[go: up one dir, main page]

JPH09138365A - Lens for optical scanning, scanning and imaging lens, and optical scanner - Google Patents

Lens for optical scanning, scanning and imaging lens, and optical scanner

Info

Publication number
JPH09138365A
JPH09138365A JP29523795A JP29523795A JPH09138365A JP H09138365 A JPH09138365 A JP H09138365A JP 29523795 A JP29523795 A JP 29523795A JP 29523795 A JP29523795 A JP 29523795A JP H09138365 A JPH09138365 A JP H09138365A
Authority
JP
Japan
Prior art keywords
scanning
lens
optical
scanned
imaging lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29523795A
Other languages
Japanese (ja)
Other versions
JP3452294B2 (en
Inventor
Yoshiaki Hayashi
善紀 林
Seizo Suzuki
清三 鈴木
Koji Masuda
浩二 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP29523795A priority Critical patent/JP3452294B2/en
Publication of JPH09138365A publication Critical patent/JPH09138365A/en
Application granted granted Critical
Publication of JP3452294B2 publication Critical patent/JP3452294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To relax the tolerance of an assembly common difference by composing the scanning and imaging lens of the lens for optical scanning which increases in the absolute value of the radius of curvature in a deflection orthogonal plane toward a maximum value with the distance from the optical axis and then decreases after exceeding the maximum value position. SOLUTION: The lens which is closest to a scanned surface 8 between lenses 6 and 7 is the lens for optical scanning. The lens 7 for optical scanning is a 'meniscus lens having its concave surface on the side of an optical deflector', and the surface on the side of the optical deflector is a 'barrel-shaped concave toroidal surface having an axis of rotation parallel to a main scan corresponding direction'. Further, the surface on the side of the scanned surface monotonously and smoothly increases in the absolute value of the radius of curvature in the deflection orthogonal plane toward the maximum value with the distance from the optical axis in the main scan corresponding direction and then decreases with the same tendency after exceeding the maximum value position. Further, the line obtained by connecting the centers of curvature in the deflection orthogonal plane on the side of the scanned surface is curved in the deflection plane along the main scan corresponding direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は光走査用レンズお
よび走査結像レンズおよび光走査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning lens, a scanning imaging lens, and an optical scanning device.

【0002】[0002]

【従来の技術】主走査対応方向に長い線像に結像された
光束を上記線像の結像位置近傍に偏向反射面を持つ光偏
向器により等角速度的に偏向させ、偏向光束を走査結像
レンズにより被走査面上に光スポットとして集光せしめ
て被走査面の等速的な光走査を行なう光走査装置は光プ
リンタやデジタル複写機に関連して広く知られている。
2. Description of the Related Art A light beam imaged in a long line image in a main scanning direction is deflected at a constant angular velocity by an optical deflector having a deflecting / reflecting surface in the vicinity of the image forming position of the line image to scan the deflected light beam. An optical scanning device that converges a light spot on a surface to be scanned by an image lens to perform uniform optical scanning of the surface to be scanned is widely known in connection with optical printers and digital copying machines.

【0003】上記「主走査対応方向」は、光源から被走
査面に到る光路を光学系の光軸に沿って直線的に展開し
た仮想的な光路上で主走査方向に平行的に対応する方向
を言い、上記仮想的な光路上において、副走査方向と平
行的に対応する方向を「副走査対応方向」と言う。
The "main scanning corresponding direction" corresponds to the main scanning direction in parallel on a virtual optical path in which the optical path from the light source to the surface to be scanned is linearly expanded along the optical axis of the optical system. A direction, which corresponds to a direction parallel to the sub-scanning direction on the virtual optical path, is called a “sub-scanning corresponding direction”.

【0004】光偏向器により理想的に偏向された偏向光
束の主光線が、偏向に伴い掃引する面をこの明細書中に
おいて「偏向面」と呼ぶ。また、偏向面に直交する平面
で、走査結像レンズの光軸に平行なものを「偏向直交
面」と呼ぶ。
The surface on which the principal ray of the deflected light beam ideally deflected by the optical deflector sweeps along with the deflection is referred to as a "deflection surface" in this specification. A plane that is orthogonal to the deflection surface and that is parallel to the optical axis of the scanning and imaging lens is called a "deflection orthogonal plane".

【0005】上記走査結像レンズは、上記線像の結像位
置と被走査面とを副走査対応方向に関して「幾何光学的
に共役な関係」とする「共役化機能」と、光走査を等速
化する「等速化機能」とを有する。上記共役化機能は光
偏向器における偏向反射面の「面倒れ」を補正するため
の機能である。
The scanning / imaging lens has a "conjugation function" for forming a "geometrically-optically conjugate relationship" with respect to the sub-scanning corresponding direction between the image forming position of the line image and the surface to be scanned, and optical scanning. It has a "constant speeding function" for speeding up. The conjugation function is a function for correcting the "face tilt" of the deflective reflection surface of the optical deflector.

【0006】良好な光走査を実現するには、走査結像レ
ンズが上記共役化機能や等速化機能が良好であることに
加え、副走査方向における像面湾曲を良好に補正されて
いることが必要である。副走査方向の像面湾曲の補正が
十分でないと、副走査方向の光スポット径が光スポット
の像高と共に変動し、書き込まれる画像の解像度を著し
く低下させ、像質の低下を招くからである。
In order to realize good optical scanning, the scanning and imaging lens must have good conjugation and constant velocity functions, as well as good correction of field curvature in the sub-scanning direction. is required. If the curvature of field in the sub-scanning direction is not sufficiently corrected, the diameter of the light spot in the sub-scanning direction will vary with the image height of the light spot, and the resolution of the written image will be significantly reduced, leading to a deterioration in image quality. .

【0007】副走査方向の像面湾曲を良好に補正するた
めに、走査結像レンズにおける1以上のレンズ面におい
て、偏向直交面内における曲率半径を主走査対応方向に
おける位置に応じて変化させた走査結像レンズが知られ
ている(例えば、特開平6−230308号公報)。
In order to satisfactorily correct the field curvature in the sub-scanning direction, the radius of curvature in the plane orthogonal to the deflection is changed according to the position in the main scanning corresponding direction on one or more lens surfaces of the scanning imaging lens. A scanning imaging lens is known (for example, Japanese Patent Laid-Open No. 6-230308).

【0008】上記公報記載の走査結像レンズは副走査方
向の像面湾曲が良好に補正されているが、偏向直交面内
における曲率半径が「主走査対応方向において光軸を離
れるに従い単調に増加している」ため、偏向角:0と最
大偏向角(有効主走査領域の端部に対応する)とで上記
曲率半径が大きく異なる。このような面形状を持つレン
ズに偏心やシフト等の組付け誤差があると、この組付け
誤差により副走査方向の像面湾曲が著しく劣化すること
になる。
In the scanning and imaging lens described in the above publication, the field curvature in the sub-scanning direction is satisfactorily corrected, but the radius of curvature in the plane orthogonal to the deflection "monotonically increases with the distance from the optical axis in the main scanning corresponding direction." Therefore, the above-mentioned radius of curvature greatly differs between the deflection angle of 0 and the maximum deflection angle (corresponding to the end of the effective main scanning area). If a lens having such a surface shape has an assembling error such as decentering or shift, the assembling error significantly deteriorates the field curvature in the sub-scanning direction.

【0009】このため上記公報記載の走査結像レンズは
組付けの公差が厳しく、そのため光走査装置の組立ての
作業性が悪いという問題がある。
For this reason, the scanning and imaging lens described in the above publication has strict tolerances of assembly, which causes a problem of poor workability in assembling the optical scanning device.

【0010】[0010]

【発明が解決しようとする課題】この発明は上述した事
情に鑑み、光走査装置および走査結像レンズにおいて、
共役化機能と等速化機能を良好に保ちつつ、光走査装置
への組付けの公差に対する許容度を有効に緩和させ得る
ような走査結像レンズの実現を課題とする。
In view of the above-mentioned circumstances, the present invention provides an optical scanning device and a scanning imaging lens,
An object of the present invention is to realize a scanning imaging lens that can effectively relax the tolerance for the tolerance of the assembly to the optical scanning device while keeping the conjugation function and the constant velocity function satisfactorily.

【0011】[0011]

【課題を解決するための手段】この発明の「光走査用レ
ンズ」は、主走査対応方向に長い線像に結像された光束
を、上記線像の結像位置近傍に偏向反射面を持つ光偏向
器により等角速度的に偏向させ、偏向光束を走査結像レ
ンズにより被走査面上に光スポットとして集光せしめて
被走査面の等速的な光走査を行なう光走査装置において
「複数枚のレンズにより構成される走査結像レンズの一
部を構成するレンズ」である。
In the "optical scanning lens" of the present invention, a light beam formed into a long line image in the main scanning corresponding direction has a deflecting / reflecting surface near the image forming position of the line image. In an optical scanning device that deflects light beams at a constant angular velocity by an optical deflector, collects the deflected light beam as a light spot on a surface to be scanned by a scanning imaging lens, and performs uniform optical scanning of the surface to be scanned, a plurality of The lens forming a part of the scanning and imaging lens formed by the lens.

【0012】即ち、光走査用レンズは1枚のレンズであ
って、他の1枚以上のレンズとともに走査結像レンズを
構成する。
That is, the optical scanning lens is a single lens, and constitutes a scanning imaging lens together with one or more other lenses.

【0013】光走査用レンズは以下の如き特徴を有する
(請求項1)。
The optical scanning lens has the following features (claim 1).

【0014】即ち、光走査用レンズは「光偏向器側に凹
面を向けたメニスカスレンズ」であり、光偏向器側の面
は「主走査対応方向に平行な回転軸を持つ凹の樽型トロ
イダル面」であり、被走査面側の面は「偏向直交面内に
おける曲率半径の絶対値が、主走査対応方向において光
軸を離れるに従い極大値に向かって滑らか且つ単調に増
加し、極大位置を超えたのち、光軸を離れるに従い滑ら
か且つ単調に減少するように定められ、且つ、被走査面
側の面の偏向直交面内における曲率中心を連ねた線が偏
向面内において主走査対応方向に沿う曲線となる」よう
に定められている。
That is, the optical scanning lens is a "meniscus lens having a concave surface facing the optical deflector", and the surface on the optical deflector side is "a concave barrel-shaped toroidal having a rotation axis parallel to the main scanning corresponding direction". The surface on the side of the surface to be scanned has the “maximum position where the absolute value of the radius of curvature in the plane orthogonal to the deflection increases smoothly and monotonically toward the maximum value as it leaves the optical axis in the main scanning corresponding direction. After passing, the line is defined so as to decrease smoothly and monotonically as it leaves the optical axis, and the line connecting the curvature centers in the plane orthogonal to the deflection of the surface to be scanned is in the main scanning corresponding direction in the deflection surface. It will be a curved line. "

【0015】上記「光走査用レンズ」はメニスカスレン
ズであるので、中央と周辺部、特に主走査対応方向にお
ける中央部と周辺部との肉厚差を有効に軽減する「均肉
化」が可能であり、プラスチック等の樹脂で成形加工に
より作製する際の「ヒケやウネリ」といった変形を有効
に防止できる。
Since the above-mentioned "optical scanning lens" is a meniscus lens, it is possible to "uniformize the thickness" by effectively reducing the thickness difference between the central portion and the peripheral portion, particularly the central portion and the peripheral portion in the main scanning corresponding direction. Therefore, it is possible to effectively prevent the deformation such as "sink or swell" when the resin such as plastic is formed by molding.

【0016】光走査用レンズは、凹面を光偏向器側に向
けて配備されるので、主走査対応方向の中央部と周辺部
での「副走査対応方向の横倍率の差」を少なくできる。
Since the optical scanning lens is arranged with the concave surface facing the optical deflector side, the "difference in lateral magnification in the sub scanning corresponding direction" between the central portion and the peripheral portion in the main scanning corresponding direction can be reduced.

【0017】請求項1記載の光走査用レンズは、他の1
枚以上のレンズとともに「走査結像レンズ」を構成す
る。この場合、光走査用レンズは、基本的には走査結像
レンズのどの部位に配備されても良いが、「走査結像レ
ンズを構成する複数のレンズのうちでが最も被走査面
側」に配備されることが出来る(請求項2)。
The optical scanning lens according to claim 1 is another lens.
A "scanning imaging lens" is configured with one or more lenses. In this case, the optical scanning lens may be basically arranged at any part of the scanning / imaging lens, but it is “on the most scanned surface side among the plurality of lenses forming the scanning / imaging lens”. It can be deployed (Claim 2).

【0018】走査結像レンズには偏向光束が入射される
ので、2枚以上のレンズで構成される走査結像レンズの
場合、被走査面に近いレンズほど、主走査方向の有効径
が大きくなる。そこで、プラスチック等で容易に成形で
きる光走査用レンズを最も被走査面に近い位置に配備す
ることにより、走査結像レンズの製作を容易ならしむる
ことが可能になる。
Since the deflected light beam is incident on the scanning image forming lens, in the case of a scanning image forming lens composed of two or more lenses, the effective diameter in the main scanning direction becomes larger as the lens is closer to the surface to be scanned. . Therefore, by disposing an optical scanning lens that can be easily molded of plastic or the like at a position closest to the surface to be scanned, it becomes possible to easily manufacture the scanning imaging lens.

【0019】上記請求項2記載の光走査用レンズにおい
て、光偏向器側の面を「偏向面内の形状が非円弧形状で
ある樽型トロイダル面」とし、被走査面側の面を「偏向
面内の形状が円弧形状」とすることが出来る(請求項
3)。
In the optical scanning lens described in claim 2, the surface on the optical deflector side is a "barrel toroidal surface having a non-arcuate shape in the deflection surface", and the surface on the scanned surface side is "deflected". The in-plane shape can be "arc shape" (claim 3).

【0020】「非円弧形状」は、光軸方向に座標:Xを
とり、光軸直交方向に座標:Yをとるとき、近軸曲率半
径をR、円錐定数をK、高次の係数をA,B,C,
D,...として、 X=(Y2/R)/[1+√{1−(1+K)(Y/R)2}] +A・Y4+B・Y6+C・Y8+D・Y10...(1) なる式におけるR,K,A,B,C,D,..を与えて
特定される曲線形状であり、この発明においては「光偏
向器の側に向かって凹」である。
The "non-arcuate shape" has a coordinate: X in the optical axis direction and a coordinate: Y in the direction orthogonal to the optical axis, where R is the paraxial radius of curvature, K is the conic constant, and A is a higher-order coefficient. , B, C,
D,. . . X = (Y 2 / R) / [1 + √ {1- (1 + K) (Y / R) 2 }] + A · Y 4 + B · Y 6 + C · Y 8 + D · Y 10 . . . (1) R, K, A, B, C, D ,. . Is a curved shape specified by, and is "concave toward the optical deflector side" in the present invention.

【0021】このような「非円弧形状もしくは円弧形
状」を、偏向面内で主走査対応方向に平行な回転軸の回
りに回転させるとにより「凹の樽型トロイダル面」が形
成される。
A "concave barrel-shaped toroidal surface" is formed by rotating such a "non-arcuate shape or an arcuate shape" around a rotation axis parallel to the main scanning corresponding direction in the deflection surface.

【0022】請求項4記載の走査結像レンズは「主走査
対応方向に長い線像に結像された光束を、上記線像の結
像位置近傍に偏向反射面を持つ光偏向器により等角速度
的に偏向させ、偏向光束を走査結像レンズにより被走査
面上に光スポットとして集光せしめて被走査面の等速的
な光走査を行なう光走査装置」における走査結像レンズ
であって2枚のレンズにより構成される。
According to a fourth aspect of the present invention, there is provided a scanning image forming lens, wherein a light beam imaged in a line image long in a main scanning direction is made to have an equal angular velocity by an optical deflector having a deflecting / reflecting surface near an image forming position of the line image. The scanning and imaging lens in the "optical scanning device for performing uniform optical scanning of the surface to be scanned by condensing the deflected light beam as a light spot on the surface to be scanned by the scanning and imaging lens". It is composed of one lens.

【0023】2枚のレンズの内の1枚は請求項3記載の
光走査用レンズである。光偏向器側のレンズは、光偏向
器側の面が「共軸非球面(上記式(1)で特定される非
円弧形状を光軸の回りに回転して得られる形状)」であ
り、被走査面側の面が「球面」である。
One of the two lenses is the optical scanning lens described in claim 3. The lens on the optical deflector side has a surface on the optical deflector side that is “a coaxial aspherical surface (a shape obtained by rotating the non-arc shape specified by the above formula (1) around the optical axis)”, The surface on the scanned surface side is a “spherical surface”.

【0024】請求項5記載の走査結像レンズは「主走査
対応方向に長い線像に結像された光束を、上記線像の結
像位置近傍に偏向反射面を持つ光偏向器により等角速度
的に偏向させ、偏向光束を走査結像レンズにより被走査
面上に光スポットとして集光せしめて被走査面の等速的
な光走査を行なう光走査装置」における走査結像レンズ
であって2枚のレンズにより構成される。
According to a fifth aspect of the present invention, there is provided a scanning and image forming lens in which "a light beam imaged in a long line image in a main scanning direction is formed at an equal angular velocity by an optical deflector having a deflecting / reflecting surface near an image forming position of the line image. The scanning and imaging lens in the "optical scanning device for performing uniform optical scanning of the surface to be scanned by condensing the deflected light beam as a light spot on the surface to be scanned by the scanning and imaging lens". It is composed of one lens.

【0025】2枚のレンズの内の1枚が請求項3記載の
光走査用レンズである。光偏向器側のレンズは、光偏向
器側の面が「偏向面内の形状を非円弧形状とし、主走査
対応方向に平行な回転軸を持つ樽型トロイダル面」であ
り、被走査面側の面が「ノーマルトロイダル面」であ
る。
One of the two lenses is the optical scanning lens described in claim 3. The lens on the optical deflector side has a surface on the optical deflector side that is "a barrel-shaped toroidal surface having a non-arcuate shape in the deflecting surface and having a rotation axis parallel to the main scanning corresponding direction." Is the “normal toroidal surface”.

【0026】請求項6記載の光走査装置は「主走査対応
方向に長い線像に結像された光束を、上記線像の結像位
置近傍に偏向反射面を持つ光偏向器により等角速度的に
偏向させ、偏向光束を走査結像レンズにより被走査面上
に光スポットとして集光せしめて上記被走査面の等速的
な光走査を行なう光走査装置」において、複数枚のレン
ズにより構成される走査結像レンズが請求項1または2
または3記載の光走査用レンズを含むことを特徴とす
る。
According to a sixth aspect of the present invention, there is provided an optical scanning device in which "a light beam formed into a long line image in the main scanning direction is formed at a constant angular velocity by an optical deflector having a deflecting / reflecting surface in the vicinity of an image forming position of the line image. An optical scanning device for deflecting the light beam and converging the deflected light beam as a light spot on the surface to be scanned by the scanning imaging lens to perform uniform optical scanning of the surface to be scanned ". The scanning imaging lens according to claim 1 or 2.
Alternatively, the optical scanning lens described in 3 is included.

【0027】請求項7記載の光走査装置は「主走査対応
方向に長い線像に結像された光束を、上記線像の結像位
置近傍に偏向反射面を持つ光偏向器により等角速度的に
偏向させ、偏向光束を走査結像レンズにより被走査面上
に光スポットとして集光せしめて上記被走査面の等速的
な光走査を行なう光走査装置」において、走査結像レン
ズが請求項4または5記載の走査結像レンズであること
を特徴とする。
According to a seventh aspect of the present invention, there is provided an optical scanning device in which "a light beam formed into a long line image in the main scanning direction is equiangularly moved by an optical deflector having a deflecting / reflecting surface near the image forming position of the line image. An optical scanning device for deflecting the light beam onto the surface to be scanned as a light spot by the scanning and imaging lens and performing uniform optical scanning of the surface to be scanned. It is the scanning imaging lens described in 4 or 5.

【0028】[0028]

【発明の実施の形態】図1は、請求項6,7記載の光走
査装置の実施の1形態を略示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 schematically shows an embodiment of an optical scanning device according to claims 6 and 7.

【0029】光源であるLD1から放射されたレーザ光
束はカップリングレンズ2によりカップリングされ、シ
リンダレンズ3により副走査対応方向(図面に直交する
方向)にのみ集光されつつミラー4により反射され、光
偏向器の偏向反射面5の位置に主走査対応方向(図面に
平行な方向)に長い線像に結像する。
The laser beam emitted from the light source LD1 is coupled by the coupling lens 2 and is reflected by the mirror 4 while being condensed only in the sub-scanning corresponding direction (direction orthogonal to the drawing) by the cylinder lens 3. A long line image is formed at the position of the deflecting reflection surface 5 of the optical deflector in the main scanning corresponding direction (direction parallel to the drawing).

【0030】ミラー4は、LD1から偏向反射面5に到
る光学系のレイアウト次第では省略してもよく、シリン
ダレンズ3は「凹シリンダミラー」で代替してもよい。
The mirror 4 may be omitted depending on the layout of the optical system extending from the LD 1 to the deflective reflection surface 5, and the cylinder lens 3 may be replaced by a "concave cylinder mirror".

【0031】この実施の形態において、光偏向器は「ホ
ゾ型ミラー」等の回転単面鏡で、その回転軸5Aを偏向
反射面5内に含んでおり、光源側からの光束の主光線は
回転軸5Aの位置に入射する。従って、この形態におい
ては偏向反射面5の回転に伴う偏向反射面5と線像の結
像位置のずれ、所謂「サグ」の発生がない。
In this embodiment, the optical deflector is a rotating single-sided mirror such as a "horizontal mirror", and its rotation axis 5A is included in the deflecting / reflecting surface 5, and the principal ray of the light beam from the light source side is It is incident on the position of the rotating shaft 5A. Therefore, in this embodiment, there is no occurrence of so-called "sag", which is a deviation between the deflection reflection surface 5 and the image forming position of the line image due to the rotation of the deflection reflection surface 5.

【0032】偏向反射面5による反射光束は偏向反射面
5の等速的な回転に従い等角速度的に偏向し、偏向光束
となってレンズ6,7を透過する。レンズ6,7は「走
査結像レンズ」を構成する。
The light beam reflected by the deflecting / reflecting surface 5 is deflected at a constant angular velocity as the deflecting / reflecting surface 5 rotates at a constant speed, and becomes a deflected light beam and passes through the lenses 6 and 7. The lenses 6 and 7 form a "scanning / imaging lens".

【0033】走査結像レンズを透過した偏向光束は被走
査面8に向かって集光し、被走査面8上に形成される光
スポットにより被走査面8が等速的に走査される。被走
査面8の位置には通常、光導電性の感光体等が配備され
るので、光スポットは実体的には感光体を光走査する。
The deflected light flux which has passed through the scanning and imaging lens is condensed toward the surface 8 to be scanned, and the surface 8 to be scanned is scanned at a constant speed by a light spot formed on the surface 8 to be scanned. Since a photoconductive photoconductor or the like is usually arranged at the position of the surface 8 to be scanned, the light spot actually optically scans the photoconductor.

【0034】この実施の形態では、レンズ6,7のう
ち、被走査面8に最も近いレンズ7が光走査用レンズで
ある。光走査用レンズ7は「光偏向器の側に凹面を向け
たメニスカスレンズ」であり、光偏向器側の面は「主走
査対応方向に平行な回転軸を持つ凹の樽型トロイダル
面」である。
In this embodiment, of the lenses 6 and 7, the lens 7 closest to the surface 8 to be scanned is the optical scanning lens. The optical scanning lens 7 is a “meniscus lens having a concave surface facing the optical deflector”, and the surface on the optical deflector side is a “concave barrel-shaped toroidal surface having a rotation axis parallel to the main scanning direction”. is there.

【0035】この樽型トロイダル面を図2にを参照して
説明する。図2においてX軸は走査結像レンズの光軸に
合致してとられ、Y軸は主走査対応方向に平行にとられ
ている。従ってXY平面は「偏向面」である。
The barrel-shaped toroidal surface will be described with reference to FIG. In FIG. 2, the X axis is aligned with the optical axis of the scanning imaging lens, and the Y axis is parallel to the main scanning corresponding direction. Therefore, the XY plane is a "deflection surface".

【0036】図2に示す曲線:X(Y)は偏向面内におけ
る曲線であり、座標原点を通り、光偏向器の側、即ち図
2の左方に向かって「凹」である。曲線:X(Y)は「円
弧形状」もしくは前述の式(1)で特定される「非円弧
形状」である。
The curve X (Y) shown in FIG. 2 is a curve in the deflection plane, and is "concave" toward the optical deflector side, that is, to the left in FIG. A curve: X (Y) is an “arc shape” or a “non-arc shape” specified by the above-mentioned formula (1).

【0037】樽型トロイダル面は「曲線:X(Y)を回転
軸AXの回りに回転して得られる樽型の曲面」である。
回転軸AXは曲線:X(Y)の左側、即ち光偏向器側にあ
るので、形成される樽型トロイダル面は凹面である。
The barrel-shaped toroidal surface is "a barrel-shaped curved surface obtained by rotating a curve: X (Y) around the rotation axis AX".
Since the rotation axis AX is on the left side of the curve: X (Y), that is, on the optical deflector side, the barrel-shaped toroidal surface formed is a concave surface.

【0038】曲線:X(Y)上の任意の点のY座標をY=
ηとすると、この位置における樽型トロイダル面の偏向
直交面(図面に直交する面のうちでX軸に平行な面)内
における曲率半径:r(η)の絶対値は|r(η)|=|r
(0)|−|X(Y)|で与えられる。
Curve: The Y coordinate of an arbitrary point on X (Y) is Y =
If η, the absolute value of the radius of curvature: r (η) in the plane perpendicular to the deflection of the barrel-shaped toroidal surface (the plane parallel to the X axis among the planes orthogonal to the drawing) at this position is | r (η) | = | R
It is given by (0) |-| X (Y) |.

【0039】従って、樽型トロイダル面を特定するに
は、曲線:X(Y)とr(0)(光軸を含む偏向直交面内の
曲率半径)を与えればよい。
Therefore, in order to specify the barrel-shaped toroidal surface, it is sufficient to give the curves: X (Y) and r (0) (the radius of curvature in the plane orthogonal to the deflection including the optical axis).

【0040】光走査用レンズ7の被走査面側の面形状を
図3を参照して説明する。図3(a)でX軸は走査結像
レンズの光軸に合致してとられ、Y軸は主走査対応方向
に平行にとられている。従ってXY平面は「偏向面」で
ある。
The surface shape of the scanning surface side of the optical scanning lens 7 will be described with reference to FIG. In FIG. 3A, the X axis is aligned with the optical axis of the scanning imaging lens, and the Y axis is parallel to the main scanning corresponding direction. Therefore, the XY plane is a "deflection surface".

【0041】図3(a)に示す曲線:X(Y)は、偏向反
射面内における曲線であり座標原点を通り、光偏向器の
側、即ち図3(a)の左方に向かって「凹」である。
The curve X (Y) shown in FIG. 3 (a) is a curve in the deflecting / reflecting surface, passes through the coordinate origin, and goes toward the optical deflector side, that is, to the left in FIG. 3 (a). It is concave.

【0042】曲線:X(Y)は、「円弧形状」もしくは前
述の式(1)で特定される「非円弧形状」である。
The curve: X (Y) is an "arc shape" or a "non-arc shape" specified by the above-mentioned equation (1).

【0043】Y軸方向にX軸から距離:Y=ηだけ離れ
た偏向直交面(図面に直交する面のうちでX軸に平行な
面)内における曲率半径をr(η)とすると、被走査面側
の面は、偏向直交面内における曲率半径:r(η)の絶対
値が、主走査対応方向(Y方向に平行)において光軸
(X軸と合致)を離れるに従い、極大値に向かって単調
且つ滑らかに増加し、極大位置を超えたのち、光軸を離
れるに従い単調且つ滑らかに減少するように定められ、
且つ、被走査面側の面の偏向直交面内における曲率中心
を連ねた線(図3(a)に鎖線で示す)が偏向面(XY
面)内において主走査対応方向(Y軸方向)に沿う曲線
Lとなるように定められている。
Letting r (η) be the radius of curvature in the deflection orthogonal plane (plane parallel to the X-axis among planes orthogonal to the drawing) which is separated from the X-axis by the distance Y = η in the Y-axis direction, The surface on the scanning surface side has a maximum value as the absolute value of the radius of curvature r (η) in the plane orthogonal to the deflection deviates from the optical axis (matching the X axis) in the main scanning corresponding direction (parallel to the Y direction). It is determined to increase monotonously and smoothly toward the point, and after it exceeds the maximum position, it monotonically and smoothly decreases as it leaves the optical axis.
In addition, a line (shown by a chain line in FIG. 3A) connecting the centers of curvature in the plane orthogonal to the deflection of the surface to be scanned is the deflection surface (XY
It is set so as to form a curve L along the main scanning corresponding direction (Y-axis direction) in the plane.

【0044】偏向直交面内における曲率半径:r(η)の
絶対値が「主走査対応方向において光軸を離れるに従
い、極大値に向かって単調に且つ滑らかに増加し、極大
位置を超えたのち、光軸を離れるに従い単調且つ滑らか
に減少する」ので、図3(a)の曲率半径:r(0),r
(η)絶対値の「差」は図3(b)に示すように、Y方向
においてX軸を離れるに従い、極大に向かって単調且つ
滑らかに増加し、極大位置を超えたのち、X軸を離れる
に従い単調且つ滑らかに減少する。
Radius of curvature in the plane orthogonal to the deflection: The absolute value of r (η) "monotonically and smoothly increases toward the maximum value as it leaves the optical axis in the main scanning corresponding direction, and then exceeds the maximum position. , It decreases monotonically and smoothly as it goes away from the optical axis. "Therefore, the radius of curvature in FIG. 3A: r (0), r
As shown in FIG. 3 (b), the “difference” between the absolute values of (η) increases monotonously and smoothly toward the maximum as it leaves the X-axis in the Y direction. It decreases monotonously and smoothly with increasing distance.

【0045】図4は請求項6,7記載の光走査装置の実
施の別形態を略示している。
FIG. 4 schematically shows another embodiment of the optical scanning device according to claims 6 and 7.

【0046】LD1から放射されたレーザ光束はカップ
リングレンズ2によりカップリングされ、シリンダレン
ズ3により副走査対応方向にのみ集光されつつ、ミラー
4により反射され、光偏向器50の偏向反射面51の近
傍に主走査対応方向に長い線像として結像する。図1の
実施の形態と同じく、ミラー4はLD1から偏向反射面
51に到る光学系のレイアウト次第で省略が可能であ
り、シリンダレンズ3は「凹シリンダミラー」で代替で
きる。
The laser beam emitted from the LD 1 is coupled by the coupling lens 2 and is condensed by the cylinder lens 3 only in the sub-scanning corresponding direction while being reflected by the mirror 4 and the deflection reflection surface 51 of the optical deflector 50. Is imaged as a long line image in the main scanning corresponding direction in the vicinity of. Similar to the embodiment of FIG. 1, the mirror 4 can be omitted depending on the layout of the optical system from the LD 1 to the deflective reflection surface 51, and the cylinder lens 3 can be replaced by a “concave cylinder mirror”.

【0047】この実施の形態において光偏向器50は
「ポリゴンミラー」で、その回転軸53は偏向反射面5
1からそれており、偏向反射面51の回転に伴い偏向反
射面51と線像の結像位置のずれである「サグ」が発生
する。
In this embodiment, the optical deflector 50 is a "polygon mirror", and its rotation axis 53 is the deflective reflection surface 5.
It deviates from 1, and as the deflection reflection surface 51 rotates, a "sag" which is a deviation between the deflection reflection surface 51 and the image forming position of the line image occurs.

【0048】偏向反射面51による反射光束はポリゴン
ミラー50の等速的な回転に従い等角速度的に偏向し、
偏向光束となってレンズ60,70を透過する。これら
レンズ60,70は「走査結像レンズ」を構成する。
The light beam reflected by the deflecting / reflecting surface 51 is deflected at a constant angular velocity as the polygon mirror 50 rotates at a constant velocity.
It becomes a polarized light beam and passes through the lenses 60 and 70. These lenses 60 and 70 form a "scanning / imaging lens".

【0049】走査結像レンズを透過した偏向光束は、被
走査面8に向かって集光し被走査面8上に光スポットを
形成し、被走査面8(通常、光導電性の感光体等が配備
される)を等速的に走査する。
The deflected light flux that has passed through the scanning and imaging lens is condensed toward the surface to be scanned 8 to form a light spot on the surface to be scanned 8, and the surface to be scanned 8 (usually a photoconductive photosensitive member or the like). Are deployed) at a constant speed.

【0050】この実施の形態でも、レンズ60,70の
うち、被走査面8に最も近いレンズ70が光走査用レン
ズである。
Also in this embodiment, of the lenses 60 and 70, the lens 70 closest to the surface 8 to be scanned is the optical scanning lens.

【0051】[0051]

【実施例】以下、図1および図4に示した実施の形態に
対する具体的な実施例を1例づつ挙げる。これまで説明
しなかったが、カップリングレンズ2によりカップリン
グされた光束は「平行光束」であることも、「弱い収束
性の光束」となることもでき、「弱い発散性の光束」と
なることもできる。走査結像レンズは上記3種の光束形
態に応じて設計される。
EXAMPLES Hereinafter, specific examples for the embodiment shown in FIGS. 1 and 4 will be given one by one. Although not described above, the light flux coupled by the coupling lens 2 can be a “parallel light flux” or a “weakly converging light flux”, and is a “weakly divergent light flux”. You can also The scanning image forming lens is designed according to the above three types of light beam forms.

【0052】以下に説明する実施例1,2では、カップ
リングレンズ2によりカップリングされた光束は「弱い
収束性の光束」である。
In Examples 1 and 2 described below, the light flux coupled by the coupling lens 2 is a "weakly convergent light flux".

【0053】図1に代表的に示すように、走査結像レン
ズを構成する2枚のレンズの各レンズ面を光偏向器の側
から第1〜第4面とする。
As shown representatively in FIG. 1, the respective lens surfaces of the two lenses forming the scanning imaging lens are the first to fourth surfaces from the optical deflector side.

【0054】光偏向器による偏向の起点から偏向光束の
自然集光点(「弱い収束性の偏向光束」が光学素子の作
用を受けること無く、自然に集光する光軸上の位置)ま
での距離をS、上記偏向の起点から第1面までの光軸上
の距離をS0、第2面と第3面との間の光軸上の距離を
1、第4面と被走査面との間の光軸上の距離をl2とす
る。また、第1,第2面の間の光軸上の距離(光偏向器
側のレンズの肉厚)をd1、被走査面側のレンズ(光走
査用レンズ)の肉厚をd2とする。
From the starting point of deflection by the optical deflector to the natural condensing point of the deflected light beam (the position on the optical axis where the "weakly converging deflected light beam" is naturally condensed without being affected by the optical element). The distance is S, the distance on the optical axis from the deflection starting point to the first surface is S 0 , the distance on the optical axis between the second surface and the third surface is l 1 , the fourth surface and the surface to be scanned. Let l 2 be the distance on the optical axis between and. Further, the distance on the optical axis between the first and second surfaces (the thickness of the lens on the optical deflector side) is d 1 , and the thickness of the lens on the surface to be scanned (optical scanning lens) is d 2 . To do.

【0055】光偏向器側および被走査面側のレンズの材
質の使用波長(LD1の発振波長)に対する屈折率をそ
れぞれ「N1,N2」とする。図4の実施の形態において
も、これに倣う。なお、長さの次元を持つ量に対する単
位は「mm」である。
[0055] refractive index for the wavelength used for the material of the optical deflector side and the scan surface side lens (oscillation wavelength of LD1) respectively and "N 1, N 2". This is also followed in the embodiment of FIG. The unit for the quantity having the dimension of length is "mm".

【0056】実施例1 図1に示す実施の形態の具体例である。Example 1 This is a specific example of the embodiment shown in FIG.

【0057】S=300.2,S0=40,d1=19.
1,l1=35.0,d2=8,l2=70.9,N1
1.537,N2=1.537 。
S = 300.2, S 0 = 40, d 1 = 19.
1, l 1 = 35.0, d 2 = 8, l 2 = 70.9, N 1 =
1.537, N 2 = 1.537.

【0058】第1面 面形状:共軸非球面(前記式(1)で特定される非円弧
形状を光軸の回りに回転して得られる形状) R=−335,K=8.4,A=−5.93521E−
7,B= 2.42370E−10,C=−4.3E−
14,D= 1.3E−18 上記の値において、Eとそれに続く数字は「べき乗」を
表す。即ち、例えば「E−7]は「10~7」を意味し、
このべき乗がその直前の数値にかかるのである。以下に
おいても同様である。
First surface Surface shape: coaxial aspherical surface (shape obtained by rotating the non-arcuate shape specified by the equation (1) around the optical axis) R = -335, K = 8.4, A = -5.93521E-
7, B = 2.42370E-10, C = -4.3E-
14, D = 1.3E-18 In the above value, E and the number following it represent "power". That is, for example, "E-7" means "10 to 7 ",
This power is applied to the value immediately before it. The same applies to the following.

【0059】第2面 面形状:球面 曲率半径:R=−78
Second surface Surface shape: spherical surface Radius of curvature: R = -78
.

【0060】 第3面:光走査用レンズの光偏向器側の面 面形状:偏向面内の形状が非円弧形状である凹樽型トロ
イダル面(図2参照) 偏向面内の形状:X(Y) R=−383,K= 9.9,A= 3.4244E−
7,B=−2.4985E−11,C= 8.9E−1
6,D= 2.2E−20 光軸上のおける偏向直交面内の曲率半径:r(0)(図2
の曲線:X(0)と回転軸AXとの距離) r(0)=−30
Third surface: surface on the optical deflector side of the optical scanning lens Surface shape: concave barrel-shaped toroidal surface in which the shape in the deflection surface is a non-arc shape (see FIG. 2) Shape in deflection surface: X ( Y) R = -383, K = 9.9, A = 3.4244E-
7, B = -2.4985E-11, C = 8.9E-1
6, D = 2.2E-20 Radius of curvature in the plane orthogonal to the deflection on the optical axis: r (0) (FIG. 2)
Curve: distance between X (0) and rotation axis AX) r (0) =-30
.

【0061】 第4面:光走査用レンズの被走査面側の面 面形状:図3に即して説明した面形状 偏向面内における形状:X(Y)(円弧形状) 曲率半径:R=−500 偏向直交面内における曲率半径:r(Y) 主走査対応方向(Y方向)における第4面への偏向光束
の主光線の入射位置:Yに対する偏向直交面内での曲率
半径:r(Y)を、代表的な入射位置:Y=0,20.
2,35.3,62.3,75.3(mm)の各位値に
対応させて、像高:H及び各像高に副走査方向の像面湾
曲値(単位:mm)けると対応させて一覧にして示す。
Fourth surface: surface on the scanned surface side of the optical scanning lens Surface shape: surface shape described with reference to FIG. 3 Shape in deflection surface: X (Y) (arc shape) Curvature radius: R = -500 Curvature radius in the orthogonal plane of deflection: r (Y) Radius of curvature in the orthogonal plane of deflection with respect to the incident position: Y of the principal ray of the deflected light beam on the fourth surface in the main scanning corresponding direction (Y direction): r ( Y) at a typical incident position: Y = 0, 20.
2, 35.3, 62.3, 75.3 (mm), and image height: H and each image height when the curvature of field in the sub-scanning direction (unit: mm). It shows as a list.

【0062】 入射位置:Y 0 20.2 35.3 62.3 75.3 曲率半径:r(Y) -14.26 -14.39 −14.54 −1
4.45 −14.14 像高:H 0.0 32.5 55.9 93.4 108.
9 像面湾曲: 0.01 0.05 -0.08 -0.04 0.05 。
Incident position: Y 0 20.2 35.3 62.3 75.3 Radius of curvature: r (Y) -14.26 -14.39 -14.54 -1
4.45-14.14 Image height: H 0.0 32.5 55.9 93.4 108.
9 Field curvature: 0.01 0.05 -0.08 -0.04 0.05.

【0063】図1の実施の形態では光偏向器によるサグ
の発生がなく、曲率半径:r(0)はY方向に関し「光軸
対称」である。
In the embodiment of FIG. 1, no sag is generated by the optical deflector, and the radius of curvature: r (0) is "optical axis symmetric" in the Y direction.

【0064】この一覧から分かるように、偏向直交面内
における第4面の曲率半径は、光軸を主走査対応方向へ
離れるに従い、単調且つ滑らかに増大しつつ極大値に達
し、その後単調且つ滑らかに減少する。このため、各入
射位置における偏向直交面内の曲率半径の「ばらつき」
が有効に小さくなり、光走査用レンズの主走査対応方向
における配置の公差に対する許容度が大きくなる。
As can be seen from this list, the radius of curvature of the fourth surface in the plane orthogonal to the deflection increases monotonically and smoothly as it moves away from the optical axis in the direction corresponding to the main scanning, and reaches the maximum value, and then monotonically and smoothly. Decrease to. Therefore, the "variation" of the radius of curvature in the plane orthogonal to the deflection at each incident position
Is effectively reduced, and the tolerance for the disposition tolerance of the optical scanning lens in the main scanning corresponding direction is increased.

【0065】曲率半径:r(Y)において主走査方向の位
置誤差:ΔYがあると、位置:Yにおける曲率半径の誤
差は{dr(Y)/dY}ΔYであり、r(Y)がYの増加に
伴い単調増加する場合だと{dr(Y)/dY}が常に一定
の符号になるので{dr(Y)/dY}ΔYが著しく大きく
なる可能性があるが、この発明におけるようにr(Y)が
極大を持てば、{dr(Y)/dY}の符号が極大の前後で
変化するので{dr(Y)/dY}ΔYは有効に小さくな
る。
When there is a position error in the main scanning direction: ΔY at the radius of curvature: r (Y), the error in the radius of curvature at the position: Y is {dr (Y) / dY} ΔY, and r (Y) is Y. In the case of a monotonic increase with an increase of, since {dr (Y) / dY} always has a constant sign, {dr (Y) / dY} ΔY may be remarkably large. If r (Y) has a maximum, the sign of {dr (Y) / dY} changes before and after the maximum, so that {dr (Y) / dY} ΔY is effectively small.

【0066】図5(a)に実施例1における主走査方向
の像面湾曲を、等速特性としてのfθ特性とリニアリテ
ィを(b)に示す。
FIG. 5 (a) shows the field curvature in the main scanning direction in Example 1 with the f.theta. Characteristic and linearity as constant velocity characteristics shown in (b).

【0067】図5(a)に示されているように、実施例
1では「主走査方向の像面湾曲」が良好に補正されてい
る。これは主として第1〜第4面の「偏向面内の面形
状」を適切に定めたことによる。また「副走査方向の像
面湾曲」は上記一覧から分かるように、有効主走査領域
に渡って「0.1mm以下」と極めて良好である。
As shown in FIG. 5A, in the first embodiment, the "field curvature in the main scanning direction" is satisfactorily corrected. This is mainly because the "surface shape within the deflecting surface" of the first to fourth surfaces is appropriately determined. In addition, as can be seen from the above list, the "field curvature in the sub-scanning direction" is extremely good at "0.1 mm or less" over the effective main scanning area.

【0068】第4面の面形状による効果を見るために、
第4面の面形状を、偏向面内における曲率半径:R=−
500の円弧を光軸上でr(0)=−14.36離れた回
転軸の回りに回転して得られる「ノーマルトロイダル
面」としてみると、このときの主・副走査方向の像面湾
曲は図5(c)に示すようになる。この状態でも、副走
査方向の像面湾曲はかなり良好に補正されている。
In order to see the effect of the surface shape of the fourth surface,
The surface shape of the fourth surface is the radius of curvature in the deflection surface: R =-
Considering the arc of 500 as a "normal toroidal surface" obtained by rotating around an axis of rotation r (0) = -14.36 apart on the optical axis, the field curvature in the main and sub-scanning directions at this time Is as shown in FIG. Even in this state, the field curvature in the sub-scanning direction is corrected quite well.

【0069】実施例1におけるように、第4面の偏向直
交面内における曲率半径:R(Y)がYの増加途上で極大
を持つようにすると、第4面における副走査対応方向の
正のパワーが、光軸上から像高の増大とともに次第に減
少して極小に到り、その後次第に増大するので、上記極
大の部分で副走査方向の結像位置を像面湾曲の正の側に
変位させる作用があり、これにより図5(c)に示され
た副走査方向の像面湾曲が良好に補正されるのである。
As in the first embodiment, when the radius of curvature R (Y) in the plane orthogonal to the deflection of the fourth surface has a maximum while Y increases, a positive value in the sub-scanning corresponding direction on the fourth surface is obtained. The power gradually decreases from the optical axis as the image height increases, reaches a local minimum, and then gradually increases, so that the image forming position in the sub-scanning direction is displaced to the positive side of the field curvature at the maximum portion. This has an effect, whereby the field curvature in the sub-scanning direction shown in FIG. 5C is satisfactorily corrected.

【0070】実施例2 図4に示す実施の形態の具体例である。Example 2 This is a specific example of the embodiment shown in FIG.

【0071】S=234.7,S0=40,d1=13.
82,l1=8.58,d2=11.5,l2=100.
1,N1=1.537,N2=1.537 。
S = 234.7, S 0 = 40, d 1 = 13.
82, l 1 = 8.58, d 2 = 11.5, l 2 = 100.
1, N 1 = 1.537, N 2 = 1.537.

【0072】第1面 面形状:偏向面内の形状を非円弧形状(前記式(1)で
特定される形状)を主走査対応方向に平行な回転軸の回
りに回転して得られる凹の樽型トロイダル形状(図2参
照) 偏向面内の形状:X(Y) R=−310,K=27.65,A=−1.24849
E−6,B= 5.48729E−10,C=−7.0
2444E−13,D= 3.7688E−16 F= 7.8538E−20,G=−4.3694E−
23,I=−2.755E−26,J= 7.47E−
30 F,G,I,Jはそれぞれ、Yの12,14,16,1
8乗の項の高次の係数である。 光軸上のおける偏向直交面内の曲率半径:r(0)(図2
の曲線:X(0)と回転軸AXとの距離) r(0)=−19.5
First surface Surface shape: A concave shape obtained by rotating a shape in the deflection surface of a non-arcuate shape (shape specified by the formula (1)) around a rotation axis parallel to the main scanning corresponding direction. Barrel-shaped toroidal shape (see FIG. 2) Shape in deflection plane: X (Y) R = −310, K = 27.65, A = −1.24849
E-6, B = 5.484729E-10, C = -7.0
2444E-13, D = 3.7688E-16 F = 7.8538E-20, G = -4.3694E-
23, I = -2.755E-26, J = 7.47E-
30 F, G, I and J are Y's 12, 14, 16 and 1, respectively.
It is a higher-order coefficient of the 8th power term. Radius of curvature in the plane orthogonal to the deflection on the optical axis: r (0) (Fig. 2
Curve: distance between X (0) and axis of rotation AX) r (0) =-19.5
.

【0073】第2面 面形状:ノーマルトロイダル面 偏向面内の曲率半径:R=−87.5 光軸上における偏向直交面内の曲率半径:r(0)(図2
参照) r(0)=−31.0
Second surface Surface shape: Normal toroidal surface Curvature radius in deflection plane: R = -87.5 Curvature radius in deflection orthogonal plane on optical axis: r (0) (FIG. 2)
Reference) r (0) =-31.0
.

【0074】 第3面:光走査用レンズの光偏向器側の面 面形状:偏向面内の形状が非円弧形状である凹樽型トロ
イダル面(図2参照) 偏向面内の形状:X(Y) R=−246,K=−15.44,A= 7.6366
E−7,B=−6.71852E−11,C=−5.3
1168E−15,D=−9.74133E−19,F
=−1.276E−23,G=−3.519E−25,
I= 2.322E−28,J=−3.167E−32 F,G,I,Jはそれぞれ、Yの12,14,16,1
8乗の項の高次の係数である。 光軸上のおける偏向直交面内の曲率半径:r(0)(図2
の曲線:X(0)と回転軸AXとの距離) r(0)=−121.25
Third surface: surface on the optical deflector side of the optical scanning lens Surface shape: concave barrel-shaped toroidal surface whose deflection surface has a non-arcuate shape (see FIG. 2) Deflection surface shape: X ( Y) R = -246, K = -15.44, A = 7.6366
E-7, B = -6.71852E-11, C = -5.3
1168E-15, D = -9.743133E-19, F
= -1.276E-23, G = -3.519E-25,
I = 2.322E-28, J = -3.167E-32 F, G, I, and J are 12, 14, 16, and 1 of Y, respectively.
It is a higher-order coefficient of the 8th power term. Radius of curvature in the plane orthogonal to the deflection on the optical axis: r (0) (Fig. 2
Curve: distance between X (0) and rotation axis AX) r (0) =-121.25
.

【0075】第4面:光走査用レンズの被走査面側の面 面形状:図3に即して説明した面形状 偏向面内における形状:X(Y)(円弧形状) 曲率半径:R=−248.3 偏向直交面内における曲率半径:r(Y) 主走査対応方向(Y方向)における第4面への、偏向光
束の主光線の入射位置:Yに対する偏向直交面内での曲
率半径:r(Y)を、代表的な入射位置:Y=−55.
4,−47.8,−35.3,−20.2,−0.1,
20.2,35.3,47.8,55.4(mm)の各
位値に対応させて、像高:H及び各像高に副走査方向の
像面湾曲値(単位:mm)けると対応させて一覧にして
示す。
Fourth surface: surface on the scanned surface side of the optical scanning lens Surface shape: surface shape described with reference to FIG. 3 Shape in deflecting surface: X (Y) (arc shape) Curvature radius: R = 248.3 Radius of curvature in the plane orthogonal to the deflection: r (Y) Radius of curvature in the plane orthogonal to the deflection with respect to the incident position: Y of the principal ray of the deflected light beam on the fourth surface in the main scanning corresponding direction (Y direction). : R (Y) at a typical incident position: Y = −55.
4, -47.8, -35.3, -20.2, -0.1,
When the image height: H and the curvature of field in the sub-scanning direction (unit: mm) are set at each image height corresponding to the respective values of 20.2, 35.3, 47.8, and 55.4 (mm). Correspondence is shown in the list.

【0076】 入射位置:Y -55.42 -47.8 -35.3 -20.2 -0.1 曲率半径:r(Y) -19.11 -19.36 -19.63 -19.54 -19.45 像高:H -109.1 -97.0 -74.5 -43.5 0.0 像面湾曲: 1.23 0.19 0.77 0.19 1.23 。Incident position: Y -55.42 -47.8 -35.3 -20.2 -0.1 Radius of curvature: r (Y) -19.11 -19.36 -19.63 -19.54 -19.45 Image height: H -109.1 -97.0 -74.5 -43.5 0.0 Image plane Curvature: 1.23 0.19 0.77 0.19 1.23.

【0077】 入射位置:Y 20.2 35.3 47.8 55.4 曲率半径:r(Y) -19.54 -19.63 -19.36 -19.11 像高:H 43.5 73.1 94.2 105.6 像面湾曲: -0.76 0.33 -0.28 0.16 。Incident position: Y 20.2 35.3 47.8 55.4 Radius of curvature: r (Y) -19.54 -19.63 -19.36 -19.11 Image height: H 43.5 73.1 94.2 105.6 Field curvature: -0.76 0.33 -0.28 0.16.

【0078】偏向直交面内における第4面の曲率半径
は、光軸を主走査対応方向へ離れるに従い、単調且つ滑
らかに増大しつつ極大値に達し、その後単調且つ滑らか
に減少する。このため各入射位置における偏向直交面内
の曲率半径の「ばらつき」が有効に小さくなり、光走査
用レンズの主走査対応方向における配置の公差に対する
許容度が大きくなる。
The radius of curvature of the fourth surface in the plane orthogonal to the deflection increases monotonically and smoothly while reaching the maximum value as the optical axis moves away in the main scanning corresponding direction, and then monotonically and smoothly decreases. Therefore, the "variation" of the radius of curvature in the plane orthogonal to the deflection at each incident position is effectively reduced, and the tolerance for the arrangement tolerance of the optical scanning lens in the main scanning corresponding direction is increased.

【0079】図6(a)に実施例1における主走査方向
の像面湾曲を、等速特性としてのfθ特性とリニアリテ
ィを(b)に示す。主走査方向の像面湾曲は良好に補正
され、副走査方向の像面湾曲も上記一覧に示すように極
めて良好(1.3mm以下)である。
FIG. 6 (a) shows the field curvature in the main scanning direction in Example 1 with the fθ characteristic as a constant velocity characteristic and linearity being shown in (b). The field curvature in the main scanning direction is well corrected, and the field curvature in the sub scanning direction is also extremely good (1.3 mm or less) as shown in the above list.

【0080】図4の実施の形態では光偏向器によるサグ
が発生し、副走査方向の像面湾曲は光軸に対して非対称
となる。光偏向器であるポリゴンミラーは偏向反射面を
6面有し、内接円半径は18mmである。
In the embodiment shown in FIG. 4, sag is generated by the optical deflector, and the field curvature in the sub-scanning direction is asymmetric with respect to the optical axis. The polygon mirror, which is an optical deflector, has six deflective reflection surfaces, and the radius of the inscribed circle is 18 mm.

【0081】上記実施例2では、サグの影響を除去する
ため、光走査用レンズを主走査対応方向であるY方向の
負の方向へ「0.1mm」だけシフトさせている。この
シフトにより、サグの影響による副走査方向の像面湾曲
の非対称性が、上記一覧にみるように有効に改善されて
いる。上記サグの影響の改善には、光走査用レンズに偏
向面内で「ティルト」を与えることも有効である。
In the second embodiment, in order to eliminate the influence of sag, the optical scanning lens is shifted by "0.1 mm" in the negative direction of the Y direction which is the main scanning corresponding direction. By this shift, the asymmetry of the field curvature in the sub-scanning direction due to the influence of the sag is effectively improved as seen in the above list. In order to improve the influence of the sag, it is also effective to give the optical scanning lens a "tilt" in the deflection plane.

【0082】実施例1,2とも上記のように等速特性
(fθ特性)が良好であり、主・副走査方向の像面湾曲
が良好に補正されているので光スポット径の像高による
変動が小さく、良好な光走査が可能である。
In both the first and second embodiments, the constant velocity characteristic (f.theta. Characteristic) is good as described above, and the field curvature in the main and sub-scanning directions is well corrected. Is small, and good optical scanning is possible.

【0083】なお実施例1,2において、走査結像レン
ズに入射する光束は主走査対応方向において平行光束で
ないので等速特性としてのfθ特性は厳密には正確でな
いが、収束性が弱いのでfθ特性で等速特性を十分に精
度良く表すことができる。
In the first and second embodiments, the light flux incident on the scanning and imaging lens is not a parallel light flux in the main scanning corresponding direction, so the fθ characteristic as a constant velocity characteristic is not strictly accurate, but fθ is weak because of its poor convergence. It is possible to express the constant velocity characteristic sufficiently accurately with the characteristic.

【0084】[0084]

【発明の効果】以上に説明したように、この発明によれ
ば光走査用レンズ・走査結像レンズおよび光走査装置を
提供できる。
As described above, according to the present invention, it is possible to provide an optical scanning lens / scanning imaging lens and an optical scanning device.

【0085】この発明は、光走査装置および走査結像レ
ンズにおいて、共役化機能と等速化機能を良好に保ちつ
つ、光走査装置への組付けの公差に対する許容度を有効
に緩和させることを可能にする。
According to the present invention, in the optical scanning device and the scanning imaging lens, it is possible to effectively alleviate the tolerance for the assembling tolerance to the optical scanning device while keeping the conjugating function and the constant velocity function satisfactorily. to enable.

【0086】なお、上にも述べたように、光走査用レン
ズはプラスチック等の樹脂の成形加工により容易に作製
できる。
As described above, the optical scanning lens can be easily manufactured by molding a resin such as plastic.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の光走査装置の実施の1形態を説明す
るための図である。
FIG. 1 is a diagram for explaining one embodiment of an optical scanning device of the present invention.

【図2】樽型トロイダル面を説明するための図である。FIG. 2 is a diagram for explaining a barrel-shaped toroidal surface.

【図3】光走査用レンズの被走査面側の面形状を説明す
るための図である。
FIG. 3 is a diagram for explaining a surface shape of a scanning surface side of an optical scanning lens.

【図4】この発明の光走査装置の実施の別形態を説明す
るための図である。
FIG. 4 is a diagram for explaining another embodiment of the optical scanning device of the present invention.

【図5】実施例1に関連した像面湾曲の図および等速特
性を示す図である。
5A and 5B are diagrams of field curvature and constant velocity characteristics related to Example 1. FIG.

【図6】実施例2に関する像面湾曲の図および等速特性
を示す図である。
6A and 6B are diagrams of field curvature and constant velocity characteristics according to the second embodiment.

【符号の説明】[Explanation of symbols]

1 LD 2 カップリングレンズ 3 シリンダレンズ 5 偏向反射面 6 レンズ 7 光走査用レンズ 8 被走査面 1 LD 2 Coupling Lens 3 Cylinder Lens 5 Deflection / Reflection Surface 6 Lens 7 Optical Scanning Lens 8 Scanned Surface

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】主走査対応方向に長い線像に結像された光
束を、上記線像の結像位置近傍に偏向反射面を持つ光偏
向器により等角速度的に偏向させ、偏向光束を走査結像
レンズにより被走査面上に光スポットとして集光せしめ
て上記被走査面の等速的な光走査を行なう光走査装置に
おいて、複数枚のレンズにより構成される走査結像レン
ズの一部を構成するレンズであって、 光偏向器側に凹面を向けたメニスカスレンズであり、 光偏向器側の面が、主走査対応方向に平行な回転軸を持
つ凹の樽型トロイダル面であり、 被走査面側の面は、偏向直交面内における曲率半径の絶
対値が、主走査対応方向において光軸を離れるに従い極
大値に向かって滑らか且つ単調に増加し、極大位置を超
えたのち、光軸を離れるに従い滑らか且つ単調に減少す
るように定められ、且つ、上記被走査面側の面の偏向直
交面内における曲率中心を連ねた線が偏向面内において
主走査対応方向に沿う曲線となるように定められたこと
を特徴とする光走査用レンズ。
1. A deflected light beam is scanned by deflecting a light beam imaged in a long line image in a direction corresponding to main scanning at an equal angular velocity by an optical deflector having a deflective reflection surface near the image formation position of the line image. In an optical scanning device that converges a light spot on a surface to be scanned by an imaging lens to perform uniform optical scanning of the surface to be scanned, a part of a scanning imaging lens composed of a plurality of lenses is used. The lens is a meniscus lens having a concave surface facing the optical deflector side, and the surface on the optical deflector side is a concave barrel-shaped toroidal surface having a rotation axis parallel to the main scanning corresponding direction. On the scanning surface side, the absolute value of the radius of curvature in the plane orthogonal to the deflection increases smoothly and monotonically toward the maximum value as it leaves the optical axis in the main scanning corresponding direction, and after exceeding the maximum position, the optical axis Decreases smoothly and monotonically And the line connecting the centers of curvature in the plane orthogonal to the deflection of the surface on the side to be scanned is defined as a curve along the main scanning corresponding direction in the deflection surface. Scanning lens.
【請求項2】請求項1記載の光走査用レンズにおいて、 走査結像レンズを構成する複数のレンズのうちで最も被
走査面側に配備されるものであることを特徴とする光走
査用レンズ。
2. The optical scanning lens according to claim 1, wherein the optical scanning lens is arranged closest to a surface to be scanned among a plurality of lenses forming a scanning imaging lens. .
【請求項3】請求項2記載の光走査用レンズにおいて、 光偏向器側の面は、偏向面内の形状が非円弧形状である
樽型トロイダル面であり、 被走査面側の面は、偏向面内の形状が円弧形状であるこ
とを特徴とする光走査用レンズ。
3. The optical scanning lens according to claim 2, wherein the surface on the optical deflector side is a barrel-shaped toroidal surface having a non-arcuate shape in the deflecting surface, and the surface on the scanned surface side is An optical scanning lens characterized in that the shape in the deflecting surface is an arc shape.
【請求項4】主走査対応方向に長い線像に結像された光
束を、上記線像の結像位置近傍に偏向反射面を持つ光偏
向器により等角速度的に偏向させ、偏向光束を走査結像
レンズにより被走査面上に光スポットとして集光せしめ
て上記被走査面の等速的な光走査を行なう光走査装置に
おいて、複数枚のレンズにより構成される走査結像レン
ズであって、 2枚のレンズにより構成され、 2枚のレンズの内の1枚が請求項3記載の光走査用レン
ズであり、 光偏向器側のレンズは、 光偏向器側の面が共軸非球面であり、 被走査面側の面が球面であることを特徴とする走査結像
レンズ。
4. A light beam imaged in a long line image in the main scanning corresponding direction is deflected at an equal angular velocity by an optical deflector having a deflective reflection surface near the image formation position of the line image, and the deflected light beam is scanned. In the optical scanning device for converging a light spot on the surface to be scanned by the imaging lens as a light spot and performing uniform optical scanning of the surface to be scanned, a scanning imaging lens composed of a plurality of lenses, It is composed of two lenses, one of the two lenses is the optical scanning lens according to claim 3, and the lens on the optical deflector side has a coaxial aspherical surface on the optical deflector side. A scanning imaging lens having a spherical surface on the surface to be scanned.
【請求項5】主走査対応方向に長い線像に結像された光
束を、上記線像の結像位置近傍に偏向反射面を持つ光偏
向器により等角速度的に偏向させ、偏向光束を走査結像
レンズにより被走査面上に光スポットとして集光せしめ
て上記被走査面の等速的な光走査を行なう光走査装置に
おいて、複数枚のレンズにより構成される走査結像レン
ズであって、 2枚のレンズにより構成され、 2枚のレンズの内の1枚が請求項3記載の光走査用レン
ズであり、 光偏向器側のレンズは、 光偏向器側の面が、偏向面内の形状を非円弧形状とし、
主走査対応方向に平行な回転軸を持つ樽型トロイダル面
であり、 被走査面側の面がノーマルトロイダル面であることを特
徴とする走査結像レンズ。
5. A light beam focused into a long line image in the main scanning direction is deflected at a constant angular velocity by an optical deflector having a deflective reflection surface near the image forming position of the line image, and the deflected light beam is scanned. In a light scanning device for converging light as a light spot on a surface to be scanned by an imaging lens to perform uniform optical scanning of the surface to be scanned, a scanning imaging lens composed of a plurality of lenses, It is composed of two lenses, and one of the two lenses is the optical scanning lens according to claim 3, and the lens on the optical deflector side has the surface on the optical deflector side within the deflecting surface. The shape is a non-circular shape,
A scanning imaging lens characterized in that it has a barrel-shaped toroidal surface having a rotation axis parallel to the main scanning direction, and the surface to be scanned is a normal toroidal surface.
【請求項6】主走査対応方向に長い線像に結像された光
束を、上記線像の結像位置近傍に偏向反射面を持つ光偏
向器により等角速度的に偏向させ、偏向光束を走査結像
レンズにより被走査面上に光スポットとして集光せしめ
て上記被走査面の等速的な光走査を行なう光走査装置に
おいて、 複数枚のレンズにより構成される走査結像レンズが、請
求項1または2または3記載の光走査用レンズを含むこ
とを特徴とする光走査装置。
6. A deflected light beam is scanned by deflecting a light beam imaged in a long line image in the main scanning corresponding direction at an equal angular velocity by an optical deflector having a deflective reflection surface near the image formation position of the line image. In a light scanning device for converging a light spot on a surface to be scanned as a light spot by the image forming lens to perform uniform optical scanning of the surface to be scanned, a scanning image forming lens composed of a plurality of lenses is provided. An optical scanning device comprising the optical scanning lens described in 1 or 2 or 3.
【請求項7】主走査対応方向に長い線像に結像された光
束を、上記線像の結像位置近傍に偏向反射面を持つ光偏
向器により等角速度的に偏向させ、偏向光束を走査結像
レンズにより被走査面上に光スポットとして集光せしめ
て上記被走査面の等速的な光走査を行なう光走査装置に
おいて、 走査結像レンズが、請求項4または5記載の走査結像レ
ンズであることを特徴とする光走査装置。
7. A deflected light beam is scanned by deflecting a light beam imaged in a long line image in the main scanning corresponding direction at an equal angular velocity by an optical deflector having a deflective reflection surface near the image formation position of the line image. An optical scanning device for converging a light spot on a surface to be scanned by an imaging lens to perform a uniform optical scanning of the surface to be scanned, wherein the scanning imaging lens is a scanning imaging device according to claim 4 or 5. An optical scanning device characterized by being a lens.
JP29523795A 1995-11-14 1995-11-14 Optical scanning lens, scanning imaging lens, and optical scanning device Expired - Fee Related JP3452294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29523795A JP3452294B2 (en) 1995-11-14 1995-11-14 Optical scanning lens, scanning imaging lens, and optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29523795A JP3452294B2 (en) 1995-11-14 1995-11-14 Optical scanning lens, scanning imaging lens, and optical scanning device

Publications (2)

Publication Number Publication Date
JPH09138365A true JPH09138365A (en) 1997-05-27
JP3452294B2 JP3452294B2 (en) 2003-09-29

Family

ID=17817997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29523795A Expired - Fee Related JP3452294B2 (en) 1995-11-14 1995-11-14 Optical scanning lens, scanning imaging lens, and optical scanning device

Country Status (1)

Country Link
JP (1) JP3452294B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277788A (en) * 2001-03-19 2002-09-25 Ricoh Co Ltd Scanning image forming optical system
JP2003098463A (en) * 2001-09-20 2003-04-03 Ricoh Co Ltd Optical scanning correction method, scanning image forming optical system, optical scanner and image forming device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277788A (en) * 2001-03-19 2002-09-25 Ricoh Co Ltd Scanning image forming optical system
JP2003098463A (en) * 2001-09-20 2003-04-03 Ricoh Co Ltd Optical scanning correction method, scanning image forming optical system, optical scanner and image forming device

Also Published As

Publication number Publication date
JP3452294B2 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
US5875051A (en) Optical scanning device and a scanning lens therefor
US6141133A (en) Optical scanning device and a scanning lens therefor
US6069724A (en) Optical scanning lens and optical scanning apparatus
JPH10142543A (en) Optical scanning device
JPH06118325A (en) Optical scanner
JP3222498B2 (en) Scanning optical system
JP3191538B2 (en) Scanning lens and optical scanning device
JP3452294B2 (en) Optical scanning lens, scanning imaging lens, and optical scanning device
JP3323354B2 (en) Optical scanning device
JP3051671B2 (en) Optical scanning lens and optical scanning device
JP3421704B2 (en) Scanning imaging lens and optical scanning device
JP3404204B2 (en) Optical scanning lens, scanning imaging lens, and optical scanning device
JP3420439B2 (en) Optical scanning optical system and laser beam printer including the same
JP3721487B2 (en) Scanning imaging lens and optical scanning device
JP3320239B2 (en) Scanning optical device
JP3472205B2 (en) Optical scanning optical device and image forming apparatus using the same
JP3558837B2 (en) Scanning optical system and optical scanning device
JP2000147407A (en) Scanning image-forming lens and optical scanner
JP3717656B2 (en) Optical scanning device and scanning imaging lens
JP3210790B2 (en) Optical scanning device
JPH08146322A (en) Aspherical reflection mirror and light beam scanning optical system
JP3081535B2 (en) Optical scanning device
JPH10288745A (en) Optical scanning lens and optical scanner
JP3558847B2 (en) Multi-beam scanner
JPH07146437A (en) Light beam scanning optical system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070718

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees