[go: up one dir, main page]

JPH07146437A - Light beam scanning optical system - Google Patents

Light beam scanning optical system

Info

Publication number
JPH07146437A
JPH07146437A JP29537093A JP29537093A JPH07146437A JP H07146437 A JPH07146437 A JP H07146437A JP 29537093 A JP29537093 A JP 29537093A JP 29537093 A JP29537093 A JP 29537093A JP H07146437 A JPH07146437 A JP H07146437A
Authority
JP
Japan
Prior art keywords
lens
light beam
section
scanning
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29537093A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ishibe
芳浩 石部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29537093A priority Critical patent/JPH07146437A/en
Publication of JPH07146437A publication Critical patent/JPH07146437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To provide a light beam scanning optical system by which excellent constitution can be taken in respect of realization of high performance, realization of a high view angle, downsizing, an environmental variation resistant characteristic, a price or the like. CONSTITUTION:In a light beam scanning optical system arranged between a deflecting means to deflect a light beam and a surface to be scanned, the optical system is composed of two lenses of a first lens 6 composed of a cylindrical lens 4 having positive power only on a main scanning cross section or an a toric lens which has positive power on a main scanning cross section and whose sub-scanning cross section has only power close to zero and a second lens 7 which is arranged in the vicinity of a surface side to be scanned of the first lens 6 and which is composed of a toric lens whose both main and sub- scanning cross sections have positive power, and is characterized in that at least a single surface of the main scanning cross section of the first lens 6 is turned into an aspheric surface, and that at least a single surface of the main scanning cross section of the second lens 7 is turned into an aspheric surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザービームプリンタ
やデジタル複写機等に用いられる光ビーム走査光学系に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light beam scanning optical system used in laser beam printers, digital copying machines and the like.

【0002】[0002]

【従来の技術】従来、この種の光ビーム走査用光学系に
おいては、特公昭62−36210号公報等に記載され
ていているように,回転多面鏡を用いて光ビームを偏向
走査するのが一般的である。
2. Description of the Related Art Conventionally, in a light beam scanning optical system of this type, as described in Japanese Patent Publication No. 62-36210, a rotary polygon mirror is used to deflect and scan a light beam. It is common.

【0003】そして、上記公報に記載されている如く、
回転多面鏡が回転軸に対して各反射面の倒れ方向の角度
誤差(面倒れ)を持つと、走査される光ビームの走査位
置の変化をもたらし最終的な画像出力に悪影響与えるこ
とに鑑み、この面倒れによる影響を除去する為に、球面
レンズとトーリックレンズを用いて回転多面鏡と被走査
面とを光学的な共役関係に置くことも既に提案されてい
る。
As described in the above publication,
In view of the fact that the rotating polygon mirror has an angle error (surface tilt) in the tilt direction of each reflecting surface with respect to the rotation axis, it causes a change in the scanning position of the light beam to be scanned, which adversely affects the final image output. In order to eliminate the influence of this surface tilt, it has already been proposed to use a spherical lens and a toric lens to place the rotary polygon mirror and the surface to be scanned in an optically conjugate relationship.

【0004】また、米国特許第4639072号に記述
されている如く、走査ビームの被走査面近傍にシリンド
リカルレンズを配置することで面倒れの影響を緩和する
ことも提案されている。
Further, as described in US Pat. No. 4,693,072, it is also proposed that a cylindrical lens is arranged in the vicinity of a surface to be scanned by a scanning beam to mitigate the influence of surface tilt.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、球面レ
ンズとトーリックレンズを用いた上記従来例では、光学
性能を維持する上での収差補正の為に、トーリックレン
ズの主走査断面における形状が平凸レンズに近いものと
なり、更にはトーリックレンズと回転多面鏡との間に配
置される球面凹レンズの形状が平凹又は両凹に近いもの
となり、従って広画角化には自ずと限界がある。このこ
とは、逆に言えば、光学性能を維持しつつ広画角化を達
成しようとすると、必然的にレンズが厚くなり装置が大
型化するということを意味する。
However, in the above-mentioned conventional example using the spherical lens and the toric lens, the shape of the toric lens in the main scanning cross section is a plano-convex lens in order to correct aberrations in order to maintain the optical performance. Further, the shape of the spherical concave lens arranged between the toric lens and the rotary polygonal mirror becomes close to plano-concave or biconcave, so that there is a limit to widening the angle of view. In other words, this means that in order to achieve a wide angle of view while maintaining the optical performance, the lens inevitably becomes thick and the device becomes large.

【0006】また、トーリックレンズは加工が難しく、
コストアップの要因となっている。このような問題点を
解決するために、トーリックレンズのプラスチック化等
が考えられるが、上記従来例のように回転多面鏡側より
順に凹・凸のレンズを配置する構成においては、全系の
パワーに対するトーリックレンズのパワーが強くなる
為、環境変動によるプラスチックのレンズのパワー変化
の影響が無視できず、被走査面上でのピントずれ等の問
題が生ずる。
Further, a toric lens is difficult to process,
It is a factor of cost increase. In order to solve such a problem, it is conceivable to use a plastic toric lens, etc., but in the configuration in which concave and convex lenses are arranged in order from the rotary polygon mirror side as in the above conventional example, the power of the entire system is increased. Since the power of the toric lens becomes stronger, the influence of the power change of the plastic lens due to environmental changes cannot be ignored, and problems such as focus shift on the surface to be scanned occur.

【0007】他方、被走査面近傍にシリンドリカルレン
ズを配置する従来例においては、前述の環境変動の影響
による問題は少ないものの、例えば電子写真方式を用い
るレーザービームプリンタ等では、現像器,クリーナ等
のプロセス的装置が感光体ドラムに密着して配置されて
いる為に、こうした感光体ドラム近傍にシリンドリカル
レンズなどの光学素子を配置するのは好ましくない。ま
た、感光体ドラム近傍にこうしたシリンドリカルレンズ
を配置すれば、トナーによる汚れ,熱,オゾン等による
悪影響を受けやすい。
On the other hand, in the conventional example in which the cylindrical lens is arranged in the vicinity of the surface to be scanned, although there is little problem due to the influence of the above-mentioned environmental change, for example, in a laser beam printer using an electrophotographic system, a developing device, a cleaner, etc. Since the process device is disposed in close contact with the photosensitive drum, it is not preferable to dispose an optical element such as a cylindrical lens in the vicinity of the photosensitive drum. Further, if such a cylindrical lens is arranged in the vicinity of the photoconductor drum, it is likely to be adversely affected by toner stains, heat, ozone and the like.

【0008】従って、本発明の目的は、上記課題に鑑
み、高性能化,高画角化,小型化,耐環境変動特性,価
格の点などで優れた構成をとりえる光ビーム走査用光学
系を提供することにある。
Therefore, in view of the above problems, an object of the present invention is to provide a light beam scanning optical system which has an excellent configuration in terms of high performance, wide angle of view, miniaturization, environmental resistance, and price. To provide.

【0009】[0009]

【課題を解決する為の手段】上記目的を達成する為に本
発明では、光ビームを偏向する偏向手段(回転多面鏡)
により偏向させて被走査面(感光ドラムなど)を走査す
る光ビーム走査装置の偏向手段と被走査面間に配置され
る光ビーム走査用光学系において、主走査断面のみに正
のパワーを有するシリンドリカルレンズ、または、主走
査断面に正のパワーを有し副走査断面はゼロに近いパワ
ーしか有しないトーリックレンズから成る第一レンズ、
及び、該第一レンズの被走査面側近傍に配置された主,
副走査断面とも正のパワーを有するトーリックレンズか
ら成る第二レンズの2枚より構成され、前記第一レン
ズ,第二レンズ共に主走査断面における少なくとも1面
が非球面化されている。
In order to achieve the above object, the present invention is directed to deflecting means for deflecting a light beam (rotating polygon mirror).
In a light beam scanning optical system arranged between a scanning surface and a deflecting means of a light beam scanning device that deflects light to scan a surface to be scanned (photosensitive drum or the like), a cylindrical body having a positive power only in a main scanning section. A lens, or a first lens consisting of a toric lens having a positive power in the main scanning section and a power in the sub-scan section close to zero,
And a main unit arranged near the surface to be scanned of the first lens,
Each of the sub-scanning cross sections is composed of two second lenses, which are toric lenses having positive power, and at least one of the first and second lenses in the main scanning cross section is aspherical.

【0010】また、前記第二レンズは、偏向手段側に曲
率半径中心が存在するコンセントリックな形状を有す
る。更に前記第二レンズの主走査断面における焦点距離
をf2a、前記第二レンズの副走査断面における焦点距
離をf2b、前記第一及び第二レンズの主走査断面の合
成焦点距離をfa、前記第一レンズの副走査断面におけ
る焦点距離をf1b、前記第二レンズと前記被走査面と
の距離をL、前記第二レンズの光軸方向の最大肉厚をd
maxとしたとき、 (1)0.1<fa/f2a<0.3 (2)0.25<f2b/fa<0.5 (3)0.6<L/fa<1 (4)dmax/f2b<0.2 (5)|f2b/f1b|<0.35 のうちの少なくとも一つの条件を満たす構成となってい
る。
Further, the second lens has a concentric shape in which the center of the radius of curvature exists on the deflecting means side. Further, the focal length in the main scanning cross section of the second lens is f2a, the focal length in the sub scanning cross section of the second lens is f2b, the combined focal length of the main scanning cross sections of the first and second lenses is fa, and the first focal length is The focal length of the lens in the sub-scan section is f1b, the distance between the second lens and the surface to be scanned is L, and the maximum thickness of the second lens in the optical axis direction is d.
(1) 0.1 <fa / f2a <0.3 (2) 0.25 <f2b / fa <0.5 (3) 0.6 <L / fa <1 (4) dmax / f2b <0.2 (5) | f2b / f1b | <0.35 At least one of the conditions is satisfied.

【0011】前記第一レンズはプラスチック材料などか
ら成り、特に、上記5つの条件式のうち(5)の条件式
が、前記第一レンズをプラスチックで形成するときに重
要である。
The first lens is made of a plastic material or the like, and in particular, the conditional expression (5) among the above five conditional expressions is important when the first lens is made of plastic.

【0012】前記第二レンズもプラスチック材料などか
ら成り、特に、上記5つの条件式のうち(3)と(4)
の条件式がプラスチック材料で前記第二レンズを形成す
るときに重要である。
The second lens is also made of a plastic material or the like, and in particular, among the above five conditional expressions (3) and (4).
The conditional expression is important when forming the second lens with a plastic material.

【0013】上記具体的な構成の意義などについては、
以下の実施例の説明のところに記載されている。
With respect to the significance of the above-mentioned concrete constitution, etc.,
It is described in the description of the examples below.

【0014】[0014]

【実施例】以下、本発明の光ビーム走査用光学系の実施
例を図面を用いて説明する。
Embodiments of the optical system for scanning a light beam of the present invention will be described below with reference to the drawings.

【0015】図1と図2は本発明の第1実施例を示し、
図1は主走査断面における様子を図示し、図2は主走査
断面と垂直で光軸を含む副走査断面における様子を図示
する。主走査面とは、回転多面鏡5で偏向走査された光
ビームが経時的に形成する光線束面を指す。
1 and 2 show a first embodiment of the present invention,
FIG. 1 illustrates a state in a main scanning section, and FIG. 2 illustrates a state in a sub scanning section which is perpendicular to the main scanning section and includes an optical axis. The main scanning surface refers to a light flux plane formed by the light beam deflectively scanned by the rotary polygon mirror 5 with time.

【0016】図1において、1は光源である半導体レー
ザであり、半導体レーザ1から射出された光ビームはコ
リメータレンズ2により略平行光とされ、開口絞り3に
よってその断面の大きさが整えられてシリンドリカルレ
ンズ4に入射する。シリンドリカルレンズ4は、副走査
断面に関してはパワーを持つが、主走査断面に関しては
パワーを持たないので、光ビームは主走査断面では平行
光で副走査断面ではほぼ線状に結像されて回転多面鏡5
に入射する。
In FIG. 1, reference numeral 1 denotes a semiconductor laser which is a light source. A light beam emitted from the semiconductor laser 1 is made into substantially parallel light by a collimator lens 2 and its cross section is adjusted in size by an aperture stop 3. It enters the cylindrical lens 4. The cylindrical lens 4 has power in the sub-scanning section, but does not have power in the main-scanning section. Therefore, the light beam is parallel light in the main-scanning section, and is formed into a substantially linear shape in the sub-scanning section, so that the rotating polyhedral surface is formed. Mirror 5
Incident on.

【0017】回転多面鏡5は矢印の方向に等速で高速回
転しており、ここに入射した光ビームはここで反射され
て高速度で主走査断面において偏向走査される。
The rotating polygonal mirror 5 rotates at a constant speed and at a high speed in the direction of the arrow, and the light beam incident on the rotating polygonal mirror 5 is reflected here and deflected and scanned in the main scanning section at a high speed.

【0018】こうして、等角速度運動で偏向走査された
光ビームは、主走査断面のみに正のパワーを有するシリ
ンドリカルレンズ、または、主走査断面に正のパワーを
有し、副走査断面はゼロに近いパワーしか有しないトー
リックレンズである第一レンズ6、及び、主走査断面,
副走査断面共に正のパワーを有するトーリックレンズで
ある第二レンズ7を通過して、感光ドラム8上に結像さ
れて略等速度直線運動で走査される。
In this way, the light beam deflected and scanned by the uniform angular velocity movement has a cylindrical lens having a positive power only in the main scanning section, or has a positive power in the main scanning section, and the sub-scanning section is close to zero. A first lens 6, which is a toric lens having only power, and a main scanning section,
After passing through the second lens 7, which is a toric lens having a positive power in both sub-scanning cross sections, an image is formed on the photosensitive drum 8 and scanned with a substantially uniform linear motion.

【0019】図2において、Pは回転多面鏡5の反射面
位置を示しており、副走査断面では上述した様にほぼこ
の位置Pに光ビームが集光される。ここで、反射面Pと
感光ドラム8は第一レンズ6と第二レンズ7を介して光
学的にほぼ共役な関係に設定されているので、たとえ反
射面Pが副走査断面において倒れても(すなわち面倒れ
があっても)、光ビームは感光ドラム8上の同一走査線
上に結像される。こうして、いわゆる回転多面鏡5の面
倒れ補正系が構成されている。
In FIG. 2, P indicates the position of the reflecting surface of the rotary polygonal mirror 5, and in the sub-scanning cross section, the light beam is focused at this position P as described above. Here, since the reflecting surface P and the photosensitive drum 8 are set in a substantially optically conjugate relationship via the first lens 6 and the second lens 7, even if the reflecting surface P is tilted in the sub-scan section ( That is, the light beam is imaged on the same scanning line on the photosensitive drum 8 even if the surface is tilted. In this way, a so-called plane tilt correction system of the rotary polygon mirror 5 is configured.

【0020】ここにおいて、第一レンズ6,第二レンズ
7は、主走査断面内の広い画角にわたり良好な像面湾曲
とfθ特性を得るように以下の如き構成となっている。
Here, the first lens 6 and the second lens 7 are constructed as follows so as to obtain good field curvature and fθ characteristics over a wide angle of view in the main scanning section.

【0021】まず、第一レンズ6は、主走査断面のみに
正のパワーを有するシリンドリカルレンズ、または、主
走査断面に正のパワーを有し副走査断面はゼロに近いパ
ワーしか有しないトーリックレンズとし、さらに広い画
角にわたってメリジオナル方向(主走査方向)の像面湾
曲の補正と良好なfθ特性を得る為に、主走査断面の少
なくとも1面が非球面となっている。
First, the first lens 6 is a cylindrical lens having a positive power only in the main scanning section or a toric lens having a positive power in the main scanning section and a power in the sub-scanning section close to zero. In order to correct the field curvature in the meridional direction (main scanning direction) and obtain a good fθ characteristic over a wider angle of view, at least one of the main scanning cross sections is an aspherical surface.

【0022】次に、第二レンズ7は、第一レンズ6の後
方近傍に配置され、主走査断面,副走査断面ともに正の
パワーを有するトーリックレンズとしており、広い画角
にわたって像面湾曲を補正するようにコンセントリック
な形状である(トーリックレンズ7の両面の曲率半径の
中心が回転多面鏡側にあって近くにある)とともに、主
走査断面の少なくとも1面が非球面となっている。
Next, the second lens 7 is arranged near the rear of the first lens 6 and is a toric lens having a positive power in both the main scanning section and the sub-scanning section, and corrects the field curvature over a wide angle of view. As described above, the concentric shape is provided (the centers of the radii of curvature of both surfaces of the toric lens 7 are close to the rotary polygon mirror side), and at least one surface of the main scanning cross section is aspheric.

【0023】更に、第二レンズ7の主走査断面に関する
パワーを強くしすぎると、fθ特性とメリジオナル方向
の像面湾曲をバランスさせながら補正できなくなるの
で、第二レンズ7の主走査断面における焦点距離をf2
a、第一レンズ6及び第二レンズ7の主走査断面におけ
る合成焦点距離をfaとするとき、 0.1<fa/f2a<0.3 の関係を満たすように主走査断面における第二レンズ7
のパワーを弱くするのがよい。
Further, if the power of the second lens 7 in the main scanning section is made too strong, the fθ characteristic and the field curvature in the meridional direction cannot be corrected while being balanced. Therefore, the focal length in the main scanning section of the second lens 7 cannot be corrected. F2
a, and the composite focal length of the first lens 6 and the second lens 7 in the main scanning cross section is fa, the second lens 7 in the main scanning cross section should satisfy the relationship of 0.1 <fa / f2a <0.3.
It is good to weaken the power of.

【0024】すなわち、下限を越えるとf2aが大きく
なって収差補正上は有利となるが、第二レンズ7が被走
査面(感光ドラム8面)側に近付き大型化してしまう。
また、上限を越えるとf2aが小さくなって、逆に装置
のコンパクト化には有利であるが、fθ特性と像面湾曲
をバランス良く補正するのが困難となる。
That is, if the lower limit is exceeded, f2a becomes large, which is advantageous for aberration correction, but the second lens 7 approaches the surface to be scanned (photosensitive drum 8 surface) side and becomes large.
Further, when the upper limit is exceeded, f2a becomes small, which is advantageous for making the device compact, but it becomes difficult to correct the fθ characteristic and the field curvature in a well-balanced manner.

【0025】一方、第二レンズ7の副走査断面における
焦点距離f2bは、サジタル方向(副走査断面内にあっ
て光軸に直角な方向)の像面湾曲が十分に補正されるよ
うに、 0.25<f2b/fa<0.5 の関係を満たすようにするのが良い。
On the other hand, the focal length f2b of the second lens 7 in the sub-scan section is 0 so that the field curvature in the sagittal direction (the direction in the sub-scan section and perpendicular to the optical axis) is sufficiently corrected. It is preferable to satisfy the relationship of 0.25 <f2b / fa <0.5.

【0026】すなわち、上限を越えるとf2bが大きく
なって収差補正上は有利となるが、第二レンズ7が被走
査面側に近付き前述の従来例の如く好ましくない。ま
た、下限を越えるとf2bが小さくなってメリジオナル
方向とサジタル方向の像面湾曲をバランス良く補正する
のが困難となる。
That is, when the upper limit is exceeded, f2b becomes large, which is advantageous for aberration correction, but the second lens 7 approaches the surface to be scanned, which is not preferable as in the above-mentioned conventional example. Further, if the lower limit is exceeded, f2b becomes small and it becomes difficult to correct the field curvature in the meridional direction and the sagittal direction in a well-balanced manner.

【0027】更に、第二レンズ7は、第二レンズ7と被
走査面との距離をLとしたときに、 0.6<L/fa<1 の関係を満たす位置に配置するのが好ましい。
Further, it is preferable that the second lens 7 is arranged at a position satisfying the relationship of 0.6 <L / fa <1 where L is the distance between the second lens 7 and the surface to be scanned.

【0028】すなわち、下限を越えると装置が大型化す
ると共に面倒れ補正効果が少なくなる。また、上限を越
えると第二レンズ7のパワーが強くなり、特に,第二レ
ンズ7をコスト面の利点を生かしてプラスチック材料で
形成した場合、環境変動等の影響による被走査面でのピ
ントズレなどが許容できなくなる。
That is, when the value goes below the lower limit, the apparatus becomes large in size and the effect of compensating for face tilt decreases. Further, if the upper limit is exceeded, the power of the second lens 7 becomes strong, and especially when the second lens 7 is formed of a plastic material by taking advantage of the cost, the focus on the surface to be scanned due to the influence of environmental changes and the like. Becomes unacceptable.

【0029】また、第二レンズ7の光軸方向の最大肉厚
をdmaxとしたとき、 dmax/f2b<0.2 の関係を満たす様に第二レンズ7を薄くするのが好まし
い。
When the maximum thickness of the second lens 7 in the optical axis direction is dmax, it is preferable to make the second lens 7 thin so as to satisfy the relationship of dmax / f2b <0.2.

【0030】これにより、環境変動、特に第二レンズ7
の吸湿による被走査面上でのピントズレを少なくするこ
とが出来、且つプラスチックによる成形を容易にするこ
とができる。
As a result, environmental changes, especially the second lens 7
It is possible to reduce the focus shift on the surface to be scanned due to moisture absorption and to facilitate the molding with plastic.

【0031】また、第一レンズ6の副走査断面の焦点距
離をf1bとしたとき、 |f2b/f1b|<0.35 の関係を満たすように、第一レンズ6の副走査断面のパ
ワーをゼロに近い小さいパワーに設定するのが望まし
い。
When the focal length of the sub-scan section of the first lens 6 is f1b, the power of the sub-scan section of the first lens 6 is zero so that the relationship of | f2b / f1b | <0.35 is satisfied. It is desirable to set a small power close to.

【0032】これにより、第一レンズ6をコストの利点
を生かしてプラスチック材料で形成した場合の、環境変
動(特に温度変化による屈折率変化等)による副走査断
面のピントずれを少なくすることができる。
As a result, when the first lens 6 is formed of a plastic material by taking advantage of the cost, it is possible to reduce the focus shift of the sub-scanning section due to environmental changes (especially refractive index change due to temperature change). .

【0033】以上述べてきた様な構成にすることによ
り、広い画角にわたって高性能で、しかも、第一レンズ
6,第二レンズ7共にプラスチック等で形成しても環境
変動による影響の少ない安価な光ビーム走査用光学系が
実現できる。
With the structure as described above, the performance is high over a wide angle of view, and even if both the first lens 6 and the second lens 7 are made of plastic or the like, they are inexpensive and less affected by environmental changes. An optical system for scanning a light beam can be realized.

【0034】第1実施例における像面湾曲を表わす収差
図が図3に示され、fθ特性を表わす図が図4に示され
ている。
FIG. 3 shows an aberration diagram showing field curvature in the first embodiment, and FIG. 4 shows an fθ characteristic.

【0035】第1実施例の具体的な数値例を以下に示
す。
Specific numerical examples of the first embodiment are shown below.

【0036】全系の焦点距離 189mm 最大走査角 90゜ 偏向点〜R1面 42.49mm R1=762.93 D1=16.0 N1=1.
519 K=−2.70328E−03 B=−1.47224E−07 C= 7.02329E−12 D= 1.18196E−14 E=−1.06494E−18 R1’=∞ R2=−142.70 D2=21.84 K=−4.29792E−01 B=−1.34291E−07 C= 3.72520E−11 D=−2.35595E−14 E= 5.43226E−18 R2’=∞ R3=−1202.21 D3=10.0 N3=
1.519 K=−3.62143E−03 B=−3.98368E−08 C= 7.24592E−13 D=−1.02261E−15 E= 5.13177E−20 R3’=−52.7468 y≧0のとき b=−1.07193E−04 c= 4.51879E−08 d=−1.11655E−11 e= 1.51246E−15 f=−8.75587E−20 y<0のとき b=−1.15230E−04 c= 4.66555E−08 d=−1.13154E−11 e= 1.55414E−15 f=−9.35603E−20 R4=−328.27 D4=165.22 K=9.43576 B=−5.52070E−09 C=D=E=0.0 R4’=−20.0 fa=189.25 fa/f2a=0.218 f1b=∞ f2b/fa=0.297 f2a=866.709 L/fa=0.873 L=165.22 f2b=56.207 dmax/f2b=0.1
78 dmax=10.0 |f2b/f1b|=0.
Focal length of the entire system 189 mm Maximum scanning angle 90 ° Deflection point to R1 surface 42.49 mm R1 = 762.93 D1 = 16.0 N1 = 1.
519 K = −2.703328E-03 B = −1.472224E-07 C = 7.02329E-12 D = 1.18196E-14 E = −1.06494E-18 R1 ′ = ∞ R2 = −142.70 D2 = 21.84 K = -4.29792E-01 B = -1.34291E-07 C = 3.72520E-11 D = -2.355595E-14 E = 5.43226E-18 R2 '= ∞ R3 = -1202 .21 D3 = 10.0 N3 =
1.519 K = -3.62143E-03 B = -3.998368E-08 C = 7.24592E-13 D = -1.02261E-15 E = 5.13177E-20 R3 '=-52.7468 y ≧ 0 = b = -1.07193E-04 c = 4.51879E-08 d = -1.11655E-11 e = 1.51246E-15 f = -8.75587E-20 y <0 b = -1 .15230E-04 c = 4.66555E-08 d = -1.13154E-11 e = 1.55414E-15 f = -9.35603E-20 R4 = -328.27 D4 = 165.22 K = 9.435576 B = −5.52070E−09 C = D = E = 0.0 R4 ′ = − 20.0 fa = 189.25 fa / f2a = 0.218 f1b = ∞ f2b / a = 0.297 f2a = 866.709 L / fa = 0.873 L = 165.22 f2b = 56.207 dmax / f2b = 0.1
78 dmax = 10.0 | f2b / f1b | = 0.
0

【0037】ここで、上記数値例において、図1と図2
に示す様に、各面の主走査断面における曲率半径は回転
多面鏡5側よりR1〜R4、副走査断面における曲率半
径は回転多面鏡5側よりR1’〜R4’、各面間の距離
はD1〜D4で示される。
Here, in the above numerical example, FIGS.
As shown in FIG. 5, the radii of curvature in the main scanning cross section of each surface are R1 to R4 from the rotary polygon mirror 5 side, the radii of curvature in the sub scanning cross section are R1 ′ to R4 ′ from the rotary polygon mirror 5 side, and the distances between the respective surfaces are It is shown by D1-D4.

【0038】また、各レンズの波長780nmでの屈折
率は回転多面鏡5側より、N1,N3で表わされてい
る。
The refractive index of each lens at a wavelength of 780 nm is represented by N1 and N3 from the side of the rotary polygon mirror 5.

【0039】また、K,B〜Eは、以下に示すx−y平
面上でのレンズ面の高さyと距離xとの関係式
K and B to E are relational expressions between the height y of the lens surface on the xy plane and the distance x shown below.

【0040】[0040]

【外1】 の各次数の非球面係数を示す。[Outer 1] The aspherical coefficient of each order of is shown.

【0041】また、第二レンズ7の第一レンズ6側の副
走査断面の形状は、図5に示す様に、主走査断面内に立
てた法線を含み主走査断面と直交する断面内で測った曲
率半径r’をもつ円弧である。
The shape of the sub-scanning section of the second lens 7 on the side of the first lens 6 is, as shown in FIG. 5, within a section including a normal line set in the main scanning section and orthogonal to the main scanning section. It is an arc having a measured radius of curvature r '.

【0042】主走査断面に垂直にZ軸をとると、この断
面内で面形状Sは下記の式で表わされる。
When the Z axis is taken perpendicularly to the main scanning section, the surface shape S in this section is expressed by the following equation.

【0043】[0043]

【外2】 r’は以下の式で表わされる。[Outside 2] r'is represented by the following formula.

【0044】 r’=R’・(1+by2 +cy4 +dy6 +ey8 +fy10R ′ = R ′ · (1 + by 2 + cy 4 + dy 6 + ey 8 + fy 10 ).

【0045】本発明の第一実施例においては、第二レン
ズ7の第一レンズ6側の面の副走査断面における曲率半
径r’が光軸に対して非対称にレンズ位置によって異な
る形状となっている。
In the first embodiment of the present invention, the radius of curvature r'in the sub-scan section of the surface of the second lens 7 on the first lens 6 side is asymmetric with respect to the optical axis and varies depending on the lens position. There is.

【0046】また、第一レンズ6は、副走査断面におい
てはパワーを有しないシリンドリカルレンズとなってい
る。
The first lens 6 is a cylindrical lens which has no power in the sub-scan section.

【0047】次に図6に本発明の第2実施例を示し、図
7に像面湾曲を示す収差図を、図8にfθ特性を表す図
を示す。
Next, FIG. 6 shows a second embodiment of the present invention, FIG. 7 is an aberration diagram showing field curvature, and FIG. 8 is a diagram showing f.theta. Characteristics.

【0048】本発明の第二実施例においては、第一レン
ズ16が主走査断面のみにパワーを有するシリンドリカ
ルレンズではなくて、主走査断面は正のパワーを有し、
副走査断面にはゼロに近い正のパワーしか有さないトー
リックレンズとしており、サジタル方向の像面湾曲をよ
りいっそう良好に補正することに成功している。第二レ
ンズ17は第一実施例の構成とほぼ同じ構成となってい
る。
In the second embodiment of the present invention, the first lens 16 is not a cylindrical lens having power only in the main scanning section, but the main scanning section has positive power.
A toric lens having only a positive power close to zero is used in the sub-scanning section, and the field curvature in the sagittal direction has been successfully corrected. The second lens 17 has almost the same configuration as that of the first embodiment.

【0049】以下に、第2実施例における数値例を示
す。
Numerical examples in the second embodiment will be shown below.

【0050】全系の焦点距離 189mm 最大走査角 90° 偏向点〜R1面 42.41mm R1=2985.26 D1=16.0 N1=
1.519 K=−2.23743E+03 B=−1.15510E−07 C= 6.73662E−12 D= 1.11633E−14 E=−1.18599E−18 R1’=500.0 R2=−125.03 D2=21.72 K=−4.25693 B=−1.50034E−07 C= 2.54255E−11 D=−2.05626E−14 E= 4.46555E−18 R2’=−200.0 R3=−1157.99 D3=10.0 N3=
1.519 K=−1.00606E+03 B=−7.37408E−09 C=−5.40177E−12 D=−1.02261E−15 E= 5.13177E−20 R3’=−44.6693 y≧0のとき b=−8.62997E−05 c= 3.20619E−08 d=−5.00789E−12 e= 1.91740E−16 f= 1.02273E−20 y<0のとき b=−9.04427E−05 c= 3.22022E−08 d=−5.15838E−12 e= 2.75519E−16 f= 1.71002E−21 R4=−331.78 D4=165.45 K=6.31853 B=−1.81135E−08 C=−5.61162E−12 D=E=0.0 R4’=−20.0 fa=189.17 fa/f2a=0.212 f1b=277.421 f2b/fa=0.324 f2a=892.288 L/fa=0.875 L=165.45 f2b=61.289 dmax/f2b=0.1
63 dmax=10.0 |f2b/f1b|=0.
221
Focal length of the entire system 189 mm Maximum scanning angle 90 ° Deflection point to R1 surface 42.41 mm R1 = 298.26 D1 = 16.0 N1 =
1.519 K = -2.23743E + 03 B = -1.15510E-07 C = 6.73662E-12 D = 1.116333E-14 E = -1.18599E-18 R1 '= 500.0 R2 = -125. 03 D2 = 21.72 K = −4.25693 B = −1.50034E-07 C = 2.54255E-11 D = −2.05626E-14 E = 4.46555E-18 R2 ′ = − 200.0 R3 = -1157.99 D3 = 10.0 N3 =
1.519 K = -1.000606E + 03 B = -7.37408E-09 C = -5.40177E-12 D = -1.02261E-15 E = 5.13177E-20 R3 '=-44.6693 y ≧ 0 When b = −8.62997E-05 c = 3.20619E-08 d = −5.000789E-12 e = 1.91740E-16 f = 1.02273E-20 When y <0 b = −9.04427E -05 c = 3.20222E-08 d = -5.15838E-12 e = 2.75519E-16 f = 1.71002E-21 R4 = -331.78 D4 = 165.45 K = 6.31853 B =- 1.81135E-08 C = -5.61162E-12 D = E = 0.0 R4 '=-20.0 fa = 189.17 fa / f2a = 0.2 2 f1b = 277.421 f2b / fa = 0.324 f2a = 892.288 L / fa = 0.875 L = 165.45 f2b = 61.289 dmax / f2b = 0.1
63 dmax = 10.0 | f2b / f1b | = 0.
221

【0051】[0051]

【発明の効果】以上説明した様に、本発明によれば、光
ビームを偏向手段により偏向させて被走査面を走査する
光ビーム走査装置の偏向手段と被走査面間に配置される
光ビーム走査用光学系において、主走査断面のみに正の
パワーを有するシリンドリカルレンズ、または、主走査
断面に正のパワーを有し副走査断面にはゼロに近いパワ
ーしか有しないトーリックレンズから成る第一レンズ、
及び、該第一レンズの被走査面側近傍に配置された主走
査断面,副走査断面ともに正のパワーを有するトーリッ
クレンズより成る第二レンズの2枚より構成し、この第
一レンズ,第二レンズ共に主走査断面の少なくとも1面
を非球面化することにより、第一レンズ,第二レンズを
共に安価なプラスチック材料で形成しても、環境変動の
影響を受けにくい、広画角で高性能な光ビーム走査用光
学系を得ることができる。
As described above, according to the present invention, the light beam is disposed between the deflecting means and the surface to be scanned of the light beam scanning device for deflecting the light beam by the deflecting means to scan the surface to be scanned. In the scanning optical system, a first lens composed of a cylindrical lens having a positive power only in the main scanning section or a toric lens having a positive power in the main scanning section and having a power close to zero in the sub scanning section. ,
And a second lens composed of a toric lens having a positive power in both the main scanning section and the sub-scanning section, which is arranged in the vicinity of the surface to be scanned of the first lens. By making at least one of the main scanning cross-sections aspherical for both lenses, even if both the first lens and the second lens are made of inexpensive plastic material, they are not easily affected by environmental changes and have a wide angle of view and high performance. An optical system for scanning a light beam can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の主走査断面における様子
を示す図である。
FIG. 1 is a diagram showing a state in a main scanning section of a first embodiment of the present invention.

【図2】第1実施例の副走査断面における様子を示す図
である。
FIG. 2 is a diagram showing a state in a sub-scan section of the first embodiment.

【図3】第1実施例の像面湾曲を説明する収差図であ
る。
FIG. 3 is an aberration diagram illustrating field curvature of Example 1.

【図4】第1実施例のfθ特性を説明する収差図であ
る。
FIG. 4 is an aberration diagram illustrating an fθ characteristic of the first example.

【図5】第1実施例の非球面式を説明する為の図であ
る。
FIG. 5 is a diagram for explaining an aspherical expression of the first embodiment.

【図6】第2実施例の主走査断面における様子を示す図
である。
FIG. 6 is a diagram showing a state in a main scanning section of a second embodiment.

【図7】第2実施例の像面湾曲を説明する収差図であ
る。
FIG. 7 is an aberration diagram illustrating a field curvature of Example 2.

【図8】第2実施例のfθ特性を説明する収差図であ
る。
FIG. 8 is an aberration diagram illustrating fθ characteristics of the second example.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2 コリメーターレンズ 3 開口絞り 4 シリンドリカルレンズ 5 回転多面鏡 6 第一レンズ 7 第二レンズ 8 感光ドラム 1 Semiconductor Laser 2 Collimator Lens 3 Aperture Stop 4 Cylindrical Lens 5 Rotating Polygonal Mirror 6 First Lens 7 Second Lens 8 Photosensitive Drum

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 光ビームを偏向手段により偏向させて被
走査面を走査する光ビーム走査装置の該偏向手段と被走
査面の間に配置される光ビーム走査用光学系において、 前記光学系は、主走査断面のみに正のパワーを有するシ
リンドリカルレンズ、または、主走査断面に正のパワー
を有し副走査断面はゼロに近いパワーしか有しないトー
リックレンズから成る第一レンズ、及び、該第一レンズ
の被走査面側近傍に配置され、主,副走査断面とも正の
パワーを有するトーリックレンズより成る第二レンズの
2枚より構成され、前記第一レンズの主走査断面の少な
くとも1面が非球面化されていること、及び、前記第二
レンズの主走査断面の少なくとも1面が非球面化されて
いることを特徴とする光ビーム走査用光学系。
1. An optical system for scanning a light beam, which is arranged between the deflecting means and a surface to be scanned of a light beam scanning device for deflecting a light beam by a deflecting means to scan the surface to be scanned. A first lens comprising a cylindrical lens having a positive power only in the main scanning section, or a toric lens having a positive power in the main scanning section and a sub-scanning section having a power close to zero, and the first lens The second lens is arranged in the vicinity of the surface to be scanned of the lens, and is composed of two second lenses each of which is a toric lens having a positive power in both main and sub-scanning cross sections. An optical system for scanning a light beam, wherein the optical system is spherical, and at least one of the main scanning cross sections of the second lens is aspherical.
【請求項2】 前記第二レンズは、偏向手段側に曲率半
径中心が存在するコンセントリックな形状を有する請求
項1に記載の光ビーム走査用光学系。
2. The optical system for scanning a light beam according to claim 1, wherein the second lens has a concentric shape in which the center of the radius of curvature exists on the deflecting means side.
【請求項3】 前記第二レンズの主走査断面における焦
点距離をf2a、前記第一及び第二レンズの主走査断面
の合成焦点距離をfaとしたとき、 0.1<fa/f2a<0.3 を満たす請求項1に記載の光ビーム走査用光学系。
3. When the focal length of the second lens in the main scanning section is f2a and the combined focal length of the first and second lenses in the main scanning section is fa, then 0.1 <fa / f2a <0. The optical system for scanning a light beam according to claim 1, wherein the condition 3 is satisfied.
【請求項4】 前記第二レンズの副走査断面における焦
点距離をf2b、前記第一及び第二レンズの主走査断面
の合成焦点距離をfaとしたとき、 0.25<f2b/fa<0.5 を満たす請求項1に記載の光ビーム走査用光学系。
4. When the focal length of the second lens in the sub-scan section is f2b and the combined focal length of the main scan sections of the first and second lenses is fa, 0.25 <f2b / fa <0. The optical system for scanning a light beam according to claim 1, wherein the condition 5 is satisfied.
【請求項5】 前記第一及び第二レンズの主走査断面の
合成焦点距離をfa、前記第二レンズと前記被走査面と
の距離をLとしたとき、 0.6<L/fa<1 を満たす請求項1に記載の光ビーム走査用光学系。
5. When the composite focal length of the main scanning cross sections of the first and second lenses is fa and the distance between the second lens and the surface to be scanned is L, 0.6 <L / fa <1 The optical system for scanning a light beam according to claim 1, which satisfies:
【請求項6】 前記第二レンズの副走査断面の焦点距離
をf2b、前記第二レンズの光軸方向の最大肉厚をdm
axとしたとき、 dmax/f2b<0.2 を満たす請求項1に記載の光ビーム走査用光学系。
6. The focal length of the sub-scan section of the second lens is f2b, and the maximum thickness of the second lens in the optical axis direction is dm.
The optical system for scanning a light beam according to claim 1, wherein dmax / f2b <0.2 when ax is satisfied.
【請求項7】 前記第一レンズの副走査断面の焦点距離
をf1b、前記第二レンズの副走査断面の焦点距離をf
2bとしたとき、 |f2b/f1b|<0.35 を満たす請求項1に記載の光ビーム走査用光学系。
7. The focal length of the sub-scan section of the first lens is f1b, and the focal length of the sub-scan section of the second lens is f1.
2b, the optical system for scanning a light beam according to claim 1, wherein | f2b / f1b | <0.35 is satisfied.
【請求項8】 前記第一レンズは、プラスチックから成
る請求項1に記載の光ビーム走査用光学系。
8. The optical system for scanning a light beam according to claim 1, wherein the first lens is made of plastic.
【請求項9】 前記第二レンズは、プラスチックから成
る請求項1に記載の光ビーム走査用光学系。
9. The optical system for scanning a light beam according to claim 1, wherein the second lens is made of plastic.
JP29537093A 1993-11-25 1993-11-25 Light beam scanning optical system Pending JPH07146437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29537093A JPH07146437A (en) 1993-11-25 1993-11-25 Light beam scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29537093A JPH07146437A (en) 1993-11-25 1993-11-25 Light beam scanning optical system

Publications (1)

Publication Number Publication Date
JPH07146437A true JPH07146437A (en) 1995-06-06

Family

ID=17819755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29537093A Pending JPH07146437A (en) 1993-11-25 1993-11-25 Light beam scanning optical system

Country Status (1)

Country Link
JP (1) JPH07146437A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277788A (en) * 2001-03-19 2002-09-25 Ricoh Co Ltd Scanning image forming optical system
US7283288B2 (en) 2006-01-11 2007-10-16 Pentax Corporation Scanning device
US7728863B2 (en) * 2003-05-29 2010-06-01 Ricoh Company, Ltd. Optical scanning device and image forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277788A (en) * 2001-03-19 2002-09-25 Ricoh Co Ltd Scanning image forming optical system
US7728863B2 (en) * 2003-05-29 2010-06-01 Ricoh Company, Ltd. Optical scanning device and image forming apparatus
US7283288B2 (en) 2006-01-11 2007-10-16 Pentax Corporation Scanning device

Similar Documents

Publication Publication Date Title
JPH05346549A (en) Scanning optical device
US5179465A (en) Optical system for light beam scanning
JP2001281604A (en) Collimator lens and optical scanner using the same
JPH05215986A (en) Scanning optical system with surface tilt correcting function
JP2865009B2 (en) Scanning lens and optical scanning device
JP2623147B2 (en) Optical system for light beam scanning
JP3191538B2 (en) Scanning lens and optical scanning device
JPH07318832A (en) Scanning optical system and image forming apparatus using the same
JP2956169B2 (en) Scanning optical device
JP3323354B2 (en) Optical scanning device
JPH07146437A (en) Light beam scanning optical system
JP2811949B2 (en) Optical scanning optical system
JP3420439B2 (en) Optical scanning optical system and laser beam printer including the same
JPH0968664A (en) Optical system for light beam scanning
JP3804886B2 (en) Imaging optical system for optical scanning device
JP3404204B2 (en) Optical scanning lens, scanning imaging lens, and optical scanning device
JP3320239B2 (en) Scanning optical device
JP3411661B2 (en) Scanning optical system
JP3452294B2 (en) Optical scanning lens, scanning imaging lens, and optical scanning device
JP3499935B2 (en) Scanning optical system
JP3594274B2 (en) Optical scanning optical system and apparatus using this optical system
JPH07174999A (en) Light beam scanning optical system
KR100558328B1 (en) Gwangju Yarn Equipment
JP2602716B2 (en) Optical system for light beam scanning
JPH07181374A (en) Scanning optics

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020709