[go: up one dir, main page]

JPS63299113A - Manufacture of one-dimensional quantum thin line - Google Patents

Manufacture of one-dimensional quantum thin line

Info

Publication number
JPS63299113A
JPS63299113A JP62131378A JP13137887A JPS63299113A JP S63299113 A JPS63299113 A JP S63299113A JP 62131378 A JP62131378 A JP 62131378A JP 13137887 A JP13137887 A JP 13137887A JP S63299113 A JPS63299113 A JP S63299113A
Authority
JP
Japan
Prior art keywords
growth
trapezoidal
doped
superlattice
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62131378A
Other languages
Japanese (ja)
Other versions
JP2726851B2 (en
Inventor
Hiromitsu Asai
浅井 裕充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62131378A priority Critical patent/JP2726851B2/en
Publication of JPS63299113A publication Critical patent/JPS63299113A/en
Application granted granted Critical
Publication of JP2726851B2 publication Critical patent/JP2726851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/81Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation
    • H10D62/812Single quantum well structures
    • H10D62/813Quantum wire structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Semiconductor Lasers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超高速の一次元電子トランジスタ、あるいは
量子干渉を利用した高変換効率の非線形素子等に利用さ
れる一次元量子細線の製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a method for manufacturing a one-dimensional quantum wire used for ultra-high-speed one-dimensional electronic transistors or nonlinear elements with high conversion efficiency using quantum interference. It is related to.

尚、以下の説明において()は結晶の面をあられし、〔
〕は結晶軸をあられす。
In the following explanation, () indicates the surface of the crystal, and [
] is the crystal axis.

(従来技術) 材料としてAIGaAa/GaAaを例にとって従来提
案されている一次元量子細線の構造を第5図に示す。
(Prior Art) FIG. 5 shows the structure of a one-dimensional quantum wire that has been proposed in the past, using AIGaAa/GaAa as an example of the material.

図において、lは半絶−性GaAs基板、2はノンドー
プAlGa^3成長層、3はノンドープGaAs成長層
、4はノンドープAlGaAsスペーサ層、5はsiド
ープ^lGaAs成長層示す、これは、^lGaAs/
Ga轟Sの超格子の側面に変調ドープによって一次元電
子状態を実現するものである0図中点線で囲まれた超格
子/AlGaAs界面の部分が一次元電子状態になる。
In the figure, 1 is a semi-isolated GaAs substrate, 2 is a non-doped AlGa^3 growth layer, 3 is a non-doped GaAs growth layer, 4 is a non-doped AlGaAs spacer layer, and 5 is a Si-doped ^lGaAs grown layer. /
A one-dimensional electronic state is realized by modulation doping on the side surface of the superlattice of Ga Todo S. The part of the superlattice/AlGaAs interface surrounded by the dotted line in Figure 0 becomes a one-dimensional electronic state.

この構造の作製方法を次に第6図を用いて説明する。ま
ず、分子線エピタキシャル法あるいは有機金属気相成長
法によって基板1上にノンドーブのAlGaAs 2と
GaAs 3を順次成長させ、超格子を作製する。最上
のノンドープAlGaAs層は厚目に形成する。−次に
、超格子ウェハ上にエツチングマスク6を〔110〕方
向に配しく第6図(萄)、化学エツチングあるいはプラ
ズマエツチングによって段差を造る(第6図(ロ))、
エツチングマスク6を除去した後に、再び分子線エピタ
キシャル法か有機金属気相成長法でノンドープAlGa
As 4をIon−の厚さでエツチング側面に成長させ
、引続きSlドープ(〜10”am−”) AlGaA
s 5を100 nmの厚さで成長させて、ポテンシャ
ルの谷になるGaAs 3の側面に一次元電子状態を実
現する(第6図(C3)。
Next, a method for manufacturing this structure will be explained using FIG. 6. First, nondoped AlGaAs 2 and GaAs 3 are sequentially grown on a substrate 1 by molecular beam epitaxial method or metal organic vapor phase epitaxy to create a superlattice. The uppermost non-doped AlGaAs layer is formed to be thick. - Next, an etching mask 6 is placed in the [110] direction on the superlattice wafer, and steps are created by chemical etching or plasma etching (Fig. 6 (b));
After removing the etching mask 6, the non-doped AlGa is grown again by molecular beam epitaxial method or organometallic vapor phase epitaxy.
As4 is grown on the etched sides to a thickness of Ion-, followed by Sl-doped (~10"am-") AlGaA
By growing S 5 to a thickness of 100 nm, a one-dimensional electronic state is realized on the side surface of GaAs 3 which becomes a potential valley (FIG. 6 (C3)).

(発明が解決しようとする問題点) しかし、上記で説明した量子細線の作製方法には、次の
ような問題点がある。化学エツチングによって形成され
た側面(第5図の斜線部分)は、炭素、酸素、シリコン
等で汚染されており、これらの汚染物は電子の散乱要因
や再結合中心となるという問題点がある。さらに化学エ
ツチングでは勧賞の種類によってエツチング速度が異な
るので、エツチングの側面は凹凸になり、やはり電子の
散乱要因となる。一方、プラズマエツチングによって加
工する場合、加工面(第5図の斜線の部分)にダメージ
層あるいは変質層ができる。それらの層も電子の散乱要
因や再結合中心となり、この量子細線を使ったデバイス
の性能を著しく悪くするという問題点がある。第5図の
構造を持つ量子細線は側面の界面を使うものであるから
、界面の汚染や加工ダメージは致命的な欠陥となる。
(Problems to be Solved by the Invention) However, the quantum wire manufacturing method described above has the following problems. The side surfaces (shaded areas in FIG. 5) formed by chemical etching are contaminated with carbon, oxygen, silicon, etc., and these contaminants pose a problem in that they become electron scattering factors and recombination centers. Furthermore, in chemical etching, the etching speed varies depending on the type of substrate, so the sides of the etching become uneven, which also causes scattering of electrons. On the other hand, when processing is performed by plasma etching, a damaged layer or altered layer is formed on the processed surface (the shaded area in FIG. 5). These layers also act as electron scattering factors and recombination centers, which poses the problem of significantly deteriorating the performance of devices using quantum wires. Since the quantum wire with the structure shown in Figure 5 uses side interfaces, contamination of the interfaces and processing damage are fatal defects.

(発明の目的) 本発明は上記の欠点を改善するために提案されたもので
、その目的とする点は、エツチングなどの加工工程を含
まず成長工程のみで量子細線を形成するものであるから
、加工ダメージや汚染から完全に免れることは勿論のこ
と横方向の界面の急峻性も単原子オーダで制御可能で、
高品質の一次元量子細線の製造方法を提供することにあ
る。
(Purpose of the Invention) The present invention was proposed to improve the above-mentioned drawbacks, and its purpose is to form quantum wires only through a growth process without any processing steps such as etching. Not only is it completely free from processing damage and contamination, but also the steepness of the lateral interface can be controlled on the order of a single atom.
The object of the present invention is to provide a method for manufacturing high-quality one-dimensional quantum wires.

(問題点を解決するための手段) 上記の目的を達成するために、本発明は(001)化合
物半導体基板面上に〔110〕方向に段差を育するスト
ライプを形成する工程と、前記の半導体基−上に有機金
属気相成長法によって、2種頬以上の低不純物濃度の半
導体層を交互に積層して超格子のストライプを台形状に
成長せしめ、かつ前記の同一種類の成長層の中の少くと
も1種類の成長層の厚さをほぼ100ナノメータ以下の
厚さに形成する工程と、ついで少く七も前記の台形状の
積層層の上面に低不純物濃度の他の半導体を、ほぼ50
ナノメータ以下の厚さに成長させるか、または成長させ
ることなしに、引き続き高不純物濃度の半導体で前記の
台形状の超格子を埋め込む工程とを具備することを特徴
とする一次元量子細線の製造方法を発明の要旨とするも
のである。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes a step of forming a stripe growing steps in the [110] direction on a (001) compound semiconductor substrate surface, and Two or more types of low impurity concentration semiconductor layers are alternately laminated on the substrate by metal organic vapor phase epitaxy to grow trapezoidal superlattice stripes, and within the growth layers of the same type. forming at least one type of growth layer with a thickness of approximately 100 nanometers or less;
A method for producing a one-dimensional quantum wire, comprising the step of growing the trapezoidal superlattice to a thickness of nanometers or less, or burying the trapezoidal superlattice with a semiconductor having a high impurity concentration without growing it. This is the gist of the invention.

しかして、本発明は予め所定の形に加工された基板上に
、有機金属気相成長法を使って台形状の超格子を成長さ
せ、引き続く成長によってその台形状の超格子の側面に
高不純物濃度の半導体を形成し、変調ドープによって一
次元電子状態を実現し、量子細線を造ることを主要な特
徴とする。
Therefore, in the present invention, a trapezoidal superlattice is grown on a substrate that has been processed into a predetermined shape using metal organic vapor phase epitaxy, and by subsequent growth, high impurities are added to the sides of the trapezoidal superlattice. The main feature is to form a semiconductor with high concentration, realize a one-dimensional electronic state through modulation doping, and create quantum wires.

次に本発明の実施例について説明する。なお、実施例は
一つの例示であって、本発明の精神を逸購しない範囲で
、種々の変更あるいは改良を行いうろことは言うまでも
ない。
Next, examples of the present invention will be described. It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

(実施例) 以下、材料としてAIGaAa/GaAsを例にとって
本発明の実施例について詳細に説明する。
(Example) Hereinafter, examples of the present invention will be described in detail using AIGaAa/GaAs as an example of the material.

第1図は、本発明の方法によって造られた量子細線の基
本構造であり、量子細線は点線で囲まれた界面の部分に
存在する。
FIG. 1 shows the basic structure of a quantum wire produced by the method of the present invention, and the quantum wire exists in the interface portion surrounded by the dotted line.

図において、1は半絶縁性GaAa基板、2はノンドー
プAlGaAs層長層、3はノンドープGaAa成長層
、4はノンドープAlGaAsスペーサ層、5はSiド
ープ^IGa^3成長層を示す。
In the figure, 1 is a semi-insulating GaAa substrate, 2 is a non-doped AlGaAs long layer, 3 is a non-doped GaAa growth layer, 4 is a non-doped AlGaAs spacer layer, and 5 is a Si-doped ^IGa^3 growth layer.

第2図は、第1図の構造を作製する手順を示しており、
以下順次説明する。まず、GaAs基板1の(001)
面上に(110)方向に長いストライプ状のエツチング
マスク6を配置しく第2図(a))、化学エツチングか
プラズマエツチングで第2図(ハ)のように、基板上に
c丁10)方向に段差を持ったストライプを造る。この
時、段差の側壁の形状はどのような形でも良い、この基
板上に有機金属気相成長法を使って、ノンドープ^IG
aAa 2とGaAs3を順次Ion−の厚さで成長さ
せる。この時、台形の側壁にはいっさい成長しないので
、台形状の超格子を作製することができる(第2図(C
))、この時の成長条件は後で詳しく述べる0次に、台
形状の超格子の上にノンドープAlGaAs 4を5O
n−以上、例えば100 n−成長させた後(第2図(
ロ))、S1ドープ(〜1G”am−”) AlGaA
s5を成長させる0段差上面の成長は、最終的に三角形
となり(第2図(e))、その後は横方向に成長し結果
的には台形状の超格子はStドープ^1GaAs 5で
覆われる(第2図(f))。
FIG. 2 shows the procedure for producing the structure shown in FIG. 1,
The following will be explained in order. First, (001) of GaAs substrate 1
A long stripe-shaped etching mask 6 is placed in the (110) direction on the substrate (Fig. 2(a)), and chemical etching or plasma etching is applied to the substrate in the (110) direction as shown in Fig. 2(c). Create stripes with steps. At this time, the sidewalls of the step may have any shape, and non-doped IG is deposited on this substrate using metal-organic vapor phase epitaxy.
AAa 2 and GaAs 3 are sequentially grown to a thickness of Ion-. At this time, no growth occurs on the side walls of the trapezoid, so a trapezoidal superlattice can be created (see Figure 2 (C
)), the growth conditions at this time will be described in detail later.
After growing more than n−, e.g. 100 n− (Fig. 2(
b)), S1 doped (~1G"am-") AlGaA
The growth of s5 on the top surface with zero step finally becomes triangular (Fig. 2(e)), after which it grows laterally, and as a result, the trapezoidal superlattice is covered with St-doped ^1GaAs 5. (Figure 2(f)).

段差上面での成長は、形が三角形になるまではその側壁
にいっさい成長しないが、三角形状になった後は、側壁
から横方向に成長が起こるので、第2図(0の構造を実
現できる。ノンドープAlGaAs層lによって、台形
上面は変調ドープされない、一方、台形格子側面はSt
ドープAlGaAs 5と接しているので、GaAs3
とAlGaAs5の界面に変調ドープによって一次元電
子状態が実現できる。
Growth on the top surface of the step does not grow on the side walls at all until the shape becomes a triangle, but after it becomes triangular, growth occurs laterally from the side walls, so the structure shown in Figure 2 (0) can be realized. Due to the non-doped AlGaAs layer l, the trapezoidal top surface is not modulated doped, while the trapezoidal lattice side surfaces are St
Since it is in contact with doped AlGaAs 5, GaAs3
A one-dimensional electronic state can be realized by modulation doping at the interface between AlGaAs5 and AlGaAs5.

なお台形格子側面とStドープAlGaA15との間に
、薄いノンドープAlGaAs層を介してもよい。
Note that a thin non-doped AlGaAs layer may be interposed between the side surface of the trapezoidal lattice and the St-doped AlGaA 15.

次に、本実施例の結晶成長条件について述べる。Next, the crystal growth conditions of this example will be described.

高周波加熱の横型炉を用い、常圧下で成長を行う。Growth is performed under normal pressure using a horizontal furnace with high-frequency heating.

原料としてトリメチルガリウム、トリメチルアルミニウ
ム、アルシンを用いて、第2図(ロ)で示した基板l上
に成長させる0段差上面の成長層の側壁と段差上面の角
度をθとすると(第3図(a)の挿入図を見よ)、この
θと成長条件との関係を第3図に示す0図から分かるよ
うにθはあらゆる成長温度(第3図(萄)、アルシン分
圧(第3図(ロ))、トリメチルガリウム分圧(第3図
(C))で正確に55度を示す、このことから、台形側
面は(111) B面であること、またこの面は原子的
に平坦な面であること、さらに台形側面、即ち(111
) 8面上ではいっさい成長が起こらないことが分かる
Using trimethylgallium, trimethylaluminum, and arsine as raw materials, let θ be the angle between the side wall and the top surface of the layer grown on the top surface of the 0-step layer grown on the substrate l shown in FIG. As can be seen from the diagram 0 shown in Figure 3, which shows the relationship between θ and the growth conditions, θ is different from any growth temperature (Figure 3 (grape)), arsine partial pressure (Figure 3 ( b)), the partial pressure of trimethyl gallium (Fig. 3 (C)) shows exactly 55 degrees. From this, the side surface of the trapezoid is a (111) B plane, and this plane is an atomically flat surface. , and also has trapezoidal sides, i.e. (111
) It can be seen that no growth occurs on the 8th surface.

ここでA面はGa面、B面はAs面のことである。この
ことを確かめるために、成長速度の面方位依存性につい
て検討した。その結果を、第4図に示す。
Here, the A side is the Ga side, and the B side is the As side. To confirm this, we investigated the dependence of growth rate on plane orientation. The results are shown in FIG.

図から(111) 8面上では成長が起こらないことは
明らかである。従って、第2図(c)、 @で示した台
形状の超格子を有機金属気相成長で容あに作製できる。
From the figure it is clear that no growth occurs on the (111)8 plane. Therefore, the trapezoidal superlattice shown by @ in FIG. 2(c) can be easily produced by organometallic vapor phase epitaxy.

以上説明したように、本実施例の作製方法によれば、加
工工程なしに、すべて成長工程だけで作製可能なので、
エツチング汚染や加工ダメージがなく、側面も単原子オ
ーダで平坦な量子細線となる。
As explained above, according to the manufacturing method of this example, it can be manufactured only by the growth process without any processing process.
There is no etching contamination or processing damage, and the quantum wire has flat sides on the order of single atoms.

本実施例では、^IGa^s/GaAs系材料で説明し
たが、Ga1nP/GaAs、 GafAs/IaP等
のm−v族半導体及びその混晶系、Zn5e/GaAs
等のII−Vl族半導体とその混晶系材料でも実現でき
る。
In this example, the explanation was given using ^IGa^s/GaAs-based materials, but m-v group semiconductors such as Ga1nP/GaAs, GafAs/IaP and their mixed crystal systems, Zn5e/GaAs
It can also be realized using II-Vl group semiconductors such as and mixed crystal materials thereof.

(発明の効果) 本発明の製造方法によれば、成長工程のみで量子細線を
形成するものであるから、加工ダメージや汚染から完全
に免れることは勿論のこと横方向の界面の急峻性も単原
子オーダで制御可能で、高品質の一次元量子細線をうろ
ことができる。
(Effects of the Invention) According to the manufacturing method of the present invention, since quantum wires are formed only in the growth process, not only are they completely free from processing damage and contamination, but also the steepness of the lateral interface can be easily reduced. It can be controlled on the atomic order, and it is possible to create high-quality one-dimensional quantum wires.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法によって造られる量子細線の基本
構造、第2図は本発明の作製手順、第3図は成長側壁の
角度と成長条件の関係、第4図は成長速度と基板面方位
の関係、第5図は従来提案されている量子細線構造の断
面図であり、第6図は従来提案されている作製方法を説
明する図を示す。 1・・・・・半絶縁性GaAa基板 2・・・・・ノンドープAlGaAs成長層3・・・・
・ノンドープGa^3成長層4・・・・・ノンドー、プ
AlGaAsのスペーサ層5・・・・・StドープAl
GaAs成長層6・・・・・エッチングマスク 第1図 5−−−5iド一プAIGaAsA長層第2図 成長!&  (@C) プルシン→)鳴 (K辰) トリメケルカ゛リウムリ分圧(気力ヒ)第4図 1島、FLi方イブL
Figure 1 shows the basic structure of the quantum wire produced by the method of the present invention, Figure 2 shows the manufacturing procedure of the present invention, Figure 3 shows the relationship between the angle of the growth sidewall and growth conditions, and Figure 4 shows the growth rate and substrate surface. 5 is a cross-sectional view of a conventionally proposed quantum wire structure, and FIG. 6 is a diagram illustrating a conventionally proposed manufacturing method. 1... Semi-insulating GaAa substrate 2... Non-doped AlGaAs growth layer 3...
- Non-doped Ga^3 growth layer 4...Non-doped AlGaAs spacer layer 5...St-doped Al
GaAs growth layer 6... Etching mask Fig. 1 5--5i doped AI GaAsA long layer Fig. 2 growth! & (@C) Prusin →) Ning (K Tatsu) Trimekel potassium partial pressure (Kikihi) Figure 4 1 island, FLi side Eve L

Claims (1)

【特許請求の範囲】 (001)化合物半導体基板面上に〔@1@10〕方向
に段差を有するストライプを形成する工程と、前記の半
導体基板上に有機金属気相成長法によって、2種類以上
の低不純物濃度の半導体層を交互に積層して超格子のス
トライプを台形状に成長せしめ、かつ前記の同一種類の
成長層の中の少くとも1種類の成長層の厚さをほぼ10
0ナノメータ以下の厚さに形成する工程と、 ついで少くとも前記の台形状の積層層の上面に低不純物
濃度の他の半導体を、ほぼ50ナノメータ以下の厚さに
成長させるか、または成長させることなしに、引き続き
高不純物濃度の半導体で前記の台形状の超格子を埋め込
む工程 とを具備することを特徴とする一次元量子細線の製造方
法。
[Scope of Claims] (001) A step of forming stripes having steps in the [@1@10] direction on the surface of a compound semiconductor substrate, and two or more types of stripes formed on the semiconductor substrate by an organometallic vapor phase epitaxy method. The superlattice stripes are grown in a trapezoidal shape by alternately stacking semiconductor layers with low impurity concentration, and the thickness of at least one of the growth layers of the same type is approximately 10%.
forming a semiconductor with a low impurity concentration to a thickness of approximately 50 nanometers or less on at least the upper surface of the trapezoidal stacked layer; 1. A method for manufacturing a one-dimensional quantum wire, comprising the step of subsequently embedding the trapezoidal superlattice with a semiconductor having a high impurity concentration.
JP62131378A 1987-05-29 1987-05-29 Manufacturing method of one-dimensional quantum wires Expired - Fee Related JP2726851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62131378A JP2726851B2 (en) 1987-05-29 1987-05-29 Manufacturing method of one-dimensional quantum wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62131378A JP2726851B2 (en) 1987-05-29 1987-05-29 Manufacturing method of one-dimensional quantum wires

Publications (2)

Publication Number Publication Date
JPS63299113A true JPS63299113A (en) 1988-12-06
JP2726851B2 JP2726851B2 (en) 1998-03-11

Family

ID=15056546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62131378A Expired - Fee Related JP2726851B2 (en) 1987-05-29 1987-05-29 Manufacturing method of one-dimensional quantum wires

Country Status (1)

Country Link
JP (1) JP2726851B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394696A (en) * 1986-10-09 1988-04-25 Matsushita Electric Ind Co Ltd Semiconductor laser device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394696A (en) * 1986-10-09 1988-04-25 Matsushita Electric Ind Co Ltd Semiconductor laser device

Also Published As

Publication number Publication date
JP2726851B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
JP2620901B2 (en) GaAs heterostructure with stress compensation layer
JP3158651B2 (en) Compound semiconductor and method of manufacturing the same
JP3326704B2 (en) Method of manufacturing III / V compound semiconductor device
JPH08306703A (en) Compound semiconductor crystal device and manufacturing method thereof
JPH10199813A (en) Semiconductor device manufacturing method and semiconductor device
JPS63299113A (en) Manufacture of one-dimensional quantum thin line
JP3547320B2 (en) GaN-based compound semiconductor device
JP2533777B2 (en) Method for manufacturing one-dimensional quantum wire
JP2654828B2 (en) Semiconductor device having quantum wires and method of manufacturing the same
JPS63299114A (en) Manufacture of one-dimensional quantum thin line
CN100533883C (en) Compound semiconductor and manufacturing method thereof, semiconductor device and manufacturing method thereof
JPS63299112A (en) Manufacture of one-dimensional quantum thin line
JP3670130B2 (en) Method for manufacturing group III-V compound semiconductor device
JP3042645B2 (en) Manufacturing method of semiconductor quantum box structure
JPH023222A (en) Manufacture of semiconductor quantum wire
JP2624167B2 (en) How to make quantum wires and boxes
JPH05267175A (en) Compound semiconductor substrate
JPH02137316A (en) Manufacture of semiconductor quantum fine wire
JPH0714785A (en) Semiconductor epitaxial substrate and method for manufacturing the same
JP3371317B2 (en) Strained multiple quantum well structure
JPH04356963A (en) Manufacture of semiconductor quantum fine wiring
JPH09260787A (en) InP semiconductor device
JPH07326582A (en) Method for manufacturing compound semiconductor crystal device
JP3188931B2 (en) Thin film growth method
JPH02156522A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees