effect of the surface tilt. As a result, the traveling direction of the light beam deflected by the deflecting surface on the scanning surface is corrected to prevent unevenness in the pitch of the scanning lines.

【0005】このように偏向面の面倒れを補正する光走
査光学系は従来より種々と提案されており、特にレンズ
枚数が2枚以上で構成された結像光学系ついては種々と
提案され実用化されている。
As described above, various optical scanning optical systems for correcting the tilt of the deflecting surface have been proposed in the past, and various imaging optical systems having two or more lenses have been proposed and put to practical use. Has been done.

【0006】これに対して、より簡素な光走査光学系と
して、結像光学系を1枚のレンズ(fθレンズ)より構
成した光走査光学系が、例えば特開平1−224721
号公報や特開昭62−138823号公報や特開昭63
−157122号公報そして特開平2−87109号公
報等で種々と提案されている。
On the other hand, as a simpler optical scanning optical system, an optical scanning optical system in which an image forming optical system is composed of one lens (fθ lens) is disclosed in, for example, Japanese Patent Laid-Open No. 1-224721.
JP-A-62-138823 and JP-A-63-138823
Various proposals are made in JP-A-157122 and JP-A-2-87109.

【0007】これらの公報のうち特開平1−22472
1号公報では結像光学系を1枚のトーリックレンズで構
成し、集束光学系としての集光レンズからの集束光束を
該トーリックレンズに入射させている。
Of these publications, Japanese Patent Laid-Open No. 1-24722
In Japanese Patent No. 1, the imaging optical system is composed of one toric lens, and the focused light flux from the condenser lens as the focusing optical system is incident on the toric lens.

【0008】特開昭62−138823号公報や特開昭
63−157122号公報そして特開平2−87109
号公報等では結像光学系としてレンズ面に高次非球面を
導入した走査レンズ(非球面レンズ)を用い、コリメー
ターレンズからの平行光束を該走査レンズに入射させて
いる。
JP-A-62-138823, JP-A-63-157122 and JP-A-2-87109.
In Japanese Patent Laid-Open Publication No. JP-A-2003-264, a scanning lens (aspherical lens) having a lens surface with a high-order aspherical surface is used as an imaging optical system, and a parallel light flux from a collimator lens is incident on the scanning lens.

【0009】[0009]

【発明が解決しようとする課題】上記従来例の特開平1
−224721号公報では結像光学系にトーリックレン
ズを用い、更に集光レンズ(コリメーターレンズ)で変
換された集束光束を該トーリックレンズに入射させるよ
うに構成して収差補正を行なっているが、像面湾曲と等
速度性を両立させるのは難しいという問題点がある。又
同公報では等速度性を電気的に補正できる程度の補正に
留めることで像面湾曲を重点的に補正している。その
為、画像書込み時に画像情報のタイミングを連続的に変
化させることで書込み画像が歪むことを補正してやる必
要が生じてくる。しかしながらこの場合、等速度性につ
いては補正不足の為、被走査面上でのスポットの速度は
常に変化することになり、該被走査面が受ける単位時
間、単位面積当たりの光量が変化してしまうという問題
点があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In Japanese Patent No. 224721, a toric lens is used in an image forming optical system, and a focused light beam converted by a condenser lens (collimator lens) is made incident on the toric lens to correct aberration. There is a problem that it is difficult to achieve both curvature of field and constant velocity. Further, in the same publication, the curvature of field is focused and corrected by limiting the correction so that the constant velocity can be electrically corrected. Therefore, it is necessary to correct the distortion of the written image by continuously changing the timing of the image information when writing the image. However, in this case, the velocity of the spot on the surface to be scanned is constantly changed due to insufficient correction of the constant velocity, and the unit time and the amount of light per unit area received by the surface to be scanned are changed. There was a problem.

【0010】この問題点を更にレーザ光量を連続的に変
化させて補正することは可能であるが、補正回路が多く
なりすぎて単一のレンズで構成したメリットが得られな
くなってくるという問題点がある。
It is possible to correct this problem by continuously changing the laser light amount, but there is a problem that the number of correction circuits becomes too large and the merit of a single lens cannot be obtained. There is.

【0011】特開昭62−138823号公報や特開昭
63−157122号公報そして特開平2−87109
号公報等で開示されている結像光学系としての非球面レ
ンズは、そのレンズの厚さが被走査面の幅に対して厚く
なって形成されている。このような非球面レンズは通常
の球面レンズに比べて加工成形が難しい為、プラスチッ
ク等の加工性に富んだ材料を用いて加工成形を行ない製
作することで、製作上の問題点を解決している。
JP 62-138823 A, JP 63-157122 A and JP 2-87109 A.
The aspherical lens as an imaging optical system disclosed in Japanese Patent Laid-Open Publication No. 2003-242242 is formed such that the thickness of the lens is thicker than the width of the surface to be scanned. Since such aspherical lenses are more difficult to process and mold than ordinary spherical lenses, the problems in manufacturing can be solved by processing and molding using a material with high processability such as plastic. There is.

【0012】しかしながら一般にプラスチック材より成
るレンズは環境変動の影響を受けやすく、特に温度や湿
度等によって屈折率の変化を受けやすく、例えばレンズ
の厚さが厚い場合、該レンズを通過する光束は屈折率の
変化を大きく受けることになる為、結像位置が大きく変
化してしまうという問題点があった。又レンズの厚さが
厚いことは加工成形を行なう上でレンズ内部の均質性や
歪み、そして成形時間等の加工条件を悪化させる原因に
もなっていた。
However, generally, a lens made of a plastic material is easily affected by environmental changes, and particularly, the refractive index is easily changed by temperature, humidity, etc. For example, when the lens is thick, the light flux passing through the lens is refracted. There is a problem in that the image forming position is largely changed because the image forming position is greatly changed. In addition, the fact that the thickness of the lens is large has been a cause of deteriorating processing conditions such as homogeneity and distortion inside the lens in processing and molding, and molding time.

【0013】本発明はコリメーターレンズからの集束光
束を光偏向器を介してプラスチック材より成る1枚の走
査レンズ(fθレンズ)により被走査面上に結像させる
際、該走査レンズのレンズ形状や配置等を適切に構成す
ることにより、レンズの厚みを薄く抑え、プラスチック
化に適した光走査光学系の提供を目的とする。更に本発
明は有効走査幅A3サイズ以上にわたり高精細な画像出
力に対応した十分小さなスポット形状を得ることのでき
る光走査光学系の提供を目的とする。
According to the present invention, when the focused light flux from the collimator lens is imaged on the surface to be scanned by one scanning lens (fθ lens) made of a plastic material through the optical deflector, the lens shape of the scanning lens is used. It is an object of the present invention to provide a light scanning optical system suitable for plasticization by suppressing the thickness of the lens thinly by appropriately configuring the arrangement and the arrangement. A further object of the present invention is to provide an optical scanning optical system capable of obtaining a sufficiently small spot shape corresponding to high-definition image output over an effective scanning width of A3 size or more.

【0014】[0014]

【課題を解決するための手段】本発明の光走査光学系
は、 (1) 光源手段から射出した光束を光学手段を介して偏向
手段に導光し、該偏向手段で偏向された該光束を光学素
子により被走査面上に導光し、光走査する光走査光学系
において、該光学素子に入射する光束を概ね集束光束と
し、該光学素子の両面のうち少なくとも1つの面を主走
査断面内で非球面とし、かつ該光学素子の光軸中心に対
して主走査方向の形状を非対称とし、該光学素子の副走
査方向の焦点距離をfb、該偏向手段で該集束光束が偏
向される偏向点から該被走査面までの距離をLa、該偏
向手段で偏向される偏向点から該集束光束が該光学素子
の無い場合の仮想集束点までの距離をLbとしたとき 0.13<fb/La<0.25 ‥‥‥‥(1) Lb/La<10 ‥‥‥‥(2) なる条件を満足することを特徴としている。
The optical scanning optical system of the present invention comprises: (1) a light beam emitted from a light source unit is guided to a deflecting unit via an optical unit, and the light beam deflected by the deflecting unit is guided. In an optical scanning optical system in which an optical element guides light onto a surface to be scanned and optically scans, a light beam incident on the optical element is made into a substantially focused light beam, and at least one surface of both surfaces of the optical element is within a main scanning section. Is an aspherical surface, the shape of the optical element in the main scanning direction is asymmetrical with respect to the optical axis center, the focal length of the optical element in the sub scanning direction is fb, and the focused light flux is deflected by the deflecting means. When the distance from the point to the surface to be scanned is La, and the distance from the deflection point deflected by the deflecting means to the virtual focusing point when the focused light beam does not have the optical element is Lb, 0.13 <fb / La <0.25 (1) Lb / La <10 ‥ is characterized by satisfying the (2) The condition.

【0015】特に(1-1) 前記光学素子の材質はプラスチ
ック材料より成ることや、(1-2) 前記光学素子は単レン
ズより成ること、等を特徴としている。本発明のレーザ
ービームプリンタは前述の構成(1)の光走査光学系と
被走査面としての感光ドラムを備えていることを特徴と
している。本発明のデジタル複写機は、前述の構成
(1)の光走査光学系と被走査面としての感光ドラムを
備えていることを特徴としている。
In particular, (1-1) the material of the optical element is a plastic material, and (1-2) the optical element is a single lens. The laser beam printer of the present invention is characterized by including the optical scanning optical system having the above-mentioned configuration (1) and the photosensitive drum as the surface to be scanned. The digital copying machine of the present invention is characterized by including the optical scanning optical system having the above-mentioned configuration (1) and the photosensitive drum as the surface to be scanned.

【0016】[0016]

【発明の実施の形態】図1は本発明の実施形態1の主走
査方向の要部断面図(主走査断面図)である。同図にお
いて1は光源手段であり、例えば半導体レーザより成っ
ている。2はコリメーターレンズであり、光源手段1か
ら射出された発散光束を概ね集束光束に変換している。
3は開口絞りであり、通過光束径を整えている。4はシ
リンドリカルレンズであり、副走査方向にのみ所定の屈
折力を有しており、開口絞り3を通過した光束(光ビー
ム)を副走査断面内で後述する偏向手段としての光偏向
器5の偏向面(反射面)5aにほぼ線像として結像させ
ている。光偏向器5は例えばポリゴンミラー(回転多面
鏡)等より成っており、モータ等の駆動手段(不図示)
により図中矢印A方向に一定速度で回転している。尚、
コリメーターレンズ2、開口絞り3、そしてシリンドリ
カルレンズ4等の各要素は光学手段の一要素を構成して
いる。
1 is a sectional view (main scanning sectional view) of a main portion in a main scanning direction according to a first embodiment of the present invention. In the figure, reference numeral 1 denotes a light source means, which is composed of, for example, a semiconductor laser. A collimator lens 2 converts the divergent light flux emitted from the light source means 1 into a substantially focused light flux.
An aperture stop 3 adjusts the diameter of the passing light beam. Reference numeral 4 denotes a cylindrical lens, which has a predetermined refracting power only in the sub-scanning direction, and of a light beam (light beam) that has passed through the aperture stop 3 in a sub-scanning section of an optical deflector 5 as a deflecting means described later. An image is formed on the deflection surface (reflection surface) 5a as a substantially linear image. The optical deflector 5 is composed of, for example, a polygon mirror (rotary polygonal mirror) or the like, and a driving means (not shown) such as a motor.
Due to this, it rotates at a constant speed in the direction of arrow A in the figure. still,
Each element such as the collimator lens 2, the aperture stop 3, and the cylindrical lens 4 constitutes one element of optical means.

【0017】6は光学素子としてのfθ特性を有する1
枚のレンズより成る走査レンズ(fθレンズ)であり、
プラスチック材料より成り、該走査レンズ6の両レンズ
面のうち少なくとも1つのレンズ面を主走査断面内で非
球面より形成し、かつ該走査レンズ6の光軸中心に対し
て主走査方向のレンズ形状を非対称に形成している。走
査レンズ6は光偏向器5によって偏向された画像情報に
基づく光束を被走査面としての感光ドラム7面上に結像
させ、かつ光偏向器5の偏向面の面倒れを補正してい
る。
Reference numeral 6 is 1 having an fθ characteristic as an optical element.
It is a scanning lens (fθ lens) consisting of one lens,
A lens shape made of a plastic material, in which at least one of the lens surfaces of the scanning lens 6 is formed of an aspherical surface in the main scanning section, and the lens shape in the main scanning direction with respect to the optical axis center of the scanning lens 6. Is formed asymmetrically. The scanning lens 6 forms a light beam based on the image information deflected by the optical deflector 5 on the surface of the photosensitive drum 7 as a surface to be scanned, and corrects the tilt of the deflecting surface of the optical deflector 5.

【0018】本実施形態において半導体レーザ1より射
出した発散光束(光ビーム)はコリメーターレズ2によ
り集束光束に変換され、開口絞り3によって該光束(光
量)を制限してシリンドリカルレンズ4に入射してい
る。シリンドリカルレンズ4に入射した光束のうち主走
査断面内においてはそのままの状態で射出する。又副走
査断面内においては集束して光偏向器5の偏向面5aに
ほぼ線像(主走査方向に長手の線像)として結像してい
る。そして光偏向器5の偏向面5aで偏向された光束は
走査レンズ6を介して感光ドラム7面上に導光され、該
光偏向器5を矢印A方向に回転させることによって、該
感光ドラム7面上を矢印B方向に略等速度直線運動で走
査している。これにより画像記録を行なっている。
In this embodiment, the divergent light beam (light beam) emitted from the semiconductor laser 1 is converted into a convergent light beam by the collimator lens 2, and the light beam (amount of light) is limited by the aperture stop 3 and is incident on the cylindrical lens 4. ing. The light flux that has entered the cylindrical lens 4 exits as it is in the main scanning cross section. Further, in the sub-scanning cross section, they are converged and imaged on the deflection surface 5a of the optical deflector 5 as a substantially linear image (a linear image longitudinal in the main scanning direction). Then, the light beam deflected by the deflecting surface 5a of the optical deflector 5 is guided to the surface of the photosensitive drum 7 via the scanning lens 6, and the optical deflector 5 is rotated in the direction of arrow A, whereby the photosensitive drum 7 is rotated. The surface is scanned in the direction of arrow B with a substantially uniform linear motion. Image recording is thus performed.

【0019】図2は図1の主走査断面内において垂直な
方向(副走査方向)の主要部分の要部断面図(副走査断
面図)である。
FIG. 2 is a sectional view (sub-scanning sectional view) of a main part of a main portion in a vertical direction (sub-scanning direction) in the main scanning section of FIG.

【0020】同図においてPは光偏向器5の反射面(偏
向面)位置を示しており、副走査断面内では上述したよ
うに略この反射面位置Pに光束(光ビーム)が集光する
ようにしている。ここで反射面位置Pと感光ドラム7面
とは走査レンズ6に関してそれぞれ光学的に略共役な位
置関係になっている。これにより反射面が副走査断面内
において傾いても、所謂面倒れがあっても光束が感光ド
ラム7面上の同一走査線上に結像するようにしている。
このようにして本実施形態では光偏向器5の面倒れの補
正を行なっている。
In the figure, P indicates the position of the reflection surface (deflection surface) of the optical deflector 5, and the light beam (light beam) is condensed at substantially this reflection surface position P in the sub-scan section as described above. I am trying. Here, the reflection surface position P and the surface of the photosensitive drum 7 are in an optically substantially conjugate positional relationship with respect to the scanning lens 6. As a result, even if the reflecting surface is tilted in the sub-scanning cross section, or if there is so-called surface tilt, the light flux is focused on the same scanning line on the surface of the photosensitive drum 7.
In this way, in this embodiment, the surface tilt of the optical deflector 5 is corrected.

【0021】一般に走査レンズ(fθレンズ)に入射す
る光束は、その主走査断面内において略平行光束に設定
されているのが普通である。本実施形態では上述したよ
うに概ね集束光束の状態で走査レンズ6に入射させてい
る。この走査レンズ6はその主走査断面内での焦点距離
fと走査角θ及び像高yとの間にy=fθの関係が成り
立つように設定されているが、上述の如く集束光束を走
査レンズ6に入射させると、該集束光束自体がパワーを
有している為に、該走査レンズ6の焦点距離をy=fθ
から定まる焦点距離fよりも長く設定することができ
る。
In general, the light beam incident on the scanning lens (fθ lens) is generally set to be a substantially parallel light beam within the main scanning section. In the present embodiment, as described above, the light beam is made incident on the scanning lens 6 in a state of substantially a focused light beam. The scanning lens 6 is set so that the relationship of y = fθ is established between the focal length f in the main scanning section and the scanning angle θ and the image height y. When the light beam is incident on the scanning lens 6, the focal length of the scanning lens 6 is y = fθ because the focused light beam itself has power.
The focal length f can be set longer than the focal length f.

【0022】その結果、走査レンズ6の肉厚を薄く(小
さく)抑えることができ、かつ光軸近傍の厚さとレンズ
有効端部での厚さとを大きく異ならせないようなレンズ
形状にすることができるのでレンズの材質をプラスチッ
ク材料で成形した場合の均質性、歪み、そして加工時間
等の加工条件を大幅に向上させることができる。
As a result, the thickness of the scanning lens 6 can be suppressed to be thin (small), and the lens shape can be made such that the thickness in the vicinity of the optical axis and the thickness at the lens effective end portion are not significantly different from each other. Therefore, it is possible to greatly improve the processing conditions such as homogeneity, distortion, and processing time when the lens material is molded with a plastic material.

【0023】又、本実施形態では前述の如く主走査断面
内における走査レンズ6の両レンズ面のうち少なくとも
1つのレンズ面を非球面より形成したことにより、広画
角にわたって像面湾曲を良好に補正している。
Further, in the present embodiment, as described above, at least one of the lens surfaces of the scanning lens 6 in the main scanning section is formed of an aspherical surface, so that the field curvature can be improved over a wide angle of view. Correcting.

【0024】一般に偏向手段として回転多面鏡を用いた
場合、図1に示した偏向角θがプラスのときとマイナス
のときとで走査レンズ6によって発生する像面湾曲量が
同一とはならないのが普通である。図3にこの様子を例
えばメリディオナル方向の像面湾曲を例にして図示す
る。同図に示したような像面湾曲の非対称成分は走査レ
ンズの主走査断面内におけるレンズ形状が光軸中心に対
して対称な形状としている限り、少なからず残存してし
まう。
Generally, when a rotary polygon mirror is used as the deflecting means, the amount of field curvature generated by the scanning lens 6 is not the same when the deflection angle θ shown in FIG. 1 is positive and when it is negative. It is normal. FIG. 3 illustrates this state by taking the field curvature in the meridional direction as an example. The asymmetrical component of the field curvature as shown in the figure remains to some extent as long as the lens shape in the main scanning cross section of the scanning lens is symmetrical with respect to the optical axis center.

【0025】本実施形態のように集束光束を走査レンズ
6に入射させる構成は、前述した如くレンズの加工成型
等の条件を大幅に向上させることができるメリットがあ
るものの走査レンズ6の焦点距離fを長く設定している
為に、それに伴なって像面湾曲の非対称成分の量が若干
大きくなる傾向にある。
The configuration in which the focused light flux is incident on the scanning lens 6 as in the present embodiment has the merit that the conditions for processing and molding the lens can be greatly improved as described above, but the focal length f of the scanning lens 6 is large. Is set to be long, the amount of the asymmetric component of the field curvature tends to increase accordingly.

【0026】しかしながら有効走査幅がA4サイズ程度
までであれば上記非対称成分も十分許容できる量であ
り、有効走査幅全域において高精細な画像出力に対応し
た十分小さなスポット形状を得ることができる。ところ
が有効走査幅がA3サイズ以上になると所望のスポット
形状を得ることが難しくなる傾向にある。
However, if the effective scanning width is up to about A4 size, the above-mentioned asymmetrical component is also a sufficiently permissible amount, and a sufficiently small spot shape corresponding to high-definition image output can be obtained over the entire effective scanning width. However, when the effective scanning width becomes A3 size or more, it tends to be difficult to obtain a desired spot shape.

【0027】そこで本実施形態では前述の如く走査レン
ズ6の両レンズ面のうち少なくとも1つのレンズ面の非
球面形状を光軸中心に対して非対称な形状とすることに
より、有効走査幅A3サイズ以上にわたって十分小さな
スポット形状を得ることができ、これにより前述した像
面湾曲の非対称成分をA3サイズ以上の有効走査幅全域
にわたって殆ど無視できる程度にまで補正している。
Therefore, in the present embodiment, as described above, the aspherical shape of at least one of the lens surfaces of the scanning lens 6 is made asymmetric with respect to the optical axis center, so that the effective scanning width is A3 size or more. It is possible to obtain a sufficiently small spot shape over the entire area, whereby the asymmetrical component of the field curvature described above is corrected to a negligible extent over the entire effective scanning width of A3 size or more.

【0028】更に本実施形態では走査レンズ6の副走査
方向の焦点距離をfb、光偏向器5で集束光束が偏向さ
れる偏向点Pから被走査面7までの距離をLa、又図4
に示すように偏向点Pから集束光束が走査レンズ6が無
い場合の仮想集束点P´までの距離をLbとしたとき 0.13<fb/La<0.25 ‥‥‥‥(1) Lb/La<10 ‥‥‥‥(2) なる条件のうち少なくとも1つの条件を満足させてい
る。これによりプラスチック化及び高精細な印字に適し
た光走査光学系を得ている。
Further, in this embodiment, the focal length of the scanning lens 6 in the sub-scanning direction is fb, the distance from the deflection point P where the focused light beam is deflected by the optical deflector 5 to the scanned surface 7 is La, and FIG.
As shown in (1), when the distance from the deflection point P to the virtual focusing point P'when the focused light beam does not have the scanning lens 6 is Lb, 0.13 <fb / La <0.25 (1) Lb / La <10 (2) At least one of the following conditions is satisfied. As a result, an optical scanning optical system suitable for plasticization and high-definition printing is obtained.

【0029】条件式(1)は走査レンズ6の副走査方向
の焦点距離fbと偏向点Pから被走査面7までの距離L
aとの比に関するものであり、条件式(1)の下限値を
越えるとメリディオナル方向とサジタル方向の像面湾曲
をバランス良く補正するのが困難になると共に、特に走
査レンズ6の材質をプラスチック材料で成形した場合、
環境変動等の影響による被走査面7でのピント移動等が
許容できなくなってくるので良くない。又条件式(1)
の上限値を越えると収差補正上は有利となるが、走査レ
ンズ6が被走査面7に近づき装置全体が大型化してしま
うので良くない。
The conditional expression (1) is the focal length fb of the scanning lens 6 in the sub-scanning direction and the distance L from the deflection point P to the surface 7 to be scanned.
When the value exceeds the lower limit of conditional expression (1), it becomes difficult to correct the field curvatures in the meridional direction and the sagittal direction in a well-balanced manner, and in particular, the scanning lens 6 is made of a plastic material. When molded with
It is not good because the movement of focus on the surface 7 to be scanned becomes unacceptable due to the influence of environmental changes. Conditional expression (1)
When the value exceeds the upper limit of 1, it is advantageous for aberration correction, but it is not good because the scanning lens 6 approaches the surface to be scanned 7 and the entire apparatus becomes large.

【0030】条件式(2)は偏向点Pから仮想集束点P
´までの距離Lbと偏向点Pから被走査面7までの距離
Laとの比に関し、特に集束光束を効率良く走査レンズ
6に入射させる為のものであり、条件式(2)を外れる
と走査レンズ6の主走査方向の屈折力(パワー)を強く
設定しなければならず、レンズの肉厚が厚くなってしま
うと共に、光軸近傍の肉厚とレンズ端部での肉厚とが大
きく異なってしまいレンズの材質をプラスチック材料で
成形した場合の均質性、歪み、加工時間等の加工条件が
大幅に悪くなってしまうので良くない。
Conditional expression (2) is derived from the deflection point P to the virtual focusing point P.
Regarding the ratio of the distance Lb to ′ ′ and the distance La from the deflection point P to the surface 7 to be scanned, it is for making the focused light beam enter the scanning lens 6 efficiently, and if the conditional expression (2) is not satisfied, scanning is performed. The refracting power (power) of the lens 6 in the main scanning direction must be set strongly, and the wall thickness of the lens becomes large, and the wall thickness near the optical axis and the wall thickness at the lens end portion are significantly different. This is not desirable because the processing conditions such as homogeneity, distortion, and processing time when the lens material is molded from a plastic material are significantly deteriorated.

【0031】図5、図6は各々本発明の実施形態1にお
ける像面湾曲と歪曲収差(fθ特性)等を示す諸収差図
である。これら収差図から明らかなように本実施形態で
は各収差が良好に補正されていることが解る。
FIG. 5 and FIG. 6 are various aberration diagrams showing field curvature, distortion (f.theta. Characteristic) and the like in the first embodiment of the present invention. As is apparent from these aberration diagrams, it is understood that each aberration is corrected well in this embodiment.

【0032】図7は本発明の実施形態2の主走査方向の
要部断面図(主走査断面図)である。同図において図1
に示した要素と同一要素には同符番を付している。
FIG. 7 is a sectional view (main scanning sectional view) of a main portion in the main scanning direction according to the second embodiment of the present invention. In FIG.
The same elements as those shown in are given the same reference numerals.

【0033】本実施形態において前述の実施形態1と異
なる点は走査レンズ(fθレンズ)16のレンズ形状が
異なっている点であり、その他の構成及び光学的作用は
前述の実施形態1と略同様であり、これにより同様な効
果を得ている。
The present embodiment is different from the first embodiment described above in that the scanning lens (fθ lens) 16 has a different lens shape, and other configurations and optical functions are substantially the same as those of the first embodiment. Therefore, a similar effect is obtained.

【0034】図8、図9は各々本発明の実施形態2にお
ける像面湾曲と歪曲収差(fθ特性)等を示す諸収差図
である。これら収差図から明らかなように本実施形態で
は各収差が良好に補正されていることが解る。
FIG. 8 and FIG. 9 are various aberration diagrams showing field curvature, distortion (f.theta. Characteristic) and the like in the second embodiment of the present invention. As is apparent from these aberration diagrams, it is understood that each aberration is corrected well in this embodiment.

【0035】次に本発明に関わる走査レンズ(fθレン
ズ)の数値実施例1,2を示す。数値実施例1,2は各
々順に本発明の実施形態1,2の光偏向器5以降の数値
例である。数値実施例1,2においては各レンズ面の主
走査断面内における曲率半径を光偏向器5側より各々順
にR1,R2、副走査断面内における曲率半径を各々順
にr1,r2、各面間の距離を各々順にD1,D2で示
す。又レンズの波長780nmでの屈折率をN1で表わ
す。
Next, numerical examples 1 and 2 of the scanning lens (fθ lens) according to the present invention will be shown. Numerical Examples 1 and 2 are numerical examples after the optical deflector 5 of Embodiments 1 and 2 of the present invention, respectively. In Numerical Embodiments 1 and 2, the radius of curvature of each lens surface in the main scanning section is R1 and R2 in order from the optical deflector 5 side, and the radius of curvature in the sub scanning section is r1 and r2 in order, respectively. The distances are indicated by D1 and D2, respectively. The refractive index of the lens at a wavelength of 780 nm is represented by N1.

【0036】又、KU 〜DU 、KL 〜DL は第1レンズ
面で示すように光軸をX軸、それに直交し主走査断面内
に存在する軸をY軸としたときにX−Y平面上でのレン
ズ面の高さyとレンズ面頂点からの距離xとの関係式
Further, K U to D U and K L to D L are X when the optical axis is the X axis as shown by the first lens surface and the axis orthogonal to it and existing in the main scanning cross section is the Y axis. A relational expression between the height y of the lens surface on the Y plane and the distance x from the vertex of the lens surface.

【0037】[0037]

【数1】 の各次数の非球面係数で表わされる。[Equation 1] It is represented by the aspherical coefficient of each degree of.

【0038】又、aU 〜eU 、aL 〜eL はX−Y平面
上でのレンズ面の高さyと、そこにおける副走査断面内
における曲率半径r´との関係式 y≧0のとき r´=r(1+aU2 +bU4 +cU6 +dU
8 +eU10) y<0のとき r´=r(1+aL2 +bL4 +cL6 +dL
8 +eL10) の各次数の係数で表わされる。又数値実施例1,2と前
述の各条件式(1),(2)との関係を表−1に示す。
Further, a U to e U and a L to e L are relational expressions y ≧ 0 between the height y of the lens surface on the XY plane and the radius of curvature r ′ in the sub-scan section. Then r ′ = r (1 + a U y 2 + b U y 4 + c U y 6 + d U y
8 + e U y 10 ) When y <0, r ′ = r (1 + a L y 2 + b L y 4 + c L y 6 + d L y
8 + e L y 10 ). Table 1 shows the relationship between the numerical examples 1 and 2 and the conditional expressions (1) and (2) described above.

【0039】[数値実施例1] 全系の焦点距離 212.2mm 最大走査角 82.7° 偏向点〜R1面 56.1mm R1=111.77 D1=16.0 N1=1.5242 KU =-15.3092 KL =-14.7594 AU = -3.74175 ×10-7L = -4.05918 ×10-7U = 4.72734 ×10-11L = 1.39652 ×10-11U = -1.79928 ×10-15L = -8.16509 ×10-15U = 2.16557 ×10-19L = 1.40250 ×10-18 r1=-29.7564 aU = 9.34082 ×10-4L = 8.43382 ×10-4U = 2.10889 ×10-8L = -3.1011 ×10-7U = -2.38825 ×10-10L = -2.99730 ×10-11U = 1.20716 ×10-13L = 8.14391 ×10-14U = -1.57294 ×10-17L = -1.24936 ×10-17 R2=294.01 D2=174.07 KU =-110.227 KL =-104.3 AU = -6.56411 ×10-7L = -6.6408 ×10-7U = 8.70817 ×10-11L = 6.54217 ×10-11U = -1.27139 ×10-14L = -1.9152 ×10-14U = 1.38190 ×10-18L = 1.45205 ×10-18 r2=-16.775 aU = 2.91036 ×10-4L = 2.75506 ×10-4U = -8.98738 ×10-8L = -1.23201 ×10-7U = 2.13687 ×10-12L = 1.45427 ×10-11U = 6.74772 ×10-15L = 7.76902 ×10-15U = -1.01846 ×10-18L = -1.45361 ×10-18 La=246.17mm Lb=495mm fb=51.5mm [数値実施例2] 全系の焦点距離 212.4mm 最大走査角 82.7° 偏向点〜R1面 56.7mm R1=110.49 D1=15.4 N1=1.5242 KU =-17.0315 KL = -8.27899 AU = -3.53181 ×10-7L = -4.47142 ×10-7U = 2.61693 ×10-11L = -1.32162 ×10-11U = 3.13471 ×10-15L = 1.83137 ×10-14U = 3.88356 ×10-20L = -1.18971 ×10-18 r1=-29.3783 aU = 1.05556 ×10-3L = 1.04329 ×10-3U = 4.48777 ×10-7L = -2.08003 ×10-7U = -2.81497 ×10-10L = -6.58331 ×10-11U = 9.79329 ×10-14L = 1.00037 ×10-13U = -1.43003 ×10-17L = -2.00591 ×10-17 R2=290.48 D2=174.07 KU = -99.642 KL = -67.6373 AU = -7.28050 ×10-7L = -4.99539 ×10-7U = 1.08505 ×10-10L = -9.24564 ×10-12U = -1.93659 ×10-14L = 1.3113 ×10-15U = 2.38781 ×10-18L = 1.42004 ×10-18 r2=-16.52 aU = 3.40524 ×10-4L = 3.15986 ×10-4U = -5.78602 ×10-8L = -1.20982 ×10-7U = -1.02494 ×10-11L = 2.31786 ×10-11U = 7.18632 ×10-15L = 3.0093 ×10-15U = -9.78821 ×10-19L = -1.04963 ×10-18 La=246.17mm Lb=495.3mm fb=51.6mm[0039] [Numerical Example 1] focal length 212.2mm maximum scan angle 82.7 ° deflection point ~R1 surface 56.1mm R1 = 111.77 D1 = 16.0 N1 = 1.5242 of the total system K U = -15.3092 K L = -14.7594 A U = -3.74175 × 10 -7 A L = -4.05918 × 10 -7 B U = 4.72734 × 10 -11 B L = 1.39652 × 10 -11 C U = -1.79928 × 10 -15 C L = -8.16509 × 10 -15 D U = 2.16557 × 10 -19 D L = 1.40250 × 10 -18 r1 = -29.7564 a U = 9.34082 × 10 -4 a L = 8.43382 × 10 -4 b U = 2.10889 × 10 -8 b L = -3.1011 × 10 -7 c U = -2.38825 x 10 -10 c L = -2.99730 x 10 -11 d U = 1.20716 x 10 -13 d L = 8.14391 x 10 -14 e U = -1.57294 x 10 -17 e L = -1.24936 × 10 -17 R2 = 294.01 D2 = 174.07 K U = -110.227 K L = -104.3 A U = -6.56411 × 10 -7 A L = -6.6408 × 10 -7 B U = 8.70817 × 10 -11 B L = 6.54217 × 10 -11 C U = -1.27139 × 10 -14 C L = -1.9152 × 10 -14 D U = 1.38190 × 10 -18 D L = 1.45205 × 10 -18 r = -16.775 a U = 2.91036 × 10 -4 a L = 2.75506 × 10 -4 b U = -8.98738 × 10 -8 b L = -1.23201 × 10 -7 c U = 2.13687 × 10 -12 c L = 1.45427 × 10 -11 d U = 6.74772 × 10 -15 d L = 7.76902 × 10 -15 e U = -1.01846 × 10 -18 e L = -1.45361 × 10 -18 La = 246.17 mm Lb = 495 mm fb = 51.5 mm [Numerical value example 2 focal length 212.4mm maximum scan angle 82.7 ° deflection point ~R1 surface 56.7mm R1 = 110.49 D1 = 15.4 N1 = 1.5242 of the total system K U = -17.0315 K L = -8.27899 a U = -3.53181 × 10 - 7 A L = -4.47142 × 10 -7 B U = 2.61693 × 10 -11 B L = -1.32162 × 10 -11 C U = 3.13471 × 10 -15 C L = 1.83137 × 10 -14 D U = 3.88356 × 10 - 20 D L = -1.18971 × 10 -18 r1 = -29.3783 a U = 1.05556 × 10 -3 a L = 1.04329 × 10 -3 b U = 4.48777 × 10 -7 b L = -2.08003 × 10 -7 c U = -2.81497 × 10 -10 c L = -6.58331 × 10 -11 d U = 9.79329 × 10 -14 d L = 1.00037 × 10 -13 e U = -1.43003 × 10 -17 e L = -2.00591 × 10 -17 R2 = 290.48 D2 = 174.07 K U = -99.642 K L = -67.6373 A U = -7.28050 × 10 -7 A L = -4.99539 × 10 -7 B U = 1.08505 × 10 - 10 B L = -9.24564 × 10 -12 C U = -1.93659 × 10 -14 C L = 1.3113 × 10 -15 D U = 2.38781 × 10 -18 D L = 1.42004 × 10 -18 r2 = -16.52 a U = 3.40524 × 10 -4 a L = 3.15986 × 10 -4 b U = -5.78602 × 10 -8 b L = -1.20982 × 10 -7 c U = -1.02494 × 10 -11 c L = 2.31786 × 10 -11 d U = 7.18632 x 10 -15 d L = 3.0093 x 10 -15 e U = -9.78821 x 10 -19 e L = -1.04963 x 10 -18 La = 246.17 mm Lb = 495.3 mm fb = 51.6 mm

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【発明の効果】本発明によれば前述の如くコリメーター
レンズからの集束光束を光偏向器を介してプラスチック
材より成る1枚の走査レンズ(fθレンズ)により被走
査面上に結像させる際、該走査レンズの両レンズ面のう
ち少なくとも1つのレンズ面を主走査断面内で非球面と
し、かつ該走査レンズの光軸中心に対して主走査方向の
レンズ形状を非対称とし、更に前述の各条件式を満足さ
せることにより、プラスチック化に適した光走査光学系
を達成することができる。更に本発明によれば前述の如
く有効走査幅A3サイズ以上にわたり高精細な画像出力
に適した十分小さなスポット形状を得ることができる光
走査光学系及びそれを備えるレーザービームプリンタを
達成することができる。
As described above, according to the present invention, when the focused light flux from the collimator lens is imaged on the surface to be scanned by one scanning lens (fθ lens) made of a plastic material via the optical deflector. , At least one of the lens surfaces of the scanning lens is an aspherical surface in the main scanning section, and the lens shape in the main scanning direction is asymmetric with respect to the optical axis center of the scanning lens. By satisfying the conditional expression, an optical scanning optical system suitable for plasticization can be achieved. Further, according to the present invention, as described above, it is possible to achieve an optical scanning optical system capable of obtaining a sufficiently small spot shape suitable for high-definition image output over an effective scanning width of A3 size or more, and a laser beam printer including the same. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施形態1の主走査方向の要部断面
FIG. 1 is a sectional view of a main part in a main scanning direction according to a first embodiment of the present invention.

【図2】 本発明の実施形態1の副走査方向の要部断面
FIG. 2 is a sectional view of a main part in a sub-scanning direction according to the first embodiment of the present invention.

【図3】 従来の像面湾曲を説明する収差図FIG. 3 is an aberration diagram illustrating conventional field curvature.

【図4】 本発明の実施形態1において集束光束が走査
レンズに入射する様子を示した説明図
FIG. 4 is an explanatory view showing how a focused light beam is incident on a scanning lens in the first embodiment of the present invention.

【図5】 本発明の実施形態1の像面湾曲を説明する収
差図
FIG. 5 is an aberration diagram illustrating field curvature according to the first embodiment of the present invention.

【図6】 本発明の実施形態1のfθ特性を説明する収
差図
FIG. 6 is an aberration diagram illustrating an fθ characteristic according to the first embodiment of the present invention.

【図7】 本発明の実施形態2の主走査方向の主要部分
の要部断面図
FIG. 7 is a sectional view of an essential part of a main part in a main scanning direction according to a second embodiment of the present invention.

【図8】 本発明の実施形態2の像面湾曲を説明する収
差図
FIG. 8 is an aberration diagram illustrating field curvature according to the second embodiment of the present invention.

【図9】 本発明の実施形態2のfθ特性を説明する収
差図
FIG. 9 is an aberration diagram illustrating an fθ characteristic according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 光源手段 2 コリメーターレンズ 3 開口絞り 4 シリンドリカルレンズ 5 偏向手段 6,16 光学素子 7 被走査面(感光ドラム) 1 light source means 2 Collimator lens 3 aperture stop 4 Cylindrical lens 5 Deflection means 6,16 Optical element 7 Scanned surface (photosensitive drum)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光源手段から射出した光束を光学手段を
介して偏向手段に導光し、該偏向手段で偏向された該光
束を光学素子により被走査面上に導光し、光走査する光
走査光学系において、 該光学素子に入射する光束を概ね集束光束とし、該光学
素子の両面のうち少なくとも1つの面を主走査断面内で
非球面とし、かつ該光学素子の光軸中心に対して主走査
方向の形状を非対称とし、該光学素子の副走査方向の焦
点距離をfb、該偏向手段で該集束光束が偏向される偏
向点から該被走査面までの距離をLa、該偏向手段で偏
向される偏向点から該集束光束が該光学素子の無い場合
の仮想集束点までの距離をLbとしたとき 0.13<fb/La<0.25 Lb/La<10 なる条件を満足することを特徴とする光走査光学系。
1. Light for scanning a light flux emitted from a light source means to a deflecting means via an optical means, and guiding the light flux deflected by the deflecting means onto a surface to be scanned by an optical element for optical scanning. In a scanning optical system, a light beam incident on the optical element is made to be a substantially convergent light beam, at least one surface of both surfaces of the optical element is an aspherical surface in a main scanning section, and the optical axis center of the optical element is set. The shape in the main scanning direction is asymmetric, the focal length of the optical element in the sub-scanning direction is fb, the distance from the deflection point where the focused light beam is deflected by the deflecting means to the scanned surface is La, and the deflecting means is Satisfying the condition of 0.13 <fb / La <0.25 Lb / La <10, where Lb is the distance from the deflected deflection point to the virtual focusing point when the focused light beam does not have the optical element. Optical scanning optical system characterized by.
【請求項2】 前記光学素子の材質はプラスチック材料
より成ることを特徴とする請求項1の光走査光学系。
2. The optical scanning optical system according to claim 1, wherein the material of the optical element is a plastic material.
【請求項3】 前記光学素子は単レンズより成ることを
特徴とする請求項1又は2の光走査光学系。
3. The optical scanning optical system according to claim 1, wherein the optical element is a single lens.
【請求項4】 請求項1〜3のいずれか1項に記載の光
走査光学系と、被走査面としての感光ドラムと、を備え
たことを特徴とするレーザービームプリンタ。
4. The light according to claim 1.
Equipped with a scanning optical system and a photosensitive drum as a surface to be scanned
A laser beam printer that is characterized.
【請求項5】 請求項1〜3のいずれか1項に記載の光
走査光学系と、被走査面としての感光ドラムと、を備え
たことを特徴とするデジタル複写機。
5. The light according to any one of claims 1 to 3.
Equipped with a scanning optical system and a photosensitive drum as a surface to be scanned
A digital copying machine characterized by
JP21946496A 1996-08-01 1996-08-01 Optical scanning optical system and laser beam printer including the same Expired - Fee Related JP3420439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21946496A JP3420439B2 (en) 1996-08-01 1996-08-01 Optical scanning optical system and laser beam printer including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21946496A JP3420439B2 (en) 1996-08-01 1996-08-01 Optical scanning optical system and laser beam printer including the same

Publications (2)

Publication Number Publication Date
JPH1048552A JPH1048552A (en) 1998-02-20
JP3420439B2 true JP3420439B2 (en) 2003-06-23

Family

ID=16735850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21946496A Expired - Fee Related JP3420439B2 (en) 1996-08-01 1996-08-01 Optical scanning optical system and laser beam printer including the same

Country Status (1)

Country Link
JP (1) JP3420439B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4489852B2 (en) * 1998-02-23 2010-06-23 株式会社東芝 Exposure apparatus and image forming apparatus
JP5171029B2 (en) 2006-12-26 2013-03-27 キヤノン株式会社 Optical scanning device and image forming apparatus using the same
JP5317901B2 (en) 2009-09-14 2013-10-16 キヤノン株式会社 Optical scanning device and image forming apparatus using the same

Also Published As

Publication number Publication date
JPH1048552A (en) 1998-02-20

Similar Documents

Publication Publication Date Title
JP3397624B2 (en) Scanning optical device and laser beam printer having the same
JP3466863B2 (en) Scanning optical device and image recording device using the same
KR940005967B1 (en) F-theta lens and image forming apparatus using the same
JPH05346549A (en) Scanning optical device
JP3303558B2 (en) Scanning optical device
JP3445092B2 (en) Scanning optical device
JPH05215986A (en) Scanning optical system with surface tilt correcting function
JP3191538B2 (en) Scanning lens and optical scanning device
JP2623147B2 (en) Optical system for light beam scanning
JP3420439B2 (en) Optical scanning optical system and laser beam printer including the same
EP0857991B1 (en) Scanning optical system
JP5269169B2 (en) Scanning optical device and laser beam printer having the same
JP2956169B2 (en) Scanning optical device
JP3320239B2 (en) Scanning optical device
JPH0968664A (en) Optical system for light beam scanning
JP2000002848A (en) Scanning optical device
JP3571808B2 (en) Optical scanning optical system and laser beam printer including the same
JPH09281422A (en) Scanning optical device
JPH08179236A (en) Beam scanning device
JPH09146030A (en) Optical scanning device
JPH07146437A (en) Light beam scanning optical system
JPH09185006A (en) Scanning optical device
JPH116954A (en) Line image forming lens and optical scanner
JPH09138365A (en) Lens for optical scanning, scanning and imaging lens, and optical scanner
JPH0882739A (en) Optical system for optical scanning

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees