JP3377903B2 - Dielectric porcelain composition - Google Patents
Dielectric porcelain compositionInfo
- Publication number
- JP3377903B2 JP3377903B2 JP04253196A JP4253196A JP3377903B2 JP 3377903 B2 JP3377903 B2 JP 3377903B2 JP 04253196 A JP04253196 A JP 04253196A JP 4253196 A JP4253196 A JP 4253196A JP 3377903 B2 JP3377903 B2 JP 3377903B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- dielectric
- containing compound
- composition
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
- Inorganic Insulating Materials (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、高周波領域で使用
する電子回路基板や電子部品等に適用される誘電体磁器
組成物に関するもので、例えば、共振器,フィルタ,コ
ンデンサ,LCフィルター等に好適に用いられる誘電体
磁器組成物である。
【0002】
【従来の技術】従来より誘電体材料として各種誘電体セ
ラミックスが電子回路基板や電子部品等に広く使用され
ており、近年、携帯電話に代表される移動体通信等の高
周波機器の発展と普及に伴い、高周波領域で使用する電
子回路基板や電子部品として誘電体セラミックスが積極
的に利用されるようになってきた。
【0003】前記誘電体セラミックスからなる電子回路
基板等と導体を同時焼成するに際しては、基板上に印刷
された導体が誘電体セラミックスの焼成温度で溶融する
ことがないように、該導体には、アルミナ,ステアタイ
ト,フォルステライト等の誘電体セラミックスの焼成温
度よりも高い融点を有する、例えば、Pt,Pd,W,
Mo等の金属が用いられていた。
【0004】しかしながら、前記金属は導通抵抗が大き
いことから、従来の電子回路基板では、共振回路やフィ
ルタのQ値が小さくなってしまい、導体線路の伝送損失
が大きくなる等の問題があった。
【0005】そこで係る問題を解消するために導通抵抗
の小さいAgやCu等の金属を導体として採用し、低温
で同時焼成できる誘電体セラミックスが種々提案されて
いる。更に、最近の高周波電子回路基板に対する小型化
と高性能化の要求に応えるために、特定の周波数領域で
比誘電率εrを高くすることにより共振回路やフィルタ
の小型化を可能とし、また、誘電体セラミックスのQ値
を高くすることにより、共振回路やフィルタのQ値も高
くすることができて低損失となることから、各種の複合
誘電体が提案されている。
【0006】従来、例えば、特開平4−292460号
公報に開示された誘電体磁器組成物は、アノーサイト
(CaO・Al2 O3 ・2SiO2 )−チタン酸カルシ
ウム系のガラスとTiO2 からなるもので、銀の融点以
下で低温焼成できるため導体としてAgやCu等の金属
と同時焼成できるものであった。
【0007】
【発明が解決しようとする課題】しかしながら、特開平
4−292460号公報に開示された誘電体磁器組成物
では、比誘電率εrが4〜6GHzの高周波領域の測定
では16未満と低く、高周波電子回路基板の小型化には
限界があった。
【0008】また、この誘電体磁器組成物は、6GHz
の測定周波数でQ値が330程度と低いため、共振回路
のQ値が低いものであった。
【0009】従来、低損失(高Q値)で誘電率の温度係
数の小さい誘電体磁器組成物として、MgO−CaO−
TiO2 の3成分系組成の磁器組成物が知られている。
この組成物は誘電率が20程度、7乃至8GHzにおけ
るQ値が8000程度、比誘電率の温度係数τfが0近
傍の値を有し、優れた誘電特性を有する。
【0010】しかしながら、この組成物は焼成温度が1
300℃以上と高く、内部導体としてAg(融点962
℃)等を用いることができなかった。
【0011】
【発明の目的】本発明は上記課題に鑑みなされたもの
で、900〜1050℃の比較的低温でAgやCu等の
導体金属と同時に焼成でき、誘電体セラミックスの比誘
電率εrやQ値が高く、かつ共振周波数の温度係数τf
が比較的小さい等の特徴を有し、高周波電子回路基板の
小型化と高性能化を実現できる誘電体磁器組成物の提供
を目的とするものである。
【0012】
【課題を解決するための手段】本発明の誘電体磁器組成
物は、組成式が(1−x)MgTiO3 −xCaTiO
3 (但し、式中xは重量比を表し、0.01≦x≦0.
15)で表される主成分100重量部に対して、硼素含
有化合物をB2 O3 換算で3〜30重量部、カリウム含
有化合物をK2 CO3 換算で1〜25重量部添加含有し
てなるものである。
【0013】
【作用】本発明の誘電体磁器組成物は、900〜105
0℃の比較的低温で焼成できるためAgやCu等の導体
金属と同時に焼成できるものであり、誘電体セラミック
スとしての比誘電率εrやQ値が高く、かつ共振周波数
の温度係数τfを比較的小さくすることができるため、
高周波電子回路基板の小型化と高性能化を実現できる。
【0014】従来のMgO−CaO−TiO2 系にさら
に硼素乃至硼素含有化合物を配合して、低温焼成化を図
ることも考えられるが、MgTiO3 −CaTiO3 系
に硼素乃至硼素含有化合物だけを配合した場合には、そ
の配合量が少ないと焼成温度を十分に低下させることが
できず、Ag等の融点温度以下の温度で焼結させること
ができない。
【0015】また、硼素乃至硼素含有化合物の配合量が
多いと焼成温度は低下するが、硼素乃至硼素含有化合物
は、焼成時等の高温下でMgTiO3 −CaTiO3 系
と反応するので、配合量が多すぎた場合には、焼成後に
おいて未反応のMgTiO3−CaTiO3 の残存量が
少なくなってしまい、例えば500以上の高いQ値を維
持することができない。従って、従来のMgO−CaO
−TiO2 系にさらに硼素乃至硼素含有化合物のみを添
加した組成物では、低い焼成温度と高周波領域における
誘電特性が共に優れた電子部品用の誘電体磁器組成物を
得ることは困難であった。
【0016】即ち、MgTiO3 −CaTiO3 系にお
いては、硼素含有化合物の添加による組成物の焼結温度
低下効果と焼成後の磁器組成物の誘電特性向上効果とは
背反関係にあり、硼素添加のみの組成物では低い焼成温
度と高いQ値等の優れた誘電特性とを共に備えた組成物
を得ることが困難であった。
【0017】一方、MgTiO3 −CaTiO3 にK等
のアルカリ金属含有化合物のみを添加した場合には、例
え添加量を増加させても組成物の焼結温度を低下させる
ことは殆どできず、例えば950℃以下で焼結できる組
成物を得ることはできない。
【0018】これに対し、本発明によれば硼素含有化合
物とK化合物とを、各々特定量比で組み合わせ添加配合
したので、前記硼素含有化合物とMgTiO3 −CaT
iO3 との過度の反応が抑制され、且つ、硼素含有化合
物のみを添加した場合にくらべてさらに焼結温度を低下
させることができる。
【0019】本発明は、上記した特定の組み合わせ配合
組成により、従来困難とされていた誘電体磁器組成物の
焼結温度の低温度化と、Q値,τf等の誘電特性の高性
能化を同時に達成することができ、Ag,Cu等の金属
導体との同時焼成が可能であるとともに、高性能でかつ
小型化された電子部品等に好適に用いられる誘電体磁器
組成物を提供できる。
【0020】
【発明の実施の形態】本発明の誘電体磁器組成物は、組
成式が(1−x)MgTiO3 −xCaTiO3 (但
し、式中xは重量比を表し、0.01≦x≦0.15)
で表される主成分100重量部に対して、硼素含有化合
物をB2 O3 換算で3〜30重量部、カリウム含有化合
物をK2 CO3 換算で1〜25重量部添加含有してなる
ものである。
【0021】ここで、CaTiO3 の重量比xを0.0
1≦x≦0.15としたのは、CaTiO3 の重量比x
が0.01未満の場合には、共振周波数の温度係数τf
がマイナス側に大きくずれ、また、前記重量比xが0.
15を越える場合には共振周波数の温度係数τfがプラ
ス側に大きくずれるからである。よって、CaTiO3
の重量比xは0.01〜0.15に特定され、とりわけ
誘電体磁器の共振周波数の温度係数τfの観点からは
0.03〜0.10が好ましい。
【0022】本発明の誘電体磁器組成物は、主成分10
0重量部に対して、硼素含有化合物をB2 O3 換算で3
〜30重量部、カリウム含有化合物をK2 CO3 換算で
1〜25重量部添加してなるものであるが、このように
主成分100重量部に対して、硼素含有化合物をB2 O
3 換算で3〜30重量部添加したのは、硼素含有化合物
が3重量部よりも少ない場合には、誘電体磁器組成物の
焼成温度が1100℃でも緻密化せず、逆に30重量部
を越える場合にはMgTiO3 −CaTiO3の結晶相
がBと反応して変化し、磁器特性が劣化するからであ
る。よって、硼素含有化合物の添加量は、主成分100
重量部に対して3〜30重量部に特定され、とりわけ誘
電体磁器のQ値の観点からは5〜15重量部が望まし
い。硼素含有化合物としては、金属硼素,B2 O3 ,コ
レマナイト,CaB2 O4 がある。
【0023】また、MgTiO3 −CaTiO3 系組成
物に硼素含有化合物のみを添加した場合も、上記と同様
に、その添加量がB2 O3 換算で3重量%未満と少ない
場合には1100℃でも緻密化せず、また、添加量がB
2 O3 換算で30重量%より多い場合には、1100℃
でも緻密化しないか、あるいは緻密化しても、組成物中
のMgTiO3 −CaTiO3 の殆どが硼素化合物と反
応してしまい、未反応のMgTiO3 −CaTiO3 結
晶が少なくなり、このため、Q値が500以下に低下し
てしまう。
【0024】さらに、主成分100重量部に対して、カ
リウム含有化合物をK2 CO3 換算で1〜25重量部添
加したのは、カリウム含有化合物がK2 CO3 換算で1
重量部よりも少ない場合には焼成温度が1100℃でも
緻密化せず、AgやCuとの同時焼成ができず、逆に2
5重量部を越える場合にはMgTiO3 −CaTiO3
の結晶相が変化し、磁器特性が劣化するからである。よ
って、カリウム含有化合物の添加量は、主成分100重
量部に対して、K2 CO3 換算で1〜25重量部に特定
され、とりわけ誘電体磁器のQ値の観点からは5〜15
重量部が望ましい。カリウム含有化合物としては、金属
K,K2 CO3 ,KCl,KF,KOHがある。
【0025】また、本発明においては、誘電体特性に悪
影響を及ばさない範囲でSi,Zn,Mn、Li等の酸
化物を添加しても良く、この場合、更に低温焼成が可能
となる。さらに、粉砕ボールから少量の金属元素が混入
する場合もあるが、特性上問題はない。本発明の誘電体
磁器組成物では、特には、組成式が(1−x)MgTi
O3 xCaTiO3 (但し、式中xは重量比を表し、
0.03≦x≦0.10)で表される主成分100重量
部に対して、硼素含有化合物をB2 O3 換算で5〜15
重量部、カリウム含有化合物をK2 CO3 換算で5〜1
5重量部添加してなることが望ましい。
【0026】本発明における硼素含有化合物は、主成分
の構成元素であるMg,Ti,Caの一部と反応しガラ
ス相を生成し、(Mg,Ca)TiO3 粒子の間の粒界
に、あるいは(Mg,Ca)TiO3 粒子,MgTiO
3 粒子,CaTiO3 粒子の間の粒界に存在することに
なる。硼素については焼結体をX線マイクロアナライザ
−(EPMA)により観察することにより粒界に存在す
ることを確認した。カリウムについてはどこに存在する
か現在のところ確認されていない。しかし、カリウムを
全く添加しない場合、主成分中のMg,Ca,Tiが粒
界中のBの側に拡散し、ガラス相を形成していたが、カ
リウムを添加することによって、その拡散の割合が少な
くなった。この結果からカリウムは硼素とともに粒界に
存在していると推定している。本発明では、焼結体中
に、(Mg,Ca)TiO3 相が多く存在することが最
も最適であり、次に、MgTiO3 相とCaTiO3 相
が多く存在することが良い。
【0027】本発明の誘電体磁器組成物は、例えば、M
gTiO3 、CaTiO3 の各原料粉末を所定量となる
ように秤量し、混合粉砕し、これを1000〜1300
℃の温度で1〜3時間仮焼する。この仮焼により(M
g,Ca)TiO3 を生成する。得られた仮焼物に硼素
含有化合物粉末とカリウム含有化合物粉末を所定量とな
るように秤量し、混合粉砕し、プレス成形等により成形
した後、大気中において脱バインダー処理し、この後、
大気中または窒素雰囲気中、900〜1050℃におい
て0.5〜2.0時間焼成することにより得られる。
【0028】本発明の誘電体磁器組成物は、共振器,コ
ンデンサ,フィルタまたはこれらを内蔵した基板等、特
に高周波用途に適した電子部品に最適であり、これらの
電子部品内に同時焼成して形成される内部導体として
は、Ag,Cu,Au,Niおよびこれらを含む合金が
使用され、導通抵抗がより低いという点からAgおよび
Cuが望ましい。特に内部導体としてAgを用いる場合
には、低温での同時焼成が可能であり、電極酸化を防止
するための還元炉を使用しなくても良い。
【0029】
【実施例】
実施例1
先ず、純度99%以上のMgTiO3 、CaTiO3 の
各原料粉末を表1に示す重量比となるように秤量し、該
原料粉末に媒体として水を加えて24時間、ボールミル
にて混合した後、該混合物を乾燥し、次いで該乾燥物を
1200℃の温度で1時間仮焼した。
【0030】得られた仮焼物にB2 O3 粉末とK2 CO
3 粉末を表1に示す割合となるように秤量し、ジルコニ
アボールを用いたボールミルにて24時間、混合した
後、バインダーとしてポリビニルアルコールを1重量%
加えてから造粒し、該造粒物を約1t/cm2 の加圧力
でプレス成形し直径約12mm、高さ10mmの円柱状
の成形体を得た。
【0031】
【表1】
【0032】その後、前記成形体を大気中、400℃の
温度で4時間加熱して脱バインダー処理し、引き続いて
大気中において表1に示す各温度で60分間焼成した。
【0033】かくして得られた円柱体の両端面を平面研
磨し、誘電体特性評価用試料を作製した。
【0034】誘電体特性の評価は、前記評価用試料を用
いて誘電体円柱共振器法により、共振周波数を6〜8G
Hzに設定して各試料の比誘電率εrと8GHzにおけ
る1/tanδ、即ちQ値を測定するとともに、−40
〜+85℃の温度範囲における共振周波数の温度係数τ
fを測定した。これらの結果を表1に示した。
【0035】表1によれば、本発明の誘電体磁器組成物
では、900〜1050℃の比較的低温で焼成でき、さ
らに比誘電率εrが18.5以上、Q値が1510以
上、かつ共振周波数の温度係数τfが±25以内の優れ
た特性を有することが判る。
【0036】尚、得られた焼結体を炭酸ナトリム中でア
ルカリ溶融し、この溶融物を塩酸溶液に溶解する。そし
て、溶液中のMg,Ca,Ti,BをICP発光分光分
析にて、Kを原子吸光分析にて定量分析し、Mg,C
a,Tiを本発明の組成式で表し、BをB2 O3 換算、
KをK2 CO3 換算し、本発明の組成の範囲内であるこ
とを確認した。
【0037】実施例2
実施例1における表1のNo.12として得られた誘電体
粉体を用い、アクリル系のバインダーを玉石(ジルコニ
ア)とともにポリポットの中に投入し、純水を加えて2
4時間ボールミルにて混合した。ついで、かかる混合物
を脱泡した後、引き上げ法により厚さ100μmのグリ
ーンテープに成形した。そして、このえられたグリーン
テープに、印刷用Agペーストを用いて、導体パターン
を印刷した。次いで、この導体パターンを印刷したグリ
ーンテープを挟み込むように、34枚のグリーンテープ
を温度100℃,圧力300kgf/cm2 の条件で積
層圧着した。
【0038】そして、その積層物を所定の大きさに切断
した後、空気中において900℃の温度で2時間焼成す
ることにより、図1,2に分解斜視図で表した構造のス
トリップライン型共振器及びフィルタを作製した。
【0039】尚、図1のストリップライン型共振器を構
成する誘電体磁器1は3層構造を有しており、導体との
同時焼成によって一体化するものである。誘電体磁器1
の一つの層に共振用電極2が形成され、また、他の層に
アース電極3が形成され、さらに、誘電体磁器1の表面
には入出力電極4とアース電極3が設けられるととも
に、側面にまで延長されている。側面のアース電極3に
共振用電極2の一端が接続されている。図2はフィルタ
であり、符号については図1と同様である。
【0040】かくして得られたストリップライン型共振
器及びフィルタについてネットワークアナライザ(HP
8719C)を用いて、その共振器特性およびフィル
タ特性を測定した結果、共振器のQ値は150(1.9
GHz)であり、中心周波数1.9GHz、挿入損失
0.8dBのフィルタが得られた。
【0041】一方、本発明と同様の厚さの共振器,フィ
ルタで、誘電体磁器材料を、従来の特開平4−2924
60号公報に開示されたアノーサイト−チタン酸カルシ
ウム系のガラスとTiO2 からなる系(εr16,Q値
330)を用いた場合、共振器のQ値は120(1.9
GHz)であり、挿入損失1.0dBであった。この結
果より、本発明の誘電体磁器組成物を用いた電子部品で
は、従来よりも共振器のQ値が高く、挿入損失が低いこ
とが判る。
【0042】
【発明の効果】本発明の誘電体磁器組成物では、組成式
が(1−x)MgTiO3 −xCaTiO3 (但し、式
中xは重量比を表し、0.01≦x≦0.15)で表さ
れる主成分100重量部に対して、硼素含有化合物をB
2 O3 換算で3〜30重量部、カリウム含有化合物をK
2 CO3 換算で1〜25重量部添加したので、900〜
1050℃の比較的低温で焼成することができることに
よりAgやCu等の導体金属と同時に焼成することがで
き、高周波領域において高い比誘電率を有するととも
に、Q値も高く、かつ、共振周波数の温度特性にも優
れ、高周波電子回路基板のより一層の小型化と高性能化
が実現できる。Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a dielectric ceramic composition applied to an electronic circuit board or an electronic component used in a high-frequency range. , Filter, capacitor, LC filter and the like. Conventionally, various dielectric ceramics have been widely used as a dielectric material for electronic circuit boards, electronic components, and the like. In recent years, the development of high-frequency equipment such as mobile communication represented by a cellular phone has been developed. With the spread, dielectric ceramics have been actively used as electronic circuit boards and electronic components used in a high frequency range. [0003] When simultaneously sintering an electronic circuit board or the like made of the dielectric ceramic and the conductor, the conductor is printed on the substrate so that the conductor is not melted at the firing temperature of the dielectric ceramic. It has a melting point higher than the firing temperature of dielectric ceramics such as alumina, steatite, and forsterite, for example, Pt, Pd, W,
Metals such as Mo have been used. However, since the metal has a large conduction resistance, the conventional electronic circuit board has a problem that the Q value of the resonance circuit and the filter becomes small and the transmission loss of the conductor line becomes large. In order to solve such a problem, various dielectric ceramics have been proposed which employ a metal such as Ag or Cu having a small conduction resistance as a conductor and can be co-fired at a low temperature. Furthermore, in order to respond to recent demands for miniaturization and high performance of high-frequency electronic circuit boards, it is possible to reduce the size of resonance circuits and filters by increasing the relative dielectric constant εr in a specific frequency range. By increasing the Q value of the body ceramic, the Q value of the resonance circuit and the filter can be increased and the loss can be reduced. Therefore, various composite dielectrics have been proposed. Conventionally, for example, a dielectric porcelain composition disclosed in Japanese Unexamined Patent Publication (Kokai) No. 4-292460 comprises an anorthite (CaO.Al 2 O 3 .2SiO 2 ) -calcium titanate glass and TiO 2. Since it can be fired at a low temperature below the melting point of silver, it can be fired simultaneously with a metal such as Ag or Cu as a conductor. However, in the dielectric ceramic composition disclosed in Japanese Patent Application Laid-Open No. 4-292460, the relative dielectric constant .epsilon.r is as low as less than 16 in a high frequency range of 4 to 6 GHz. However, there has been a limit to miniaturization of high-frequency electronic circuit boards. This dielectric ceramic composition has a frequency of 6 GHz.
Since the Q value was as low as about 330 at the measurement frequency, the Q value of the resonance circuit was low. Conventionally, as a dielectric ceramic composition having a low loss (high Q value) and a small temperature coefficient of a dielectric constant, MgO—CaO—
A porcelain composition having a three-component composition of TiO 2 is known.
This composition has a dielectric constant of about 20, a Q value at 7 to 8 GHz of about 8000, and a temperature coefficient τf of relative dielectric constant of about 0, and has excellent dielectric properties. However, this composition has a firing temperature of 1
High as 300 ° C. or higher, Ag (melting point 962)
° C) etc. could not be used. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and can be fired simultaneously with a conductive metal such as Ag or Cu at a relatively low temperature of 900 to 1050.degree. High Q value and temperature coefficient τf of resonance frequency
It is an object of the present invention to provide a dielectric ceramic composition having characteristics such as relatively small size and realizing miniaturization and high performance of a high-frequency electronic circuit board. [0012] [Means for Solving the Problems] The dielectric ceramic composition of the present invention, composition formula (1-x) MgTiO 3 -xCaTiO
3 (where x represents a weight ratio, and 0.01 ≦ x ≦ 0.
Relative to 100 parts by weight of the main component represented by 15), the boron-containing compound terms of B 2 O 3 by 3 to 30 parts by weight, the potassium-containing compound and 1 to 25 parts by weight additives contained in K 2 CO 3 in terms of It becomes. The dielectric porcelain composition of the present invention has a composition of 900 to 105.
Since it can be fired at a relatively low temperature of 0 ° C., it can be fired at the same time as a conductive metal such as Ag or Cu, has a high relative dielectric constant εr or Q value as a dielectric ceramic, and has a relatively high temperature coefficient τf of resonance frequency. Because it can be smaller,
The miniaturization and high performance of the high-frequency electronic circuit board can be realized. It is conceivable to mix boron or a boron-containing compound with the conventional MgO-CaO-TiO 2 system to achieve low-temperature firing. However, it is also possible to mix only a boron or boron-containing compound with the MgTiO 3 -CaTiO 3 system. In this case, if the amount is small, the firing temperature cannot be sufficiently lowered, and sintering cannot be performed at a temperature lower than the melting point temperature of Ag or the like. Further, when the amount of boron or boron-containing compound is large, the sintering temperature decreases, but the amount of boron or boron-containing compound reacts with the MgTiO 3 —CaTiO 3 system at a high temperature such as during sintering. Is too large, the unreacted amount of unreacted MgTiO 3 —CaTiO 3 after firing decreases, and a high Q value of, for example, 500 or more cannot be maintained. Therefore, the conventional MgO-CaO
With a composition in which only boron or a boron-containing compound is further added to a TiO 2 -based composition, it has been difficult to obtain a dielectric ceramic composition for electronic components having excellent low-temperature and high-frequency dielectric characteristics. That is, in the MgTiO 3 —CaTiO 3 system, the effect of lowering the sintering temperature of the composition due to the addition of the boron-containing compound and the effect of improving the dielectric properties of the porcelain composition after sintering are in a trade-off relationship. With the composition (1), it was difficult to obtain a composition having both a low firing temperature and excellent dielectric properties such as a high Q value. On the other hand, when only an alkali metal-containing compound such as K is added to MgTiO 3 —CaTiO 3 , the sintering temperature of the composition can hardly be lowered even if the added amount is increased. A composition that can be sintered at 950 ° C. or lower cannot be obtained. On the other hand, according to the present invention, the boron-containing compound and the K compound are combined and added at specific ratios, respectively, so that the boron-containing compound and the MgTiO 3 —CaT
Excessive reaction with iO 3 is suppressed, and the sintering temperature can be further reduced as compared with the case where only a boron-containing compound is added. The present invention is intended to reduce the sintering temperature of the dielectric ceramic composition and improve the dielectric properties such as the Q value and τf, which have been difficult in the past, by the above specific combination composition. It is possible to provide a dielectric porcelain composition which can be simultaneously achieved and can be simultaneously fired with a metal conductor such as Ag and Cu, and which is suitably used for high-performance and miniaturized electronic components and the like. The dielectric ceramic composition of the present invention DETAILED DESCRIPTION OF THE INVENTION, composition formula (1-x) MgTiO 3 -xCaTiO 3 ( however, where x represents the weight ratio, 0.01 ≦ x ≤0.15)
Wherein the boron-containing compound is added in an amount of 3 to 30 parts by weight in terms of B 2 O 3 and the potassium-containing compound in an amount of 1 to 25 parts by weight in terms of K 2 CO 3 with respect to 100 parts by weight of the main component represented by It is. Here, the weight ratio x of CaTiO 3 is set to 0.0
The condition of 1 ≦ x ≦ 0.15 is the weight ratio x of CaTiO 3.
Is less than 0.01, the temperature coefficient τf of the resonance frequency
Greatly shifts to the minus side, and the weight ratio x is 0.1.
This is because if it exceeds 15, the temperature coefficient τf of the resonance frequency greatly shifts to the plus side. Therefore, CaTiO 3
Is specified to be 0.01 to 0.15, and particularly preferably 0.03 to 0.10 from the viewpoint of the temperature coefficient τf of the resonance frequency of the dielectric ceramic. The dielectric porcelain composition of the present invention contains 10 main components.
Relative to 0 parts by weight, the boron-containing compound in terms of B 2 O 3 3
30 parts by weight, but in which potassium-containing compound obtained by adding 1 to 25 parts by weight K 2 CO 3 terms, thus with respect to 100 parts by weight of the main component, a boron-containing compound B 2 O
The addition of 3 to 30 parts by weight in terms of 3 means that when the boron-containing compound is less than 3 parts by weight, the dielectric ceramic composition does not densify even at a firing temperature of 1100 ° C. If it exceeds, the crystal phase of MgTiO 3 —CaTiO 3 reacts with B and changes, deteriorating the porcelain characteristics. Therefore, the amount of the boron-containing compound added is 100
The amount is specified to be 3 to 30 parts by weight with respect to the weight part, and particularly preferably 5 to 15 parts by weight from the viewpoint of the Q value of the dielectric porcelain. Examples of the boron-containing compound include metallic boron, B 2 O 3 , colemanite, and CaB 2 O 4 . Also, when only the boron-containing compound is added to the MgTiO 3 —CaTiO 3 composition, as in the above case, if the addition amount is less than 3% by weight in terms of B 2 O 3 , 1100 ° C. However, it does not densify and the addition amount is B
1100 ° C when more than 30% by weight in terms of 2 O 3
However, even if it is not densified, or if it is densified, most of the MgTiO 3 —CaTiO 3 in the composition reacts with the boron compound, and the number of unreacted MgTiO 3 —CaTiO 3 crystals decreases, and as a result, the Q value Is reduced to 500 or less. Furthermore, the reason why the potassium-containing compound is added in an amount of 1 to 25 parts by weight in terms of K 2 CO 3 with respect to 100 parts by weight of the main component is that the potassium-containing compound is added in 1 part in terms of K 2 CO 3.
If the amount is less than 1 part by weight, densification does not occur even at a sintering temperature of 1100 ° C., and simultaneous sintering with Ag or Cu cannot be performed.
If it exceeds 5 parts by weight, MgTiO 3 —CaTiO 3
Is changed, and the porcelain characteristics deteriorate. Therefore, the amount of the potassium-containing compound to be added is specified to be 1 to 25 parts by weight in terms of K 2 CO 3 with respect to 100 parts by weight of the main component.
Parts by weight are desirable. Potassium-containing compounds include metals K, K 2 CO 3 , KCl, KF, and KOH. In the present invention, oxides such as Si, Zn, Mn, and Li may be added within a range that does not adversely affect the dielectric properties. In this case, firing at a lower temperature is possible. Further, a small amount of metal element may be mixed from the crushed ball, but there is no problem in characteristics. In the dielectric ceramic composition of the present invention, particularly, the composition formula is (1-x) MgTi.
O 3 xCaTiO 3 (where x represents a weight ratio,
0.03 ≦ x ≦ 0.10) and the boron-containing compound in an amount of 5 to 15 in terms of B 2 O 3 with respect to 100 parts by weight of the main component represented by the formula:
5 parts by weight of a potassium-containing compound in terms of K 2 CO 3
It is desirable to add 5 parts by weight. The boron-containing compound according to the present invention reacts with a part of the main constituent elements Mg, Ti, and Ca to form a glass phase, and at the grain boundaries between the (Mg, Ca) TiO 3 particles, Alternatively, (Mg, Ca) TiO 3 particles, MgTiO
3 particles and CaTiO 3 particles are present at the grain boundaries. Observation of the sintered body with an X-ray microanalyzer (EPMA) confirmed that boron was present at the grain boundaries. It is currently unknown where potassium is present. However, when potassium was not added at all, Mg, Ca, and Ti in the main component diffused to the B side in the grain boundary to form a glass phase. Has decreased. From this result, it is presumed that potassium exists at the grain boundary together with boron. In the present invention, it is most optimal that the sintered body contains a large amount of (Mg, Ca) TiO 3 phase, and then it is good that the MgTiO 3 phase and the CaTiO 3 phase are large. The dielectric porcelain composition of the present invention may be, for example,
Each raw material powder of gTiO 3 and CaTiO 3 is weighed so as to have a predetermined amount, mixed and pulverized.
Calcinate at a temperature of ° C. for 1 to 3 hours. By this calcination (M
g, Ca) TiO 3 is produced. Boron-containing compound powder and potassium-containing compound powder are weighed to a predetermined amount in the obtained calcined material, mixed and pulverized, molded by press molding or the like, and then subjected to a binder removal treatment in the air.
It is obtained by firing at 900 to 1050 ° C. for 0.5 to 2.0 hours in the air or nitrogen atmosphere. The dielectric porcelain composition of the present invention is most suitable for resonators, capacitors, filters or substrates incorporating these, especially electronic parts suitable for high-frequency applications. As the internal conductor to be formed, Ag, Cu, Au, Ni and an alloy containing them are used, and Ag and Cu are desirable from the viewpoint that the conduction resistance is lower. In particular, when Ag is used as the internal conductor, simultaneous firing at a low temperature is possible, and there is no need to use a reduction furnace for preventing electrode oxidation. EXAMPLE 1 First, raw material powders of MgTiO 3 and CaTiO 3 having a purity of 99% or more were weighed so as to have a weight ratio shown in Table 1, and water was added to the raw material powder as a medium. After mixing in a ball mill for 24 hours, the mixture was dried, and then the dried product was calcined at a temperature of 1200 ° C. for 1 hour. B 2 O 3 powder and K 2 CO 3 were added to the obtained calcined product.
3 The powders were weighed so as to have the ratios shown in Table 1, mixed in a ball mill using zirconia balls for 24 hours, and then 1% by weight of polyvinyl alcohol was used as a binder.
After the addition, the mixture was granulated, and the granulated product was press-molded with a pressure of about 1 t / cm 2 to obtain a cylindrical compact having a diameter of about 12 mm and a height of 10 mm. [Table 1] Thereafter, the compact was heated in the air at a temperature of 400 ° C. for 4 hours to remove the binder, and subsequently fired in the air at each temperature shown in Table 1 for 60 minutes. Both ends of the thus obtained cylindrical body were polished flat to prepare a sample for dielectric property evaluation. The evaluation of the dielectric characteristics is performed by using the above-mentioned sample for evaluation and setting the resonance frequency to 6 to 8 G by the dielectric cylinder resonator method.
Hz, the relative dielectric constant εr of each sample and 1 / tan δ at 8 GHz, that is, the Q value, were measured.
Temperature coefficient τ of resonance frequency in the temperature range of ~ + 85 ° C
f was measured. The results are shown in Table 1. According to Table 1, the dielectric ceramic composition of the present invention can be fired at a relatively low temperature of 900 to 1050 ° C., has a relative dielectric constant εr of 18.5 or more, a Q value of 1510 or more, and has a resonance. It can be seen that the temperature coefficient of frequency τf has excellent characteristics within ± 25. The obtained sintered body is alkali-melted in sodium carbonate, and the melt is dissolved in a hydrochloric acid solution. Then, Mg, Ca, Ti, and B in the solution were quantitatively analyzed by ICP emission spectrometry, and K was quantitatively analyzed by atomic absorption spectrometry.
a and Ti are represented by the composition formula of the present invention, and B is converted into B 2 O 3 ;
K was converted to K 2 CO 3 , and it was confirmed that K was within the range of the composition of the present invention. Example 2 Using the dielectric powder obtained as No. 12 in Table 1 in Example 1, an acrylic binder was put into a polypot together with a cobblestone (zirconia), and pure water was added to add 2 to the polypot.
The mixture was mixed in a ball mill for 4 hours. Then, after defoaming the mixture, the mixture was formed into a green tape having a thickness of 100 μm by a lifting method. Then, a conductive pattern was printed on the obtained green tape using a printing Ag paste. Next, 34 green tapes were laminated and pressed at a temperature of 100 ° C. and a pressure of 300 kgf / cm 2 so as to sandwich the green tape on which the conductor pattern was printed. Then, the laminate is cut into a predetermined size, and then baked at 900 ° C. for 2 hours in the air to obtain a strip line type resonance structure shown in an exploded perspective view in FIGS. A vessel and a filter were prepared. The dielectric ceramics 1 constituting the strip line type resonator shown in FIG. 1 has a three-layer structure, and is integrated by simultaneous firing with a conductor. Dielectric porcelain 1
The resonance electrode 2 is formed on one layer, the ground electrode 3 is formed on the other layer, and the input / output electrode 4 and the ground electrode 3 are provided on the surface of the dielectric ceramic 1. Has been extended to One end of the resonance electrode 2 is connected to the ground electrode 3 on the side surface. FIG. 2 shows a filter, and the symbols are the same as those in FIG. The stripline type resonator and the filter thus obtained were analyzed with a network analyzer (HP
As a result of measuring the resonator characteristics and the filter characteristics using 8719C), the Q value of the resonator was 150 (1.9).
GHz), a filter having a center frequency of 1.9 GHz and an insertion loss of 0.8 dB was obtained. On the other hand, using a resonator and a filter having the same thickness as in the present invention, a dielectric ceramic material is replaced by a conventional Japanese Patent Application Laid-Open No. H4-2924.
In the case of using a system (εr16, Q value 330) composed of an anorthite-calcium titanate glass and TiO 2 disclosed in Japanese Unexamined Patent Publication No. 60-120, the Q value of the resonator is 120 (1.9).
GHz) and the insertion loss was 1.0 dB. From these results, it can be seen that in the electronic component using the dielectric ceramic composition of the present invention, the Q value of the resonator is higher and the insertion loss is lower than before. [0042] In the dielectric ceramic composition of the present invention, composition formula (1-x) MgTiO 3 -xCaTiO 3 ( however, where x represents the weight ratio, 0.01 ≦ x ≦ 0 .15) to 100 parts by weight of the main component represented by
3-30 parts by weight in terms of 2 O 3 , potassium-containing compound is K
Since 1 to 25 parts by weight in terms of 2 CO 3 was added, 900 to
Since it can be fired at a relatively low temperature of 1050 ° C., it can be fired simultaneously with a conductive metal such as Ag or Cu, has a high relative dielectric constant in a high frequency region, has a high Q value, and has a temperature of a resonance frequency. It is also excellent in characteristics, so that further miniaturization and higher performance of the high-frequency electronic circuit board can be realized.
【図面の簡単な説明】
【図1】本発明の実施例において作製した誘電体共振器
の分解斜視図である。
【図2】本発明の実施例において作製したフィルタの分
解斜視図である。
【符号の説明】
1・・・誘電体磁器
2・・・共振用電極
3・・・アース電極
4・・・入出力電極BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded perspective view of a dielectric resonator manufactured in an example of the present invention. FIG. 2 is an exploded perspective view of a filter manufactured in an example of the present invention. [Description of Signs] 1 ... Dielectric porcelain 2 ... Resonant electrode 3 ... Earth electrode 4 ... Input / output electrode
───────────────────────────────────────────────────── フロントページの続き (72)発明者 井本 晃 鹿児島県国分市山下町1番4号 京セラ 株式会社総合研究所内 (56)参考文献 特開 平8−268753(JP,A) 特開 平8−208330(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/42 - 35/50 CA(STN) REGISTRY(STN)────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Imoto 1-4-4 Yamashita-cho, Kokubu-shi, Kagoshima Inside Kyocera Research Institute (56) References JP-A-8-268753 (JP, A) JP-A-8 -208330 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 35/42-35/50 CA (STN) REGISTRY (STN)
Claims (1)
TiO3 (但し、式中xは重量比を表し、0.01≦x
≦0.15)で表される主成分100重量部に対して、
硼素含有化合物をB2 O3 換算で3〜30重量部、カリ
ウム含有化合物をK2 CO3 換算で1〜25重量部添加
含有してなることを特徴とする誘電体磁器組成物。(57) [Claim 1] The composition formula is (1-x) MgTiO 3 -xCa
TiO 3 (where x represents a weight ratio and 0.01 ≦ x
≦ 0.15) based on 100 parts by weight of the main component
3 to 30 parts by weight of a boron-containing compound in terms of B 2 O 3, a potassium-containing compound a dielectric ceramic composition characterized by being 1 to 25 parts by weight additives contained in K 2 CO 3 terms.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04253196A JP3377903B2 (en) | 1996-02-29 | 1996-02-29 | Dielectric porcelain composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04253196A JP3377903B2 (en) | 1996-02-29 | 1996-02-29 | Dielectric porcelain composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09235157A JPH09235157A (en) | 1997-09-09 |
JP3377903B2 true JP3377903B2 (en) | 2003-02-17 |
Family
ID=12638669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04253196A Expired - Fee Related JP3377903B2 (en) | 1996-02-29 | 1996-02-29 | Dielectric porcelain composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3377903B2 (en) |
-
1996
- 1996-02-29 JP JP04253196A patent/JP3377903B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09235157A (en) | 1997-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002104870A (en) | Dielectric porcelain and laminate | |
JP2001130952A (en) | Dielectric porcelain and laminate | |
US5616528A (en) | Dielectric ceramic composition, multilayer resonator made of said composition and multilayer filter using said resonator | |
JP3377903B2 (en) | Dielectric porcelain composition | |
JP3215012B2 (en) | Dielectric porcelain composition | |
JP2000239061A (en) | Dielectric porcelain composition | |
JP3793549B2 (en) | Dielectric porcelain composition and laminate | |
JP4249690B2 (en) | High frequency dielectric ceramics and laminates | |
JP3833383B2 (en) | High frequency porcelain composition, high frequency porcelain and method for producing high frequency porcelain | |
JP3420430B2 (en) | Dielectric porcelain composition and electronic component | |
JP3631607B2 (en) | High frequency dielectric ceramics and laminates | |
JP3839868B2 (en) | Dielectric ceramic composition and electronic component | |
JP3193157B2 (en) | Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them | |
JP3754827B2 (en) | High frequency dielectric ceramic composition and laminate | |
JP3411190B2 (en) | Dielectric porcelain composition | |
JP3215004B2 (en) | Dielectric porcelain composition | |
JP3631589B2 (en) | Dielectric porcelain composition and laminate | |
JP3523413B2 (en) | Dielectric porcelain composition | |
JP3215029B2 (en) | Dielectric porcelain composition | |
JP4618856B2 (en) | Low temperature fired porcelain | |
JP3404220B2 (en) | Dielectric porcelain composition | |
JP3377914B2 (en) | Dielectric porcelain composition and electronic component | |
JP3405634B2 (en) | Dielectric porcelain composition | |
JP3085635B2 (en) | Dielectric porcelain composition | |
JPH11240753A (en) | Dielectric porcelain and laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081206 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091206 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101206 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101206 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111206 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111206 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121206 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |