JP3135041B2 - 窒化物半導体発光素子 - Google Patents
窒化物半導体発光素子Info
- Publication number
- JP3135041B2 JP3135041B2 JP31784995A JP31784995A JP3135041B2 JP 3135041 B2 JP3135041 B2 JP 3135041B2 JP 31784995 A JP31784995 A JP 31784995A JP 31784995 A JP31784995 A JP 31784995A JP 3135041 B2 JP3135041 B2 JP 3135041B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- thickness
- led
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Led Devices (AREA)
Description
lYGa1-X-YN、0≦X、0≦Y、X+Y≦1)よりなるL
ED素子に関する。
黄緑色LEDとが実用化されていたが、最近、窒化物半
導体で青色LED、青緑色LEDが開発されたことによ
り、初めてB、G、R3色を用いたフルカラーLEDデ
ィスプレイが出現した。
0nm付近の黄緑色領域にあり、520nm付近の純緑
色のLEDではないため色再現領域が狭い。しかも青色
LED、赤色LEDの明るさに対して、1/10以下し
かないため、ホワイトバランスを取るためには黄緑色L
EDの数を増やさなければならないと言う欠点があっ
た。これを解決するには最低でも光度2cd以上の純緑
色LEDが必要である。
する高輝度なLEDを開発し、既に発表した{Jpn.J.Ap
pl.Phys. Vol.34 (1995) pp.L797-L799}。図2にそのL
EDの構造を示す。21はサファイアよりなる基板、2
2は膜厚30nmのGaNよりなるバッファ層、23は
4μm厚のSiドープn型GaN層、24は0.1μm
厚のSiドープn型Al0.1Ga0.9N層、25は50n
m厚のSiドープn型In0.05Ga0.95N層、26は2
nm厚のノンドープIn0.43Ga0.57N活性層、27は
0.1μm厚のMgドープp型Al0.1Ga0.9N層、2
8は0.5μm厚のMgドープp型GaN層である。こ
のLEDは単一量子井戸(SQW)構造の活性層を有し
ており、順方向電流20mAにおいて、主発光波長52
5nm、発光出力1mW、指向角10゜のレンズ形状を
有する樹脂でモールドした際の光度は4cdである。こ
のLEDが開発されたことにより、G、B、R各一個ず
つで一画素が構成でき、色再現領域が広いディスプレイ
が実現できるようになった。
造のLEDは複雑な積層構造を有しているので、窒化物
半導体の成長工程が煩雑である。従って本発明の目的と
するところは、最小限の窒化物半導体の積層構造で、高
輝度なLED等の発光素子を実現することにある。
EDは、基板上に、少なくともn型GaNからなるコン
タクト層を兼ねたクラッド層と、7nm以下の膜厚を有
するノンドープのInXGa1-XN(0<X<1)井戸層
を含む単一量子井戸構造、または7nm以下の膜厚を有
するノンドープのInXGa1-XN(0<X<1)井戸層
とノンドープのInYGa1-YN(Y<X、Y=0を含
む)障壁層とからなる多重量子井戸構造の活性層と、膜
厚1nm以上、0.5μm以下のp型AlYGa1-YN
(0<Y<1)からなるp型クラッド層と、p型GaN
からなるp型コンタクト層との積層構造を有することを
特徴とする。なお、本発明において、InGaN、Al
GaN、GaN等は必ずしも三元混晶のみ、二元混晶の
みの窒化物半導体を指すのではなく、例えばInGaN
ではInGaNの作用を変化させない範囲で微量のA
l、その他の不純物を含んでいても本発明の範囲内であ
ることは云うまでもない。
式断面図を示す。この図において、11は基板、12は
バッファ層、13はn型InaAlbGa1-a-bN(0≦
a、0≦b、a+b≦1)よりなるクラッド層、兼n型コン
タクト層、16は単一量子井戸若しくは多重量子井戸構
造を有するInXGa1-XN(0≦X<1)よりなる活性
層、17はp型AlYGa1-YN(0≦Y<1)よりなる
p型クラッド層、18はp型GaNよりなるp型コンタ
クト層である。
面、R面、C面を含む)の他、スピネル(MgAl
2O4)、SiC(6H、4H、3Cを含む)、ZnS、
ZnO、GaAs、GaN等窒化物半導体を成長するた
めに提案されている従来の材料が使用できる。
GaAlN、SiC等が知られており、基板と窒化物半
導体との格子不整合を緩和するために、通常およそ5n
m〜1μmの膜厚で成長される。例えば、特公昭59−
48794号、特公平4−15200号公報にはAlN
をバッファ層とする方法が記載され、特開昭60−17
3829号、特開平4−297023号公報にはGaN
をバッファ層とする方法が記載されている。また特に窒
化物半導体と格子定数の近い基板、格子定数が一致した
基板を用いる場合にはバッファ層が形成されない場合も
ある。
述べる。n型クラッド層13はIn aAlbGa1-a-bN
(0≦a、0≦b、a+b≦1)で表される窒化物半導体で
あれば、どのような組成としても良いが、特に好ましく
はGaN、a値が0.5以下のInaGa1-aN、またはb
値が0.5以下のAlbGa1-bNとすることが望まし
い。なぜなら、図1に示すように、n型クラッド層13
をn電極を形成するためのコンタクト層として兼用する
際に、ある程度の膜厚を必要とする。前記窒化物半導体
は例えば1μm以上の膜厚で成長させても、結晶性の良
いものが得られるので、コンタクト層としてもn電極と
良好なオーミックが得られる。しかも結晶性の良いn型
クラッド層の上に次の活性層、p型クラッド層等を積層
しないと出力の高いLED素子を得ることは難しいから
である。n型クラッド層の膜厚は特に限定するものでは
ないが、前記のようにコンタクト層として兼用するため
には、0.5μm〜5μm程度の膜厚で成長させること
が望ましい。なお、窒化物半導体はノンドープでも結晶
中にできる窒素空孔のためにn型となる性質があるが、
通常Si、Ge、Se等のドナー不純物を結晶成長中に
ドープすることにキャリア濃度の高い好ましいn型とす
ることができる。
Single-Quantum-Well)構造、若しくは多重量子井戸(M
QW:Multi-Quantum-Well)構造を有するInXGa1-XN
(0≦X<1)とする必要がある。SQW構造若しくは
MQW構造とすると非常に出力の高い発光素子が得られ
る。SQW、MQWとはノンドープのInGaNによる
量子準位間の発光が得られる活性層の構造を指し、例え
ばSQWでは活性層を単一組成のInXGa1-XN(0≦
X<1)で構成した層であり、InXGa1-XNの膜厚を
10nm以下、さらに好ましくは7nm以下とすること
により量子準位間の強い発光が得られる。またMQWは
組成比の異なるInXGa1-XN(この場合X=0、X=1
を含む)の薄膜を複数積層した多層膜とする。このよう
に活性層をSQW、MQWとすることにより量子準位間
発光で、約365nm〜660nmまでの発光が得られ
る。量子構造の井戸層の厚さとしては、前記のように7
nm以下が好ましい。多重量子井戸構造では井戸層はI
nXGa1-XNで構成し、障壁層は同じくInYGa1-YN
(Y<X、この場合Y=0を含む)で構成することが望ま
しい。特に好ましくは井戸層と障壁層をInGaNで形
成すると同一温度で成長できるので結晶性のよい活性層
が得られる。障壁層の膜厚は15nm以下、さらに好ま
しくは12nm以下にすると高出力な発光素子が得られ
る。
ては7nm以下、さらに好ましくは5nm以下とすると
発光出力の高い素子を実現できる。これはこの膜厚がI
nGaN活性層の臨界膜厚以下であることを示してい
る。InGaNでは電子のボーア半径が約3nmであ
り、このためInGaNの量子効果が7nm以下で現れ
る。多重量子井戸構造の場合も同様に、井戸層の厚さは
7nm以下に調整し、一方、障壁層の厚さは15nm以
下に調整することが望ましい。
7はp型AlYGa1-YN(0≦Y<1)とする必要があ
り、特に好ましくはY値を0.05以上とすると高出力
の素子が得られる。さらに、AlGaNは高キャリア濃
度のp型が得られやすく、また成長時に分解しにくく、
InGaN活性層16の分解を抑える作用がある。しか
もInGaN活性層16に対し、バンドオフセットおよ
び屈折率差を他の窒化物半導体に比べて大きくできるの
で最も優れている。また第一のp型クラッド層をp型G
aNとすると、p型AlGaNに比べて発光出力が約1
/3に低下してしまう。これはAlGaNがGaNに比
べてp型になりやすいか、あるいはGaN成長時にIn
GaN活性層が分解していると推察される。従ってp型
クラッド層としては、Y値が0.05以上のMgドープ
p型AlYGa1-YNが最も好ましい。
上、2μm以下、さらに好ましくは5nm以上、0.5
μm以下にすることが望ましい。1nmよりも薄いとp
型クラッド層17が存在しないのに近い状態になり、発
光出力が低下する傾向にあり、2μmより厚いと結晶成
長中にp型クラッド層自体にクラックが入りやすくな
り、クラックの入った層に次の層を積層しても、結晶性
の良い半導体層が得られず、出力が低下する傾向にある
からである。なお、窒化物半導体をp型とするには、結
晶成長中にMg、Zn、C、Be、Ca、Ba等のアク
セプター不純物をドープすることによって得られるが、
高キャリア濃度のp層を得るためには、アクセプター不
純物ドープ後、窒素、アルゴン等の不活性ガス雰囲気
中、400℃以上でアニーリングすることがより望まし
い(特開平5−183189号公報)。アニーリングを
行うことにより、通常p型AlGaNで1×1017〜1
×10 19/cm3のキャリア濃度が得られる。またその
他、特開平3−218625号公報に示される電子線照
射処理を行ってもよい。
N、特に好ましくはMgドープp型GaNとする。p型
GaNは電極と接する層であるので、LED、LD等の
発光素子の場合オーミック接触を得ることが重要であ
る。p型GaNは多くの金属とオーミックが取りやすく
コンタクト層として最も好ましい。電極材料としては例
えばNi−Au、Ni−Ti等によりオーミックを得る
ことができる。p型コンタクト層の厚さは特に限定する
ものではないが、通常50nm〜2μm程度の厚さで成
長することが望ましい。
VPE)、ハライド気相成長法(HDVPE)、分子線
気相成長法(MBE)等の気相成長法によって成長でき
る。その中でもMOVPE法によると、迅速に結晶性の
良いものが得られる。MOVPE法では、Gaソースと
してはTMG(トリメチルガリウム)、TEG(トリエ
チルガリウム)、AlソースとしてはTMA(トリメチ
ルアルミニウム)、TEA(トリエチルアルミニウ
ム)、Inソースとしては、TMI(トリメチルインジ
ウム)、TEI(トリエチルインジウム)等のトリアル
キル金属化合物が多く用いられ、窒素源としてはアンモ
ニア、ヒドラジン等のガスが用いられる。また不純物ソ
ースとしてはSiであればシランガス、Geであればゲ
ルマンガス、MgであればCp2Mg(シクロペンタジ
エニルマグネシウム)、ZnであればDEZ(ジエチル
ジンク)等のガスが用いられる。MOVPE法ではこれ
らのガスを例えば600℃以上に加熱された基板の表面
に供給して、ガスを分解することにより、InXAlYG
a1-X-YN(0≦X、0≦Y、X+Y≦1)をエピタキシャ
ル成長させることができる。
出力に優れた素子を得ることができる。それは各層それ
ぞれが有効に作用しているからである。まずn型クラッ
ド層は電流注入層にもなるし、キャリア閉じ込め層にも
なる。SQW、MQWの活性層は結晶性が良いので、発
光層として非常に効率の良い層となる。p型クラッド層
はキャリア閉じ込め層として濃度が高い層であり、さら
にキャリア閉じ込め層としてるので高発光出力が得られ
る。さらにp型コンタクト層も電極材料と好ましいオー
ミックが得られるのでLED素子の順方向電圧を下げ
て、発光効率を向上させる。
井戸構造の活性層の膜厚と、発光出力の関係を相対値で
もって示す図であり、具体的には実施例1に示すLED
素子の構造について示したものである。このように本発
明の発光素子は井戸層を7nm以下にすることにより高
出力な発光素子が得られる。
詳説する。以下に述べる工程はMOVPE法によるもの
である。
11を反応容器内にセットし、反応容器内を水素で十分
置換した後、水素を流しながら、基板の温度を1050
℃まで上昇させサファイア基板のクリーニングを行う。
アガスに水素、原料ガスにアンモニアとTMG(トリメ
チルガリウム)とを用い、サファイア基板11上にGa
Nよりなるバッファ層12を20nmの膜厚で成長させ
る。
度を1030℃まで上昇させる。1030℃になった
ら、同じく原料ガスにTMGとアンモニアガス、ドーパ
ントガスにシランガスを用い、n型クラッド層13とし
て、Siを1×1020/cm3ドープしたn型GaN層を
4μm成長させる。
トガスを止め、温度を800℃にして、原料ガスにTM
GとTMI(トリメチルインジウム)とアンモニアを用
い、単一量子井戸構造の活性層16としてIn0.43Ga
0.57N層を3nm成長させる。
再び温度を1020℃まで上昇させ、原料ガスにTM
G、TMA(トリメチルアルミニウム)、アンモニア、
ドーパントガスにCp2Mg(シクロペンタジエニルマ
グネシウム)を用い、p型クラッド層17としてMgを
2×1019/cm3ドープしたp型Al0.1Ga0.9N層を
50nm成長させる。
層18として、Mgを1×1019/cm3ドープしたp型
GaN層を1μm成長させる。
取り出し、アニーリング装置にて窒素雰囲気中、700
℃で20分間アニーリングを行い、p型クラッド層、p
型コンタクト層をさらに低抵抗化する。
コンタクト層18、p型クラッド層17、及び活性層1
6の一部をエッチングにより取り除き、n型クラッド層
13を露出させ、p型コンタクト層にNi−Auと、p
型GaN層とTi−Al−Auよりなるオーミック電極
を設け、350μm角のチップにカットした後、カップ
形状を有するリードフレームに設置し、エポキシ樹脂で
モールドして、レンズ指向角10゜のLED素子を作成
した。
せ、そのスペクトルを測定したところ、発光ピーク52
5nm、半値幅45nmの純緑色発光を示し、発光出力
1.5mW、量子効率2.5%と、従来のGaPよりな
る黄緑色LEDに対して40倍以上の発光出力を示し
た。
において、原料ガスにTMGとTMI(トリメチルイン
ジウム)とアンモニアを用い、800℃で、井戸層とし
て膜厚3nmのIn0.40Ga0.60N層を成長させ、その
上に障壁層として膜厚6nmのIn0.2Ga0.4N層を成
長させ、5層構造(井戸+障壁+井戸+障壁+井戸)の
多重量子井戸構造よりなる活性層16を成長させる。
たところ、発光ピーク波長520nm、発光出力1.9
mW、量子効率3%の優れたLEDを得た。
井戸構造よりなる活性層16の膜厚を7nmとする他は
同様にして、緑色LED素子を得たところ、発光出力
1.3mW、量子効率2.1%の緑色LEDを得た。
030℃まで上昇させた後、原料ガスにTMGとTM
A、アンモニアガス、ドーパントガスにシランガスを用
い、n型クラッド層13としてSiを1×1020/cm3
ドープしたn型Al0.05Ga0.95N層を4μm成長させ
る他は、実施例1と同様にしてLED素子を作成したと
ころ、発光波長、」発光出力とも、実施例1と同等の特
性を示した。
2μmとする他は、実施例1と同様にしてLED素子を
作成したところ、発光出力1.0mW、量子効率1.7
%の緑色LEDを得た。
6の組成をノンドープIn0.4Ga0.6Nよりなる井戸層
を2.5nmと、ノンドープIn0.01Ga0.99Nよりな
る障壁層を5nmの膜厚で成長させる。この操作を13
回繰り返し、最後に井戸層を積層して総厚1000オン
グストロームの活性層を成長させた。後は実施例1と同
様にして、LED素子としたところ、520nm、発光
出力2.5mW、量子効率3.2%の優れた緑色LED
を得た。
複雑な積層構造としなくとも、必要最小限の構造で非常
に発光出力が高い緑色LEDが得られる。また本発明の
思想を逸脱しない範囲で、本発明に開示した他の窒化物
半導体層を積層構造の間、または外側に入れても良い。
とにより、LEDフルカラーディスプレイにおいては、
従来では光度を稼ぐため複数のGaP系LEDを必要と
していたが、B、G、R各一個づつで一画素が形成でき
るため、高精細度な画面が得られる。またチップLED
とすればさらに小さな画素が実現でき、壁掛けTVも実
現可能となる。
示す模式断面図。
の出力との関係を示すグラフ図。
Claims (1)
- 【請求項1】 基板上に、少なくともn型GaNからな
るコンタクト層を兼ねたクラッド層と、7nm以下の膜
厚を有するノンドープのInXGa1-XN(0<X<1)
井戸層を含む単一量子井戸構造、または7nm以下の膜
厚を有するノンドープのInXGa1-XN(0<X<1)
井戸層とノンドープのInYGa1-YN(Y<X、Y=0
を含む)障壁層とからなる多重量子井戸構造の活性層
と、膜厚1nm以上、0.5μm以下のp型AlYGa
1-YN(0<Y<1)からなるp型クラッド層と、p型
GaNからなるp型コンタクト層との積層構造を有する
ことを特徴とする窒化物半導体発光素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31784995A JP3135041B2 (ja) | 1995-09-29 | 1995-12-06 | 窒化物半導体発光素子 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-276820 | 1995-09-29 | ||
JP27682095 | 1995-09-29 | ||
JP31784995A JP3135041B2 (ja) | 1995-09-29 | 1995-12-06 | 窒化物半導体発光素子 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30098399A Division JP3809749B2 (ja) | 1995-09-29 | 1999-10-22 | 窒化物半導体発光素子 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09153642A JPH09153642A (ja) | 1997-06-10 |
JP3135041B2 true JP3135041B2 (ja) | 2001-02-13 |
Family
ID=26552127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31784995A Expired - Fee Related JP3135041B2 (ja) | 1995-09-29 | 1995-12-06 | 窒化物半導体発光素子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3135041B2 (ja) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7663138B2 (en) | 2006-05-12 | 2010-02-16 | Hitachi Cable, Ltd. | Nitride semiconductor light emitting element |
US8395165B2 (en) | 2011-07-08 | 2013-03-12 | Bridelux, Inc. | Laterally contacted blue LED with superlattice current spreading layer |
US8525221B2 (en) | 2009-11-25 | 2013-09-03 | Toshiba Techno Center, Inc. | LED with improved injection efficiency |
US8536601B2 (en) | 2009-06-10 | 2013-09-17 | Toshiba Techno Center, Inc. | Thin-film LED with P and N contacts electrically isolated from the substrate |
US8564010B2 (en) | 2011-08-04 | 2013-10-22 | Toshiba Techno Center Inc. | Distributed current blocking structures for light emitting diodes |
US8581267B2 (en) | 2011-11-09 | 2013-11-12 | Toshiba Techno Center Inc. | Series connected segmented LED |
US8624482B2 (en) | 2011-09-01 | 2014-01-07 | Toshiba Techno Center Inc. | Distributed bragg reflector for reflecting light of multiple wavelengths from an LED |
US8686430B2 (en) | 2011-09-07 | 2014-04-01 | Toshiba Techno Center Inc. | Buffer layer for GaN-on-Si LED |
US8865565B2 (en) | 2011-08-02 | 2014-10-21 | Kabushiki Kaisha Toshiba | LED having a low defect N-type layer that has grown on a silicon substrate |
US8916906B2 (en) | 2011-07-29 | 2014-12-23 | Kabushiki Kaisha Toshiba | Boron-containing buffer layer for growing gallium nitride on silicon |
US8994064B2 (en) | 2011-09-03 | 2015-03-31 | Kabushiki Kaisha Toshiba | Led that has bounding silicon-doped regions on either side of a strain release layer |
US9018643B2 (en) | 2011-09-06 | 2015-04-28 | Kabushiki Kaisha Toshiba | GaN LEDs with improved area and method for making the same |
US9130068B2 (en) | 2011-09-29 | 2015-09-08 | Manutius Ip, Inc. | Light emitting devices having dislocation density maintaining buffer layers |
US9159869B2 (en) | 2011-08-03 | 2015-10-13 | Kabushiki Kaisha Toshiba | LED on silicon substrate using zinc-sulfide as buffer layer |
US9490392B2 (en) | 2011-09-29 | 2016-11-08 | Toshiba Corporation | P-type doping layers for use with light emitting devices |
US10174439B2 (en) | 2011-07-25 | 2019-01-08 | Samsung Electronics Co., Ltd. | Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100696353B1 (ko) * | 1998-07-23 | 2007-03-19 | 소니 가부시끼 가이샤 | 발광 소자 및 그 제조 방법 |
US7692182B2 (en) | 2001-05-30 | 2010-04-06 | Cree, Inc. | Group III nitride based quantum well light emitting device structures with an indium containing capping structure |
US6958497B2 (en) | 2001-05-30 | 2005-10-25 | Cree, Inc. | Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures |
JP4852826B2 (ja) * | 2004-05-11 | 2012-01-11 | 日立電線株式会社 | 窒化物半導体ウェハ、窒化物半導体デバイス、窒化物半導体ウェハの製造方法、及びp型伝導性の窒化物半導体 |
US7534633B2 (en) | 2004-07-02 | 2009-05-19 | Cree, Inc. | LED with substrate modifications for enhanced light extraction and method of making same |
US7769066B2 (en) | 2006-11-15 | 2010-08-03 | Cree, Inc. | Laser diode and method for fabricating same |
US7834367B2 (en) | 2007-01-19 | 2010-11-16 | Cree, Inc. | Low voltage diode with reduced parasitic resistance and method for fabricating |
JPWO2008153130A1 (ja) * | 2007-06-15 | 2010-08-26 | ローム株式会社 | 窒化物半導体発光素子及び窒化物半導体の製造方法 |
WO2008153068A1 (ja) * | 2007-06-15 | 2008-12-18 | Rohm Co., Ltd. | 窒化物系半導体装置およびその製造方法 |
US8519437B2 (en) | 2007-09-14 | 2013-08-27 | Cree, Inc. | Polarization doping in nitride based diodes |
US9012937B2 (en) | 2007-10-10 | 2015-04-21 | Cree, Inc. | Multiple conversion material light emitting diode package and method of fabricating same |
JP4829273B2 (ja) * | 2008-06-16 | 2011-12-07 | 昭和電工株式会社 | Iii族窒化物半導体発光素子の製造方法 |
US8575592B2 (en) | 2010-02-03 | 2013-11-05 | Cree, Inc. | Group III nitride based light emitting diode structures with multiple quantum well structures having varying well thicknesses |
-
1995
- 1995-12-06 JP JP31784995A patent/JP3135041B2/ja not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
Appl.Phys.Lett.67(13)1995年9月25日発行 p.1868−1870 |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7663138B2 (en) | 2006-05-12 | 2010-02-16 | Hitachi Cable, Ltd. | Nitride semiconductor light emitting element |
US8871539B2 (en) | 2009-06-10 | 2014-10-28 | Kabushiki Kaisha Toshiba | Thin-film LED with P and N contacts electrically isolated from the substrate |
US8536601B2 (en) | 2009-06-10 | 2013-09-17 | Toshiba Techno Center, Inc. | Thin-film LED with P and N contacts electrically isolated from the substrate |
US9142742B2 (en) | 2009-06-10 | 2015-09-22 | Kabushiki Kaisha Toshiba | Thin-film LED with P and N contacts electrically isolated from the substrate |
US8525221B2 (en) | 2009-11-25 | 2013-09-03 | Toshiba Techno Center, Inc. | LED with improved injection efficiency |
US8684749B2 (en) | 2009-11-25 | 2014-04-01 | Toshiba Techno Center Inc. | LED with improved injection efficiency |
US9012953B2 (en) | 2009-11-25 | 2015-04-21 | Kabushiki Kaisha Toshiba | LED with improved injection efficiency |
US8395165B2 (en) | 2011-07-08 | 2013-03-12 | Bridelux, Inc. | Laterally contacted blue LED with superlattice current spreading layer |
US10174439B2 (en) | 2011-07-25 | 2019-01-08 | Samsung Electronics Co., Ltd. | Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow |
US8916906B2 (en) | 2011-07-29 | 2014-12-23 | Kabushiki Kaisha Toshiba | Boron-containing buffer layer for growing gallium nitride on silicon |
US8865565B2 (en) | 2011-08-02 | 2014-10-21 | Kabushiki Kaisha Toshiba | LED having a low defect N-type layer that has grown on a silicon substrate |
US9159869B2 (en) | 2011-08-03 | 2015-10-13 | Kabushiki Kaisha Toshiba | LED on silicon substrate using zinc-sulfide as buffer layer |
US8564010B2 (en) | 2011-08-04 | 2013-10-22 | Toshiba Techno Center Inc. | Distributed current blocking structures for light emitting diodes |
US9070833B2 (en) | 2011-08-04 | 2015-06-30 | Kabushiki Kaisha Toshiba | Distributed current blocking structures for light emitting diodes |
US8981410B1 (en) | 2011-09-01 | 2015-03-17 | Kabushiki Kaisha Toshiba | Distributed bragg reflector for reflecting light of multiple wavelengths from an LED |
US8624482B2 (en) | 2011-09-01 | 2014-01-07 | Toshiba Techno Center Inc. | Distributed bragg reflector for reflecting light of multiple wavelengths from an LED |
US8994064B2 (en) | 2011-09-03 | 2015-03-31 | Kabushiki Kaisha Toshiba | Led that has bounding silicon-doped regions on either side of a strain release layer |
US9018643B2 (en) | 2011-09-06 | 2015-04-28 | Kabushiki Kaisha Toshiba | GaN LEDs with improved area and method for making the same |
US8686430B2 (en) | 2011-09-07 | 2014-04-01 | Toshiba Techno Center Inc. | Buffer layer for GaN-on-Si LED |
US9130068B2 (en) | 2011-09-29 | 2015-09-08 | Manutius Ip, Inc. | Light emitting devices having dislocation density maintaining buffer layers |
US9490392B2 (en) | 2011-09-29 | 2016-11-08 | Toshiba Corporation | P-type doping layers for use with light emitting devices |
US9123853B2 (en) | 2011-11-09 | 2015-09-01 | Manutius Ip, Inc. | Series connected segmented LED |
US9391234B2 (en) | 2011-11-09 | 2016-07-12 | Toshiba Corporation | Series connected segmented LED |
US8581267B2 (en) | 2011-11-09 | 2013-11-12 | Toshiba Techno Center Inc. | Series connected segmented LED |
Also Published As
Publication number | Publication date |
---|---|
JPH09153642A (ja) | 1997-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3135041B2 (ja) | 窒化物半導体発光素子 | |
JP3250438B2 (ja) | 窒化物半導体発光素子 | |
JP2890396B2 (ja) | 窒化物半導体発光素子 | |
JP3890930B2 (ja) | 窒化物半導体発光素子 | |
EP1248303B1 (en) | Light-emitting device | |
US6900465B2 (en) | Nitride semiconductor light-emitting device | |
JP3868136B2 (ja) | 窒化ガリウム系化合物半導体発光素子 | |
EP0716457B1 (en) | Nitride semiconductor light-emitting device | |
US8513694B2 (en) | Nitride semiconductor device and manufacturing method of the device | |
JP4629178B2 (ja) | 窒化物半導体素子 | |
EP2164115A1 (en) | Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor | |
JP2780691B2 (ja) | 窒化物半導体発光素子 | |
JP2011517098A (ja) | 半極性(Al,In,Ga,B)Nベースの発光ダイオードの製造のための方法 | |
JPH09148678A (ja) | 窒化物半導体発光素子 | |
JP3651260B2 (ja) | 窒化物半導体素子 | |
JP2713095B2 (ja) | 半導体発光素子およびその製造方法 | |
JPH11191639A (ja) | 窒化物半導体素子 | |
JP2918139B2 (ja) | 窒化ガリウム系化合物半導体発光素子 | |
JP3371830B2 (ja) | 窒化物半導体発光素子 | |
JP2976951B2 (ja) | 窒化物半導体発光ダイオードを備えた表示装置 | |
JP2004014587A (ja) | 窒化物系化合物半導体エピタキシャルウエハ及び発光素子 | |
JP3924973B2 (ja) | 窒化物半導体発光素子の製造方法および窒化物半導体発光素子 | |
JP3809749B2 (ja) | 窒化物半導体発光素子 | |
JP3267250B2 (ja) | 窒化物半導体発光素子 | |
JP3952079B2 (ja) | 窒化物半導体発光素子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081201 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091201 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091201 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091201 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101201 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101201 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111201 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111201 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121201 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121201 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131201 Year of fee payment: 13 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |