[go: up one dir, main page]

JPH09281422A - Scanning optical device - Google Patents

Scanning optical device

Info

Publication number
JPH09281422A
JPH09281422A JP11833196A JP11833196A JPH09281422A JP H09281422 A JPH09281422 A JP H09281422A JP 11833196 A JP11833196 A JP 11833196A JP 11833196 A JP11833196 A JP 11833196A JP H09281422 A JPH09281422 A JP H09281422A
Authority
JP
Japan
Prior art keywords
lens
curvature
optical
scanning
scanning direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11833196A
Other languages
Japanese (ja)
Inventor
Koji Hoshi
浩二 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11833196A priority Critical patent/JPH09281422A/en
Publication of JPH09281422A publication Critical patent/JPH09281422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a scanning optical device which is compact and is suitable for high-fineness printing by adequately setting the lens shape of one element of fθ lens consisting of a plastic material. SOLUTION: This device is so constituted that the luminous flux emitted from a light source means 1 is linearly imaged longitudinally in a main scanning direction on the deflection plane 5a of a deflecting element 5 via a first optical element 2 and a second optical element 4 and the luminous flux deflected by this deflecting element 5 is imaged like a spot on a surface 7 to be scanned via a third optical element 6. The surface 7 to be scanned is scanned by this spot. In such a case, the third optical element 6 consists of a single lens made of a plastic material. Both lens faces of this single lens consists of toric faces of an aspherical shape within the main scanning plane. The curvature in the sub-scanning direction of the deflecting element side lens face of the single lens is made negative on the optical axis and the negative curvature is made gradually stronger the furtherer from the optical axis in the main scanning direction up to the peripheral part of the first lens.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は走査光学装置に関
し、特に光源手段から光変調され出射した光束(光ビー
ム)を回転多面鏡等より成る光偏向器(偏向素子)で偏
向反射させた後、fθ特性を有する結像光学系(fθレ
ンズ)を介して被走査面上を光走査して画像情報を記録
するようにした、例えば電子写真プロセスを有するレー
ザービームプリンタ(LBP)やデジタル複写機等の装
置に好適な走査光学装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning optical device, and in particular, after a light beam (light beam) optically modulated and emitted from a light source means is deflected and reflected by an optical deflector (deflecting element) such as a rotating polygon mirror, A laser beam printer (LBP) having an electrophotographic process, a digital copying machine, or the like, which records image information by optically scanning the surface to be scanned through an imaging optical system (fθ lens) having fθ characteristics The present invention relates to a scanning optical device suitable for the above device.

【0002】[0002]

【従来の技術】従来よりレーザービームプリンタ等の走
査光学装置においては画像信号に応じて光源手段から光
変調され出射した光束を、例えば回転多面鏡(ポリゴン
ミラー)より成る光偏向器により周期的に偏向させ、f
θ特性を有する結像光学系によって感光性の記録媒体
(感光体ドラム)面上にスポット状に集束させ、その面
上を光走査して画像記録を行なっている。
2. Description of the Related Art Conventionally, in a scanning optical device such as a laser beam printer or the like, a light beam which is light-modulated from a light source means in accordance with an image signal and is emitted periodically by an optical deflector comprising a rotating polygon mirror (polygon mirror). Deflect, f
The light is focused in a spot shape on a photosensitive recording medium (photosensitive drum) surface by an imaging optical system having θ characteristics, and the surface is optically scanned to record an image.

【0003】図9はこの種の従来の走査光学装置の要部
概略図である。
FIG. 9 is a schematic view of a main part of a conventional scanning optical device of this type.

【0004】同図において光源手段91から出射した発
散光束はコリメーターレンズ92により略平行光束とさ
れ、絞り93によって該光束(光量)を制限して副走査
方向にのみ所定の屈折力を有するシリンドリカルレンズ
94に入射している。シリンドリカルレンズ94に入射
した平行光束のうち主走査断面内においてはそのまま平
行光束の状態で射出する。又副走査断面内においては集
束して回転多面鏡(ポリゴンミラー)から成る光偏向器
95の偏向面(反射面)95aにほぼ線像として結像し
ている。
In the figure, a divergent light beam emitted from a light source means 91 is made into a substantially parallel light beam by a collimator lens 92, and the light beam (amount of light) is limited by a diaphragm 93 to have a cylindrical power having a predetermined refracting power only in the sub-scanning direction. It is incident on the lens 94. Within the main scanning cross section, the parallel light flux that has entered the cylindrical lens 94 is emitted as it is in the state of parallel light flux. Further, in the sub-scanning cross section, they are converged and imaged as a substantially linear image on the deflecting surface (reflecting surface) 95a of the optical deflector 95 composed of a rotating polygon mirror (polygon mirror).

【0005】そして光偏向器95の偏向面95aで偏向
反射された光束をfθ特性を有する結像光学系(fθレ
ンズ)96を介して被走査面としての感光ドラム面97
上に導光し、該光偏向器95を矢印A方向に回転させる
ことによって該感光ドラム面97上を光走査して画像情
報の記録を行なっている。
Then, the light beam deflected and reflected by the deflecting surface 95a of the optical deflector 95 is passed through the image forming optical system (fθ lens) 96 having the fθ characteristic, and the photosensitive drum surface 97 as the surface to be scanned.
By guiding the light upward and rotating the optical deflector 95 in the direction of arrow A, the photosensitive drum surface 97 is optically scanned to record image information.

【0006】[0006]

【発明が解決しようとする課題】この種の走査光学装置
において高精度な画像情報の記録を行なうには被走査面
全域にわたって像面湾曲が良好に補正されスポット径が
揃っていること、そして入射光の角度と像高とが比例関
係となる歪曲収差(fθ特性)を有していることが必要
である。このような光学特性を満たす走査光学装置、若
しくはその補正光学系(fθレンズ)は従来より種々と
提案されている。
In order to record image information with high accuracy in this type of scanning optical apparatus, the field curvature should be well corrected over the entire surface to be scanned and the spot diameter should be uniform. It is necessary to have a distortion aberration (fθ characteristic) in which the angle of light and the image height are in a proportional relationship. Various types of scanning optical devices or correction optical systems (fθ lenses) satisfying such optical characteristics have been conventionally proposed.

【0007】又一方、レーザービームプリンタやデジタ
ル複写機等のコンパクト化及び低コスト化に伴ない、走
査光学装置にも同様のことが求められている。
On the other hand, with the downsizing and cost reduction of laser beam printers, digital copying machines and the like, the same is required for scanning optical devices.

【0008】これらの要望を両立させるものとしてfθ
レンズを1枚から構成した走査光学装置が、例えば特公
昭61−48684号公報や特開昭63−157122
号公報や特開平4−104213号公報や特開平4−5
0908号公報等で種々と提案されている。
To satisfy these requirements, fθ
A scanning optical device having one lens is disclosed in, for example, Japanese Patent Publication No. 61-48684 and Japanese Patent Application Laid-Open No. 63-157122.
And JP-A-4-104213 and JP-A-4-5213
Various proposals have been made in Japanese Patent No. 0908.

【0009】これらの公報のうち特公昭61−4868
4号公報や特開昭63−157122号公報等ではfθ
レンズとして光偏向器側に凹面の単レンズを用いてコリ
メーターレンズからの平行光束を記録媒体面上に集束さ
せている。又特開平4−104213号公報ではfθレ
ンズとして光偏向器側に凹面、像面側にトロイダル面の
単レンズを用いてコリメーターレンズにより収束光に変
換された光束を該fθレンズに入射させている。又特開
平4−50908号公報ではfθレンズとしてレンズ面
に高次非球面を導入した単レンズを用いてコリメーター
レンズにより収束光に変換された光束を該fθレンズに
入射させている。
Of these publications, Japanese Examined Patent Publication No. 61-4868
No. 4, JP-A-63-157122, etc., fθ
A single lens having a concave surface is used as the lens on the optical deflector side to focus the parallel light flux from the collimator lens on the surface of the recording medium. In Japanese Patent Application Laid-Open No. 4-104213, a single lens having a concave surface on the optical deflector side and a toroidal surface on the image surface side is used as an fθ lens, and a light beam converted into convergent light by a collimator lens is incident on the fθ lens. I have. In JP-A-4-50908, a single lens having a higher order aspherical surface introduced as a fθ lens is used, and a light beam converted into convergent light by a collimator lens is made incident on the fθ lens.

【0010】しかしながら上記に示した従来の走査光学
装置において特公昭61−48684号公報では副走査
方向の像面湾曲が残存しており、かつ平行光束を被走査
面に結像させている為、fθレンズから被走査面までの
距離が焦点距離fとなり長く、コンパクトな走査光学装
置を構成することが難しいという問題点があった。特開
昭63−157122号公報ではfθレンズの肉厚が厚
い為、モールド成型による製作が困難でありコストアッ
プの要因となるという問題点があった。特開平4−10
4213号公報では歪曲収差が残存するという問題点が
あった。特開平4−50908号公報では高次非球面の
fθレンズを用い収差は良好に補正されているものの光
偏向器であるポリゴンミラーの取付誤差によりポリゴン
面数周期のジッターが発生するという問題点があった。
However, in the conventional scanning optical device described above, in Japanese Patent Publication No. 61-48684, the field curvature in the sub-scanning direction remains and the parallel light flux is imaged on the surface to be scanned. The distance from the fθ lens to the surface to be scanned is the focal length f, which is long, which makes it difficult to construct a compact scanning optical device. In Japanese Unexamined Patent Publication No. 63-157122, there is a problem that the fθ lens has a large thickness, which makes it difficult to manufacture it by molding and causes a cost increase. Japanese Patent Laid-Open No. 4-10
The 4213 publication has a problem that distortion aberration remains. In Japanese Patent Laid-Open No. 4-50908, although a high-order aspherical f.theta. Lens is used and the aberration is corrected well, there is a problem that jitter of the polygon surface number cycle occurs due to an attachment error of a polygon mirror which is an optical deflector. there were.

【0011】更にこれら1枚で構成されたfθレンズに
共通する問題点としては、光偏向器と被走査面間におけ
る副走査方向の横倍率の不均一性により像高により副走
査方向のスポット径が変化する、又fθレンズをプラス
チック材とし成型により製作したときの該レンズ内部の
複屈折によるスポット径の肥大により、像高によって副
走査方向のスポット径が変化するという問題があった。
Further, a problem common to the fθ lens constructed by one of these is that the spot diameter in the sub-scanning direction depends on the image height due to the non-uniformity of the lateral magnification in the sub-scanning direction between the optical deflector and the surface to be scanned. There is a problem that the spot diameter in the sub-scanning direction changes depending on the image height due to an increase in the spot diameter due to birefringence inside the lens when the fθ lens is made of a plastic material and molded.

【0012】本発明はコリメーターレンズ等で変換され
た光源手段からの光束を光偏向器を介してプラスチック
材より成る1枚のfθレンズにより被走査面上に結像さ
せる際、該fθレンズのレンズ形状を最適化にすること
により、副走査方向の横倍率の不均一性によるスポット
径の変化に複屈折によるスポット径の肥大の変化をたし
合わせてスポット径の変化を抑えるようにした、コンパ
クトで高精細な印字に適した走査光学装置の提供を目的
とする。
According to the present invention, when the light flux from the light source means converted by the collimator lens or the like is imaged on the surface to be scanned by one fθ lens made of a plastic material through the optical deflector, the fθ lens By optimizing the lens shape, the change of the spot diameter due to the nonuniformity of the lateral magnification in the sub-scanning direction is added to the change of the spot diameter due to the birefringence to suppress the change of the spot diameter. An object of the present invention is to provide a scanning optical device that is compact and suitable for high-definition printing.

【0013】[0013]

【課題を解決するための手段】本発明の走査光学装置は (1-1) 光源手段から出射した光束を第1の光学素子と第
2の光学素子とを介して偏向素子の偏向面において主走
査方向に長手の線状に結像させ、該偏向素子で偏向され
た光束を第3の光学素子を介し被走査面上にスポット状
に結像させて該被走査面上を走査する走査光学装置にお
いて、該第3の光学素子はプラスチック材の単レンズよ
り成り、該単レンズの両レンズ面は共に主走査面内で非
球面形状のトーリック面より成り、該単レンズの該偏向
素子側のレンズ面の副走査方向の曲率を光軸上は負と
し、主走査方向に該光軸上から第1のレンズ周辺部まで
遠ざかるにつれ徐々に負の曲率を強めたことを特徴とし
ている。
In the scanning optical device of the present invention, (1-1) the luminous flux emitted from the light source means is mainly passed through the first optical element and the second optical element on the deflecting surface of the deflecting element. Scanning optical for forming an image in a linear shape longitudinal in the scanning direction, forming an image of the light beam deflected by the deflection element on the surface to be scanned in a spot shape through the third optical element, and scanning the surface to be scanned. In the apparatus, the third optical element is composed of a single lens made of a plastic material, both lens surfaces of the single lens are both composed of an aspherical toric surface in the main scanning plane, and the third lens is provided on the deflection element side of the single lens. The curvature of the lens surface in the sub-scanning direction is negative on the optical axis, and the negative curvature is gradually increased as the distance from the optical axis to the peripheral portion of the first lens in the main scanning direction increases.

【0014】特に(1-1-1) 前記単レンズの第1のレンズ
周辺部から第2のレンズ周辺部まで更に周辺に遠ざかる
につれ徐々に負の曲率を弱めたことや、(1-1-2) 前記単
レンズの第2のレンズ周辺部から第3のレンズ周辺部ま
で更に周辺に遠ざかるにつれ徐々に負の曲率を弱め、該
第3のレンズ周辺部で曲率を略0としたことや、(1-1-
3) 前記単レンズの第3のレンズ周辺部から更に周辺部
に遠ざかるにつれて曲率を正にしたこと、等を特徴とし
ている。
Particularly, (1-1-1) the negative curvature is gradually weakened as the distance from the first lens peripheral portion to the second lens peripheral portion of the single lens is further increased, and (1-1- 2) The negative curvature is gradually weakened as the distance from the second lens peripheral portion of the single lens to the third lens peripheral portion is further increased to the peripheral portion, and the curvature is set to approximately 0 at the third lens peripheral portion, (1-1-
3) It is characterized in that the curvature is made positive as the distance from the third lens peripheral portion of the single lens to the peripheral portion further increases.

【0015】(1-2) 光源手段から出射した光束を第1の
光学素子と第2の光学素子とを介して偏向素子の偏向面
において主走査方向に長手の線状に結像させ、該偏向素
子で偏向された光束を第3の光学素子を介して被走査面
上にスポット状に結像させて該被走査面上を走査する走
査光学装置において、該第3の光学素子はプラスチック
材の単レンズより成り、該単レンズの両レンズ面は共に
主走査面内で非球面形状のトーリック面より成り、該単
レンズの該被走査面側のレンズ面の副走査方向の曲率を
光軸上は負とし、最軸外では該光軸上の曲率より弱く
し、かつ以下の条件式を満足するように各要素を設定し
たことを特徴としている。
(1-2) A light beam emitted from the light source means is imaged in a linear shape elongated in the main scanning direction on the deflection surface of the deflection element via the first optical element and the second optical element, In a scanning optical device for forming an image of a light beam deflected by a deflecting element on the surface to be scanned in a spot shape through the third optical element and scanning the surface to be scanned, the third optical element is a plastic material. Of the single lens, both lens surfaces of which are aspherical toric surfaces in the main scanning plane, and the curvature of the lens surface of the single lens on the scanned surface side in the sub-scanning direction is the optical axis. It is characterized in that the upper part is negative, the outermost axis is made weaker than the curvature on the optical axis, and each element is set so as to satisfy the following conditional expression.

【0016】[0016]

【数2】 但し、R2a,R2b,R2c,R2dは各々前記単レンズの被
走査面側のレンズ面の副走査方向の曲率半径であり、主
走査方向のレンズ有効部の光軸から最軸外光線の通るレ
ンズ有効部までの高さの順に0割、3割、7割、10割
の位置のものである。
[Equation 2] However, R 2a , R 2b , R 2c , and R 2d are the radii of curvature in the sub-scanning direction of the lens surface on the scanned surface side of the single lens, respectively, and are the outermost axes from the optical axis of the lens effective portion in the main scanning direction. It is at the positions of 0%, 30%, 70%, and 100% in the order of the height of the lens through which the light rays pass.

【0017】(1-3) (1-1),(1-2)において前記被走査面
上の最大有効走査幅をw、前記単レンズの光軸方向の厚
さをtとしたとき 0.035<t/w<0.065 ‥‥‥(3) なる条件を満足することを特徴としている。
(1-3) In (1-1) and (1-2), when the maximum effective scanning width on the surface to be scanned is w and the thickness of the single lens in the optical axis direction is t, 0. It is characterized in that the condition 035 <t / w <0.065 (3) is satisfied.

【0018】[0018]

【発明の実施の形態】図1は本発明の実施形態1の主走
査方向の要部断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view of a main part in a main scanning direction according to a first embodiment of the present invention.

【0019】図中1は光源手段(光源部)であり、例え
ば半導体レーザより成っている。2は第1の光学素子と
してのコリメーターレンズであり、光源手段1から出射
された発散光束(光ビーム)を収束光束に変換してい
る。3は開口絞りであり、通過光束径を整えている。
In the figure, reference numeral 1 denotes a light source means (light source section), which is composed of, for example, a semiconductor laser. A collimator lens 2 as a first optical element converts a divergent light beam (light beam) emitted from the light source means 1 into a convergent light beam. Reference numeral 3 denotes an aperture stop for adjusting the diameter of a passing light beam.

【0020】4は第2の光学素子としてのシリンドリカ
ルレンズであり、副走査方向にのみ所定の屈折力を有し
ており、開口絞り3を通過した光束を副走査断面内で後
述する光偏向器(偏向素子)5の偏向面5aにほぼ線像
として結像させている。5は偏向素子としての例えばポ
リゴンミラー(回転多面鏡)より成る光偏向器であり、
モータ等の駆動手段(不図示)により図中矢印A方向に
一定速度で回転している。
Reference numeral 4 denotes a cylindrical lens as a second optical element, which has a predetermined refracting power only in the sub-scanning direction, and a light beam which has passed through the aperture stop 3 and which will be described later in the sub-scanning section. The image is formed on the deflecting surface 5a of the (deflecting element) 5 as a substantially linear image. Reference numeral 5 is an optical deflector which is composed of, for example, a polygon mirror (rotating polygon mirror) as a deflecting element,
It is rotated at a constant speed in the direction of arrow A in the figure by a driving means (not shown) such as a motor.

【0021】6は第3の光学素子としてのfθ特性を有
するプラスチック材の1枚のレンズより成るfθレンズ
(結像光学系)であり、光偏向器5と被走査面としての
感光ドラム面7との中間より該光偏向器5側に配置して
おり、光偏向器5によって偏向反射された画像情報に基
づく光束を感光ドラム面7上に結像させ、かつ該光偏向
器5の偏向面の面倒れを補正している。
Reference numeral 6 denotes an fθ lens (imaging optical system) which is a third optical element and is composed of a single lens made of a plastic material having fθ characteristics, and includes an optical deflector 5 and a photosensitive drum surface 7 as a surface to be scanned. And a light beam based on image information deflected and reflected by the light deflector 5 is imaged on the photosensitive drum surface 7, and the deflection surface of the light deflector 5 The trouble of is corrected.

【0022】本実施形態におけるfθレンズ6は、その
両レンズ面R1,R2が共に主走査面内で非球面形状の
トーリック面より成り、該fθレンズ6の光偏向器5側
のレンズ面の副走査方向の曲率を光軸上は負とし、主走
査方向に該光軸上から第1のレンズ周辺部まで遠ざかる
につれ徐々に負の曲率を強め、又該第1のレンズ周辺部
から第2のレンズ周辺部まで更に周辺に遠ざかるにつれ
徐々に負の曲率を弱め、又該第2のレンズ周辺部から第
3のレンズ周辺部まで更に周辺に遠ざかるにつれ徐々に
負の曲率を弱め、該第3のレンズ周辺部で曲率が略0
(屈折力が0)となるようにし、又該第3のレンズ周辺
部から更に周辺部に遠ざかるにつれて曲率を正にしてい
る。本実施例ではこのようにfθレンズの副走査面(f
θレンズの光軸を含み主走査面と直交する面)内の曲率
をレンズの有効部内において軸上から軸外に向かい連続
的に変化させている。
In the f.theta. Lens 6 of this embodiment, both lens surfaces R1 and R2 of the f.theta. Lens 6 are aspherical toric surfaces in the main scanning plane, and the lens surface of the f.theta. The curvature in the scanning direction is negative on the optical axis, the negative curvature is gradually strengthened as the distance from the optical axis on the optical axis to the peripheral portion of the first lens in the main scanning direction is increased, and the curvature from the peripheral portion of the first lens to the second portion is increased. The negative curvature is gradually weakened as the distance from the lens to the peripheral portion is further decreased, and the negative curvature is gradually weakened as the distance from the second lens peripheral portion to the third lens peripheral portion is further reduced to the third peripheral portion. Curvature is almost zero at the lens periphery
(Refractive power is 0), and the curvature is made positive as the distance from the peripheral portion of the third lens is further increased. In this embodiment, the sub-scanning surface (f
The curvature within a plane (including the optical axis of the θ lens and orthogonal to the main scanning plane) is continuously changed from on-axis to off-axis in the effective portion of the lens.

【0023】本実施形態において半導体レーザ1より出
射した発散光束はコリメータレンズ2により収束光束に
変換され、開口絞り3によって該光束(光量)を制限し
てシリンドリカルレンズ4に入射している。シリンドリ
カルレンズ4に入射した光束のうち主走査断面において
はそのままの状態で射出する。又副走査断面においては
集束して光偏向器5の偏向面5aにほぼ線像(主走査方
向に長手の線像)として結像している。そして光偏向器
5の偏向面5aで偏向反射された光束は主走査方向と副
走査方向とで互いに異なる屈折力を有するfθレンズ6
を介して感光ドラム面7上に導光され、該光偏向器5を
矢印A方向に回転させることによって該感光ドラム面7
上を矢印B方向に走査している。これにより記録媒体で
ある感光ドラム面7上に画像記録を行なっている。
In this embodiment, the divergent light beam emitted from the semiconductor laser 1 is converted into a convergent light beam by the collimator lens 2, and the light beam (amount of light) is limited by the aperture stop 3 and is incident on the cylindrical lens 4. The light beam incident on the cylindrical lens 4 is emitted as it is in the main scanning section. In the sub-scan section, the light is converged and formed as an almost linear image (a linear image elongated in the main scanning direction) on the deflection surface 5a of the optical deflector 5. The light beam deflected and reflected by the deflecting surface 5a of the optical deflector 5 has an fθ lens 6 having different refracting powers in the main scanning direction and the sub-scanning direction.
Light is guided onto the photosensitive drum surface 7 via the optical deflector 5 by rotating the optical deflector 5 in the direction of arrow A.
The upper part is scanned in the direction of arrow B. As a result, an image is recorded on the photosensitive drum surface 7, which is the recording medium.

【0024】本実施形態においては上述の如くfθレン
ズ6の光偏向器5側のレンズ面R1の副走査方向の曲率
を光軸上で負とすることにより、該副走査方向の主平面
がより像面側に位置でき、これによりfθレンズ6を該
光偏向器5側に近づけて配置することが可能になり、該
fθレンズ6をコンパクトにすることができる。又副走
査方向の負の曲率を光軸上より主走査方向に該光軸上か
ら第1の周辺部まで遠ざかるにつれ徐々に強めることに
より、光軸上より周辺で副走査方向の主平面を像面側に
移動させることができ、これにより横倍率の絶対値を小
さくさせて周辺のスポット径が小さくなるようにしてい
る。
In the present embodiment, as described above, the curvature of the lens surface R1 of the fθ lens 6 on the optical deflector 5 side in the sub-scanning direction is made negative on the optical axis, so that the main plane in the sub-scanning direction is further improved. The fθ lens 6 can be located on the image plane side, whereby the fθ lens 6 can be arranged closer to the optical deflector 5 side, and the fθ lens 6 can be made compact. Also, by gradually increasing the negative curvature in the sub-scanning direction from the optical axis in the main scanning direction to the first peripheral portion from the optical axis, an image of the main plane in the sub-scanning direction in the periphery of the optical axis can be obtained. It can be moved to the surface side, whereby the absolute value of the lateral magnification is reduced and the peripheral spot diameter is reduced.

【0025】これは後述するようにfθレンズ6をプラ
スチック材の成型により製作したときの該レンズ内部の
複屈折によるスポット径の肥大が、図5に示すように光
軸上より周辺像高でのほうが大きくなるので、結果的に
は光軸上と周辺像高でスポット径が均一になる。
As will be described later, when the fθ lens 6 is manufactured by molding a plastic material, the enlargement of the spot diameter due to the birefringence inside the lens is caused by the peripheral image height from the optical axis as shown in FIG. Since it becomes larger, the spot diameter eventually becomes uniform on the optical axis and at the peripheral image height.

【0026】更に複屈折によるスポット径の肥大は中間
像高で最大となり、そこから最軸外ではスポット径の肥
大量は少なくなるので前述の如く第1のレンズ周辺部か
ら第2のレンズ周辺部まで更に周辺に遠ざかるにつれ徐
々に負の曲率を弱め、又該第2のレンズ周辺部から第3
のレンズ周辺部まで更に周辺に遠ざかるにつれ徐々に負
の曲率を弱め、該第3のレンズ周辺部で曲率が略0とな
るようにし、又該第3のレンズ周辺部から更に周辺部に
遠ざかるにつれて曲率を正にすることにより、より周辺
部では副走査方向の主平面を像面から離すようにして横
倍率の絶対値を大きくしている。これによりスポット径
の均一化を図っている。
Further, the enlargement of the spot diameter due to the birefringence becomes maximum at the intermediate image height, and the enlargement of the spot diameter is reduced from that point on the outermost axis, so that the peripheral portion of the first lens to the peripheral portion of the second lens as described above. The negative curvature is gradually weakened as the distance from the second lens increases to the third,
The negative curvature is gradually weakened as the distance from the lens to the peripheral part is further decreased so that the curvature becomes approximately 0 at the third lens peripheral part, and as the distance from the third lens peripheral part to the peripheral part further increases. By making the curvature positive, the absolute value of the lateral magnification is increased by further separating the main plane in the sub-scanning direction from the image plane in the peripheral portion. As a result, the spot diameter is made uniform.

【0027】又、本実施形態においてはプラスチック材
より成る1枚のfθレンズ6の両レンズ面R1,R2を
共に主走査面内で非球面形状のトーリック面とし、該f
θレンズ6の被走査面7側のレンズ面R2の副走査方向
の曲率を光軸上で負とし、最軸外では、該光軸上の曲率
より弱くすることにより、副走査方向の主平面を軸上よ
り最軸外で、より像面から遠ざけることにより軸上と軸
外の横倍率の変化を押え、更に以下の各条件式を満足す
るように各要素を設定することにより、スポット径の均
一化を図っている。
Further, in this embodiment, both lens surfaces R1 and R2 of one fθ lens 6 made of a plastic material are aspherical toric surfaces in the main scanning plane, and the f
The curvature of the lens surface R2 of the θ lens 6 on the scanned surface 7 side in the sub-scanning direction is made negative on the optical axis, and is made weaker than the curvature on the optical axis at the outermost axis, whereby the main plane in the sub-scanning direction is formed. Is more off-axis than on-axis and further away from the image plane to suppress changes in lateral magnification on-axis and off-axis, and by setting each element to satisfy the following conditional expressions, the spot diameter Is being made uniform.

【0028】[0028]

【数3】 但し、R2a,R2b,R2c,R2dは各々fθレンズ6の被
走査面7側のレンズ面R2の副走査方向の曲率半径であ
り、主走査方向のレンズ有効部の光軸から最軸外光線の
通るレンズ有効部までの高さの順に0割、3割、7割、
10割の位置のものである。
(Equation 3) However, R 2a , R 2b , R 2c , and R 2d are the radii of curvature in the sub-scanning direction of the lens surface R2 on the scanned surface 7 side of the fθ lens 6, respectively, and are the maximum from the optical axis of the lens effective portion in the main scanning direction. 0%, 30%, 70% in order of the height to the lens effective part through which the off-axis rays pass,
It is at the position of 100%.

【0029】次に上記の各条件式(1),(2)の技術
的意味について説明する。
Next, the technical meanings of the above conditional expressions (1) and (2) will be described.

【0030】条件式(1)は軸上付近の曲率Rの変化と
軸外付近の曲率Rの変化の比に関するものである。条件
式(1)の下限値を越えると光軸上から光軸上付近の負
の曲率Rがきつく(強く)なりすぎて軸上より軸上付近
の中間像高でスポット径が小さくなりすぎてしまうので
良くない。又条件式(1)の上限値を越えると光軸上か
ら光軸上付近の負の曲率Rが緩く(弱く)なりすぎて軸
上より軸上付近の中間像高でスポット径が大きくなりす
ぎてしまうので良くない。更に望ましくは条件式(1)
の下限値を−0.01、上限値を0.1にするのが良
い。
Conditional expression (1) relates to the ratio of the change in the curvature R near the axis to the change in the curvature R near the off-axis. If the lower limit of conditional expression (1) is exceeded, the negative curvature R from the optical axis to the vicinity of the optical axis becomes too tight (strong), and the spot diameter becomes too small at the intermediate image height near the axis rather than on the axis. It's not good because it ends up. If the upper limit of conditional expression (1) is exceeded, the negative curvature R from the optical axis to the vicinity of the optical axis becomes too loose (weak), and the spot diameter becomes too large at the intermediate image height near the axis rather than on the axis. It is not good because it will end up. More preferably, conditional expression (1)
It is preferable to set the lower limit value of -0.01 and the upper limit value of 0.1.

【0031】条件式(2)は最軸外付近で負の曲率Rを
緩く(弱く)する為のものである。条件式(2)を外れ
ると最軸外付近で負の曲率Rを緩くするのが困難となっ
てくるので良くない。
Conditional expression (2) is for loosening (weakening) the negative curvature R near the outermost axis. If conditional expression (2) is not satisfied, it becomes difficult to loosen the negative curvature R near the outermost axis, which is not preferable.

【0032】本実施形態において更に望ましくは被走査
面7上の最大有効走査幅をw、fθレンズ6の光軸方向
の厚さをtとしたとき 0.035<t/w<0.065 ‥‥‥(3) なる条件を満足することである。
In the present embodiment, more preferably, assuming that the maximum effective scanning width on the surface to be scanned 7 is w and the thickness of the fθ lens 6 in the optical axis direction is t, 0.035 <t / w <0.065. (3) To satisfy the following condition.

【0033】条件式(3)はfθレンズ6の肉厚と被走
査面7上の最大有効走査幅wの比に関するものであり、
条件式(3)の下限値を越えて肉厚を薄くすると複屈折
が小さくなりスポット径の均一化の為には副走査方向の
横倍率をより均一化する必要が生じ、その為副走査方向
の曲率の変化が著しくなってしまい加工精度上の問題が
生じてくるので良くない。又条件式(3)の上限値を越
えると複屈折が大きくなりスポット径の肥大により小ス
ポット化が困難となってくるので良くない。
Conditional expression (3) relates to the ratio between the thickness of the fθ lens 6 and the maximum effective scanning width w on the surface 7 to be scanned,
When the wall thickness is made smaller than the lower limit of conditional expression (3), the birefringence becomes small, and it becomes necessary to make the lateral magnification in the sub-scanning direction more uniform in order to make the spot diameter uniform. This is not good because the change in the curvature of becomes significant and causes a problem in processing accuracy. On the other hand, if the upper limit of conditional expression (3) is exceeded, birefringence becomes large, and it becomes difficult to make a small spot due to an enlarged spot diameter.

【0034】本実施形態ではfθレンズ6のレンズ形状
を主走査方向は10次までの関数で表わせる非球面形状
とし、副走査方向は像高方向に連続的に変化する球面よ
り構成している。そのレンズ形状は、例えばfθレンズ
6と光軸との交点を原点とし、光軸方向をX軸、主走査
面内において光軸と直交する軸をY軸、副走査面内にお
いて光軸と直交する軸をZ軸としたとき、主走査方向と
対応する母線方向が
In this embodiment, the lens shape of the fθ lens 6 is an aspherical shape which can be expressed by a function up to the 10th order in the main scanning direction, and the subscanning direction is composed of a spherical surface which continuously changes in the image height direction. . The lens shape is, for example, the origin at the intersection of the fθ lens 6 and the optical axis, the optical axis direction is the X axis, the axis orthogonal to the optical axis in the main scanning plane is the Y axis, and the optical axis is orthogonal to the optical axis in the sub scanning plane. When the axis to be set is the Z axis, the bus line direction corresponding to the main scanning direction is

【0035】[0035]

【数4】 なる式で表わせるものであり、又副走査方向(光軸を含
む主走査方向に対して直交する方向)と対応する子線方
向が、
(Equation 4) The sagittal direction corresponding to the sub-scanning direction (direction orthogonal to the main scanning direction including the optical axis) can be expressed by

【0036】[0036]

【数5】 但し、レンズ面R1は Y≧0のとき 1/r’=1/r+D2U2 +D4U4 +D6U6 +D
8U8 +D10U10 Y<0のとき 1/r’=1/r+D2L2 +D4L4 +D6L6 +D
8L8 +D10L10 レンズ面R2は r´=r(1+D22 +D44 +D66 +D8
8 +D1010) (但し、rは曲率半径、D2 ,D4 ,D6 ,D8 ,D10
は非球面係数)なる式で表わせるものである。
(Equation 5) However, when Y ≧ 0, the lens surface R1 is 1 / r ′ = 1 / r + D 2U Y 2 + D 4U Y 4 + D 6U Y 6 + D
8U Y 8 + D 10U Y 10 When Y <0 1 / r '= 1 / r + D 2L Y 2 + D 4L Y 4 + D 6L Y 6 + D
8L Y 8 + D 10L Y 10 The lens surface R2 is r ′ = r (1 + D 2 Y 2 + D 4 Y 4 + D 6 Y 6 + D 8 Y
8 + D 10 Y 10 ) (where r is the radius of curvature, D 2 , D 4 , D 6 , D 8 , D 10
Is an aspherical surface coefficient).

【0037】図2,図3は各々本実施形態におけるfθ
レンズ6の光偏向器5側のレンズ面R1と被走査面7側
のレンズ面R2の副走査方向の曲率変化の様子を示した
説明図である。図4は本実施形態における複屈折による
スポット径の肥大を除いたときの副走査方向のスポット
径を示した説明図である。
2 and 3 respectively show fθ in this embodiment.
FIG. 9 is an explanatory diagram showing a change in curvature of a lens surface R1 of the lens 6 on the optical deflector 5 side and a lens surface R2 of the scanned surface 7 side in the sub-scanning direction. FIG. 4 is an explanatory diagram showing the spot diameter in the sub-scanning direction when the enlargement of the spot diameter due to birefringence is excluded in the present embodiment.

【0038】図4からも解るように像面デフォーカスが
0のとき、軸上像高y=0と中間像高y=78.5と最
軸外像高y=107.3での各スポット径SP0,SP
1,SP2を比較すると SP0>SP2>SP1 となる。
As can be seen from FIG. 4, when the image plane defocus is 0, each spot at the axial image height y = 0, the intermediate image height y = 78.5, and the most off-axis image height y = 107.3. Diameter SP0, SP
Comparing 1 and SP2, SP0>SP2> SP1.

【0039】又、本実施形態において複屈折による各像
高における副走査方向のスポット径の肥大量の測定値は
図5に示すようになる。図5からも解るように軸上像高
y=0と中間像高y=±78.5と最軸外像高y=±1
07.3での各スポット径SP0,SP1,SP2を比
較すると SP0<SP2<SP1 となる。これにより副走査方向の横倍率の不均一性によ
るスポット径の変化(図4)に複屈折によるスポット径
の肥大の不均一性(図5)をたし合わせれば各像高で、
よりスポット径の均一化を図ることができる。
In this embodiment, the measured values of the spot diameter in the sub-scanning direction at each image height due to birefringence are shown in FIG. As can be seen from FIG. 5, the on-axis image height y = 0, the intermediate image height y = ± 78.5, and the most off-axis image height y = ± 1.
Comparing the spot diameters SP0, SP1, SP2 at 07.3, SP0 <SP2 <SP1. As a result, if the variation of the spot diameter due to the non-uniformity of the lateral magnification in the sub-scanning direction (FIG. 4) is added to the non-uniformity of the enlargement of the spot diameter due to birefringence (FIG. 5),
The spot diameter can be made more uniform.

【0040】次に本実施形態におけるfθレンズ6のレ
ンズ面形状を表わす各係数及びその他の諸特性の一覧を
表−1、表−2に示す。
Next, Tables 1 and 2 show a list of each coefficient representing the lens surface shape of the fθ lens 6 and other various characteristics in the present embodiment.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 次に本発明の実施形態2について説明する。[Table 2] Next, a second embodiment of the present invention will be described.

【0043】本実施形態における走査光学装置の構成は
前述した図1に示した実施形態1と同様である。図6,
図7は各々本実施形態におけるfθレンズ16の光偏向
器5側のレンズ面R1と被走査面7側のレンズ面R2の
副走査方向の曲率変化の様子を示した説明図、図8は本
実施形態における複屈折によるスポット径の肥大を除い
たときの副走査方向のスポット径を示した説明図であ
る。
The structure of the scanning optical device in this embodiment is the same as that of the first embodiment shown in FIG. Figure 6,
FIG. 7 is an explanatory view showing the curvature changes in the sub-scanning direction of the lens surface R1 of the f.theta. Lens 16 on the optical deflector 5 side and the lens surface R2 of the scanned surface 7 side in the present embodiment, and FIG. FIG. 7 is an explanatory diagram showing a spot diameter in the sub-scanning direction when the enlargement of the spot diameter due to birefringence is excluded in the embodiment.

【0044】図8からも解るように像面デフォーカスが
0のとき、軸上像高y=0と中間像高y=78.5と最
軸外像高y=107.3での各スポット径SP0,SP
1,SP2を比較すると SP0>SP2>SP1 となる。
As can be seen from FIG. 8, when the image plane defocus is 0, each spot at the axial image height y = 0, the intermediate image height y = 78.5, and the most off-axis image height y = 107.3. Diameter SP0, SP
Comparing 1 and SP2, SP0>SP2> SP1.

【0045】又、本実施形態において複屈折による各像
高における副走査方向のスポット径の肥大量の測定値は
前記図5と略同様であり、これにより副走査方向の横倍
率の不均一性によるスポット径の変化(図8)に複屈折
によるスポット径の肥大の不均一性(図5)をたし合わ
せれば各像高で、よりスポット径の均一化を図ることが
できる。
Further, in the present embodiment, the measured values of the spot diameter in the sub-scanning direction at each image height due to the birefringence are substantially the same as those in FIG. 5, so that the lateral magnification in the sub-scanning direction is not uniform. By adding the nonuniformity of enlargement of the spot diameter due to birefringence (FIG. 5) to the change of the spot diameter due to (FIG. 8), the spot diameter can be made more uniform at each image height.

【0046】次に本実施形態におけるfθレンズ16の
レンズ面形状を表わす各係数及びその他の諸特性の一覧
を表−3、表−4に示す。
Next, Tables 3 and 4 show a list of each coefficient representing the lens surface shape of the f.theta. Lens 16 and other characteristics according to the present embodiment.

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【表4】 又、前述の各条件式(1)〜(3)に対する各実施形態
1、2における諸数値との関係を表−5に示す。
[Table 4] Table 5 shows the relationship between the conditional expressions (1) to (3) described above and various numerical values in the first and second embodiments.

【0049】[0049]

【表5】 [Table 5]

【0050】[0050]

【発明の効果】本発明によれば前述の如くコリメーター
レンズで変換された光束を光偏向器を介してプラスチッ
ク材より成る1枚のfθレンズにより被走査面上に結像
させる際、該fθレンズのレンズ形状を最適化にするこ
とにより、副走査方向の横倍率の不均一性によるスポッ
ト径の変化に複屈折によるスポット径の肥大の不均一性
をたし合わせることができ、これによりスポット径の変
化を抑えることができる、コンパクトで高精細な印字に
適した走査光学装置を達成することができる。
According to the present invention, when the light flux converted by the collimator lens as described above is imaged on the surface to be scanned by the single fθ lens made of the plastic material through the optical deflector, the fθ is changed. By optimizing the lens shape of the lens, it is possible to add the unevenness of the spot diameter enlargement due to the birefringence to the change of the spot diameter due to the unevenness of the lateral magnification in the sub-scanning direction. It is possible to achieve a compact scanning optical device capable of suppressing a change in diameter and suitable for high-definition printing.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施形態1の主走査方向と副走査方
向の要部断面図
FIG. 1 is a sectional view of a main part in a main scanning direction and a sub scanning direction according to a first embodiment of the present invention.

【図2】 本発明の実施形態1のfθレンズのレンズ面
R1の副走査方向の曲率変化の様子を示す説明図
FIG. 2 is an explanatory diagram showing a change in curvature in a sub-scanning direction of a lens surface R1 of the fθ lens according to the first embodiment of the present invention.

【図3】 本発明の実施形態1のfθレンズのレンズ面
R2の副走査方向の曲率変化の様子を示す説明図
FIG. 3 is an explanatory diagram showing a curvature change in a sub-scanning direction of a lens surface R2 of the fθ lens according to the first embodiment of the present invention.

【図4】 本発明の実施形態1のスポット径の肥大を除
いたときの副走査方向のスポット径を示す説明図
FIG. 4 is an explanatory diagram showing the spot diameter in the sub-scanning direction when the spot diameter enlargement according to the first embodiment of the present invention is excluded.

【図5】 本発明の実施形態1の各像高における副走査
方向のスポット径の肥大量の測定値を示す説明図
FIG. 5 is an explanatory diagram showing measured values of a large amount of spot diameter in the sub-scanning direction at each image height according to the first embodiment of the present invention.

【図6】 本発明の実施形態2のfθレンズのレンズ面
R1の副走査方向の曲率変化の様子を示す説明図
FIG. 6 is an explanatory diagram showing a curvature change in the sub-scanning direction of a lens surface R1 of the fθ lens according to the second embodiment of the present invention.

【図7】 本発明の実施形態2のfθレンズのレンズ面
R2の副走査方向の曲率変化の様子を示す説明図
FIG. 7 is an explanatory diagram showing a curvature change in a sub-scanning direction of a lens surface R2 of the fθ lens according to the second embodiment of the present invention.

【図8】 本発明の実施形態2のスポット径の肥大を除
いたときの副走査方向のスポット径を示す説明図
FIG. 8 is an explanatory diagram showing a spot diameter in the sub-scanning direction when the spot diameter is not enlarged according to the second embodiment of the present invention.

【図9】 従来の走査光学装置の要部概略図FIG. 9 is a schematic view of a main part of a conventional scanning optical device.

【符号の説明】[Explanation of symbols]

1 光源手段 2 第1の光学素子(コリメーターレンズ) 3 開口絞り 4 第2の光学素子(シリンドリカルレンズ) 5 偏向素子(光偏向器) 6 第3の光学素子(fθレンズ) 7 被走査面(感光ドラム面) 1 Light Source Means 2 First Optical Element (Collimator Lens) 3 Aperture Stop 4 Second Optical Element (Cylindrical Lens) 5 Deflection Element (Optical Deflector) 6 Third Optical Element (fθ Lens) 7 Scanned Surface ( (Photosensitive drum surface)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光源手段から出射した光束を第1の光学
素子と第2の光学素子とを介して偏向素子の偏向面にお
いて主走査方向に長手の線状に結像させ、該偏向素子で
偏向された光束を第3の光学素子を介し被走査面上にス
ポット状に結像させて該被走査面上を走査する走査光学
装置において、 該第3の光学素子はプラスチック材の単レンズより成
り、該単レンズの両レンズ面は共に主走査面内で非球面
形状のトーリック面より成り、該単レンズの該偏向素子
側のレンズ面の副走査方向の曲率を光軸上は負とし、主
走査方向に該光軸上から第1のレンズ周辺部まで遠ざか
るにつれ徐々に負の曲率を強めたことを特徴とする走査
光学装置。
1. A light beam emitted from a light source means is imaged through a first optical element and a second optical element on a deflecting surface of the deflecting element in a linear shape elongated in the main scanning direction, and the deflecting element In a scanning optical device for forming an image of the deflected light beam on the surface to be scanned in a spot shape through the third optical element and scanning the surface to be scanned, the third optical element is composed of a single lens made of a plastic material. Both of the lens surfaces of the single lens are made of an aspherical toric surface in the main scanning plane, and the curvature of the lens surface of the single lens on the deflecting element side in the sub-scanning direction is negative on the optical axis, A scanning optical device characterized in that a negative curvature is gradually increased as the distance from the optical axis to the peripheral portion of the first lens increases in the main scanning direction.
【請求項2】 前記単レンズの第1のレンズ周辺部から
第2のレンズ周辺部まで更に周辺に遠ざかるにつれ徐々
に負の曲率を弱めたことを特徴とする請求項1の走査光
学装置。
2. The scanning optical device according to claim 1, wherein the negative curvature is gradually weakened as the distance from the first lens peripheral portion to the second lens peripheral portion of the single lens is further increased to the periphery.
【請求項3】 前記単レンズの第2のレンズ周辺部から
第3のレンズ周辺部まで更に周辺に遠ざかるにつれ徐々
に負の曲率を弱め、該第3のレンズ周辺部で曲率を略0
としたことを特徴とする請求項2の走査光学装置。
3. The negative curvature is gradually weakened as the distance from the second lens peripheral portion to the third lens peripheral portion of the single lens is further increased to the peripheral portion, and the curvature is substantially 0 at the third lens peripheral portion.
The scanning optical device according to claim 2, wherein
【請求項4】 前記単レンズの第3のレンズ周辺部から
更に周辺部に遠ざかるにつれて曲率を正にしたことを特
徴とする請求項3の走査光学装置。
4. The scanning optical device according to claim 3, wherein the curvature becomes positive as the distance from the peripheral portion of the third lens of the single lens further increases.
【請求項5】 光源手段から出射した光束を第1の光学
素子と第2の光学素子とを介して偏向素子の偏向面にお
いて主走査方向に長手の線状に結像させ、該偏向素子で
偏向された光束を第3の光学素子を介して被走査面上に
スポット状に結像させて該被走査面上を走査する走査光
学装置において、 該第3の光学素子はプラスチック材の単レンズより成
り、該単レンズの両レンズ面は共に主走査面内で非球面
形状のトーリック面より成り、該単レンズの該被走査面
側のレンズ面の副走査方向の曲率を光軸上は負とし、最
軸外では該光軸上の曲率より弱くし、かつ以下の条件式
を満足するように各要素を設定したことを特徴とする走
査光学装置。 【数1】 但し、R2a,R2b,R2c,R2dは各々前記単レンズの被
走査面側のレンズ面の副走査方向の曲率半径であり、主
走査方向のレンズ有効部の光軸から最軸外光線の通るレ
ンズ有効部までの高さの順に0割、3割、7割、10割
の位置のものである。
5. The light beam emitted from the light source means is imaged through the first optical element and the second optical element on the deflecting surface of the deflecting element into a linear shape elongated in the main scanning direction. In a scanning optical device for forming a spot-like image of a deflected light beam on a surface to be scanned through a third optical element and scanning the surface to be scanned, the third optical element is a single lens made of a plastic material. Both of the lens surfaces of the single lens are aspherical toric surfaces in the main scanning plane, and the curvature of the lens surface of the single lens on the scanned surface side in the sub-scanning direction is negative on the optical axis. The scanning optical device is characterized in that each element is set to be weaker than the curvature on the optical axis outside the most axis and satisfy the following conditional expression. [Equation 1] However, R 2a , R 2b , R 2c , and R 2d are the radii of curvature in the sub-scanning direction of the lens surface on the scanned surface side of the single lens, respectively, and are the outermost axes from the optical axis of the lens effective portion in the main scanning direction. It is at the positions of 0%, 30%, 70%, and 100% in the order of the height of the lens through which the light rays pass.
【請求項6】 前記被走査面上の最大有効走査幅をw、
前記単レンズの光軸方向の厚さをtとしたとき 0.035<t/w<0.065 なる条件を満足することを特徴とする請求項1又は5の
走査光学装置。
6. The maximum effective scanning width on the surface to be scanned is w,
The scanning optical device according to claim 1 or 5, wherein a condition of 0.035 <t / w <0.065 is satisfied, where t is a thickness of the single lens in the optical axis direction.
JP11833196A 1996-04-15 1996-04-15 Scanning optical device Pending JPH09281422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11833196A JPH09281422A (en) 1996-04-15 1996-04-15 Scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11833196A JPH09281422A (en) 1996-04-15 1996-04-15 Scanning optical device

Publications (1)

Publication Number Publication Date
JPH09281422A true JPH09281422A (en) 1997-10-31

Family

ID=14734024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11833196A Pending JPH09281422A (en) 1996-04-15 1996-04-15 Scanning optical device

Country Status (1)

Country Link
JP (1) JPH09281422A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137617A (en) * 1998-12-18 2000-10-24 Matsushita Electric Industrial Co., Ltd. Optical scanner, and image reading apparatus and image forming apparatus using the same
US7388698B2 (en) 2004-07-02 2008-06-17 Samsung Electronics Co., Ltd. Laser scanning unit with meniscus scan lens having asymmetric, negative curvature in the sub-scanning direction and absolute curvature values in the main-scanning direction that are maximal at the center and differing minimal values at each side
US8077370B1 (en) 2010-06-25 2011-12-13 Brother Kogyo Kabushiki Kaisha Scanning optical apparatus
CN109491077A (en) * 2018-12-29 2019-03-19 珠海奔图电子有限公司 Optical scanning device and electronic imaging apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137617A (en) * 1998-12-18 2000-10-24 Matsushita Electric Industrial Co., Ltd. Optical scanner, and image reading apparatus and image forming apparatus using the same
US7388698B2 (en) 2004-07-02 2008-06-17 Samsung Electronics Co., Ltd. Laser scanning unit with meniscus scan lens having asymmetric, negative curvature in the sub-scanning direction and absolute curvature values in the main-scanning direction that are maximal at the center and differing minimal values at each side
US8077370B1 (en) 2010-06-25 2011-12-13 Brother Kogyo Kabushiki Kaisha Scanning optical apparatus
CN109491077A (en) * 2018-12-29 2019-03-19 珠海奔图电子有限公司 Optical scanning device and electronic imaging apparatus
WO2020134716A1 (en) * 2018-12-29 2020-07-02 珠海奔图电子有限公司 Optical scanning device and electronic imaging apparatus
US11803050B2 (en) 2018-12-29 2023-10-31 Zhuhai Pantum Electronics Co., Ltd. Optical scanning device and electronic imaging apparatus

Similar Documents

Publication Publication Date Title
JP3466863B2 (en) Scanning optical device and image recording device using the same
JP3397624B2 (en) Scanning optical device and laser beam printer having the same
JP3445050B2 (en) Scanning optical device and multi-beam scanning optical device
JPH1068903A (en) Scanning optical device
EP1482348A2 (en) Optical element and a scanning optical apparatus using the same
JP3303558B2 (en) Scanning optical device
JP3445092B2 (en) Scanning optical device
JP3117524B2 (en) Scanning optical system with surface tilt correction function
JP5269169B2 (en) Scanning optical device and laser beam printer having the same
JPH09281422A (en) Scanning optical device
JP2956169B2 (en) Scanning optical device
JP4817526B2 (en) Optical scanning device and image forming apparatus using the same
JP3420439B2 (en) Optical scanning optical system and laser beam printer including the same
JP2811949B2 (en) Optical scanning optical system
JP2000002848A (en) Scanning optical device
JP3320239B2 (en) Scanning optical device
JPH10260371A (en) Scanning optical device
JP3706858B2 (en) fθ lens and scanning optical apparatus having the same
JP3604881B2 (en) Optical scanning optical device and laser beam printer
JP2005338865A (en) Scanning optical apparatus and laser beam printer having the same
JPH09185006A (en) Scanning optical device
JP3459766B2 (en) Laser scanning optical system and image forming apparatus using the same
JP4072559B2 (en) Scanning optical device
JPH09269451A (en) Optical scanner
JPH0882739A (en) Optical system for optical scanning