JP3173926B2 - 薄膜状絶縁ゲイト型半導体装置の作製方法及びその半導体装置 - Google Patents
薄膜状絶縁ゲイト型半導体装置の作製方法及びその半導体装置Info
- Publication number
- JP3173926B2 JP3173926B2 JP22059493A JP22059493A JP3173926B2 JP 3173926 B2 JP3173926 B2 JP 3173926B2 JP 22059493 A JP22059493 A JP 22059493A JP 22059493 A JP22059493 A JP 22059493A JP 3173926 B2 JP3173926 B2 JP 3173926B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- region
- silicon
- semiconductor device
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/031—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
- H10D30/0312—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] characterised by the gate electrodes
- H10D30/0316—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] characterised by the gate electrodes of lateral bottom-gate TFTs comprising only a single gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/031—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
- H10D30/0321—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] comprising silicon, e.g. amorphous silicon or polysilicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/673—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
- H10D30/6731—Top-gate only TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/673—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
- H10D30/6732—Bottom-gate only TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6741—Group IV materials, e.g. germanium or silicon carbide
- H10D30/6743—Silicon
- H10D30/6745—Polycrystalline or microcrystalline silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6741—Group IV materials, e.g. germanium or silicon carbide
- H10D30/6743—Silicon
- H10D30/6746—Amorphous silicon
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Thin Film Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Description
r-Semiconductor;金属−絶縁体−半導体)型半導体装
置、特にMISトランジスタに関する。特に、本発明は
絶縁基板上に形成された薄膜上のMIS型半導体装置、
薄膜トランジスタ(TFT)に関し、なかでも、チャネ
ル形成領域が、ゲイト電極の上方に位置する、いわゆる
逆スタガー型の構造を有するMIS型半導体装置に関す
るものである。本発明は、絶縁基板上に形成された半導
体集積回路、例えば液晶表示装置に用いられるアクティ
ブマトリクス型回路やイメージセンサーの駆動回路等に
用いられる。
導体装置を形成した装置をもちいることがある。例え
ば、アクティブマトリクス型液晶表示装置等である。現
在、市販されているアクティブマトリクス型回路は、T
FTを利用したものと、MIM等のダイオードを利用し
たものがある。特に前者は高品位な画像が得られるとし
て近年、さかんに製造されている。
路は、多結晶シリコン等の多結晶半導体を利用したTF
Tと、アモルファスシリコンのようなアモルファス半導
体を利用したTFT(アモルファスシリコンTFT)が
知られている。後者は作製プロセス上の問題から、大画
面のものは作製が困難であり、大画面用には350℃以
下のプロセス温度で作製できる後者が主として用いられ
る。
T(逆スタガー型)の作製工程を示す。基板201とし
ては、コーニング7059等の耐熱性のある無アルカリ
ガラスが使用される。アモルファスシリコンTFTのプ
ロセスの最高温度は350℃程度であるので、この温度
に耐えられるだけの材料が必要である。特に、液晶表示
パネルとして使用する場合には、熱処理によって歪むこ
とがないような耐熱性と高いガラス転移温度が必要であ
る。コーニング7059の場合にはこのガラス転移温度
が600℃弱なので条件を満たす。
は、ナトリウムのような可動イオンが基板中に含まれて
いることは望ましくない。コーニング7059はアルカ
リ濃度が十分に低いので問題はないが、もし、基板中に
多量のナトリウム等が含まれている場合には、基板中の
可動イオンがTFTに侵入しないように、窒化珪素、酸
化アルミニウム等のパッシベーション膜を形成する必要
がある。
電性材料で被膜を形成し、マスクでパターニングし
て、ゲイト電極202を形成する。特にゲイト電極・配
線と上部の配線との短絡を防止するためには、このゲイ
ト電極の表面に酸化膜203を形成しておけばよい。酸
化膜の形成方法としては、陽極酸化法が主として用いら
れる。これはゲイト電極202に電解溶液中で正の電圧
を印加して通電することによって、ゲイト電極表面が酸
化して形成される。
る。このゲイト絶縁膜としては、一般には窒化珪素が用
いられるが、酸化珪素であってもよく、あるいは窒素と
酸素が任意の比率で混じった珪化物であってもよい。ま
た、単層の膜であってもよいし、多層の膜であってもよ
い。ゲイト絶縁膜として窒化珪素膜を使用する場合に
は、プラズマCVD法を使用した場合には、プロセス温
度が350℃程度になり、本工程の最高温度となる。こ
の状態を図2(A)に示す。
る。プラズマCVD法を使用する場合であれば、基板温
度は250〜300℃が必要とされる。この膜の厚さは
薄い方が望ましく、通常は10〜100nm、好ましく
は10〜30nmとされる。そして、マスクでパター
ニングして、アモルファスシリコン領域205を形成す
る。このアモルファスシリコン領域は後に、TFTのチ
ャネル形成領域となる。ここまでの状態を図2(B)に
示す。
れをマスクでパターニングし、エッチングストッパー
206とする。このエッチングストッパーは後の工程
で、誤って、チャネル形成領域のアモルファスシリコン
領域205をエッチングしないように設けられるのであ
る。なぜなら前述のようにアモルファスシリコン領域2
05は10〜100nmという薄さであるからである。
また、エッチングストッパーの下部のアモルファスシリ
コン領域はチャネル形成領域として機能するので、エッ
チングストッパーはできるだけゲイト電極に重なるよう
に設計される。しかし、通常のマスク合わせでは多少の
ずれが生じるので、ゲイト電極に十分に重なるように
(すなわち、ゲイト電極よりも小さくなるように)パタ
ーニングされる。
コンの被膜を形成する。通常のアモルファスシリコンT
FTはNチャネル型とされる。このシリコンの被膜はア
モルファスシリコンではあまりにも導電率が低いので、
微結晶状態のシリコン膜とする。N型の微結晶シリコン
膜はプラズマCVD法で350℃以下の温度で作製する
ことができる。しかし、それでも抵抗が十分に低くない
ので、200nm以上の厚さとする必要があった。ま
た、P型の微結晶シリコン膜は著しく抵抗が大きいので
用いることができず、したがって、Pチャネル型TFT
をアモルファスシリコンで作製することは困難であっ
た。
スクでパターニングし、N型微結晶シリコン領域20
7が形成される。ここまでの状態を図2(C)に示す。
図2(C)の状態では、(N型の)微結晶シリコン膜
が、エッチングストッパー上で接合しているので、TF
Tは機能しない。したがって、これを分断する必要があ
る。そこで、マスクを用いて、これを分断し、溝20
8を形成する。もし、エッチングストッパーがなけれ
ば、誤って下地のアモルファスシリコン領域205まで
をもエッチングしてしまう恐れがある。。なぜなら微結
晶シリコン領域207の厚さは、その下のアモルファス
シリコン領域の数倍から10数倍、あるいはそれ以上も
厚いからである。
や画素電極210が、マスク、を用いて作製され
る。この状態を図2(D)に示す。以上の方法では、マ
スクの枚数が7枚という多量であるので、歩留りの低下
が懸念される。そこで、以下に示すようにマスク枚数を
減らす方法も提案されている。まず、基板上に第1のマ
スクを使用して、ゲイト電極部をパターニングする。そ
の後、ゲイト絶縁膜を形成し、さらに、アモルファスシ
リコン膜と窒化珪素膜(後にエッチングストッパーとな
る)を連続的に形成する。そして、裏面から露光して、
ゲイト電極部をマスクとして窒化珪素膜のみを自己整合
的にエッチングしてエッチングストッパーを形成する。
そして、その上に微結晶シリコン膜を形成し、第2のマ
スクを用いて、チャネル上方の溝(図2の208に対
応)を含むTFTの領域を形成する。その後、第3、第
4のマスクを用いて、配線や電極を形成する。最終的に
は図2(D)で示されるものと同等なものが得られる。
このように、セルフアライン工程を駆使することによ
り、マスク数を3枚減らすことができる。
形成されたTFTは、図からわかるように、非常に凹凸
の激しいものとなる。これは主に、ゲイト電極部(ゲイ
ト電極の酸化物203を含む)、エッチングストッパー
と微結晶シリコン領域に起因するものであり、ゲイト電
極部の厚さを300nm、エッチングストッパーの厚さ
を200nm、微結晶シリコン領域206の厚さを30
0nmとすれば、基板上には800nmもの凹凸が生じ
ることとなる。
リクス回路として使用する場合には、セルの厚さは5〜
6μmの厚さで、0.1μm以下の精度で制御されてい
る。このような条件で、1μmもの凹凸があればセルの
厚さの均一性に著しい欠陥を与えることとなる。
れるこれらの要因は、いずれも簡単に低減できるもので
はない。例えば、微結晶シリコン膜を薄くするとソー
ス、ドレインの抵抗が高くなり、特性が低下する。ま
た、エッチングストッパーが薄いと、微結晶シリコン領
域をエッチングしている間に誤ってその下のアモルファ
スシリコン領域までエッチングする可能性があり、歩留
りが低下する。
なされたものであり、本発明の目的の一つは、プロセス
の簡略化である。例えば、マスクの枚数を従来の方法よ
りも減らすことによって歩留りを向上せしめる。あるい
は、成膜工程を減らすことによってスループットを向上
させ、コストを低減させることを目的とする。
ることである。このことによって、液晶表示パネルに使
用する場合の問題を解決することができるばかりか、他
の応用においても平坦化は重要な技術課題であり、従来
のTFTでは応用が困難であったものにも応用すること
が可能となる。
ある。図2に示されるTFTでは、ソース/ドレインの
シート抵抗が高く、TFTの諸特性に悪影響を与える。
しかも、ソース/ドレインとチャネル形成領域は異なっ
た膜によって形成されているため、その間の接合の状態
はすこぶる悪い。しかも、チャネル形成領域の成膜後に
連続的にソース/ドレインが形成されることは不可能で
ある。理想的には、半導体集積回路のMOSトランジス
タのようにソース/ドレインとチャネル形成領域を同一
面内の同一膜によって構成し、これらの領域の間の接合
を改善することが特性改善に必要である。
るために、本発明はエッチングストッパーを使用しない
全く新しいTFT作製方法およびその方法によって作製
されたTFTを提案する。すなわち、微結晶シリコン領
域(ソース/ドレイン)の抵抗を十分に低下させ、その
厚さを薄くする。さらには、本発明では、従来のように
チャネル形成領域となるアモルファスシリコン領域
(膜)の形成と、ソース/ドレイン領域となる微結晶シ
リコン領域(膜)の形成というような2段階のプロセス
を経ずして、1枚のシリコン膜を形成し、これをある部
分はソース/ドレイン領域に、他の部分はチャネル形成
領域に作り分けるという構成を有する。
を少なくすることが最重要課題である。成膜工程は成膜
に時間を要するだけでなく、チャンバー内のクリーニン
グにも同程度の時間を要し、極めて清浄な環境を要求さ
れる現代の半導体プロセスにおいては、チャンバーの掃
除の合間に成膜をおこなうというのが実情である。した
がって、厚い被膜を形成するよりも薄い被膜を形成する
こと、多層の被膜を形成するより単層の被膜を形成する
ことが、スループットを上げるうえで必要である。その
意味で、成膜工程を削減することは望ましい。
は以下のような構成を有する。まず、逆スタガー型のT
FTである。ゲイト電極を覆ってゲイト絶縁膜が形成さ
れ、さらに、半導体膜が形成されているが、そのゲイト
電極の上方の部分はチャネル形成領域として機能するよ
うに実質的に真性である。その他の部分はN型もしくは
P型であり、ソース/ドレインとして機能する。また、
チャネル形成領域として機能する部分は、アモルファ
ス、セミアモルファス、微結晶、多結晶、あるいはそれ
らの中間状態のいずれをも取りうる。オフ電流を抑えた
い場合にはアモルファスが望ましい。一方、ソース/ド
レインとして機能する領域は十分に抵抗の小さな結晶性
シリコンである。しかも、本発明では、この領域は可視
光または近赤外光、すなわち、波長が4〜0.5μmの
強光を短時間、照射することによって、半導体に秩序
性、結晶性が付与されることを特徴とする。
層だけでよく、量産性が向上する。さらに、従来のよう
な厚い微結晶シリコンが形成されないのでTFTの凹凸
を減らすことができる。もちろん、本発明は、チャネル
形成領域とソース/ドレイン等の不純物領域をただの1
層の半導体膜で形成することのみを要求するのではな
く、コストと特性を考慮して、素子の特性をより向上さ
せるために多層としてもよいことは言うまでもない。た
だし、その場合も、ソース/ドレインとチャネル形成領
域は実質的に同一面内(層内)に存在することが必要で
ある。
FTはチャネル形成領域の上部にエッチングストッパー
を有しないことを特徴とする。エッチングストッパーが
存在することは、TFTの凹凸の重要な要因である。
法によっておこなわれるが、もちろん、この工程図に必
要な変更が加えられることはありうる。図に示すよう
に、耐熱性無アルカリガラス(例えばコーニング705
9)基板101上に、ゲイト電極102がマスクによ
ってパターニングされる。必要によっては、図1に示す
ようにゲイト電極の表面に酸化膜103を形成して、絶
縁性を高めてもよい。さらに、ゲイト絶縁膜104を形
成する。こうして、図1(A)を得る。
微結晶、多結晶、あるいはそれらの中間状態のシリコン
の薄膜を形成し、マスクによってパターニングをおこ
ない、半導体領域105を形成する。実際には、成膜温
度とオフ電流(リーク電流)を考慮してアモルファスシ
リコン膜を形成する場合が多いが、レーザーアニール等
の低温結晶化技術を使用して多結晶、あるいはセミアモ
ルファスシリコンとしてもよい。しかし、多結晶シリコ
ンやセミアモルファスシリコンを使用した場合には電界
移動度が大きくなるが、オフ電流も大きくなるので、液
晶表示パネルのアクティブマトリクス回路には適当でな
い。
となるような被膜、例えば珪素の多い窒化珪素膜(厚さ
50nm以上が好ましい)を形成して、これをマスク
にてパターニングする。このときには窒化珪素膜の上に
フォトレジストを残存させてもよい。すなわち、図1
(C)において、106が窒化珪素膜であり、107が
フォトレジストである。後のイオン注入の工程を想定し
て、フォトレジストの厚さは100nm以上、好ましく
は500nm以上とする。
オンドープ、あるいはプラズマ化したイオンのドーピン
グ等の方法によって、半導体領域105に選択的に不純
物を注入する。こうして、不純物領域108が形成され
る。しかしながら、この不純物注入によって半導体膜中
には非常に大きな欠陥が生じてしまい、もはや半導体と
しては機能しなくなる。そこで、可視または近赤外光を
上方から短時間、照射して結晶化(ランプアニール、ラ
ピッド・サーマル・アニール(RTA))をおこなう。
この工程によって、半導体の秩序が回復され、不純物の
導入前の状態よりも秩序性の良好な状態が得られる。こ
のランプアニール工程では、用いられる光の照射時間や
被照射物の温度、雰囲気を適当に制御することによっ
て、極めて単結晶状態に近い多結晶状態からセミアモル
ファス状態まで様々な状態のシリコンを形成することが
出来る。このようにランプアニール工程によって得られ
たシリコンはラマン散乱分光法によって、結晶シリコン
に特有の散乱ピークを調べることによって、その結晶性
について確認することができる。
光、好ましくは波長が4μm〜0.5μmの光(例えば
波長1.3μmにピークを有する赤外光)を10〜10
00秒程度の比較的短い時間照射することにより、シリ
コン膜を加熱することにより、結晶性を助長せしめる。
用いる光の波長は、シリコン膜に吸収され、ガラス基板
では実質的に吸収されないことが望ましい。
リコンは可視光、特に0.5μm未満の短波長の光では
よく吸収され、より長波長の光は吸収率が低下する。一
方、0.5〜4μmの波長の光は不純物のドープされた
アモルファスシリコン膜に効果的に吸収されるが、ガラ
ス基板にはほとんど吸収されない。その結果、0.5〜
4μmの光を用いれば、TFTの不純物ドープされた領
域のみを効果的に加熱することができる。また、ランプ
アニールにおいては、光は上方もしくは基板側のいずれ
か一方のみから照射されても、両方から照射されてもよ
いことは言うまでもない。
コン膜と基板の間の熱膨張率の違い、シリコン膜表面と
基板/シリコン膜界面との温度の違いなどから、シリコ
ン膜が剥離することも多々ある。特にこれは、膜の面積
が基板全面にわたるような大きな場合に顕著である。し
かし、本発明においては膜は十分に小さな面積に分断さ
れているので膜の剥離等を防止することができる。ま
た、基板表面全面がシリコン膜を通じて加熱されること
がないので、基板が熱的に収縮することは最低限に抑え
られる。また、基板等に対する熱的な影響を極力、抑え
るためにはランプアニールの時間を可能な限り短くする
ことが好ましい。
工程に耐えられる材質のものを選択すべきであり、タン
タルやチタン等、融点の高い金属が好ましい。また、ア
ルミニウムは、高温において容易に変形するが、十分な
厚さの陽極酸化膜に被覆されている場合には、短時間の
アニールであれば耐えられる。
工程においては、試料を250〜500℃程度に加熱し
ておくと不純物の活性化が試料内部にまで進行し、不純
物濃度も十分大きくすることができた。チャネル形成領
域をアモルファスシリコンに保つためにはあまり高温の
状態に試料を置くことは望ましくなく、また、ガラス基
板にも制約が加わることから250〜350℃程度の加
熱にとどめることが望ましい。
化珪素膜106とフォトレジスト107を除去する。窒
化珪素膜106はそのまま残存させておいても構わな
い。そして、公知の方法によって、配線110やITO
の画素電極111を、マスクおよびによって形成す
る。以上の工程によって必要なマスクは合計5枚である
が、従来のようにゲイト電極の裏面露光技術を用いたセ
ルフアライン方式を駆使することによって4枚まで低減
できる。すなわち、ゲイト電極の形成に1枚、半導体領
域の形成に1枚、画素電極と配線の形成に計2枚を必要
とする。窒化珪素マスク106のパターニングはゲイト
電極をマスクとして裏面露光をおこなえばよい。
よるTFTは、従来のTFTに比べて凹凸が小さい。こ
れは、凹凸の主な要因が、ゲイト電極部の凹凸だけだか
らである。半導体領域105の厚さは極めて薄く、従来
のTFTと同様に10〜100nmであるので、凹凸に
は大した寄与をしない。
ドレインが薄くても良いのは、該領域の不純物濃度が十
分大きく、かつその結晶性が良好だからであり、ランプ
アニール工程を採用することによって本発明の特徴がも
たらされたのである。また、本発明では、従来のように
エッチングストッパーは存在せず、また、本発明で使用
されるマスク材も、TFT完成後は残存することは必要
とされないので、TFTの凹凸は著しく減少する。
成領域とソース/ドレインが異なる膜によって構成され
ているのではなく、同一の膜によって構成されているた
め、これらの領域間の接合は良好であり、TFTの特性
(電界移動度やサブスレシュホールド特性値、リーク電
流)は向上する。
って形成された。作製工程断面図は図1に対応する。た
だし、図1の金属配線・電極110形成工程までで、I
TO画素電極111形成の工程は含まれない。ゲイト電
極はタンタルであり、ゲイト電極の表面には、工程5に
おいて厚さ約200nmの陽極酸化膜を形成して絶縁性
を向上せしめた。不純物のドーピング手段には、イオン
ドーピング法を用いた。本工程で使用されているマスク
の枚数は4枚である。全工程は26工程からなる。
ッタリング成膜法、『PCVD』はプラズマCVD法、
『RIE』は反応性イオンエッチング法を意味する。ま
た、これらの手法の後に:に続いて書かれているのは、
膜厚、使用ガス等である。
図は図2に、工程図は図5に示されるが、ここでは、使
用されるマスクの枚数は6枚であり、全工程は29工程
からなる。このように本実施例では従来の方法を採用す
るよりも製造工程を短縮できた。
細に説明する。基板としてはコーニング7059ガラス
(図1の101)を使用した。これを洗浄し(工程
1)、その上にスパッタ法でタンタル膜を厚さ200n
m形成した(工程2)。そして、これをマスクでパタ
ーニングし(工程3)、混酸(5%の硝酸を含む燐酸)
でエッチングした(工程4)。その後、タンタルゲイト
電極(図1の102)に通電して陽極酸化をおこない、
最大で120Vまで電圧を上げて、陽極酸化膜(図1の
103)を厚さ200nm形成した(工程5)。陽極酸
化の手法については、特願平3−237100もしくは
同3−238713に記述されているので、ここでは詳
述しない。
イト絶縁膜である厚さ200nmの窒化珪素膜(図1の
104)をプラズマCVD法によって形成した(工程
7)。このときの基板温度は300℃とした。そして、
基板洗浄(工程8)後、プラズマCVD法によって厚さ
30nmのアモルファスシリコン膜を形成した(工程
9)このときの基板温度は300℃とした。
パターニングをおこない(工程10)、アモルファスシ
リコン膜をCF4 を反応ガスとする反応性イオンエッチ
ング法によってエッチングして(工程11)、半導体領
域(図1の105)を形成した。残ったレジストは除去
し(工程12)、基板を洗浄した(工程13)。
ラズマCVD法によって形成した(工程14)。このと
きの基板温度は300℃とした。そして、マスクによ
って、窒化珪素マスクのパターニングをおこない(工程
15)、窒化珪素膜をバッファー弗酸でエッチングして
(工程16)、窒化珪素マスク(図1の106)を形成
した。窒化珪素マスクの上には厚さ約500nmのレジ
スト(図1の107)が残った。
×1015cm-2のドーズ量のリンイオンを10keVの
加速エネルギーで打ち込み(工程17)、不純物領域
(図1の108)を形成した。その後、基板を洗浄し
(工程18)、残存したレジストを除去した(工程1
9)。
ってランプアニールをおこない(工程20)、窒化珪素
マスク(図1の106)をバッファー弗酸でエッチング
して除去した(工程21)。ランプアニール(工程2
0)においては、可視・近赤外光の強度は、モニターの
単結晶シリコンウェハー上の温度が800〜1300
℃、代表的には900〜1200℃の間にあるように調
整した。具体的には、シリコンウェハーに埋め込んだ熱
電対の温度をモニターして、これを赤外線の光源にフィ
ードバックさせた。本実施例では、昇温・降温は、図7
(A)もしくは(B)のようにおこなった。昇温は、一
定で速度は50〜200℃/秒、降温は自然冷却で20
〜100℃であった。
温時間a、保持時間b、降温時間cの3つの過程からな
る。しかし、この場合には試料は室温から1000℃も
の高温へ、さらに高温状態から室温へと急激に加熱・冷
却されるので、珪素膜や基板に与える影響が大きく、珪
素膜の剥離の可能性も高い。
のように、保持に達する前に、プレヒート時間dやポス
トヒート時間fを設け、保持時間に達する前に200〜
500℃の基板や膜に大きな影響を与えない温度に保持
しておくことが望ましい。また、このランプアニールは
H2 雰囲気中にておこなった。H2 雰囲気に0.1〜1
0%のHCl、その他ハロゲン化水素やフッ素や塩素、
臭素の化合物を混入してもよい。その後、基板を洗浄し
た(工程22)。
って、厚さ400nm形成し(工程23)、アルミニウ
ム配線をマスクによってパターニングし(工程2
4)、さらに混酸によってアルミニウム被膜をエッチン
グして(工程25)、アルミニウム配線(図1の11
0)を形成した。残存したレジストは除去した(工程2
6)。最後に、1気圧の水素雰囲気で350℃、30分
のアニールをおこなった。特に本発明では、可視・近赤
外光によるランプアニールの工程で生じた不対結合手
を、その後の工程で、水素雰囲気において、250〜4
00℃で加熱することによって中和することが重要であ
る。以上の工程によってNチャネル型TFTが完成され
た。
工程にしたがって形成された。作製工程断面図は裏面露
光技術を用いる点を除けば図1に対応する。ただし、図
4に示されているのは、実施例1と同様、図1の金属配
線・電極110形成工程までの工程である。ゲイト電極
はタンタルであり、ゲイト電極の表面には、工程5にお
いて厚さ約200nmの陽極酸化膜を形成して絶縁性を
向上せしめた。窒化珪素マスクの形成には裏面露光技術
を用いた。不純物のドーピング手段には、イオンドーピ
ング法を用いた。本工程で使用されているマスクの枚数
は、裏面露光技術によって、1枚削減され、3枚であ
る。全工程は26工程からなる。
に示されるが、ここでは、使用されるマスクの枚数は3
枚であり、全工程は23工程からなる。本実施例(図
4)では、全工程数は増加しているが、スループットを
制限する成膜工程数は5工程であり、従来(図6)の6
工程よりも少なく、実際には生産性は向上している。
細に説明する。基板としてはコーニング7059ガラス
(図1の101)を使用した。これを洗浄し(工程
1)、その上にスパッタ法でタンタル膜を厚さ400n
m形成した(工程2)。そして、これをマスクでパタ
ーニングし(工程3)、混酸(5%の硝酸を含む燐酸)
でエッチングした(工程4)。その後、タンタルゲイト
電極(図1の102)に通電して陽極酸化をおこない、
最大で120Vまで電圧を上げて、陽極酸化膜(図1の
103)を厚さ200nm形成した(工程5)。
イト絶縁膜である窒化珪素膜(図1の104)をプラズ
マCVD法によって厚さ200nm形成した(工程
7)。このときの基板温度は300℃とした。そして、
基板洗浄(工程8)後、プラズマCVD法によって厚さ
30nmのアモルファスシリコン膜を形成した(工程
9)このときの基板温度は300℃とした。
パターニングをおこない(工程10)、アモルファスシ
リコン膜をCF4 を反応ガスとする反応性イオンエッチ
ング法によってエッチングして(工程11)、半導体領
域(図1の105)を形成した。残ったレジストは除去
し(工程12)、基板を洗浄した(工程13)。
ラズマCVD法によって形成した(工程14)。このと
きの基板温度は300℃とした。そして、レジストを塗
布した状態で基板の裏面から露光し、ゲイト電極をマス
クとしてセルフアライン的に窒化珪素マスクのパターニ
ングをおこない(工程15)、窒化珪素膜をバッファー
弗酸でエッチングして(工程16)、窒化珪素マスク
(図1の106)を形成した。窒化珪素マスクの上には
厚さ約500nmのレジスト(図1の107)が残っ
た。
×1015cm-2のドーズ量のリンイオンを10keVの
加速エネルギーで打ち込み(工程17)、不純物領域
(図1の108)を形成した。その後、基板を洗浄し
(工程18)、残存したレジストを除去した(工程1
9)。
ってランプアニールをおこない(工程20)、窒化珪素
マスク(図1の106)をバッファー弗酸でエッチング
して除去した(工程21)。ランプアニールの条件は実
施例1と同じとした。その後、基板を洗浄した(工程2
2)。
よって、厚さ400nm形成し(工程23)、アルミニ
ウム配線をマスクによってパターニングし(工程2
4)、さらに混酸によってアルミニウム被膜をエッチン
グして(工程25)、アルミニウム配線(図1の11
0)を形成した。残存したレジストは除去した(工程2
6)。最後に、1気圧の水素雰囲気で350℃、30分
のアニールをおこなった。以上の工程を経てNチャネル
型TFTが作製された。
かなように、工程の簡略化に特徴がある。のみならず、
ソース、ドレイン領域のシート抵抗が小さいために品質
のよい(例えば、高速性に優れることやしきい値電圧が
小さいこと等)TFTを提供できることである。このよ
うに本発明は産業上有益である。
す。
Claims (6)
- 【請求項1】 ガラス基板上にゲイト電極を形成する第
1の工程と、 前記ゲイト電極の上にゲイト絶縁膜を形成する第2の工
程と、 前記ゲイト絶縁膜の上に10〜100nmの厚さの半導
体膜を形成する第3の工程と、 前記半導体膜の一部の上に絶縁膜を形成する第4の工程
と、 前記第4の工程の後、前記半導体膜の一部を除く部分に
不純物を添加してソース領域及びドレイン領域を形成す
る第5の工程と、 前記第5の工程の後、前記ソース領域及び前記ドレイン
領域の表面側及び裏面側に0.5〜4μm波長の光を照
射する第6の工程と、 を有し、前記第6の工程により前記ソース領域及び前記
ドレイン領域を結晶化することを特徴とする薄膜状絶縁
ゲイト型半導体装置の作製方法。 - 【請求項2】 前記半導体膜は非晶質シリコン膜である
ことを特徴とする請求項1記載の薄膜状絶縁ゲイト型半
導体装置の作製方法。 - 【請求項3】 前記半導体膜は多結晶シリコン膜である
ことを特徴とする請求項1記載の薄膜状絶縁ゲイト型半
導体装置の作製方法。 - 【請求項4】 前記第6の工程の後、前記ソース領域及
び前記ドレイン領域は、前記半導体膜の一部よりも結晶
性が良いことを特徴とする請求項1ないし3のいずれか
1項に記載の薄膜状絶縁ゲイト型半導体装置の作製方
法。 - 【請求項5】 前記第6の工程は、水素雰囲気中で行わ
れることを特徴とする請求項1ないし4のいずれか1項
に記載の薄膜状絶縁ゲイト型半導体装置の作製方法。 - 【請求項6】 請求項1ないし5のいずれか1項に記載
の作製方法を用いて作製されたことを特徴とする薄膜状
絶縁ゲイト型半導体装置。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22059493A JP3173926B2 (ja) | 1993-08-12 | 1993-08-12 | 薄膜状絶縁ゲイト型半導体装置の作製方法及びその半導体装置 |
US08/286,290 US5530265A (en) | 1993-08-12 | 1994-08-05 | Insulated gate semiconductor device and process for fabricating the same |
KR1019940019865A KR0174029B1 (ko) | 1993-08-12 | 1994-08-12 | 절연게이트형 반도체장치 및 그의 제조방법 |
US08/942,440 US6500703B1 (en) | 1993-08-12 | 1997-10-01 | Insulated gate semiconductor device and process for fabricating the same |
US09/218,091 US6331717B1 (en) | 1993-08-12 | 1998-12-22 | Insulated gate semiconductor device and process for fabricating the same |
JP995399A JP3444478B2 (ja) | 1993-08-12 | 1999-01-18 | 半導体装置の作製方法 |
JP2329399A JP3378522B2 (ja) | 1993-08-12 | 1999-01-29 | 半導体装置の作製方法 |
US09/441,669 US6437366B1 (en) | 1993-08-12 | 1999-11-17 | Insulated gate semiconductor device and process for fabricating the same |
US10/329,339 US7381598B2 (en) | 1993-08-12 | 2002-12-27 | Insulated gate semiconductor device and process for fabricating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22059493A JP3173926B2 (ja) | 1993-08-12 | 1993-08-12 | 薄膜状絶縁ゲイト型半導体装置の作製方法及びその半導体装置 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP995399A Division JP3444478B2 (ja) | 1993-08-12 | 1999-01-18 | 半導体装置の作製方法 |
JP866099A Division JPH11289095A (ja) | 1999-01-18 | 1999-01-18 | 絶縁ゲイト型半導体装置 |
JP19971399A Division JP3225236B2 (ja) | 1999-07-14 | 1999-07-14 | 絶縁ゲイト型半導体装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0799317A JPH0799317A (ja) | 1995-04-11 |
JP3173926B2 true JP3173926B2 (ja) | 2001-06-04 |
Family
ID=16753428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22059493A Expired - Fee Related JP3173926B2 (ja) | 1993-08-12 | 1993-08-12 | 薄膜状絶縁ゲイト型半導体装置の作製方法及びその半導体装置 |
Country Status (3)
Country | Link |
---|---|
US (3) | US5530265A (ja) |
JP (1) | JP3173926B2 (ja) |
KR (1) | KR0174029B1 (ja) |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69125886T2 (de) * | 1990-05-29 | 1997-11-20 | Semiconductor Energy Lab | Dünnfilmtransistoren |
JP3255942B2 (ja) | 1991-06-19 | 2002-02-12 | 株式会社半導体エネルギー研究所 | 逆スタガ薄膜トランジスタの作製方法 |
US6709907B1 (en) * | 1992-02-25 | 2004-03-23 | Semiconductor Energy Laboratory Co., Ltd. | Method of fabricating a thin film transistor |
JP3173854B2 (ja) | 1992-03-25 | 2001-06-04 | 株式会社半導体エネルギー研究所 | 薄膜状絶縁ゲイト型半導体装置の作製方法及び作成された半導体装置 |
JP3173926B2 (ja) | 1993-08-12 | 2001-06-04 | 株式会社半導体エネルギー研究所 | 薄膜状絶縁ゲイト型半導体装置の作製方法及びその半導体装置 |
US6331717B1 (en) | 1993-08-12 | 2001-12-18 | Semiconductor Energy Laboratory Co. Ltd. | Insulated gate semiconductor device and process for fabricating the same |
JP2900229B2 (ja) * | 1994-12-27 | 1999-06-02 | 株式会社半導体エネルギー研究所 | 半導体装置およびその作製方法および電気光学装置 |
US5834327A (en) | 1995-03-18 | 1998-11-10 | Semiconductor Energy Laboratory Co., Ltd. | Method for producing display device |
US6077752A (en) * | 1995-11-20 | 2000-06-20 | Telefonaktiebolaget Lm Ericsson | Method in the manufacturing of a semiconductor device |
JP3907726B2 (ja) | 1995-12-09 | 2007-04-18 | 株式会社半導体エネルギー研究所 | 微結晶シリコン膜の作製方法、半導体装置の作製方法及び光電変換装置の作製方法 |
US5602047A (en) * | 1996-06-13 | 1997-02-11 | Industrial Technology Research Institute | Process for polysilicon thin film transistors using backside irradiation and plasma doping |
JP3276573B2 (ja) * | 1996-12-26 | 2002-04-22 | 三菱電機株式会社 | 液晶表示装置とこれに用いられる薄膜トランジスタの製造方法 |
US6306763B1 (en) * | 1997-07-18 | 2001-10-23 | Advanced Micro Devices, Inc. | Enhanced salicidation technique |
JPH11103070A (ja) * | 1997-08-01 | 1999-04-13 | Sony Corp | 薄膜トランジスタ |
US5998229A (en) * | 1998-01-30 | 1999-12-07 | Samsung Electronics Co., Ltd. | Methods of manufacturing thin film transistors and liquid crystal displays by plasma treatment of undoped amorphous silicon |
US6156613A (en) * | 1998-03-02 | 2000-12-05 | Texas Instruments - Acer Incorporated | Method to form MOSFET with an elevated source/drain |
US7022556B1 (en) | 1998-11-11 | 2006-04-04 | Semiconductor Energy Laboratory Co., Ltd. | Exposure device, exposure method and method of manufacturing semiconductor device |
JP4514862B2 (ja) * | 1999-11-30 | 2010-07-28 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
GB0017471D0 (en) * | 2000-07-18 | 2000-08-30 | Koninkl Philips Electronics Nv | Thin film transistors and their manufacture |
US6599818B2 (en) | 2000-10-10 | 2003-07-29 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device manufacturing method, heat treatment apparatus, and heat treatment method |
JP2002176000A (ja) * | 2000-12-05 | 2002-06-21 | Semiconductor Energy Lab Co Ltd | 熱処理装置及び半導体装置の製造方法 |
US7534977B2 (en) * | 2000-12-28 | 2009-05-19 | Semiconductor Energy Laboratory Co., Ltd. | Heat treatment apparatus and method of manufacturing a semiconductor device |
US6664153B2 (en) | 2002-02-08 | 2003-12-16 | Chartered Semiconductor Manufacturing Ltd. | Method to fabricate a single gate with dual work-functions |
JP3949027B2 (ja) * | 2002-08-06 | 2007-07-25 | 富士通株式会社 | アナログスイッチ回路 |
KR100539623B1 (ko) * | 2003-06-25 | 2005-12-28 | 엘지.필립스 엘시디 주식회사 | 버텀 게이트형 폴리 실리콘 박막트랜지스터 소자의 제조방법 |
JP2005079110A (ja) * | 2003-08-29 | 2005-03-24 | Toshiba Corp | 半導体装置およびその製造方法 |
US7127367B2 (en) | 2003-10-27 | 2006-10-24 | Applied Materials, Inc. | Tailored temperature uniformity |
US8536492B2 (en) * | 2003-10-27 | 2013-09-17 | Applied Materials, Inc. | Processing multilayer semiconductors with multiple heat sources |
US7604903B1 (en) * | 2004-01-30 | 2009-10-20 | Advanced Micro Devices, Inc. | Mask having sidewall absorbers to enable the printing of finer features in nanoprint lithography (1XMASK) |
US7098091B2 (en) * | 2004-02-20 | 2006-08-29 | Au Optronics Corporation | Method for fabricating thin film transistors |
US7622338B2 (en) * | 2004-08-31 | 2009-11-24 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
EP1995787A3 (en) * | 2005-09-29 | 2012-01-18 | Semiconductor Energy Laboratory Co, Ltd. | Semiconductor device having oxide semiconductor layer and manufacturing method therof |
CN101283444B (zh) * | 2005-11-15 | 2011-01-26 | 株式会社半导体能源研究所 | 半导体器件及其制造方法 |
JP2008103653A (ja) * | 2006-09-22 | 2008-05-01 | Tohoku Univ | 半導体装置及び半導体装置の製造方法 |
JP5329038B2 (ja) * | 2006-12-21 | 2013-10-30 | 宇部日東化成株式会社 | 半導体装置及び半導体装置の製造方法 |
US8222574B2 (en) * | 2007-01-15 | 2012-07-17 | Applied Materials, Inc. | Temperature measurement and control of wafer support in thermal processing chamber |
JP5380037B2 (ja) | 2007-10-23 | 2014-01-08 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
CN102007597B (zh) * | 2008-04-17 | 2014-02-19 | 应用材料公司 | 低温薄膜晶体管工艺、装置特性和装置稳定性改进 |
TWI333275B (en) * | 2008-05-09 | 2010-11-11 | Au Optronics Corp | Method for fabricating light sensor |
TWI387109B (zh) * | 2008-06-10 | 2013-02-21 | Taiwan Tft Lcd Ass | 薄膜電晶體的製造方法 |
US8111978B2 (en) * | 2008-07-11 | 2012-02-07 | Applied Materials, Inc. | Rapid thermal processing chamber with shower head |
KR101263726B1 (ko) | 2008-11-07 | 2013-05-13 | 엘지디스플레이 주식회사 | 폴리실리콘을 이용한 박막트랜지스터를 포함하는 어레이 기판 및 이의 제조방법 |
TWI633371B (zh) | 2008-12-03 | 2018-08-21 | 半導體能源研究所股份有限公司 | 液晶顯示裝置 |
JP5615540B2 (ja) * | 2008-12-19 | 2014-10-29 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
KR102342672B1 (ko) * | 2009-03-12 | 2021-12-24 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
TWI485781B (zh) * | 2009-03-13 | 2015-05-21 | Semiconductor Energy Lab | 半導體裝置及該半導體裝置的製造方法 |
TWI613822B (zh) | 2011-09-29 | 2018-02-01 | 半導體能源研究所股份有限公司 | 半導體裝置及其製造方法 |
FR3002768B1 (fr) * | 2013-03-01 | 2015-02-20 | Saint Gobain | Procede de traitement thermique d'un revetement |
JP6086031B2 (ja) * | 2013-05-29 | 2017-03-01 | 信越半導体株式会社 | 貼り合わせウェーハの製造方法 |
Family Cites Families (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5640275A (en) * | 1979-09-12 | 1981-04-16 | Hitachi Ltd | Preparation of semiconductor device |
US4266986A (en) | 1979-11-29 | 1981-05-12 | Bell Telephone Laboratories, Incorporated | Passivation of defects in laser annealed semiconductors |
JPS56100412A (en) * | 1979-12-17 | 1981-08-12 | Sony Corp | Manufacture of semiconductor device |
JPS5785262A (en) | 1980-11-17 | 1982-05-27 | Toshiba Corp | Manufacture of metal oxide semiconductor type semiconductor device |
JPS582073A (ja) | 1981-06-29 | 1983-01-07 | Sony Corp | 電界効果型トランジスタ |
JPS5814524A (ja) | 1981-07-17 | 1983-01-27 | Fujitsu Ltd | 半導体装置の製造方法 |
JPS5821863A (ja) | 1981-07-31 | 1983-02-08 | Seiko Epson Corp | 液晶表示装置 |
JPS58147069A (ja) * | 1982-02-25 | 1983-09-01 | Sharp Corp | 薄膜トランジスタ |
GB2118774B (en) | 1982-02-25 | 1985-11-27 | Sharp Kk | Insulated gate thin film transistor |
JPS58168278A (ja) | 1982-03-30 | 1983-10-04 | Toshiba Corp | 薄膜トランジスタの製造方法 |
US5365079A (en) | 1982-04-30 | 1994-11-15 | Seiko Epson Corporation | Thin film transistor and display device including same |
JPS58190063A (ja) | 1982-04-30 | 1983-11-05 | Seiko Epson Corp | 透過型液晶表示パネル用薄膜トランジスタ |
US5677547A (en) | 1982-04-30 | 1997-10-14 | Seiko Epson Corporation | Thin film transistor and display device including same |
US5650637A (en) | 1982-04-30 | 1997-07-22 | Seiko Epson Corporation | Active matrix assembly |
JPS5975670A (ja) | 1982-10-25 | 1984-04-28 | Seiko Epson Corp | 薄膜半導体装置の製造方法 |
US4619034A (en) | 1983-05-02 | 1986-10-28 | Ncr Corporation | Method of making laser recrystallized silicon-on-insulator nonvolatile memory device |
JPS59211221A (ja) | 1983-05-17 | 1984-11-30 | Nippon Denso Co Ltd | イオン注入した半導体の熱処理方法 |
CA1186070A (en) | 1983-06-17 | 1985-04-23 | Iain D. Calder | Laser activated polysilicon connections for redundancy |
JPH0669094B2 (ja) | 1983-12-23 | 1994-08-31 | ソニー株式会社 | 電界効果型トランジスタ |
CA1197628A (en) | 1984-01-05 | 1985-12-03 | Thomas W. Macelwee | Fabrication of stacked mos devices |
US4698486A (en) * | 1984-02-28 | 1987-10-06 | Tamarack Scientific Co., Inc. | Method of heating semiconductor wafers in order to achieve annealing, silicide formation, reflow of glass passivation layers, etc. |
JPS60198413A (ja) | 1984-03-22 | 1985-10-07 | Nagano Keiki Seisakusho:Kk | 渦流量計 |
US4769338A (en) | 1984-05-14 | 1988-09-06 | Energy Conversion Devices, Inc. | Thin film field effect transistor and method of making same |
JPH07118443B2 (ja) | 1984-05-18 | 1995-12-18 | ソニー株式会社 | 半導体装置の製法 |
JPS60245172A (ja) | 1984-05-18 | 1985-12-04 | Semiconductor Energy Lab Co Ltd | 絶縁ゲイト型半導体装置 |
US4727044A (en) | 1984-05-18 | 1988-02-23 | Semiconductor Energy Laboratory Co., Ltd. | Method of making a thin film transistor with laser recrystallized source and drain |
JPS60245173A (ja) * | 1984-05-18 | 1985-12-04 | Semiconductor Energy Lab Co Ltd | 絶縁ゲイト型半導体装置 |
JPS60245174A (ja) | 1984-05-18 | 1985-12-04 | Semiconductor Energy Lab Co Ltd | 絶縁ゲイト型電界効果半導体装置の作製方法 |
JPS6132419A (ja) | 1984-07-24 | 1986-02-15 | Mitsubishi Electric Corp | 赤外線アニ−ル方法 |
JPS61116820A (ja) * | 1984-11-13 | 1986-06-04 | Fujitsu Ltd | 半導体のアニ−ル方法 |
JPS61135110A (ja) | 1984-12-05 | 1986-06-23 | Fujitsu Ltd | 半導体装置の製造方法 |
JPH0334434Y2 (ja) | 1985-03-29 | 1991-07-22 | ||
JPS61263273A (ja) * | 1985-05-17 | 1986-11-21 | Hitachi Ltd | 薄膜半導体装置の製造方法 |
JPH0691032B2 (ja) | 1985-06-27 | 1994-11-14 | ソニー株式会社 | 半導体装置の製造方法 |
JPS6230379A (ja) | 1985-07-31 | 1987-02-09 | Seiko Epson Corp | 薄膜トランジスタ |
DE3689735T2 (de) | 1985-08-02 | 1994-06-30 | Semiconductor Energy Lab | Verfahren und Gerät zur Herstellung von Halbleitervorrichtungen. |
US4597160A (en) * | 1985-08-09 | 1986-07-01 | Rca Corporation | Method of fabricating a polysilicon transistor with a high carrier mobility |
JPS61198625A (ja) | 1985-09-06 | 1986-09-03 | Sony Corp | 半導体装置の製法及びそれに使用する赤外線ランプ加熱装置 |
JPS62104171A (ja) | 1985-10-31 | 1987-05-14 | Fujitsu Ltd | 薄膜トランジスタの製造方法 |
JPH0746729B2 (ja) | 1985-12-26 | 1995-05-17 | キヤノン株式会社 | 薄膜トランジスタの製造方法 |
JPS62171160A (ja) | 1986-01-22 | 1987-07-28 | Sharp Corp | 薄膜トランジスタ |
JPS62205664A (ja) | 1986-03-06 | 1987-09-10 | Matsushita Electric Ind Co Ltd | 薄膜トランジスタの製造方法 |
JPS63164A (ja) | 1986-06-19 | 1988-01-05 | Matsushita Electric Ind Co Ltd | 薄膜トランジスタの製造方法 |
JPS6310573A (ja) * | 1986-07-02 | 1988-01-18 | Oki Electric Ind Co Ltd | 半導体装置の製造方法 |
JPS6380570A (ja) | 1986-09-24 | 1988-04-11 | Nec Corp | 薄膜トランジスタの製造方法 |
JPH0680685B2 (ja) | 1986-12-29 | 1994-10-12 | 日本電気株式会社 | 薄膜トランジスタとその製造方法 |
JPS63169767A (ja) | 1987-01-07 | 1988-07-13 | Fujitsu Ltd | 薄膜トランジスタの製造方法 |
JPS63227015A (ja) | 1987-03-17 | 1988-09-21 | Matsushita Electric Ind Co Ltd | ランプ加熱装置 |
JPS63237577A (ja) * | 1987-03-26 | 1988-10-04 | Nec Corp | Misfet製造方法 |
US4743567A (en) | 1987-08-11 | 1988-05-10 | North American Philips Corp. | Method of forming thin, defect-free, monocrystalline layers of semiconductor materials on insulators |
JPH07120806B2 (ja) | 1988-03-16 | 1995-12-20 | 松下電器産業株式会社 | 薄膜電界効果トランジスターの製造方法 |
US4998152A (en) | 1988-03-22 | 1991-03-05 | International Business Machines Corporation | Thin film transistor |
JP2628072B2 (ja) | 1988-07-22 | 1997-07-09 | 株式会社日立製作所 | 液晶表示装置およびその製造方法 |
JP2600827B2 (ja) | 1988-07-23 | 1997-04-16 | セイコーエプソン株式会社 | 薄膜トランジスタの製造方法 |
JPH0272750A (ja) | 1988-09-08 | 1990-03-13 | Mitsunari Iwamoto | コードねじれ防止装置付電話機 |
JPH0778831B2 (ja) | 1988-11-15 | 1995-08-23 | 三田工業株式会社 | 画像信号処理装置 |
JP2734587B2 (ja) | 1988-12-28 | 1998-03-30 | ソニー株式会社 | 薄膜トランジスタの製造方法 |
JPH02222545A (ja) * | 1989-02-23 | 1990-09-05 | Semiconductor Energy Lab Co Ltd | 薄膜トランジスタの作製方法 |
JP2832991B2 (ja) | 1989-04-14 | 1998-12-09 | ソニー株式会社 | 多層配線形成方法および連続処理装置 |
JPH02310932A (ja) | 1989-05-25 | 1990-12-26 | Nec Corp | 逆スタガー型薄膜トランジスタの製造方法 |
JP2558351B2 (ja) | 1989-06-29 | 1996-11-27 | 沖電気工業株式会社 | アクティブマトリクス表示パネル |
JPH0334434A (ja) | 1989-06-30 | 1991-02-14 | Hitachi Ltd | 薄膜半導体装置及びその製造方法 |
JPH0377329A (ja) * | 1989-08-19 | 1991-04-02 | Fujitsu Ltd | 半導体装置の製造方法 |
JPH0391932A (ja) | 1989-09-04 | 1991-04-17 | Canon Inc | 半導体装置の製造方法 |
US5278093A (en) * | 1989-09-23 | 1994-01-11 | Canon Kabushiki Kaisha | Method for forming semiconductor thin film |
JPH03126921A (ja) | 1989-10-12 | 1991-05-30 | Sony Corp | 液晶表示装置 |
JP2857900B2 (ja) | 1989-12-28 | 1999-02-17 | カシオ計算機株式会社 | 薄膜トランジスタの製造方法 |
JP2629995B2 (ja) | 1989-12-29 | 1997-07-16 | 日本電気株式会社 | 薄膜トランジスタ |
JPH0391932U (ja) | 1990-01-10 | 1991-09-19 | ||
JPH0754813Y2 (ja) | 1990-01-19 | 1995-12-18 | 愛知時計電機株式会社 | 電子式水道メータ |
JPH03265143A (ja) | 1990-03-15 | 1991-11-26 | Matsushita Electron Corp | 薄膜トランジスタの製造方法 |
DE69116202T2 (de) * | 1990-04-10 | 1996-06-20 | Canon Kk | Verfahren zur Herstellung einer Halbleiterdünnschicht |
US5198379A (en) | 1990-04-27 | 1993-03-30 | Sharp Kabushiki Kaisha | Method of making a MOS thin film transistor with self-aligned asymmetrical structure |
DE69127395T2 (de) | 1990-05-11 | 1998-01-02 | Asahi Glass Co Ltd | Verfahren zum Herstellen eines Dünnfilm-Transistors mit polykristallinem Halbleiter |
JP2700277B2 (ja) | 1990-06-01 | 1998-01-19 | 株式会社半導体エネルギー研究所 | 薄膜トランジスタの作製方法 |
JP2796175B2 (ja) | 1990-06-05 | 1998-09-10 | 松下電器産業株式会社 | 薄膜トランジスターの製造方法 |
JPH0442579A (ja) | 1990-06-08 | 1992-02-13 | Seiko Epson Corp | 薄膜トランジスタ及び製造方法 |
JP3029288B2 (ja) * | 1990-11-20 | 2000-04-04 | 株式会社半導体エネルギー研究所 | 液晶表示装置 |
US5162239A (en) | 1990-12-27 | 1992-11-10 | Xerox Corporation | Laser crystallized cladding layers for improved amorphous silicon light-emitting diodes and radiation sensors |
EP0493113B1 (en) | 1990-12-28 | 1997-03-19 | Sharp Kabushiki Kaisha | A method for producing a thin film transistor and an active matrix substrate for liquid crystal display devices |
US5474941A (en) | 1990-12-28 | 1995-12-12 | Sharp Kabushiki Kaisha | Method for producing an active matrix substrate |
JPH04269837A (ja) | 1991-02-26 | 1992-09-25 | Sharp Corp | 薄膜トランジスタの製造方法 |
US5420048A (en) | 1991-01-09 | 1995-05-30 | Canon Kabushiki Kaisha | Manufacturing method for SOI-type thin film transistor |
JP2973037B2 (ja) | 1991-01-23 | 1999-11-08 | 富士通株式会社 | 薄膜トランジスタの製造方法 |
US5286658A (en) * | 1991-03-05 | 1994-02-15 | Fujitsu Limited | Process for producing semiconductor device |
JPH05182923A (ja) * | 1991-05-28 | 1993-07-23 | Semiconductor Energy Lab Co Ltd | レーザーアニール方法 |
JPH04360580A (ja) | 1991-06-07 | 1992-12-14 | Casio Comput Co Ltd | 電界効果型トランジスタおよびその製造方法 |
JP3466633B2 (ja) * | 1991-06-12 | 2003-11-17 | ソニー株式会社 | 多結晶半導体層のアニール方法 |
GB9114018D0 (en) | 1991-06-28 | 1991-08-14 | Philips Electronic Associated | Thin-film transistor manufacture |
JP2722890B2 (ja) * | 1991-10-01 | 1998-03-09 | 日本電気株式会社 | 薄膜トランジスタおよびその製造方法 |
JPH05102484A (ja) | 1991-10-09 | 1993-04-23 | Seiko Epson Corp | 薄膜トランジスタ及びその製造方法 |
JP3173854B2 (ja) * | 1992-03-25 | 2001-06-04 | 株式会社半導体エネルギー研究所 | 薄膜状絶縁ゲイト型半導体装置の作製方法及び作成された半導体装置 |
JPH063164A (ja) | 1992-06-18 | 1994-01-11 | Ricoh Co Ltd | 回転位置検出装置 |
EP0619601A2 (en) * | 1993-04-05 | 1994-10-12 | General Electric Company | Self-aligned thin-film transistor constructed using lift-off technique |
JPH06295915A (ja) * | 1993-04-09 | 1994-10-21 | F T L:Kk | 半導体装置の製造装置及び半導体装置の製造方法 |
TW369686B (en) * | 1993-07-27 | 1999-09-11 | Semiconductor Energy Lab Corp | Semiconductor device and process for fabricating the same |
US6331717B1 (en) * | 1993-08-12 | 2001-12-18 | Semiconductor Energy Laboratory Co. Ltd. | Insulated gate semiconductor device and process for fabricating the same |
JP3173926B2 (ja) | 1993-08-12 | 2001-06-04 | 株式会社半導体エネルギー研究所 | 薄膜状絶縁ゲイト型半導体装置の作製方法及びその半導体装置 |
US5869379A (en) * | 1997-12-08 | 1999-02-09 | Advanced Micro Devices, Inc. | Method of forming air gap spacer for high performance MOSFETS' |
-
1993
- 1993-08-12 JP JP22059493A patent/JP3173926B2/ja not_active Expired - Fee Related
-
1994
- 1994-08-05 US US08/286,290 patent/US5530265A/en not_active Expired - Lifetime
- 1994-08-12 KR KR1019940019865A patent/KR0174029B1/ko not_active IP Right Cessation
-
1997
- 1997-10-01 US US08/942,440 patent/US6500703B1/en not_active Expired - Fee Related
-
2002
- 2002-12-27 US US10/329,339 patent/US7381598B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
「超LSIプロセスデータハンドブック」(昭57−4−15)サイエンフォーラム,p.526−527 |
Also Published As
Publication number | Publication date |
---|---|
JPH0799317A (ja) | 1995-04-11 |
US20030124782A1 (en) | 2003-07-03 |
US7381598B2 (en) | 2008-06-03 |
KR950007162A (ko) | 1995-03-21 |
US6500703B1 (en) | 2002-12-31 |
KR0174029B1 (ko) | 1999-02-01 |
US5530265A (en) | 1996-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3173926B2 (ja) | 薄膜状絶縁ゲイト型半導体装置の作製方法及びその半導体装置 | |
JP3173854B2 (ja) | 薄膜状絶縁ゲイト型半導体装置の作製方法及び作成された半導体装置 | |
JPH0823100A (ja) | 半導体装置およびその作製方法 | |
JPH06296023A (ja) | 薄膜状半導体装置およびその作製方法 | |
JP3224215B2 (ja) | 薄膜状絶縁ゲイト型半導体装置の作製方法 | |
US6331717B1 (en) | Insulated gate semiconductor device and process for fabricating the same | |
JP3359906B2 (ja) | 半導体装置の作製方法 | |
JP2001189462A (ja) | 半導体装置の作製方法 | |
JP3225236B2 (ja) | 絶縁ゲイト型半導体装置 | |
JP4001838B2 (ja) | 絶縁ゲイト型半導体装置の作製方法 | |
JP3359907B2 (ja) | 半導体装置の作製方法 | |
JP4056790B2 (ja) | 半導体装置の作製方法 | |
JP3444478B2 (ja) | 半導体装置の作製方法 | |
JP3378522B2 (ja) | 半導体装置の作製方法 | |
JP4112600B2 (ja) | 液晶表示装置の作製方法 | |
JPH11289095A (ja) | 絶縁ゲイト型半導体装置 | |
JP2761496B2 (ja) | 薄膜状絶縁ゲイト型半導体装置およびその作製方法 | |
JP3084252B2 (ja) | 逆スタガ型絶縁ゲイト型半導体装置の作製方法 | |
JP3225231B2 (ja) | 半導体集積回路の作製方法 | |
JP3245146B2 (ja) | 液晶表示装置の作製方法 | |
JP3273592B2 (ja) | 逆スタガ型絶縁ゲイト型半導体装置の作製方法 | |
JP3153515B2 (ja) | 絶縁ゲイト型半導体装置の作製方法 | |
JP3383280B2 (ja) | 半導体装置の作製方法 | |
JP2002217207A (ja) | 逆スタガー型の薄膜トランジスタ及びそれを用いた液晶表示装置 | |
JP2000036606A (ja) | 薄膜状絶縁ゲイト型半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080330 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090330 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100330 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100330 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100330 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110330 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110330 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120330 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120330 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130330 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130330 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |