[go: up one dir, main page]

JP2726851B2 - Manufacturing method of one-dimensional quantum wires - Google Patents

Manufacturing method of one-dimensional quantum wires

Info

Publication number
JP2726851B2
JP2726851B2 JP62131378A JP13137887A JP2726851B2 JP 2726851 B2 JP2726851 B2 JP 2726851B2 JP 62131378 A JP62131378 A JP 62131378A JP 13137887 A JP13137887 A JP 13137887A JP 2726851 B2 JP2726851 B2 JP 2726851B2
Authority
JP
Japan
Prior art keywords
trapezoidal
growth
doped
semiconductor
superlattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62131378A
Other languages
Japanese (ja)
Other versions
JPS63299113A (en
Inventor
裕充 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62131378A priority Critical patent/JP2726851B2/en
Publication of JPS63299113A publication Critical patent/JPS63299113A/en
Application granted granted Critical
Publication of JP2726851B2 publication Critical patent/JP2726851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/81Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation
    • H10D62/812Single quantum well structures
    • H10D62/813Quantum wire structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Semiconductor Lasers (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超高速の一次元電子トランジスタ、あるい
は量子干渉を利用した高変換効率の非線形素子等に利用
される一次元量子細線の製造方法に関するものである。 尚、以下の説明において( )は結晶の面をあらわ
し、〔 〕は結晶軸をあらわす。 (従来技術) 材料としてAlGaAs/GaAsを例にとって従来提案されて
いる一次元量子細線の構造を第5図に示す。図におい
て、1は半絶縁性GaAs基板、2はノンドープAlGaAs成長
層、3はノンドープGaAs成長層、4はノンドープAlGaAs
スペーサ層、5はSiドープAlGaAs成長層示す。これはAl
GaAs/GaAsの超格子の側面に変調ドープによって一次元
電子状態を実現するものである。図中点線で囲まれた超
格子/AlGaAs界面の部分が一次元電子状態になる。 この構造の作製方法を次に第6図を用いて説明する。
まず、分子線エピタキシャル法あるいは有機金属気相成
長法によって基板1上にノンドープのAlGaAs2とGaAs3を
順次成長させ、超格子を作製する。最上のノンドープAl
GaAs層は厚目に形成する。次に、超格子ウエハ上にエッ
チングマスク6を〔10〕方向に配し(第6図
(a))、化学エッチングあるいはプラズマエッチング
によって段差を造る(第6図(b))。エッチングマス
ク6を除去した後に、再び分子線エピタキシャル法か有
機金属気相成長法でノンドープAlGaAs4を10nmの厚さで
エッチング側面に成長させ、引続きSiドープ(〜1018cm
-3)AlGaAs5を100nmの厚さで成長させて、ポテンシャル
の谷になるGaAs3の側面に一次元電子状態を実現する
(第6図(c))。 (発明が解決しようとする問題点) しかし、上記で説明した量子細線の作製方法には、次
のような問題点がある。化学エッチングによって形成さ
れた側面(第5図の斜線部分)は、炭素,酸素,シリコ
ン等で汚染されており、これらの汚染物は電子の散乱要
因や再結合中心となるという問題点がある。さらに化学
エッチングでは物質の種類によてエッチング速度が異な
るので、エッチングの側面は凹凸になり、やはり電子の
散乱要因となる。一方、プラズマエッチングによって加
工する場合、加工面(第5図の斜線の部分)にダメージ
層あるいは変質層ができる。それらの層も電子の散乱要
因や再結合中心となり、この量子細線を使ったデバイス
の性能を著しく悪くするという問題点がある。第5図の
構造を持つ量子細線は側面の界面を使うものであるか
ら、界面の汚染や加工ダメージは致命的な欠陥となる。 (発明の目的) 本発明は上記の欠点を改善するために提案されたもの
で、その目的とする点は、エッチングなどの加工工程を
含まず成長工程のみで量子細線を形成するものであるか
ら、加工ダメージや汚染から完全に免れることは勿論の
こと横方向の界面の急峻性も単原子オーダで制御可能
で、高品質の一次元量子細線の製造方法を提供すること
にある。 (問題点を解決するための手段) 上記の目的を達明するため本発明は、(001)化合物
半導体基板面上に〔10〕方向に段差を有するストライ
プを形成する工程と、前記の半導体基板上に有機金属気
相成長法によって、水平方向の幅が量子細線効果を生じ
る幅より広い、2種類以上の低不純物濃度の半導体層を
交互に積層して超格子のストライプを台形状に成長せし
め、かつ前記の同一種類の成長層の中の少なくとも1種
類の成長層の厚さをほぼ100ナノメータ以下の厚さに形
成する工程と、ついで少なくとも前記の台形状の積層層
の上面に低不純物濃度の他の半導体を、ほぼ50ナノメー
タ以下の厚さに成長させるか、または成長させることな
しに、引き続き高不純物濃度の半導体で前記の台形状の
超格子を埋め込む工程とを具備することを特徴とする一
次元量子細線の製造方法を発明の要旨とするものであ
る。 しかして、本発明は予め所定の形に加工された基板上
に、有機金属気相成長法を使って台形状の超格子を成長
させ、引き続く成長によってその台形状の超格子の側面
に高不純物濃度の半導体を形成し、変調ドープによって
一次元電子状態を実現し、量子細線を造ることを主要な
特徴とする。 次に本発明の実施例について説明する。なお、実施例
は一つの例示であって、本発明の精神を逸脱しない範囲
で、種々の変更あるいは改良を行いうることは言うまで
もない。 (実施例) 以下、材料としてAlGaAs/GaAsを例にとって本発明の
実施例について詳細に説明する。 第1図は、本発明の方法によって造られた量子細線の
基本構造であり、量子細線は点線で囲まれた界面の部分
に存在する。 図において、1は半絶縁性GaAs基板、2はノンドープ
AlGaAs成長層、3はノンドープGaAs成長層、4はノンド
ープAlGaAsスペーサ層、5はSiドープAlGaAs成長層を示
す。 第2図は、第1図の構造を作製する手順を示してお
り、以下順次説明する。まず、GaAs基板1の(001)面
上に〔001〕方向に長いストライプ上のエッチングマス
ク6を配置し(第2図(a))、化学エッチングかプラ
ズマエッチングで第2図(b)のように、基板上に〔
10〕方向に段差を持ったストライプを造る。この時、段
差の側壁の形状はどのような形でも良い。この基板上に
有機金属気相成長法を使って、ノンドープAlGaAs2とGaA
s3を順次10nmの厚さで成長させる。この時、台形の側壁
にはいっさい成長しないので、台形状の超格子を作製す
ることができる(第2図(c))。この時の成長条件は
後で詳しく述べる。次に、台形状の超格子の上にノンド
ープAlGaAs4を50nm以上、例えば100nm成長させた後(第
2図(d))、Siドープ(〜1018cm-3)AlGaAs5を成長
させる。段差上面の成長は、最終的に三角形となり(第
2図(e))、その後は横方向に成長し結果的には台形
状の超格子はSiドープAlGaAs5で覆われる(第2図
(f))。段差上面での成長は、形が三角形になるまで
はその側壁にいっさい成長しないが、三角形状になった
後は、側壁から横方向に成長が起こるので、第2図
(f)の構造を実現できる。ノンドープAlGaAs層1によ
って、台形上面は変調ドープされない。一方、台形格子
側面はSiドープAlGaAs5と接しているので、GaAs3とAlGa
As5の界面に変調ドープによって一次元電子状態が実現
できる。 なお台形格子側面とSiドープAlGaAs5との間に、薄い
ノンドープAlGaAs層を介してもよい。 次に、本実施例の結晶成長条件について述べる。高周
波加熱の横型炉を用い、常圧下で成長を行う。原料とし
てトリメチルガリウム,トリメチルアルミニウム,アル
シンを用いて、第2図(b)で示した基板1上に成長さ
せる。段差上面の成長層の側壁と段差上面の角度をθと
すると(第3図(a)の挿入図を見よ)、このθと成長
条件との関係を第3図に示す。図から分かるようにθは
あらゆる成長温度(第3図(a))、アルシン分圧(第
3図(b))、トリメチルガリウム分圧(第3図
(c))で正確に55度を示す。このことから、台形側面
は(111)B面であること、またこの面は原子的に平坦
な面であること、さらに台形側面、即ち(111)B面上
ではいっさい成長が起こらないことが分かる。ここでA
面はGa面、B面はAs面のことである。このことを確かめ
るために、成長速度の面方位依存性について検討した。
その結果を、第4図に示す。図から(111)B面上では
成長が起こらないことは明らかである。従って、第2図
(c),(d)で示した台形状の超格子を有機金属気相
成長で容易に作製できる。 以上説明したように、本実施例の作製方法によれば、
加工工程なしに、すべて成長工程だけで作製可能なの
で、エッチング汚染や加工ダメージがなく、側面も単原
子オーダで平坦な量子細線となる。 本実施例では、AlGaAs/GaAs系材料で説明したが、GaI
nP/GaAs,GaInAs/InP等のIII−V族半導体及びその混晶
系、ZnSe/GaAs等のII−VI族半導体とその混晶系材料で
も実現できる。 (発明の効果) 本発明の製造方法によれば、成長工程のみで量子細線
を形成するものであるから、加工ダメージや汚染から完
全に免れることは勿論のこと横方向の界面の急峻性も単
原子オーダで制御可能で、高品質の一次元量子細線をう
ることができる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method of manufacturing a one-dimensional quantum wire used for an ultra-high-speed one-dimensional electron transistor or a non-linear element having high conversion efficiency utilizing quantum interference. It is about. In the following description, () indicates a crystal plane, and [] indicates a crystal axis. (Prior Art) FIG. 5 shows a structure of a conventionally proposed one-dimensional quantum wire using AlGaAs / GaAs as an example. In the figure, 1 is a semi-insulating GaAs substrate, 2 is a non-doped AlGaAs growth layer, 3 is a non-doped GaAs growth layer, 4 is non-doped AlGaAs.
The spacer layers 5 and 5 are Si-doped AlGaAs growth layers. This is Al
A one-dimensional electronic state is realized by modulation doping on the side surface of a GaAs / GaAs superlattice. The portion of the superlattice / AlGaAs interface surrounded by the dotted line in the figure becomes a one-dimensional electronic state. Next, a method for manufacturing this structure will be described with reference to FIG.
First, non-doped AlGaAs2 and GaAs3 are sequentially grown on the substrate 1 by a molecular beam epitaxy method or a metal organic chemical vapor deposition method to produce a superlattice. The best non-doped Al
The GaAs layer is formed thick. Next, an etching mask 6 is arranged on the superlattice wafer in the [10] direction (FIG. 6A), and a step is formed by chemical etching or plasma etching (FIG. 6B). After removing the etching mask 6, grown etched side non-doped AlGaAs4 a thickness of 10nm again molecular beam epitaxy or metal organic chemical vapor deposition method, subsequently Si-doped (to 10 18 cm
-3 ) By growing AlGaAs5 to a thickness of 100 nm, a one-dimensional electronic state is realized on the side surface of GaAs3 which becomes a potential valley (FIG. 6 (c)). (Problems to be solved by the invention) However, the above-described method for producing a quantum wire has the following problems. The side surface (shaded portion in FIG. 5) formed by the chemical etching is contaminated with carbon, oxygen, silicon, and the like, and these contaminants have a problem that they become scattering factors of electrons and recombination centers. Further, in chemical etching, since the etching rate varies depending on the type of substance, the side surface of the etching becomes uneven, which again becomes a factor of scattering of electrons. On the other hand, when processing is performed by plasma etching, a damaged layer or a deteriorated layer is formed on the processed surface (the hatched portion in FIG. 5). These layers also act as electron scattering factors and recombination centers, causing a problem that the performance of a device using this quantum wire is remarkably deteriorated. Since the quantum wire having the structure shown in FIG. 5 uses the interface on the side surface, contamination or processing damage of the interface becomes a fatal defect. (Object of the Invention) The present invention has been proposed in order to improve the above-mentioned drawbacks. The object of the present invention is to form a quantum wire by a growth step only without a processing step such as etching. It is another object of the present invention to provide a method for producing a high-quality one-dimensional quantum wire, which is completely free from processing damage and contamination and can control the steepness of the interface in the lateral direction on the order of a single atom. (Means for Solving the Problems) In order to achieve the above object, the present invention provides a step of forming a stripe having a step in the [10] direction on a surface of a (001) compound semiconductor substrate; By metalorganic vapor phase epitaxy, two or more types of low-impurity-concentration semiconductor layers whose width in the horizontal direction is wider than that at which the quantum wire effect occurs are alternately stacked to grow a superlattice stripe in a trapezoidal shape. Forming a thickness of at least one type of growth layer of the same type of growth layer to a thickness of about 100 nanometers or less; and forming a low impurity concentration on at least the upper surface of the trapezoidal stacked layer. Growing the other semiconductor to a thickness of about 50 nanometers or less, or continuously embedding the trapezoidal superlattice with a high impurity concentration semiconductor without growing the semiconductor. That is a method for manufacturing a one-dimensional quantum wire which the gist of the invention. Thus, the present invention grows a trapezoidal superlattice on a substrate that has been processed into a predetermined shape in advance using a metalorganic vapor phase epitaxy method. The main feature is to form a semiconductor of a concentration, realize a one-dimensional electronic state by modulation doping, and produce a quantum wire. Next, examples of the present invention will be described. It should be noted that the embodiments are merely examples, and it is needless to say that various changes or improvements can be made without departing from the spirit of the present invention. (Example) Hereinafter, an example of the present invention will be described in detail using AlGaAs / GaAs as an example. FIG. 1 shows a basic structure of a quantum wire produced by the method of the present invention. The quantum wire exists at a portion of an interface surrounded by a dotted line. In the figure, 1 is a semi-insulating GaAs substrate, 2 is non-doped
An AlGaAs growth layer, 3 is a non-doped GaAs growth layer, 4 is a non-doped AlGaAs spacer layer, and 5 is a Si-doped AlGaAs growth layer. FIG. 2 shows a procedure for fabricating the structure of FIG. 1, which will be sequentially described below. First, an etching mask 6 on a stripe long in the [001] direction is arranged on the (001) plane of the GaAs substrate 1 (FIG. 2 (a)), and is subjected to chemical etching or plasma etching as shown in FIG. 2 (b). On the board
10] Make stripes with steps in the direction. At this time, the shape of the side wall of the step may be any shape. Non-doped AlGaAs2 and GaAs are deposited on this substrate using metal organic chemical vapor deposition.
s3 is sequentially grown to a thickness of 10 nm. At this time, since no growth occurs on the trapezoidal side walls, a trapezoidal superlattice can be produced (FIG. 2 (c)). The growth conditions at this time will be described later in detail. Next, non-doped AlGaAs4 is grown on the trapezoidal superlattice by 50 nm or more, for example, 100 nm (FIG. 2 (d)), and then Si-doped (.about.10 @ 18 cm @ -3 ) AlGaAs5 is grown. The growth of the top surface of the step eventually becomes triangular (FIG. 2 (e)), and then grows in the lateral direction, so that the trapezoidal superlattice is covered with Si-doped AlGaAs5 (FIG. 2 (f)). ). The growth on the upper surface of the step does not grow at all on the side wall until the shape becomes triangular, but after the triangular shape, growth occurs in the lateral direction from the side wall, so that the structure shown in FIG. it can. Due to the non-doped AlGaAs layer 1, the trapezoidal upper surface is not modulation-doped. On the other hand, since the side of the trapezoidal lattice is in contact with Si-doped AlGaAs5, GaAs3 and AlGa
A one-dimensional electronic state can be realized by modulation doping at the interface of As5. Note that a thin non-doped AlGaAs layer may be interposed between the trapezoidal lattice side surface and the Si-doped AlGaAs5. Next, the crystal growth conditions of this embodiment will be described. Growth is carried out under normal pressure using a horizontal furnace with high frequency heating. Using trimethylgallium, trimethylaluminum, and arsine as raw materials, they are grown on the substrate 1 shown in FIG. 2 (b). Assuming that the angle between the side wall of the growth layer on the step upper surface and the step upper surface is θ (see the inset in FIG. 3A), FIG. 3 shows the relationship between θ and the growth conditions. As can be seen from the figure, θ shows exactly 55 ° at all growth temperatures (FIG. 3 (a)), arsine partial pressure (FIG. 3 (b)), and trimethylgallium partial pressure (FIG. 3 (c)). . This indicates that the trapezoidal side surface is a (111) B surface, that this surface is an atomically flat surface, and that no growth occurs on the trapezoidal side surface, that is, the (111) B surface. . Where A
The plane is a Ga plane, and the B plane is an As plane. In order to confirm this, the dependence of the growth rate on the plane orientation was examined.
The result is shown in FIG. It is clear from the figure that no growth occurs on the (111) B plane. Therefore, the trapezoidal superlattices shown in FIGS. 2C and 2D can be easily produced by metal organic chemical vapor deposition. As described above, according to the manufacturing method of this embodiment,
Since it can be manufactured only by the growth step without any processing step, there is no etching contamination or processing damage, and the side face is a flat quantum wire on the order of a single atom. In the present embodiment, the description has been given of the AlGaAs / GaAs material.
III-V group semiconductors such as nP / GaAs and GaInAs / InP and mixed crystal systems thereof, and II-VI group semiconductors such as ZnSe / GaAs and mixed crystal materials thereof can also be realized. (Effects of the Invention) According to the manufacturing method of the present invention, a quantum wire is formed only by a growth process, so that it is completely free from processing damage and contamination, and the steepness of a horizontal interface is also simple. It is possible to obtain high-quality one-dimensional quantum wires that can be controlled in atomic order.

【図面の簡単な説明】 第1図は本発明の方法によって造られる量子細線の基本
構造、第2図は本発明の作製手順、第3図は成長側壁の
角度と成長条件の関係、第4図は成長速度と基板面方位
の関係、第5図は従来提案されている量子細線構造の断
面図であり、第6図は従来提案されている作製方法を説
明する図を示す。 1……半絶縁性GaAs基板 2……ノンドープAlGaAs成長層 3……ノンドープGaAs成長層 4……ノンドープAlGaAsのスペーサ層 5……SiドープAlGaAs成長層 6……エッチングマスク
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the basic structure of a quantum wire produced by the method of the present invention, FIG. 2 shows the manufacturing procedure of the present invention, FIG. 3 shows the relationship between the growth side wall angle and the growth conditions, and FIG. The figure shows the relationship between the growth rate and the plane orientation of the substrate, FIG. 5 is a cross-sectional view of a conventionally proposed quantum wire structure, and FIG. 6 is a view for explaining a conventionally proposed manufacturing method. 1 Semi-insulating GaAs substrate 2 Non-doped AlGaAs growth layer 3 Non-doped GaAs growth layer 4 Non-doped AlGaAs spacer layer 5 Si-doped AlGaAs growth layer 6 Etching mask

Claims (1)

(57)【特許請求の範囲】 1.(001)化合物半導体基板面上に〔10〕方向に段
差を有するストライプを形成する工程と、 前記の半導体基板上に有機金属気相成長法によって、水
平方向の幅が量子細線効果を生じる幅より広い、2種類
以上の低不純物濃度の半導体層を交互に積層して超格子
のストライプを台形状に成長せしめ、かつ前記の同一種
類の成長層の中の少なくとも1種類の成長層の厚さをほ
ぼ100ナノメータ以下の厚さに形成する工程と、 ついで少なくとも前記の台形状の積層層の上面に低不純
物濃度の他の半導体を、ほぼ50ナノメータ以下の厚さに
成長させるか、または成長させることなしに、引き続き
高不純物濃度の半導体で前記の台形状の超格子を埋め込
む工程とを具備することを特徴とする一次元量子細線の
製造方法。
(57) [Claims] Forming a stripe having a step in the [10] direction on the surface of the (001) compound semiconductor substrate, and forming the stripe in the horizontal direction on the semiconductor substrate by a metal organic chemical vapor deposition method so that the width in the horizontal direction is smaller than the width at which the quantum wire effect occurs. A superlattice stripe is grown in a trapezoidal shape by alternately laminating two or more types of semiconductor layers having a low impurity concentration, and the thickness of at least one type of growth layer among the same type of growth layer is reduced. Forming the semiconductor to a thickness of about 100 nanometers or less, and then growing or growing another semiconductor with a low impurity concentration to a thickness of about 50 nanometers or less on at least the upper surface of the trapezoidal stacked layer. And continuously embedding the trapezoidal superlattice with a semiconductor having a high impurity concentration.
JP62131378A 1987-05-29 1987-05-29 Manufacturing method of one-dimensional quantum wires Expired - Fee Related JP2726851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62131378A JP2726851B2 (en) 1987-05-29 1987-05-29 Manufacturing method of one-dimensional quantum wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62131378A JP2726851B2 (en) 1987-05-29 1987-05-29 Manufacturing method of one-dimensional quantum wires

Publications (2)

Publication Number Publication Date
JPS63299113A JPS63299113A (en) 1988-12-06
JP2726851B2 true JP2726851B2 (en) 1998-03-11

Family

ID=15056546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62131378A Expired - Fee Related JP2726851B2 (en) 1987-05-29 1987-05-29 Manufacturing method of one-dimensional quantum wires

Country Status (1)

Country Link
JP (1) JP2726851B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799785B2 (en) * 1986-10-09 1995-10-25 松下電器産業株式会社 Semiconductor laser device

Also Published As

Publication number Publication date
JPS63299113A (en) 1988-12-06

Similar Documents

Publication Publication Date Title
JP3224437B2 (en) III-V compound semiconductor device
KR20100092932A (en) Semiconductor substrate and method for manufacturing semiconductor substrate
JP3158651B2 (en) Compound semiconductor and method of manufacturing the same
US10109480B2 (en) Selective nanoscale growth of lattice mismatched materials
JP3326704B2 (en) Method of manufacturing III / V compound semiconductor device
JP2726851B2 (en) Manufacturing method of one-dimensional quantum wires
JP3547320B2 (en) GaN-based compound semiconductor device
JP2533777B2 (en) Method for manufacturing one-dimensional quantum wire
JP2654828B2 (en) Semiconductor device having quantum wires and method of manufacturing the same
JP3042645B2 (en) Manufacturing method of semiconductor quantum box structure
JPS63299114A (en) Manufacture of one-dimensional quantum thin line
US5833870A (en) Method for forming a high density quantum wire
JPS61189619A (en) Compound semiconductor device
JPH023222A (en) Manufacture of semiconductor quantum wire
JPH0430578A (en) Manufacture of semiconductor quantum box structure
JPH08181301A (en) Quantum dot structure and manufacturing method thereof
JP2846576B2 (en) Method for producing III-V compound semiconductor epitaxial layer
JPH09260787A (en) InP semiconductor device
JPS63299112A (en) Manufacture of one-dimensional quantum thin line
JPH04356963A (en) Manufacture of semiconductor quantum fine wiring
JP2717125B2 (en) Method for manufacturing semiconductor quantum well structure
JP2503255B2 (en) Method for manufacturing compound semiconductor substrate
JPH02137316A (en) Manufacture of semiconductor quantum fine wire
JPH03129778A (en) Method for manufacturing one-dimensional quantum wire
JPH0712082B2 (en) Selective dope heterostructure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees